

TEST REPORT

Report Number: 14982479-E2V2

Applicant: APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

Model: A3084 (Parent Model)

A3295, A3296, A3297 (Variant Models)

Brand: APPLE

FCC ID : BCG-E8684A (Parent Model)

BCG-E8685A, BCG-E8686A, BCG-E8687A (Variant

Models)

IC: 579C-E8684A (Parent Model)

579C-E8685A, 579C-E8686A, 579C-E8687A (Variant

Models)

EUT Description: Smartphone

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 3

ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue:

2024/08/02

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888

DATE: 2024/08/02 REPORT NO: 14982479-E2V2

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	2024/07/01	Initial Issue	Tony Li
V2	2024/08/02	Addressed TCB Feedback on Sections 1, 6, and 9	Tony Li

TABLE OF CONTENTS

TA	BLE	E OF CONTENTS	3
1.	A٦	TTESTATION OF TEST RESULTS	5
2.	TE	ST SUMMARY	7
3.	TE	EST METHODOLOGY	7
4.	FA	ACILITIES AND ACCREDITATION	8
5.	DE	ECISION RULES AND MEASUREMENT UNCERTAINTY	8
,	5.1.	METROLOGICAL TRACEABILITY	8
,	5.2.	DECISION RULES	8
,	5.3.	MEASUREMENT UNCERTAINTY	
6.	EC	QUIPMENT UNDER TEST1	10
(6.1.	EUT DESCRIPTION	10
	6. <i>2</i> .	MAXIMUM OUTPUT POWER	10
	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
	6. <i>4</i> .	SOFTWARE AND FIRMWARE	
	6. <i>5.</i>	WORST-CASE CONFIGURATION AND MODE	
	6.6.	DESCRIPTION OF TEST SETUP	
7.	MI	EASUREMENT METHOD1	17
8.	TE	EST AND MEASUREMENT EQUIPMENT1	18
9.		NTENNA PORT TEST RESULTS	
	بم 9.1.	ON TIME AND DUTY CYCLE	
	9.2.	99% BANDWIDTH	
,		2.1. HIGH POWER BLE (1Mbps)	
	9.2	2.2. HIGH POWER BLE TXBF (1Mbps)2	23
		2.3. HIGH POWER BLE (2Mbps)	
	ء.ء 9.3.	` '	
,	-	6 dB BANDWIDTH	20 27
		3.2. HIGH POWER BLE TXBF (1Mbps)	28
,	9.4.		29
		4.1. HIGH POWER BLE (1Mbps)	
		4.2. HIGH POWER BLE TXBF (1Mbps)	
		4.4. HIGH POWER BLE TXBF (2Mbps)	
		4.5. LOW POWER BLE (1Mbps)	
		Page 3 of 126	

9.4.6. LOW POWER BLE TXBF (1Mbps)	
9.4.7. LOW POWER BLE (2Mbps)	
` ',	
9.5. AVERAGE POWER	34 35
9.5.2. HIGH POWER BLE TXBF (1Mbps)	
9.5.3. HIGH POWER BLE (2Mbps)	36
9.5.4. HIGH POWER BLE TXBF (2Mbps)	
9.5.5. LOW POWER BLE (1Mbps)	
9.5.7. LOW POWER BLE (2Mbps)	
9.5.8. LOW POWER BLE TXBF (2Mbps)	
9.6. POWER SPECTRAL DENSITY	39
9.6.1. HIGH POWER BLE (1Mbps)	
9.6.2. HIGH POWER BLE TXBF (1Mbps)	
9.6.3. HIGH POWER BLE (2Mbps)	
9.6.4. HIGH POWER BLE TXBF (2Mbps)	
9.7. CONDUCTED SPURIOUS EMISSIONS	
9.7.1. HIGH POWER BLE (1Mbps)	
9.7.3. HIGH POWER BLE (2Mbps)	49
9.7.4. HIGH POWER BLE TXBF (2Mbps)	51
9.7.5. LOW POWER BLE (1Mbps)	53
9.7.6. LOW POWER BLE TXBF (1Mbps)	
9.7.7. LOW POWER BLE (2Mbps)	
10. RADIATED TEST RESULTS	
10.1. LIMITS AND PROCEDURE	61
10.2. TRANSMITTER ABOVE 1 GHz	
10.2.1. HIGH POWER BLE (1Mbps)	
10.2.2. HIGH POWER BLE TXBF (1Mbps)	
10.2.4. HIGH POWER BLE TXBF (2Mbps)	
10.2.5. LOW POWER BLE (1Mbps)	87
10.2.6. LOW POWER BLE TXBF (1Mbps)	
10.2.7. LOW POWER BLE (2Mbps)	
10.2.8. LOW POWER BLE TXBF (2Mbps)	107 111
10.3. WORST CASE BELOW 1 GHZ	
10.4. WORST CASE 18-26 GHz	
11. AC POWER LINE CONDUCTED EMISSIONS	
11.1.1. AC POWER LINE WITH LAPTOP	
11.1.2. AC POWER LINE WITH AC/DC ADAPTER	
12. SETUP PHOTOS	126
Page 4 of 126	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A

EUT DESCRIPTION: Smartphone

MODEL: A3084 (Parent Model)

A3295, A3296, A3297 (Variant Models)

BRAND: APPLE

SERIAL NUMBER: DP4Q0WG2LX

SAMPLE RECEIPT DATE: 2024/03/08

DATE TESTED: 2024/03/09 – 2024/07/09

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Complies

ISED RSS-247 Issue 3 Complies

ISED RSS-GEN Issue 5 + A1 + A2 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested can demonstrate compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to ensure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not considered unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Chin Pany

Prepared By:

Chin Pang Senior ab Engineer Consumer Technology Division UL Verification Services Inc.

David Collins Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

2. TEST SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7	99% OBW	Reporting	ANSI C63.10 Section
-		99% OBVV	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Complies	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Complies	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Complies	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 3.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc.is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
×	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
\boxtimes	Building 3: 843 Auburn Court, Fremont, CA 94538 USA			
	□ Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
\boxtimes	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

DATE: 2024/08/02 REPORT NO: 14982479-E2V2

MEASUREMENT UNCERTAINTY 5.3.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	Ulab
Conducted Antenna Port Emission Measurement	1.94
Power Spectral Density	2.466
Time Domain Measurements Using SA	3.39
RF Power Measurement Direct Method Using Power Meter	0.450 (Peak), 1.3 (Ave)
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.2%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB

Uncertainty figures are valid to a confidence level of 95%.

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with cellular GSM, GPRS, EGPRS, WCDMA, LTE, 5GNR1, 5GNR2, IEEE 802.11a/b/g/n/ac/ax/be, Bluetooth (BT), Ultra-Wideband (UWB), Global Positioning System (GPS), Near-Field Communication (NFC), Narrow-Band (NB) UNII, 802.15.4, 802.15.4ab-Narrow Band (NB) and Mobile Satellite Service (MSS) technologies. The rechargeable battery is not user accessible. This device is not user-serviceable and requires special tools to disassemble.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Configuration	Frequency	Mode	Output	Output
		Range		Power	Power
		(MHz)		(dBm)	(mW)
	High Power	2402 - 2480	BLE 1M	20.35	108.39
ANT4	Low Power	2402 - 2400	DLE IIVI	9.36	8.63
AN14	High Power	2404 - 2478	BLE 2M	20.22	105.20
	Low Power	2404 - 2470	DLE ZIVI	9.34	8.59
	High Power	2402 - 2480	BLE 1M	20.37	108.89
ANTO	Low Power	2402 - 2400	DLE IIVI	9.39	8.69
ANT3	High Power	2404 - 2478	BLE 2M	20.42	110.15
	Low Power	2404 - 2470	DLE ZIVI	9.40	8.71
	High Power	2402 - 2480	BLE 1M	23.29	213.30
BF, ANT4+ ANT3	Low Power	2402 - 2400	DLE IIVI	7.87	6.12
	High Power	2404 - 2478	BLE 2M	23.29	213.30
	Low Power	2404 - 2478	DLE ZIVI	7.95	6.24

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and IFA type, as provided by the manufacturer' are as follows:

Frequency Range (GHz)	ANT 4 (dBi)	ANT 3 (dBi)
2.4	-2.0	-1.7

SMA Cable used for RF conducted testing has a loss as follows:

Cable Loss used for Antenna 4 is 2.0 dB Cable Loss used for Antenna 3 is 2.2 dB

The cables were used for RF antenna port tests that had been offset to the test equipment during testing.

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 22.1.93.334.

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on ANT 3 and ANT 4. It was determined that X (Fatbed) orientation was the worst-case orientation for ANT 3 and Y (Landscape) for ANT 4 and beamforming 2TX.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT was set to transmit at highest power on Low/Middle/High channels.

High Power Beamforming BLE 1Mbps mode is set to maximum power per chain to cover both SISO and MIMO modes to comply with radiated spurious emissions limits in the restricted bands between 1GHz and 18GHz low/mid/high channel (except the band edge).

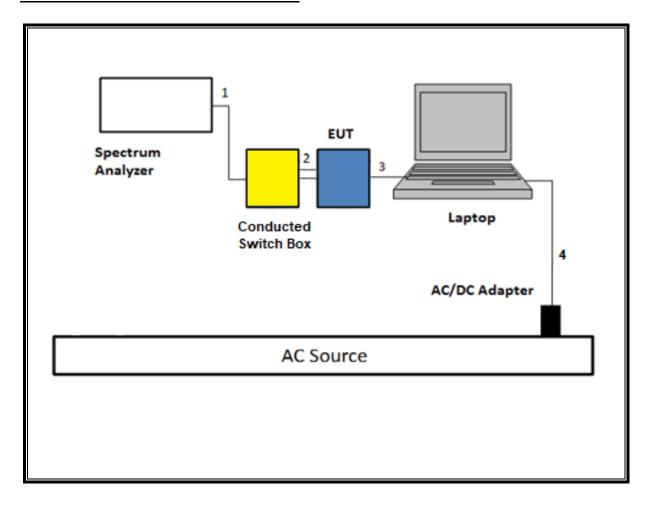
Radiated emissions below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario. There were no emissions found below 30MHz within 20dB of the limit.

For below 30MHz, 30-1000MHz emissions spurious tests were performed with EUT connected to AC power adapter and set X orientation as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

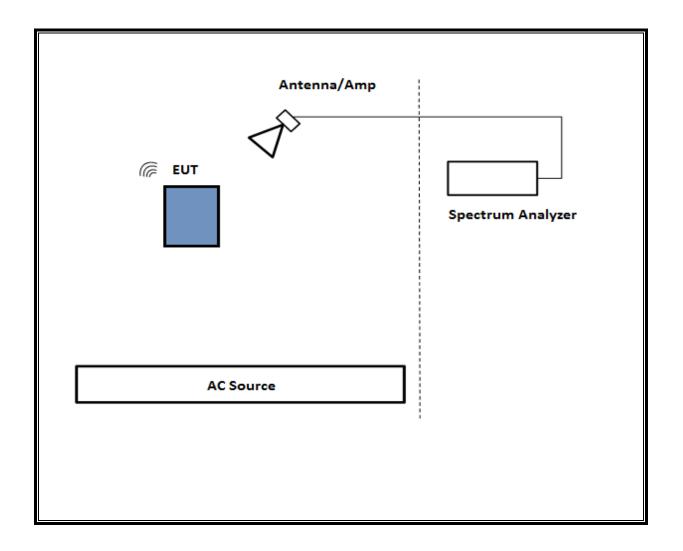
For simultaneous transmission of multiple channels in the 2.4GHz BLE and 5GHz bands. No noticeable emission was found.

Note: ANT0 and ANT1 indicated in the Radiated test result sections are representative of ANT4 and ANT3, respectively.

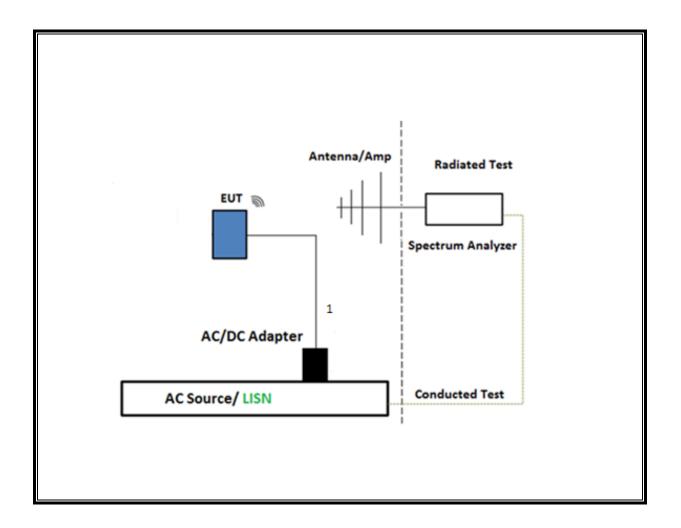
DATE: 2024/08/02 REPORT NO: 14982479-E2V2

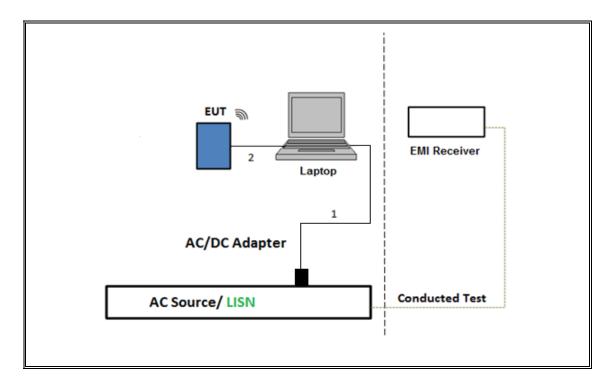

DESCRIPTION OF TEST SETUP 6.6.

TEST SETUP


SUPPORT TEST EQUIPMENT							
Description		Manufacturer	Model	Serial Nu	mber	FCC ID/ DoC	
	Laptop	Apple	Macbook Pro	C02VD7SA	AHV22	BCGA1708	
Laptop	AC/DC adapter	Liteon Technology	A1424	NSW25	679	DoC	
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC	
Condu	cted Switch Box	UL	n/a	20828	31	N/A	
		I/O CAE	BLES (RF CONDUC	TED TEST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	SMA	1	SMA	Shielded	0.75	To spectrum Analyzer	
2	Antenna	2	SMA	Un-shielded	0.2	To Conducted Switch Box	
3	USB-C	1	USB-C	Shielded	1.0	N/A	
4	AC	1	AC	Un-shielded	2	N/A	
	I/O CABLES (RF RADIATED TEST)						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	1	AC	Un-shielded	2	N/A	
2	USB	1	USB	Un-shielded	1	N/A	

The EUT is connected to a test laptop during the tests. Test software exercised the radio card.


SETUP DIAGRAM FOR CONDUCTED TESTS


SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz (1 to 26.5GHz)

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v05r02, Section 6.

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Measurement using gated average power meter.

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1 & Clause 13

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Subclause -11.13.3.2 & Clause 13: Integration method -Peak

detection

Band-edge: ANSI C63.10 Subclause -11.13.3.3 & Clause 13:

Integration method -Trace

averaging with continuous transmission at full power

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated emissions non-restricted frequency bands ANSI C63.10 Subclause -11.11 & Clause 13

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4 & 13

NOTE: All conducted antenna port tests for Beamforming applied the same test procedures as BLE 1Mbps and BLE 2Mbps normal modes.

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	200896	2025/04/24
RF Filter Box, 1-18GHz, 17 Ports	UL-FR1	RATS 2	225474	2025/04/30
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	170063	2024/11/30
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	226673	2025/01/31
EMI Test Receiver	Rohde & Schwarz	ESW44	169936	2025/02/28
RF Filter Box, 1-18GHz, 12 Ports	UL-FR1	Frankenstein	217521	2024/08/31
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	230299	2025/01/31
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	230547	2025/02/28
*Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	85151	2024/04/30
Link File, @3m, 9kHz- 1000MHz Hybrid Path Loss	UL-FR1	Port 0 Factors	232001	2025/02/28
*Antenna, Horn 18 to 26.5GHz	A.R.A	MWH-1826/B	172353	2024/06/30
RF Amplifier Assembly, 18- 26.5GHz, 60dB Gain	AMPLICAL	AMP18G26.5-60	171583	2025/03/31
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	223461	2024/08/29
RF Filter Box, 1-18GHz, 12 Port	UL-FR1	Frankenstein	216812	2025/01/30
Antenna, Passive Loop 30Hz to 1MHz	Electro-Metrics	EM-6871	170014	2024/08/31
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO- METRICS	EM-6872	170016	2024/08/31
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90731	2025/01/31
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	80120	2025/01/31
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90719	2025/01/31
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90389	2025/01/31
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	80397	2025/01/31
Spectrum Analyzer, PXA, 3Hz to 50GHz w/Ext. Mixer	Keysight Technologies Inc	N9030A	80400	2025/02/02
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	17	78557
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	17	78558
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	125178	2025/01/31
*Conducted Switch Box	N/A	CSB	208281	2024/04/30
Conducted Switch Box	N/A	CSB	208281	2025/05/08

AC Line Conducted Description Manufacturer Model **ID Num Cal Due** EMI Test Receiver 9kHz-Rohde & Schwarz **ESR** 93091 2025/02/28 7GHz LISN for Conducted FISCHER CUSTOM FCC-LISN-50/250-175765 2025/01/31 25-2-01-480V Emissions CISPR-16 COMMUNICATIONS Transient Limiter 207996 2024/08/31 TBFL1 ΤE **UL AUTOMATION SOFTWARE** Radiated Software UL UL EMC Ver 9.5, May 1, 2023 Conducted Software UL UL EMC 2023.2.23 UL **UL EMC** Ver 9.5, Mar 3, 2023 AC Line Conducted Software

^{*}Testing was completed before equipment calibration date

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE, 1Mbps	0.08	0.08	1.000	100.00%	0.00	0.010
BLE, 2Mbps	0.08	0.08	1.000	100.00%	0.00	0.010

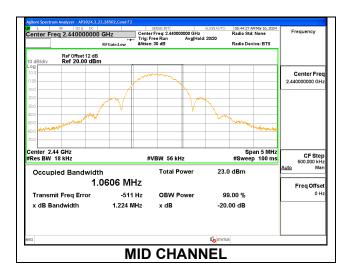
Note: There is the same DC factor on 1TX and 2TX.

DUTY CYCLE PLOTS

DATE: 2024/08/02 REPORT NO: 14982479-E2V2

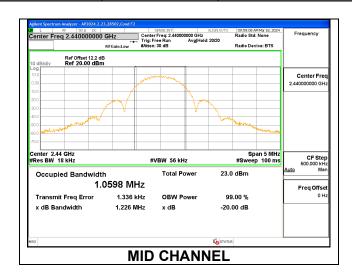
9.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

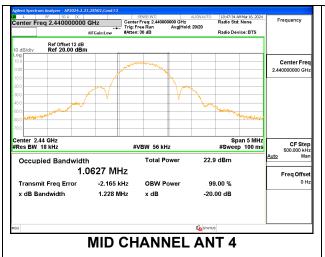
RESULTS

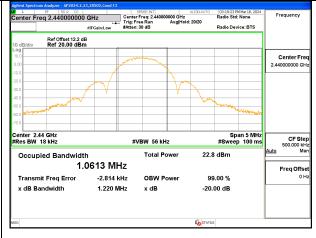
9.2.1. HIGH POWER BLE (1Mbps)


ANT 4

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0612
Middle	2440	1.0606
High	2480	1.0604

<u>ANT 3</u>

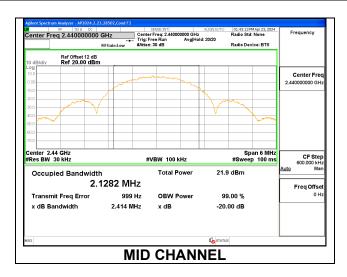

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0606
Middle	2440	1.0598
High	2480	1.0620



9.2.2. HIGH POWER BLE TXBF (1Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2402	1.0569	1.0647
Mid	2440	1.0627	1.0613
High	2480	1.0588	1.0607

Note: Test procedures and setting are same as BLE normal mode.

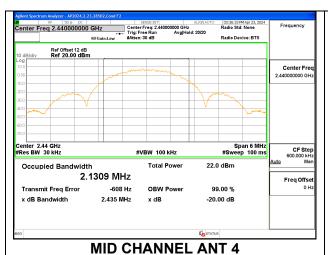


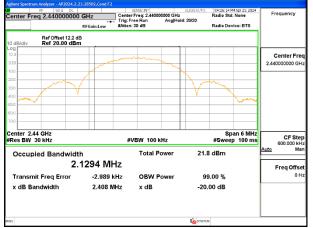
9.2.3. HIGH POWER BLE (2Mbps)


ANT 4

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.1266
Middle	2440	2.1282
High	2478	2.1242

ANT 3


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.1292
Middle	2440	2.1290
High	2478	2.1281



9.2.4. HIGH POWER BLE TXBF (2Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2404	2.1271	2.1314
Mid	2440	2.1309	2.1294
High	2478	2.1261	2.1303

Note: Test procedures and setting are same as BLE normal mode.

9.3. 6 dB BANDWIDTH

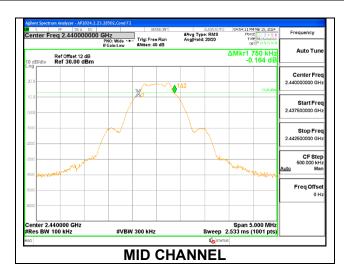
LIMITS

FCC §15.407 (e)

RSS-247 5.2 (a)

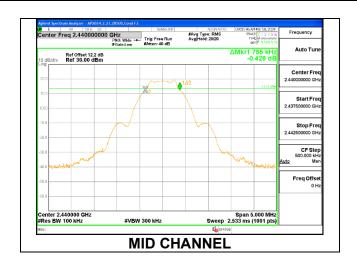
The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS


The 6dB bandwidth was measured for the narrowest bandwidth mode, High Power 1Mbps, to demonstrate compliance with the minimum required bandwidth of 500 kHz. Other modes were not tested as their bandwidth is greater than the High Power 1Mbps mode, as demonstrated by the 99% bandwidth measurements performed on all modes.

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

9.3.1. HIGH POWER BLE (1Mbps)

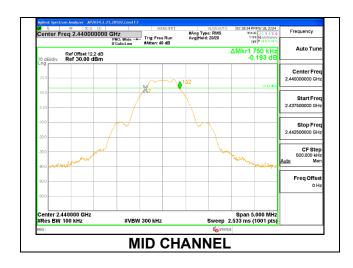

ANT 4

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.750	0.5
Middle	2440	0.750	0.5
High	2480	0.770	0.5

<u>ANT 3</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.750	0.5
Middle	2440	0.755	0.5
High	2480	0.760	0.5

9.3.2. HIGH POWER BLE TXBF (1Mbps)


ANT 4

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.755	0.5
Middle	2440	0.755	0.5
High	2480	0.760	0.5

ANT 3

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.750	0.5
Middle	2440	0.750	0.5
High	2480	0.760	0.5

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband peak power sensor. Peak output power was read directly from the power meter.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2TX:

Tx chains are correlated for power and PSD due to the device supporting Beamforming mode. The directional gains are as follows:

	ANT 4	ANT 3	Uncorrelated Chains	Correlated Chains
			Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	-2.00	-1.70	-1.85	1.16

DIRECTIONAL GAIN CALCULATION:

ANSI C63.10-2013 section 14.4.3

Uncorrelated directional gain=10*LOG((10^(Ant4/10)+10^(Ant3/10))/2) Correlated directional Gain=10*LOG(((10^(Ant4/20)+10^(Ant3/20))^2)/2)

Sample Calculation:

Ant4=-2.0, Ant3=-1.7

Uncorrelated Antenna gain= $10\log[(10^{-2.0/10}+10^{-1.7/10})/2]=-1.85$ dBi Correlated Antenna gain= $10\log[(10^{-2.0/20}+10^{-1.7/20})^2]=1.16$ dBi

RESULTS

Page 29 of 126

9.4.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	20.27	30	-9.73
Middle	2440	20.16	30	-9.84
High	2480	20.35	30	-9.65

ANT 3

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.22	30	-9.78
Middle	2440	20.35	30	-9.65
High	2480	20.37	30	-9.63

9.4.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Output Power ANT 4	Output Power ANT 3	Total Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	20.09	20.28	23.20	30	-6.80
Middle	2440	20.15	20.35	23.26	30	-6.74
High	2480	20.17	20.39	23.29	30	-6.71

9.4.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2404	20.11	30	-9.89
Middle	2440	20.21	30	-9.79
High	2478	20.22	30	-9.78

<u>ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2404	20.38	30	-9.62
Middle	2440	20.42	30	-9.58
High	2478	20.39	30	-9.61

9.4.4. HIGH POWER BLE TXBF (2Mbps)

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	20.18	20.37	23.29	30	-6.71
Middle	2440	20.23	20.24	23.25	30	-6.75
High	2478	20.17	20.07	23.13	30	-6.87

9.4.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	9.30	30	-20.70
Middle	2440	9.36	30	-20.64
High	2480	9.21	30	-20.79

ANT 3

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	9.39	30	-20.61
Middle	2440	9.32	30	-20.68
High	2480	9.35	30	-20.65

9.4.6. LOW POWER BLE TXBF (1Mbps)

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	4.84	4.79	7.83	30	-22.17
Middle	2440	4.87	4.84	7.87	30	-22.13
High	2480	4.81	4.88	7.86	30	-22.14

9.4.7. LOW POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2404	9.34	30	-20.66
Middle	2440	9.27	30	-20.73
High	2478	9.31	30	-20.69

<u>ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2404	9.40	30	-20.60
Middle	2440	9.10	30	-20.90
High	2478	9.37	30	-20.63

9.4.8. LOW POWER BLE TXBF (2Mbps)

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	4.95	4.93	7.95	30	-22.05
Middle	2440	4.92	4.92	7.93	30	-22.07
High	2478	4.83	4.84	7.85	30	-22.15

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband average power sensor. Gated average output power was read directly from power meter.

RESULTS

9.5.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	19.87
Middle	2440	19.76
High	2480	19.96

<u>ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power	
	(MHz)	(dBm)	
Low	2402	19.82	
Middle	2440	19.95	
High	2480	19.97	

9.5.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	27979
Date:	7/8/2024

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	19.69	19.89	22.80
Middle	2440	19.75	19.96	22.87
High	2480	19.78	19.99	22.90

9.5.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	19.65
Middle	2440	19.76
High	2478	19.77

<u>ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	19.93
Middle	2440	19.97
High	2478	19.94

9.5.4. HIGH POWER BLE TXBF (2Mbps)

Tested By:	27979 HN	
Date:	7/8/2024	

Channel	Frequency	Average Power ANT 4	Average Power ANT 3	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	19.73	19.91	22.83
Middle	2440	19.78	19.79	22.80
High	2478	19.71	19.61	22.67

9.5.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	8.90
Middle	2440	8.97
High	2480	8.81

<u>ANT 3</u>

Tested By:	27979 HN	
Date:	7/8/2024	

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	8.99
Middle	2440	8.92
High	2480	8.95

9.5.6. LOW POWER BLE TXBF (1Mbps)

<u>ANT 4 + ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	4.41	4.39	7.41
Middle	2440	4.47	4.45	7.47
High	2480	4.41	4.48	7.46

9.5.7. LOW POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	8.89
Middle	2440	8.81
High	2478	8.85

<u>ANT 3</u>

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	8.95
Middle	2440	8.64
High	2478	8.91

9.5.8. LOW POWER BLE TXBF (2Mbps)

ANT 4 + ANT 3

Tested By:	27979 HN
Date:	7/8/2024

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	4.49	4.47	7.49
Middle	2440	4.46	4.45	7.47
High	2478	4.37	4.38	7.39

REPORT NO: 14982479-E2V2 DATE: 2024/08/02

9.6. POWER SPECTRAL DENSITY

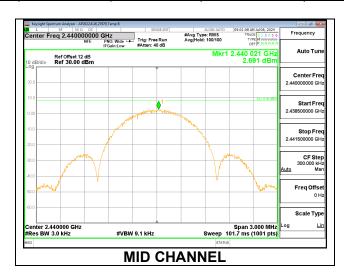
LIMITS

FCC §15.247 (e)

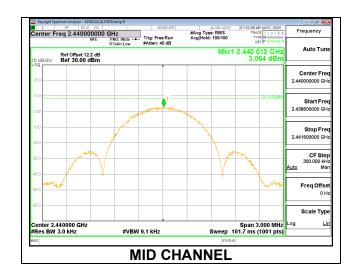
RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS


Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

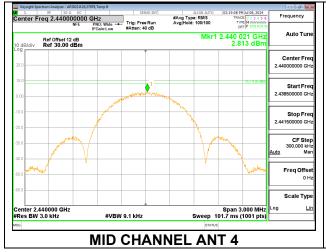
Only High-Power modes result is reported, it covers all Low Power modes

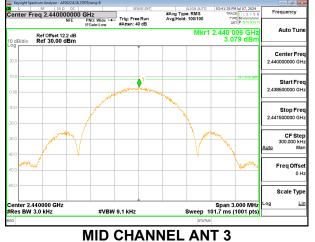

9.6.1. HIGH POWER BLE (1Mbps)

ANT 4

Channel	Frequency	PSD	Limit	Margin	
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)	
Low	2402	2.827	8	-5.17	
Middle	2440	2.691	8	-5.31	
High	2480	2.964	8	-5.04	

Channel	Frequency	PSD	Limit	Margin	
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)	
Low	2402	2.950	8	-5.05	
Middle	2440	3.064	8	-4.94	
High	2480	3.059	8	-4.94	

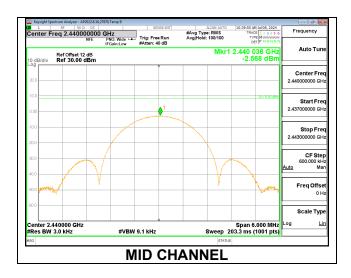


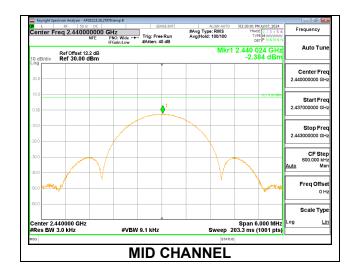

9.6.2. HIGH POWER BLE TXBF (1Mbps)

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

PSD Results

Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin
		Meas	Meas	Corr'd PSD		
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/	
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)
Low	2402	2.708	2.860	5.79	8.0	-2.2
Mid	2440	2.813	3.079	5.96	8.0	-2.0
Hjigh	2480	2.706	3.158	5.95	8.0	-2.1

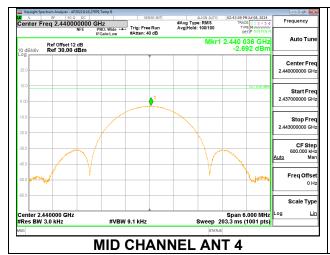


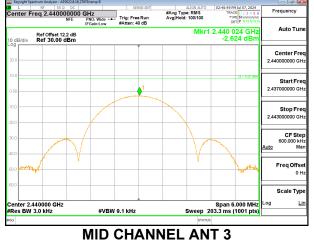

9.6.3. HIGH POWER BLE (2Mbps)

ANT 4

Channel	Frequency	PSD	Limit	Margin	
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)	
Low	2404	-2.764	8	-10.76	
Middle	2440	-2.568	8	-10.57	
High	2478	-2.668	8	-10.67	

Channel	Frequency	PSD	Limit	Margin	
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)	
Low	2404	-2.404	8	-10.40	
Middle	2440	-2.384	8	-10.38	
High	2478	-2.339	8	-10.34	




9.6.4. HIGH POWER BLE TXBF (2Mbps)

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

PSD Results

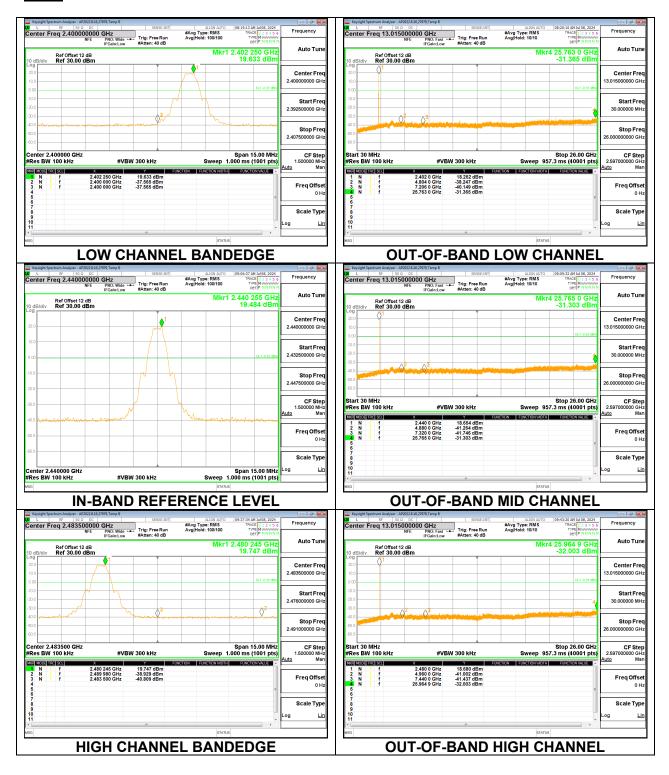
Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin
		Meas	Meas	Corr'd		
	(MHz)	(dBm/	(dBm/	PSD (dBm/	(dBm/	
	(3kHz)	3kHz)	3kHz)	3kHz)	(dB)
Low	2404	-2.721	-3.006	0.15	8.0	-7.9
Mid	2440	-2.692	-2.624	0.35	8.0	-7.6
Hjigh	2478	-2.741	-3.015	0.13	8.0	-7.9

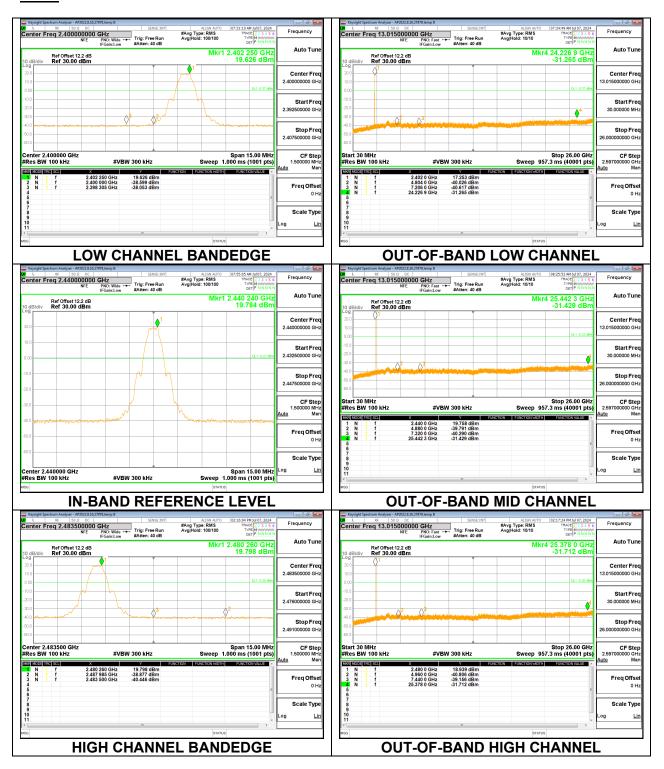
REPORT NO: 14982479-E2V2 DATE: 2024/08/02

9.7. CONDUCTED SPURIOUS EMISSIONS

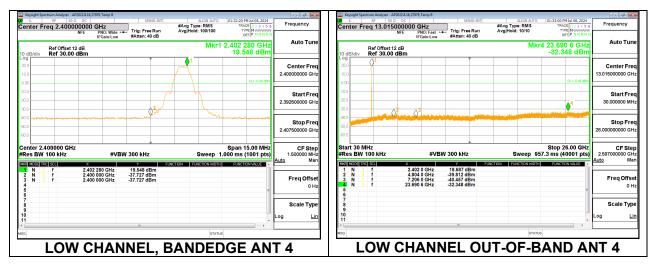
LIMITS

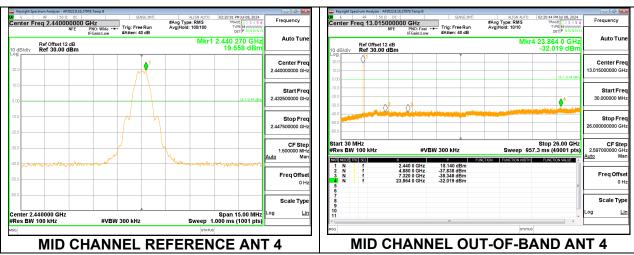
FCC §15.247 (d)

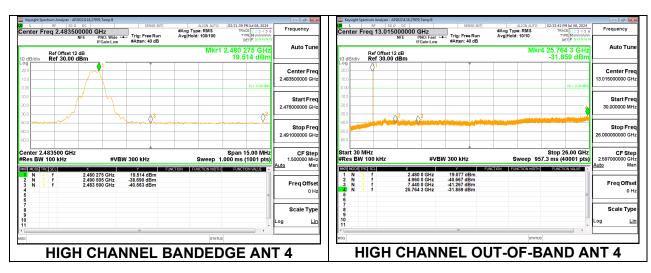

RSS-247 5.5

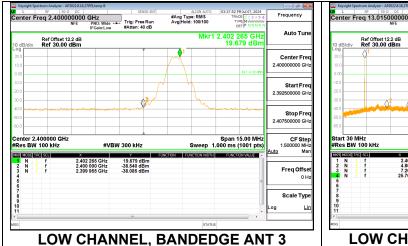

Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dBc.

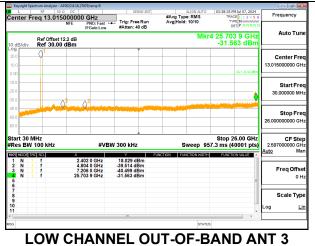
Note: Test procedures and setting are same as BLE normal mode.

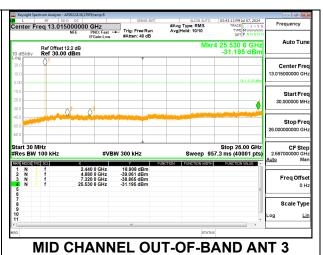

RESULTS

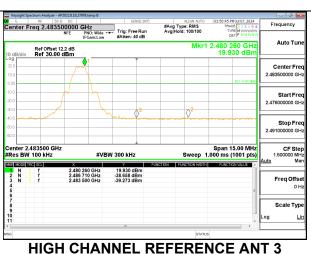

9.7.1. HIGH POWER BLE (1Mbps)

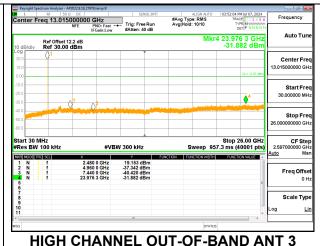


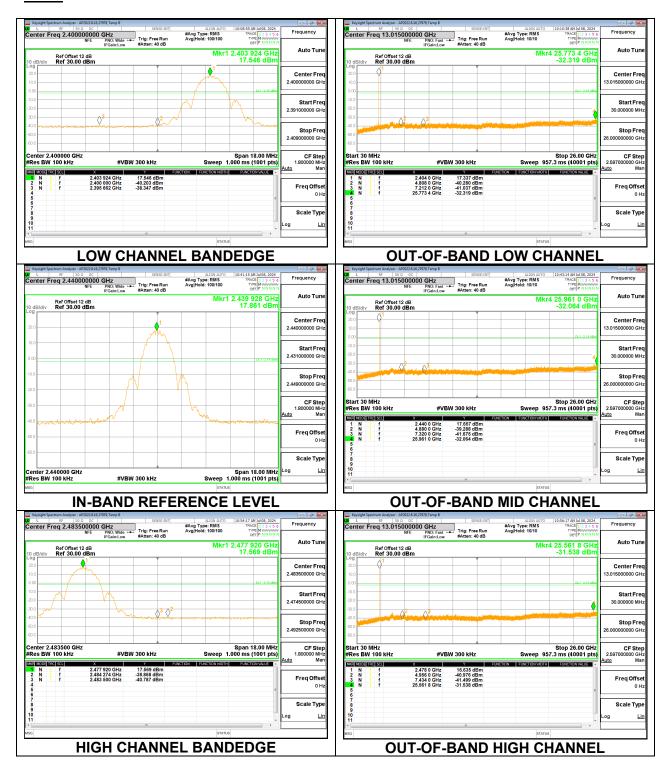

9.7.2. HIGH POWER BLE TXBF (1Mbps)

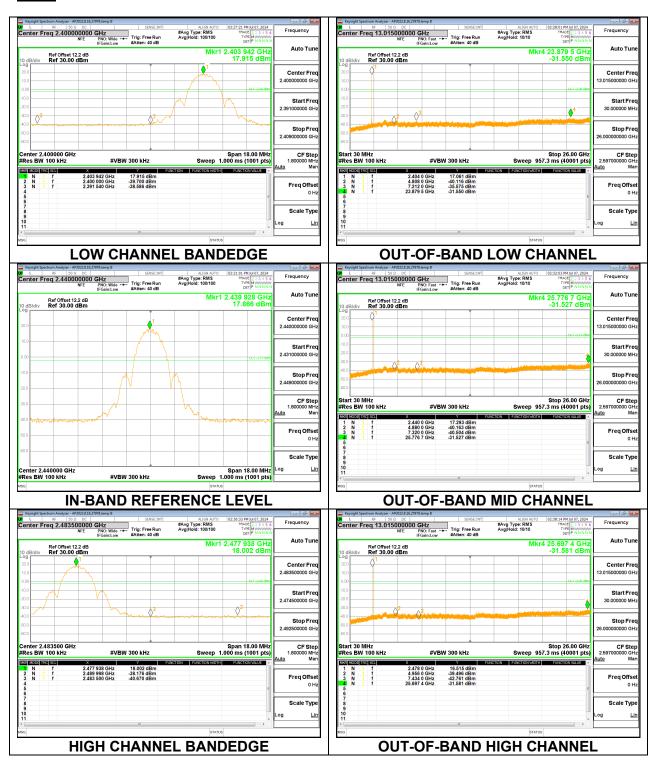


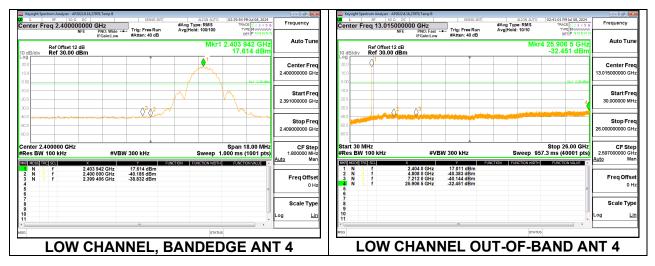


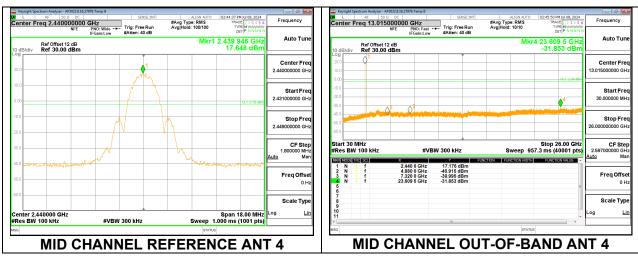

HIGH POWER (1Mbps)

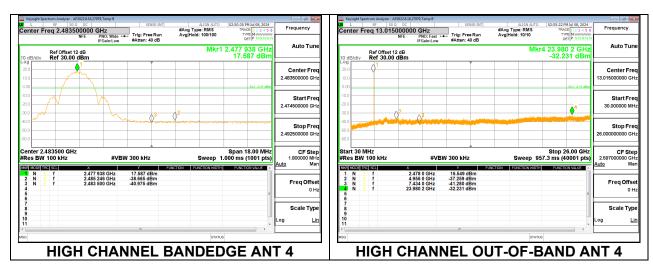



MID CHANNEL REFERENCE ANT 3




Page 48 of 126


9.7.3. HIGH POWER BLE (2Mbps)

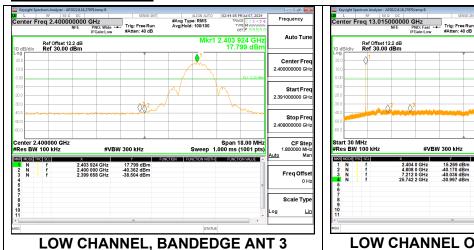


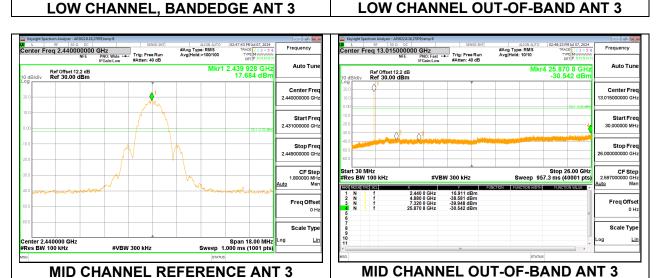
9.7.4. HIGH POWER BLE TXBF (2Mbps)

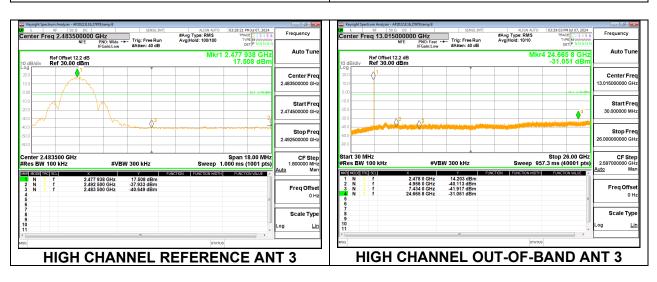
#Avg Type: RMS Avg|Hold: 10/10

> kr4 25.742 2 GH -30.997 dBr

Stop 26.00 GHz Sweep 957.3 ms (40001 pts) Center Fre

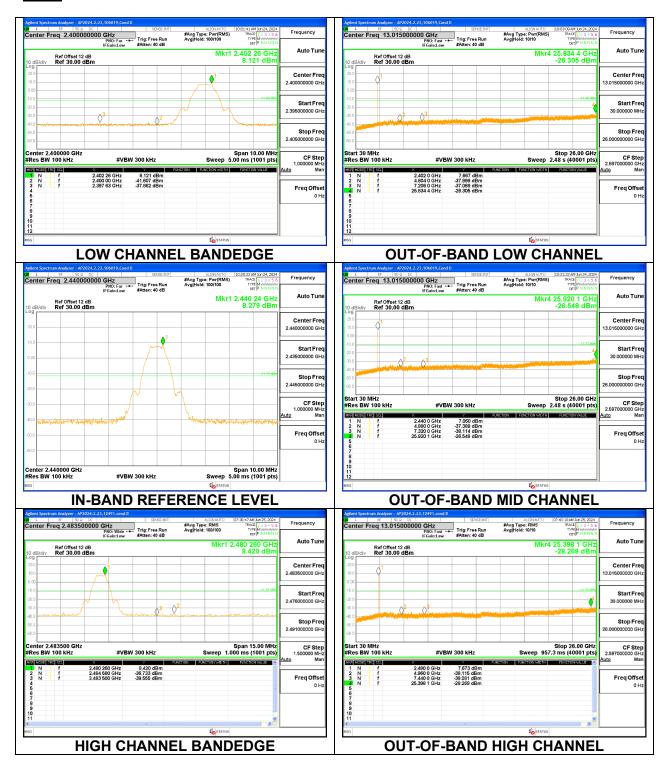

Start Fre 30.000000 MH

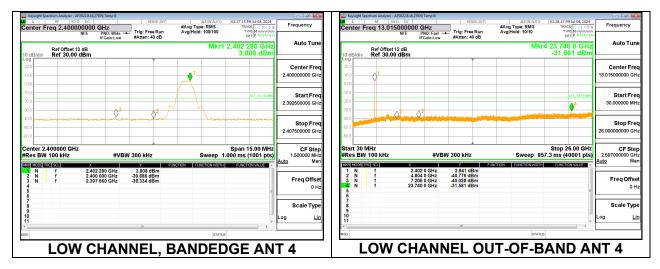

Stop Fre

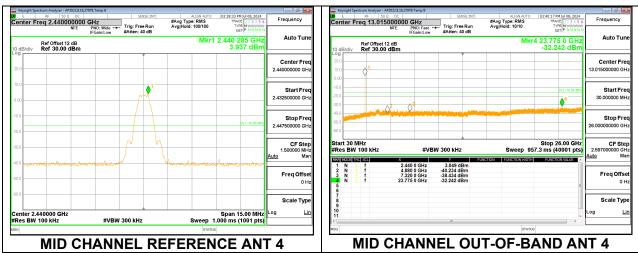

2.597000000 GH

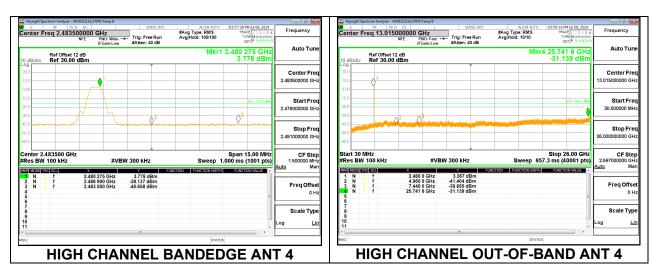
Freq Offse 0 H Scale Typ

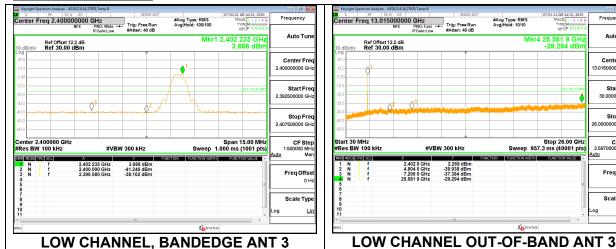
HIGH POWER (2Mbps)

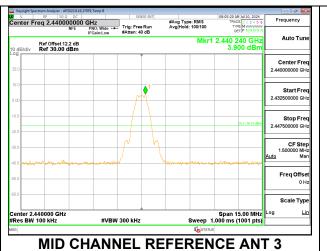


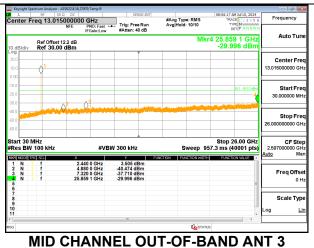

DATE: 2024/08/02


9.7.5. LOW POWER BLE (1Mbps)

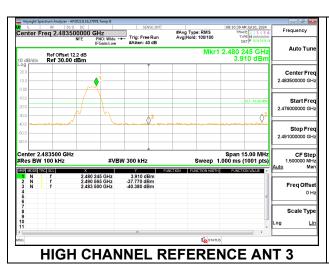


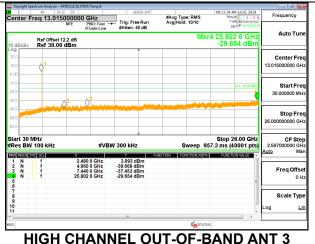

9.7.6. LOW POWER BLE TXBF (1Mbps)





LOW POWER (1Mbps)




Start Fre 30.000000 MH

Stop Fre

CF Step 2.597000000 GH

Freq Offse Scale Typ

Page 56 of 126