Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

S

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **UL USA**

Certificate No: CD1880V3-1122_Feb23

CALIBRA	TION	CERTI	FICATE

Object	CD1880V3 - SN	: 1122	
Calibration procedure(s)	QA CAL-20.v7		
	Calibration Proce	edure for Validation Sources in	air
Calibration date:	February 03, 202	03	
	1 001001y 00, 202		
This calibration certificate documer	nts the traceability to nati	onal standards, which realize the physical i	inits of measurements (SI)
The measurements and the uncertain	ainties with confidence p	robability are given on the following pages	and are part of the certificate
All calibrations have been conducted	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Probe EF3DV3	SN: 4013	30-Dec-22 (No. EF3-4013 Dec22)	
DAE4	SN: 781	03-Jan-23 (No. DAE4-781_Jan23)	Dec-23 Jan-24
		00 0411 20 (NO. DAE+ 701_04120)	Jan-24
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-20)	In house check: Oct-23
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-20)	In house check: Oct-23
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-20)	In house check: Oct-23
RF generator R&S SMT-06	SN: 837633/005	10-Jan-19 (in house check Oct-20)	In house check: Oct-23
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	1
		-1	Set Talke
Approved by:	Sven Kühn	Technical M	4.1
ippiorod by.	Sven Kunn	Technical Manager	Seef Taliper

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: February 3, 2023

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

S

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

 ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E-field distribution:* E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1730 MHz ± 1 MHz 1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1730 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	94.1 V/m = 39.47 dBV/m
Maximum measured above low end	100 mW input power	93.8 V/m = 39.45 dBV/m
Averaged maximum above arm	100 mW input power	94.0 V/m ± 12.8 % (k=2)

Maximum Field values at 1880 MHz

100

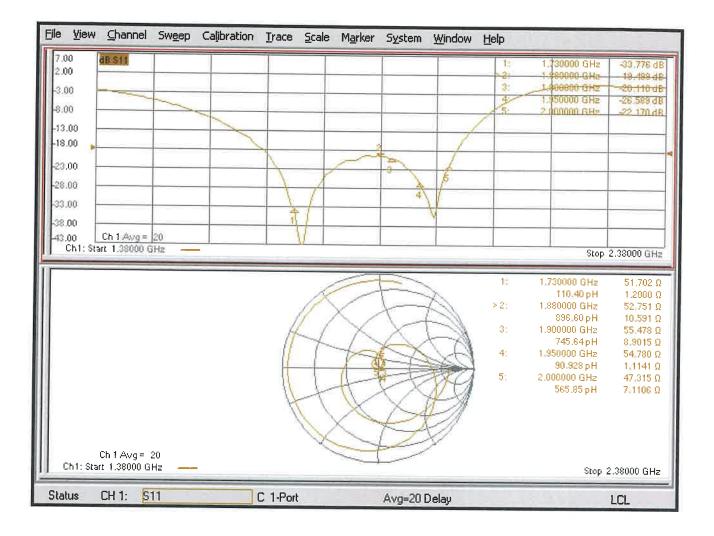
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	87.0 V/m = 38.79 dBV/m
Maximum measured above low end	100 mW input power	86.2 V/m = 38.71 dBV/m
Averaged maximum above arm	100 mW input power	86.6 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Nominal Frequencies

Frequency	Return Loss	Impedance
1730 MHz	33.8 dB	51.7 Ω + 1.2 jΩ
1880 MHz	19.5 dB	52.8 Ω + 10.6 jΩ
1900 MHz	20.1 dB	55.5 Ω + 8.9 jΩ
1950 MHz	26.6 dB	54.8 Ω + 1.1 jΩ
2000 MHz	22.2 dB	47.3 Ω + 7.1 jΩ


3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1122

Communication System: UID 0 - CW ; Frequency: 1880 MHz, Frequency: 1730 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

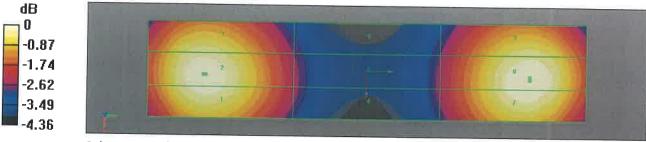
DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz, ConvF(1, 1, 1) @ 1730 MHz; Calibrated: 30.12.2022
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 03.01.2023
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mmDevice Reference Point: 0, 0, -6.3 mm Reference Value = 154.9 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 38.79 dBV/m **Emission category: M2**

MIF scaled E-field


		Grid 3 M2
38.65 dBV/m	38./1 dBV/m	38.39 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.09 dBV/m	36.1 dBV/m	35.89 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.74 dBV/m	38.79 dBV/m	38.43 dBV/m

Dipole E-Field measurement @ 1880MHz/E-Scan - 1730MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 169.1 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 39.47 dBV/m **Emission category: M2**

MIF scaled E-field

		Grid 3 M2
39.36 dBV/m	39.45 dBV/m	39.16 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.85 dBV/m	36.88 dBV/m	36.66 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.43 dBV/m	39.47 dBV/m	39.05 dBV/m

0 dB = 86.96 V/m = 38.79 dBV/m

Equipment	Location	Equipment Name	Model Name	Date of Verification
UL Verification	Services Inc.	Dipole		
47173 Benicia Street Fremont, CA 94538, U.S.A.	47266 Benicia Street Fremont, CA 94538, U.S.A.	Antenna	CD1880V3-1122	January 30, 2024

Number:	Check List:	Result:
1	Visual Inspection	Pass
2	Return/Loss and Impedance	Pass
3	Dipole Arms	Pass

	Equipment List:	
Equipment Name:	Calibration Date:	Calibration Due Date
R&S Vector Network Analyzer	2/18/2023	2/18/2024
ZV-Z135 Calibration Kit	3/10/2023	3/10/2024

• The connector of dipole contains no abnormalities.

2) Impedance and Return/Loss

1 511 Smith 200 mU/ Ref 1 U 0	at					1~
		/	1		M1 1.730000 GH	
		0.5	1			j290.436 m
		03			102 1 880000 CH	26.719259 pH
			A		M2 1.880000 GH	z 50.721 Ω j7.986 Ω
						676.031749 pł
				5	M3 1.900000 GH	
			MS		115 1.500000 011	j6.654 Ω
			W ANT			557.401408 pH
				S	M4 1.950000 GH	z 53.219 Ω
		Q 0,2 0,5	1 2 5/10	5		j3.301 Ω
			XXX	1		269.389725 pH
			AND.	5	• M5 2.000000 GH	
				71		j10.272 Ω
						817.452385 pH
			T			
		-0.5	-1 -2/			
			+			
			_1			
enter 1.88 GHz	Pwr -10 dBm Bw 10 k	kHz Refl OSM P1	-1			Span 400 MHz
		kHz Refl OSM P1	1			Span 400 MHz 2 🗸
		kHz Refl OSM P1		_	M1 1.730000	2~
		kHz Refl OSM P1				2 ~ GHz -30.0658 df
		kHz Refl OSM P1			M2 1.880000	2~
		kHz Refl OSM P1			M2 1.880000 M3 1.900000	2~ GHz -30.0658 dl GHz -22.0083 dl GHz -22.2963 dl
		kHz Refl OSM P1			M2 1.880000 M3 1.900000 M4 1.950000	2 ~ GHz -30.0658 df GHz -22.0083 df
		kHz RefLOSM P1			M2 1.880000 M3 1.900000 M4 1.950000	2 ~ GHz -30.0658 dI GHz -22.0083 dI GHz -22.2963 dI GHz -27.0048 dI
		kHz Refl OSM P1			M2 1.880000 M3 1.900000 M4 1.950000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
		kHz Refl OSM P1			M2 1.880000 M3 1.900000 M4 1.950000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
		kHz Refl OSM PT	M2 M3		M2 1.880000 M3 1.900000 M4 1.950000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM P1	M2 M3		M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
		kHz Refl OSM P1	M2 M3	M4	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
11 dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM P1	M2 M3	Mi	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dI GHz -22.0083 dI GHz -22.2963 dI GHz -27.0048 dI
S11 dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM PT	M2 M3	M4	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
S11 dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM P1	M2 M3	M4	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
S11 dB Mag 15 dB/Ref 0 dB		kHz Refl OSM P1	M2 M3	Ma	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
S11 dB Mag 15 dB/Ref 0 dB		kHz Refl OSM P1	M2 M3	¥	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
S11 dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM P1	M2 M3	M4	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
S11 dB Mag 15 dB/ Ref 0 dB		kHz Refl OSM P1	M2 M3	Má	M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB
enter 1.88 GHz			M2 M3		M2 1.880000 M3 1.90000 M4 1.950000 M5 2.000000	2 ~ GHz -30.0658 dB GHz -22.0083 dB GHz -22.2963 dB GHz -27.0048 dB

• Return/Loss is greater than the -20 dB cutoff and Impedance is within 5 Ω of previous value.

• The center red line indicates that the arms of the dipole fall within $\pm 2^{\circ}$