Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Cllent UL Fremont, USA Certificate No. EX-7779_May24 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7779 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, **QA CAL-25.v8** Calibration procedure for dosimetric E-field probes Calibration date May 10, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID | Cal Date (Certificate No.) | Scheduled Calibration | |------------------|---|--| | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | SN: CC2552 (20x) | 26-Mar-24 (No. 217-04046) | Mar-25 | | SN: 660 | 23-Feb-24 (No. DAE4-660_Feb24) | Feb-25 | | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | | SN: 104778
SN: 103244
SN: 1249
SN: 1016
SN: CC2552 (20x)
SN: 660 | SN: 104778 26-Mar-24 (No. 217-04036/04037) SN: 103244 26-Mar-24 (No. 217-04036) SN: 1249 05-Oct-23 (OCP-DAK3.5-1249_Oct23) SN: 1016 05-Oct-23 (OCP-DAK12-1016_Oct23) SN: CC2552 (20x) 26-Mar-24 (No. 217-04046) SN: 660 23-Feb-24 (No. DAE4-660_Feb24) | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager Issued: May 10, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-7779_May24 Page 1 of 22 Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,v,z DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ∂ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\theta = 0$ ($f \le 900 \,\text{MHz}$ in TEM-cell; $f > 1800 \,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7779_May24 Page 2 of 22 EX3DV4 - SN:7779 May 10, 2024 #### Parameters of Probe: EX3DV4 - SN:7779 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.58 | 0.61 | 0.57 | ±10.1% | | DCP (mV) B | 108.0 | 105.6 | 107.6 | ±4.7% | #### **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|-----------------------------|---|---------|------------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 118.3 | ±1.7% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 137.1 | 1 | | | | | Z | 0.00 | 0.00 | 1.00 | | 139.2 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.79 | 61.76 | 7.03 | 10.00 | 60.0 | ±2.7% | ±9.6% | | | | Y | 1.60 | 61.10 | 6.74 | | 60.0 | | | | | | Z | 1.77 | 61.71 | 7.05 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 10.00 | 72.00 | 9.00 | 6.99 | 80.0 | ±2.5% | ±9.6% | | | | Y | 10.00 | 72.00 | 9.00 | | 80.0 | | | | | | Z | 0.79 | 60.00 | 5.10 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.13 | 133.03 | 0.36 | 3.98 | 95.0 | ±2.8% | ±9.6% | | | | Y | 0.02 | 120.74 | 0.49 | | 95.0 | | | | | | Z | 48.00 | 78.00 | 9.00 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | Х | 11.55 | 134.15 | 2.39 | 2.22 | 120.0 | ±1.7% | ±9.6% | | | · · · · · · | Y | 0.46 | 60.00 | 2.79 | | 120.0 | | | | | | Z | 0.23 | 60.00 | 3.15 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 0.56 | 65.04 | 13.55 | | 150.0 | ±3.2% | ±9.6% | | | | Y | 0.62 | 64.85 | 13.06 | | 150.0 | | | | | | Z | 0.67 | 68.97 | 16.29 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 1.38 | 67.16 | 14.38 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | | Y | 1.42 | 66.41 | 14.24 | | 150.0 | | | | | | Z | 1.59 | 69.96 | 15.87 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 1.75 | 65.12 | 16.12 | 3.01 | 150.0 | ±0.8% | ±9.6% | | | | Y | 1.71 | 64.60 | 15.95 | | 150.0 | | | | | | Z | 1.72 | 65.18 | 16.39 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.85 | 66.95 | 15.39 | 0.00 | 150.0 | ±1.2% | ±9.6% | | | | Y | 2.90 | 66.59 | 15.26 | | 150.0 | | | | | | Z | 2.92 | 67.66 | 15.91 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.77 | 66.54 | 15.43 | 0.00 | 150.0 | ±2.1% | ±9.6% | | | | Y | 3.90 | 66.21 | 15.40 | | 150.0 | | | | | | Z | 3.80 | 67.06 | 15.78 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5
and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Х | 8.2 | 57.79 | 32.22 | 2.75 | 0.00 | 4.90 | 0.47 | 0.00 | 1.00 | | У | 9.9 | 71.55 | 33.35 | 3.27 | 0.00 | 4.91 | 0.40 | 0.00 | 1.00 | | Z | 7.6 | 53.94 | 32.59 | 2.07 | 0.00 | 4.90 | 0.38 | 0.00 | 1.00 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | 76.6° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 8.96 | 8.37 | 8.00 | 0.40 | 1.27 | ±11.0% | | 900 | 41.5 | 0.97 | 8.45 | 7.70 | 7.56 | 0.39 | 1.27 | ±11.0% | | 1750 | 40.1 | 1.37 | 7.67 | 7.16 | 6.79 | 0.28 | 1.27 | ±11.0% | | 1900 | 40.0 | 1.40 | 7.44 | 6.96 | 6.55 | 0.30 | 1.27 | ±11.0% | | 2300 | 39.5 | 1.67 | 7.07 | 6.69 | 6.28 | 0.32 | 1.27 | ±11.0% | | 2450 | 39.2 | 1.80 | 6.96 | 6.58 | 6.17 | 0.32 | 1.27 | ±11.0% | | 2600 | 39.0 | 1.96 | 6.86 | 6.47 | 6.06 | 0.31 | 1.27 | ±11.0% | | 5250 | 35.9 | 4.71 | 5.17 | 4.76 | 4.61 | 0.42 | 1.53 | ±13.1% | | 5600 | 35.5 | 5.07 | 4.48 | 4.15 | 3.99 | 0.41 | 1.76 | ±13.1% | | 5750 | 35.4 | 5.22 | 4.58 | 4.23 | 4.06 | 0.42 | 1.78 | ±13.1% | | 5850 | 35.2 | 5.32 | 4.44 | 4.07 | 3.95 | 0.41 | 1.87 | ±13.1% | ^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10% if SAR correction is applied. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4 - SN:7779 May 10, 2024 #### Parameters of Probe: EX3DV4 - SN:7779 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 6500 | 34.5 | 6.07 | 5.75 | 4.98 | 4.53 | 0.20 | 2.00 | ±18.6% | C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4 - SN:7779 May 10, 2024 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: ±6.3% (k=2) EX3DV4 - SN:7779 May 10, 2024 # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) EX3DV4 - SN:7779 May 10, 2024 # Dynamic Range f(SAR_{head}) (TEM cell, $f_{eval} = 1900 \, MHz$) Uncertainty of Linearity Assessment: ±0.6% (k=2) #### **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Fremont, USA Certificate No. EX-7587_Apr23 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7587 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, **QA CAL-25.v8** Calibration procedure for dosimetric E-field probes Calibration date April 18, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | Cal Date (Certificate No.) | Scheduled Calibration | |----------------|---|--| | l: 104778 | | Mar-24 | | 1: 103244 | | Mar-24 | | : 1249 | | | | 1: 1016 | | Oct-23 | | : CC2552 (20x) | | Oct-23 | | | | Mar-24 | | 2012 | | Mar-24
Jan-24 | | | I: 104778
I: 103244
I: 1249
I: 1016
I: CC2552 (20x)
I: 660 | : 103244 30-Mar-23 (No. 217-03804/03805)
 : 1249 20-Oct-22 (OCP-DAK3.5-1249_Oct22)
 : 1016 20-Oct-22 (OCP-DAK12-1016_Oct22)
 : CC2552 (20x) 30-Mar-23 (No. 217-03809) | | Secondary Standards | ID | Check Date (in house) | Sahadulad Obasi | |-------------------------|------------------|------------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | | Scheduled Check | | Power sensor E4412A | | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | | | Network Analyzer E8358A | SN: US41080477 | 21 Mars 44 (in House Check Jun-22) | In house check: Jun-24 | | E COOLIN | 014.0041080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | |---------------|----------------|-----------------------|------------| | Calibrated by | Joanna Lleshaj | Laboratory Technician | Appleely- | | Approved by | Sven Kühn | Technical Manager | A. hersist | Issued: April 25, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is Polarization & normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle # Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To
Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" # Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - · Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7587_Apr23 Page 2 of 22 EX3DV4 - SN:7587 ### Parameters of Probe: EX3DV4 - SN:7587 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)^A$ | 0.56 | 0.61 | 0.55 | ±10.1% | | DCP (mV) B | 100.5 | 100.7 | 104.8 | ±4.7% | ## **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|---|---|---------|------------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 135.9 | ±2.1% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 121.9 | | _ · · · · · | | | | Z | 0.00 | 0.00 | 1.00 | | 136.8 | 1 | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 20.00 | 90.16 | 20.46 | 10.00 | 60.0 | ±3.4% | ±9.6% | | | | Y | 20.00 | 89.20 | 20.10 | | 60.0 | | | | | | Z | 20.00 | 86.80 | 17.73 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 90.58 | 19.47 | 6.99 | 80.0 | ±2.2% | ±9.6% | | | | Y | 20.00 | 89.18 | 19.28 | | 80.0 | | 20.070 | | | La La La Caracteria de | Z | 20.00 | 87.63 | 16.83 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 20.00 | 91.64 | 18.50 | 3.98 | 95.0 | ±1.6% | ±9.6% | | | | Y | 20.00 | 91.07 | 19.08 | 1 | 95.0 | | | | 1 | | Z | 20.00 | 87.75 | 15.42 | | 95.0 | 0 | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 20.00 | 90.61 | 16.60 | 2.22 | 120.0 | ±1.3% | ±9.6% | | | | Y | 20.00 | 93.99 | 19.29 | | 120.0 | | | | | | Z | 20.00 | 82.86 | 12.01 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.72 | 65.97 | 15.10 | 1.00 | 150.0 | ±3.0% | ±9.6% | | | | Y | 1.82 | 65.39 | 15.10 | | 150.0 | | _0.070 | | | | Z | 1.49 | 64.87 | 13.86 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.34 | 68.73 | 15.88 | 0.00 | 150.0 | ±0.8% | ±9.6% | | | | Y | 2.40 | 68.40 | 15.74 | | 150.0 | | _0.070 | | 10000 | | Z | 1.99 | 66.65 | 14.68 | 1 | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 2.91 | 70.39 | 18.83 | 3.01 | 150.0 | ±0.8% | ±9.6% | | | | Y | 3.48 | 72.33 | 19.58 | | 150.0 | | | | | | Z | 2.54 | 69.32 | 18.24 | | 150.0 | 1 | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.56 | 67.40 | 15.86 | 0.00 | 150.0 | ±2.2% | ±9.6% | | | | Y | 3.61 | 67.25 | 15.78 | | 150.0 | | | | | | Z | 3.34 | 66.60 | 15.25 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.98 | 65.77 | 15.59 | 0.00 | 150.0 | ±4.4% | ±9.6% | | | | Y | 5.06 | 65.61 | 15.47 | | 150.0 | | | | | | Z | 4.73 | 65.43 | 15.22 | T | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### **Sensor Model Parameters** | | C1
fF | C2
fF | $^{lpha}_{ m V^{-1}}$ | T1
msV ⁻² | T2
msV ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|-----------|----------|-----------------------|-------------------------|-------------------------|----------|-----------------------|-----------------------|------| | Х | 58.9 | 443.50 | 36.06 | 16.08 | 0.38 | 5.10 | 0.30 | 0.42 | 1.01 | | у | 70.7 | 527.29 | 35.44 | 30.19 | 0.05 | 5.10 | 1.16 | 0.42 | 1.01 | | z | 44.4 | 324.15 | 34.07 | 7.44 | 0.00 | | | | 1.01 | | | 135_MININ | 024.10 | 04.07 | 7.44 | 0.00 | 5.08 | 0.87 | 0.18 | | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | | | Mechanical Surface Detection Mode | 17.1° | | Optical Surface Detection Mode | enabled | | Probe Overall Length | disabled | | Probe Body Diameter | 337 mm | | Tip Length | 10 mm | | Tip Diameter | 9 mm | | Probe Tip to Sensor X Calibration Point | 2.5 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | 1 mm | | Recommended Measurement Distance from Surface | 1 m | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 2450 | 39.2 | 1.80 | 7.64 | 7.53 | 7.48 | 0.31 | 1.27 | ±12.0% | | 5250 | 35.9 | 4.71 | 5.37 | 5.38 | 5.30 | 0.39 | 1.53 | ±14.0% | | 5600 | 35.5 | 5.07 | 4.68 | 4.64 | 4.62 | 0.40 | 1.67 | ±14.0% | | 5750 | 35.4 | 5.22 | 4.79 | 4.82 | 4.77 | 0.34 | 1.81 | ±14.0% | | 5850 | 35.2 | 5.32 | 4.64 | 4.59 | 4.57 | 0.39 | 1.78 | ±14.0% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to
±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. # Calibration Parameter Determined in Head Tissue Simulating Media | (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unc (k = 2) | |--------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|--------------------|-------------| | 6500 | 34.5 | 6.07 | 4.60 | 4.72 | 4.65 | 0.20 | 2.50 | ±18.6% | $^{^{\}text{C}}$ Frequency validity at 6.5 GHz is $-600/+700\,\text{MHz}$, and $\pm700\,\text{MHz}$ at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz; below $\pm 2\%$ for frequencies between 3–6 GHz; and below $\pm 4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2) # Receiving Pattern (ϕ), $\vartheta=0^{\circ}$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, $f_{eval} = 1900\,\text{MHz})$ Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Fremont, USA Certificate No. EX-7501_Apr23 #### CALIBRATION CERTIFICATE EX3DV4 - SN:7501 Object QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, Calibration procedure(s) QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date April 03, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | OCP DAK-3.5 (weighted) | SN: 1249 | 20-Oct-22 (OCP-DAK3.5-1249_Oct22) | Oct-23 | | OCP DAK-12 | SN: 1016 | 20-Oct-22 (OCP-DAK12-1016_Oct22) | Oct-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 660 | 16-Mar-23 (No. DAE4-660_Mar23) | Mar-24 | | Reference Probe ES3DV2 | SN: 3013 | 06-Jan-23 (No. ES3-3013_Jan23) | Jan-24 | | Secondary Standards ID | | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | |---------------|----------------|-----------------------|-----------| | Calibrated by | Joanna Lleshaj | Laboratory Technician | Apellesty | | Approved by | Sven Kühn | Technical Manager | 5.62 | Issued: April 05, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-7501_Apr23 Page 1 of 22 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d etaionnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7501_Apr23 Page 2 of 22 EX3DV4 - SN:7501 #### Parameters of Probe: EX3DV4 - SN:7501 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)^A$ | 0.58 | 0.66
 0.59 | ±10.1% | | DCP (mV) B | 100.1 | 99.7 | 101.2 | ±4.7% | #### **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|-----------------------------|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 120.7 | ±2.4% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 134.8 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 121.3 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.40 | 60.00 | 5.74 | 10.00 | 60.0 | ±3.8% | ±9.6% | | | | Y | 1.45 | 60.32 | 6.14 | | 60.0 | | | | | | Z | 1.39 | 60.00 | 5.79 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 6.00 | 68.00 | 7.00 | 6.99 | 80.0 | ±2.2% | ±9.6% | | | | Y | 20.00 | 74.00 | 9.00 | | 80.0 | | | | | | Z | 0.78 | 60.00 | 4.50 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 2.66 | 122.68 | 1.21 | 3.98 | 95.0 | ±2.3% | ±9.6% | | | | Y | 0.06 | 134.50 | 0.45 | | 95.0 | | | | | | Z | 0.02 | 126.34 | 0.32 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 6.10 | 158.84 | 1.76 | 2.22 | 120.0 | ±1.4% | ±9.6% | | | | Y | 5.26 | 159.91 | 16.52 | | 120.0 | | | | | | Z | 0.16 | 160.00 | 0.77 | 21 4 | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 0.45 | 62.42 | 11.18 | 1.00 | 150.0 | ±3.8% | ±9.6% | | | h | Y | 0.61 | 64.45 | 12.88 | | 150.0 | | | | | | Z | 0.45 | 62.78 | 11.50 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 1.21 | 65.07 | 13.16 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | | Y | 1.40 | 66.06 | 14.21 | | 150.0 | | | | | | Z | 1.22 | 65.38 | 13.31 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 1.62 | 64.46 | 16.79 | 3.01 | 150.0 | ±1.4% | ±9.6% | | | | Y | 1.56 | 63.28 | 15.61 | | 150.0 | 1 | | | | | Z | 1.66 | 64.90 | 17.19 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.72 | 65.89 | 14.84 | 0.00 | 150.0 | ±2.4% | ±9.6% | | | | Y | 2.86 | 66.17 | 15.17 | | 150.0 | | | | | | Z | 2.73 | 66.06 | 14.95 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.84 | 66.41 | 15.43 | 0.00 | 150.0 | ±4.1% | ±9.6% | | | | Y | 4.01 | 66.46 | 15.64 | | 150.0 | | | | | | Z | 3.84 | 66.53 | 15.48 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4 - SN:7501 ### Parameters of Probe: EX3DV4 - SN:7501 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
msV ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------------------|--------------------------|-------------------------|----------|-----------------------|-----------------------|------| | Х | 9.1 | 67.20 | 34.77 | 0.92 | 0.00 | 4.90 | 0.00 | 0.00 | 1.01 | | У | 10.5 | 78.13 | 34.91 | 1.87 | 0.00 | 4.90 | 0.00 | 0.02 | 1.00 | | z | 8.8 | 65.16 | 34.78 | 2.16 | 0.00 | 4.91 | 0.00 | 0.00 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | 65.5° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. #### **Calibration Parameter Determined in Head Tissue Simulating Media** | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 2450 | 39.2 | 1.80 | 7.46 | 7.44 | 7.50 | 0.30 | 1.27 | ±12.0% | | 5250 | 35.9 | 4.71 | 5.47 | 5.39 | 5.47 | 0.32 | 1.72 | ±14.0% | | 5600 | 35.5 | 5.07 | 4.88 | 4.76 | 4.88 | 0.40 | 1.67 | ±14.0% | | 5750 | 35.4 | 5.22 | 5.04 | 4.93 | 5.01 | 0.39 | 1.75 | ±14.0% | | 5850 | 35.2 | 5.32 | 4.81 | 4.71 | 4.83 | 0.41 | 1.78 | ±14.0% | ^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4 - SN:7501 April 03, 2023 #### Parameters of Probe: EX3DV4 - SN:7501 #### **Calibration Parameter Determined in Head Tissue Simulating Media** | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 6500 | 34.5 | 6.07 | 5.09 | 5.35 | 5.16 | 0.20 | 2.50 | ±18.6% | C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: ±6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, $f_{eval} = 1900 \, MHz$) Uncertainty of Linearity Assessment: ±0.6% (k=2) #### **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Fremont, USA Certificate No. EX-7482_Apr23 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7482 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, **QA CAL-25.v8** Calibration procedure for dosimetric E-field probes Calibration date April 18, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | OCP DAK-3.5 (weighted) | SN: 1249 | 20-Oct-22 (OCP-DAK3.5-1249_Oct22) | Oct-23 | | OCP DAK-12 | SN: 1016 | 20-Oct-22 (OCP-DAK12-1016 Oct22) | Oct-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 660 | 16-Mar-23 (No. DAE4-660 Mar23) | Mar-24 | | Reference Probe ES3DV2 | SN: 3013 | 06-Jan-23 (No. ES3-3013 Jan23) | Jan-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check |
-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager Issued: April 23, 2023 This calibration certificate shall not be reproduced except In full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary **TSL** tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ω φ rotation around probe axis Polarization 8 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch - · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7482 Apr23 Page 2 of 21 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.50 | 0.60 | 0.59 | ±10.1% | | DCP (mV) B | 95.5 | 97.3 | 98.3 | ±4.7% | # **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |----------------|--|---|-------------------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 120.9 | ±1.6% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 145.1 | | / | | | - | Z | 0.00 | 0.00 | 1.00 | | 136.0 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 7.46 | 77.40 | 14.87 | 10.00 | 60.0 | ±3.8% | ±9.6% | | | | Y | 2.01 | 63.40 | 8.43 | 7 10 11 | 60.0 | | | | | | Z | 20.00 | 88.89 | 18.94 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 87.59 | 16.59 | 6.99 | 80.0 | ±2.8% | ±9.6% | | | | Y | 1.16 | 61.62 | 6.73 | | 80.0 | | | | | | Z | Z 20.00 90.41 18. | | 18.45 | | 80.0 | | | | 10354 Pulse Wa | Pulse Waveform (200Hz, 40%) | X | 20.00 | 87.16 | 14.83 | 3.98 | 95.0 | ±1.6% | ±9.6% | | | | Y | 0.56 | 60.08 | 5.16 | | 95.0 | | | | | - IN THE RESERVE OF THE PARTY O | Z | 20.00 | 92.13 | 17.80 | | 95.0 | | البرايا | | 10355 | Pulse Waveform (200Hz, 60%) | X | 0.33 | 61.75 | 5.37 | 2.22 | 120.0 | ±1.3% | ±9.6% | | | | Y | 0.34 | 60.00 | 4.49 | | 120.0 | | 20.070 | | | | Z | 20.00 | 89.74 | 15.41 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.53 | 66.99 | 14.74 | 1.00 | 150.0 | ±3.3% | ±9.6% | | | | Y | 1.58 | 66.25 | 14.59 | | 150.0 | 20.070 | 20.070 | | | | Z | 1.50 | 65.00 | 13.93 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.06 | 67.81 | 15.63 | 0.00 | 150.0 | ±1.0% | ±9.6% | | | | Y | 2.12 | 67.60 | 15.44 | | 150.0 | , | _0.070 | | - | | Z | 2.03 | 66.68 | 14.86 | 1 | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 2.40 | 67.90 | 17.82 | 3.01 | 150.0 | ±0.8% | ±9.6% | | | | Y | 2.56 | 68.65 | 18.02 | 1 | 150.0 | | | | | Frank Comment | Z | 2.76 | 69.28 | 18.19 | 1 | 150.0 | | | | 0399 | 64-QAM Waveform, 40 MHz | X | 3.40 | 66.98 | 15.76 | 0.00 | 150.0 | ±2.3% | ±9.6% | | | | Y | 3.47 | 67.03 | 15.70 | | 150.0 | | _0.070 | | | | Z | 3.39 | 66.55 | 15.39 | | 150.0 | | | | 0414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.70 | 65.66 | 15.63 | 0.00 | 150.0 | ±4.3% | ±9.6% | | | | Y | 4.81 | 65.74 | 15.60 | | 150.0 | /3 | _0.070 | | | | Z | 4.78 | 65.44 | 15.40 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
ms V
⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Х | 34.3 | 262.65 | 37.19 | 5.46 | 0.00 | 5.07 | 0.00 | 0.36 | 1.01 | | у | 38.6 | 292.42 | 36.35 | 10.53 | 0.00 | 4.98 | 0.50 | 0.30 | 1.01 | | Z | 41.7 | 317.82 | 36.70 | 8.93 | 0.00 | 5.08 | 0.66 | 0.36 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | -83.7° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 9.55 | 9.06 | 8.60 | 0.41 | 1.27 | ±12.0% | | 900 | 41.5 | 0.97 | 8.83 | 8.21 | 8.24 | 0.41 | 1.27 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.20 | 7.61 | 7.30 | 0.27 | 1.27 | ±12.0% | | 1900 | 40.0 | 1.40 | 7.73 | 7.22 | 6.91 | 0.31 | 1.27 | ±12.0% | | 2300 | 39.5 | 1.67 | 7.71 | 7.21 | 6.93 | 0.31 | 1.27 | ±12.0% | | 2600 | 39.0 | 1.96 | 7.49 | 6.99 | 6.75 | 0.29 | 1.27 | ±12.0% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations from the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: ±6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, $f_{eval} = 1900\,\text{MHz})$ Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Fremont, USA Certificate No. EX-7850 Oct23 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7850 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date October 27, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | OCP DAK-3.5 (weighted) | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 660 | 16-Mar-23 (No. DAE4-660_Mar23) | Mar-24 | | Reference Probe ES3DV2 | SN: 3013 | 06-Jan-23 (No. ES3-3013_Jan23) | Jan-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager Issued: October 30, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-7850_Oct23 Page 1 of 21 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized
using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7850_Oct23 Page 2 of 21 ### Parameters of Probe: EX3DV4 - SN:7850 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc $(k=2)$ | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.67 | 0.64 | 0.63 | ±10.1% | | DCP (mV) B | 106.9 | 107.9 | 111.7 | ±4.7% | ## **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
<i>k</i> = 2 | |-------|-----------------------------|---|---------|------------------|-------|---------|----------|-------------|---| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 125.5 | ±1.2% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 116.6 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 123.4 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.57 | 60.79 | 6.47 | 10.00 | 60.0 | ±2.8% | ±9.6% | | | , , , , | Y | 14.00 | 78.00 | 13.00 | | 60.0 | | | | | | Z | 2.00 | 62.00 | 7.00 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 0.79 | 60.00 | 4.92 | 6.99 | 80.0 | ±2.8% | ±9.6% | | | , , , | Y | 0.82 | 60.00 | 4.91 | | 80.0 | | | | | | Z | 0.85 | 60.00 | 4.84 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.23 | 147.81 | 0.05 | 3.98 | 95.0 | ±2.8% | ±9.6% | | | | Y | 0.04 | 127.01 | 0.15 | | 95.0 | | | | | | Z | 0.32 | 153.78 | 4.54 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 6.95 | 159.99 | 20.61 | 2.22 | 120.0 | ±1.7% | ±9.6% | | | , , , | Y | 5.76 | 159.99 | 3.61 | | 120.0 | 9 | | | | | Z | 7.92 | 159.94 | 17.91 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 0.58 | 64.85 | 13.33 | 1.00 | 150.0 | ±4.0% | ±9.6% | | | · | Y | 0.44 | 61.52 | 10.73 | | 150.0 | | | | | | Z | 0.43 | 62.54 | 11.95 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 1.40 | 66.72 | 14.41 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | , | Y | 1.18 | 64.33 | 12.88 | | 150.0 | | | | | | Z | 1.32 | 66.87 | 13.98 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 1.63 | 63.89 | 15.81 | 3.01 | 150.0 | ±1.1% | ±9.6% | | | | Y | 1.65 | 64.22 | 15.77 | | 150.0 | | | | | | Z | 1.71 | 64.92 | 15.94 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.84 | 66.50 | 15.26 | 0.00 | 150.0 | ±2.2% | ±9.6% | | | | Y | 2.68 | 65.54 | 14.61 | | 150.0 | | | | | | Z | 2.80 | 66.90 | 15.27 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.95 | 66.75 | 15.66 | 0.00 | 150.0 | ±3.7% | ±9.6% | | | | Y | 3.81 | 66.06 | 15.21 | | 150.0 | | | | | | Z | 3.70 | 66.50 | 15.32 | | 150.0 | | 1 | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 5). $^{\rm B}$ Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Parameters of Probe: EX3DV4 - SN:7850 ### **Sensor Model Parameters** | | C1
fF | C2
fF | V^{-1} | T1
ms V ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Х | 9.4 | 67.42 | 33.19 | 2.02 | 0.00 | 4.90 | 0.00 | 0.05 | 1.00 | | у | 9.6 | 69.64 | 33.51 | 3.55 | 0.00 | 4.93 | 0.42 | 0.01 | 1.00 | | Z | 7.9 | 55.84 | 31.90 | 4.31 | 0.00 | 4.90 | 0.64 | 0.00 | 1.00 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | -70.7° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. #### Parameters of Probe: EX3DV4 - SN:7850 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 9.69 | 8.82 | 9.00 | 0.37 | 1.27 | ±12.0% | | 900 | 41.5 | 0.97 | 9.17 | 8.64 | 8.74 | 0.37 | 1.27 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.89 | 8.25 | 8.28 | 0.24 | 1.27 | ±12.0% | | 1900 | 40.0 | 1.40 | 7.98 | 7.41 | 7.51 | 0.27 | 1.27 | ±12.0% | | 2300 | 39.5 | 1.67 | 7.47 | 6.92 | 7.04 | 0.29 | 1.27 | ±12.0% | | 2450 | 39.2 | 1.80 | 7.30 | 6.82 | 6.94 | 0.29 | 1.27 | ±12.0% | | 2600 | 39.0 | 1.96 | 6.95 | 6.46 | 6.59 | 0.28 | 1.27 | ±12.0% | | 5250 | 35.9 | 4.71 | 5.59 | 5.24 | 5.42 | 0.36 | 1.62 | ±14.0% | | 5600 | 35.5 | 5.07 | 4.69 | 4.42 | 4.64 | 0.39 | 1.75 | ±14.0% | | 5750 | 35.4 | 5.22 | 4.90 | 4.55 | 4.78 | 0.36 | 1.84 | ±14.0% | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations from the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2) # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2) EX3DV4 - SN:7850 October 27, 2023 # Dynamic Range f(SAR_{head}) (TEM cell, $f_{\text{eval}} = 1900\,\text{MHz})$ Uncertainty of Linearity Assessment: ±0.6% (k=2) ## **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL USA** **Certificate No** EX-7448_Feb23 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7448 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, **QA CAL-25.v8** Calibration procedure for dosimetric E-field probes Calibration date February 14, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | OCP DAK-3.5 (weighted) | SN: 1249 | 20-Oct-22 (OCP-DAK3.5-1249_Oct22) | Oct-23 | | OCP DAK-12 | SN: 1016 | 20-Oct-22 (OCP-DAK12-1016_Oct22) | Oct-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Apr-23 | | DAE4 | SN: 660 | 10-Oct-22 (No. DAE4-660_Oct22) | Oct-23 | | Reference Probe ES3DV2 | SN: 3013 | 06-Jan-23 (No. ES3-3013_Jan23) | Jan-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check:
Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician Approved by Niels Kuster Quality Manager Issued: February 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### **Glossary** TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\text{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\text{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50\,\text{MHz}$ to $\pm 100\,\text{MHz}$. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-7448 Feb23 Page 2 of 21 EX3DV4 - SN:7448 ### Parameters of Probe: EX3DV4 - SN:7448 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc $(k=2)$ | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.29 | 0.39 | 0.51 | ±10.1% | | DCP (mV) B | 95.0 | 95.0 | 96.0 | ±4.7% | # **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|-----------------------------|---|---------|------------|-------|-------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 126.5 | ±1.9% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 122.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 149.0 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 2.51 | 65.84 | 10.98 | 10.00 | 60.0 | ±2.9% | ±9.6% | | | | Y | 1.73 | 62.04 | 7.47 | | 60.0 | 1 | | | | | Z | 20.00 | 87.61 | 18.13 | | 60.0 | | 1 1 | | 10353 | Pulse Waveform (200Hz, 20%) | X | 1.95 | 66.40 | 9.83 | 6.99 | 80.0 | ±2.2% | ±9.6% | | | | Y | 0.79 | 60.00 | 5.45 | | 80.0 | | | | | | Z | 20.00 | 88.73 | 17.34 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.48 | 60.00 | 5.34 | 3.98 | 95.0 | ±1.5% | ±9.6% | | | | Y | 0.42 | 60.00 | 4.26 | | 95.0 | | | | | | Z | 20.00 | 88.78 | 15.85 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 10.32 | 129.78 | 0.05 | 2.22 | 120.0 | ±2.6% | ±9.6% | | | | Y | 11.11 | 97.03 | 0.52 | i i | 120.0 | | | | | | Z | 20.00 | 83.94 | 12.43 | 1 | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.50 | 64.28 | 13.81 | 1.00 | 150.0 | ±3.1% | ±9.6% | | | | Y | 1.54 | 67.62 | 14.94 | | 150.0 | | | | | | Z | 1.51 | 65.40 | 14.05 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.03 | 66.41 | 14.62 | 0.00 | 150.0 | ±1.1% | ±9.6% | | | | Y | 2.05 | 67.91 | 15.68 | | 150.0 | | | | | | Z | 2.06 | 67.02 | 14.99 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 2.68 | 68.27 | 17.61 | 3.01 | 150.0 | ±0.9% | ±9.6% | | | | Y | 2.12 | 67.04 | 17.26 | | 150.0 | | | | | | Z | 2.52 | 68.03 | 17.55 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.36 | 66.23 | 15.26 | 0.00 | 150.0 | ±2.9% | ±9.6% | | | | Y | 3.40 | 67.13 | 15.79 | | 150.0 | | | | | | Z | 3.42 | 66.76 | 15.47 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 5.04 | 65.93 | 15.75 | 0.00 | 150.0 | ±4.9% | ±9.6% | | 1 | | Y | 4.69 | 65.90 | 15.68 | | 150.0 | | | | | | Z | 4.80 | 65.62 | 15.48 | 1 | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Parameters of Probe: EX3DV4 - SN:7448 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
msV ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|-------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Х | 53.7 | 424.82 | 39.20 | 5.57 | 0.45 | 5.05 | 0.00 | 0.55 | 1.01 | | у | 30.5 | 228.78 | 35.74 | 4.48 | 0.00 | 4.95 | 0.57 | 0.12 | 1.00 | | z | 41.0 | 310.89 | 36.47 | 6.83 | 0.00 | 5.08 | 0.18 | 0.38 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | 15.1° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. ## Parameters of Probe: EX3DV4 - SN:7448 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 8.93 | 8.63 | 10.15 | 0.36 | 1.27 | ±12.0% | | 900 | 41.5 | 0.97 | 9.05 | 8.39 | 9.70 | 0.35 | 1.27 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.06 | 8.31 | 8.49 | 0.24 | 1.27 | ±12.0% | | 1900 | 40.0 | 1.40 | 7.64 | 7.91 | 7.99 | 0.28 | 1.27 | ±12.0% | | 2300 | 39.5 | 1.67 | 7.82 | 7.84 | 7.90 | 0.28 | 1.27 | ±12.0% | | 2600 | 39.0 | 1.96 | 7.39 | 7.57 | 7.42 | 0.28 | 1.27 | ±12.0% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25,
40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations from the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) # **Dynamic Range f(SAR**_{head}) (TEM cell, $f_{eval} = 1900 \, MHz$) Uncertainty of Linearity Assessment: ±0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Fremont, USA Certificate No. EUmm-9589 Sep23 ## **CALIBRATION CERTIFICATE** Object EUmmWV4 - SN:9589 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8, QA CAL-42.v3 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date September 05, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------|------------|-----------------------------------|-----------------------| | Power sensor NRP110T | SN: 101244 | 12-Apr-23 (No. 0001A300692178) | Apr-24 | | Spectrum analyzer FSV40 | SN: 101832 | 23-Jan-23 (No. 4030-315005314) | Jan-24 | | Ref. Probe EUmmWV3 | SN: 9374 | 22-May-23 (No. EUmm-9374_May23) | May-24 | | DAE4ip | SN: 1662 | 24-Aug-23 (No. DAE4ip-1662_Aug23) | Aug-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |--------------------------|----------------|-----------------------------------|------------------------| | Generator APSIN26G | SN: 669 | 28-Mar-17 (in house check May-23) | In house check: May-24 | | Generator Adilent F8251A | SN: US41140111 | 28-Mar-17 (in house check May-23) | In house check: May-24 | Name Function Signature Calibrated by Leif Klysner Laboratory Technician Seef Maly Approved by Sven Kühn Technical Manager Issued: September 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EUmm-9589 Sep23 Page 1 of 18 Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Sensor Angles sensor deviation from the probe axis, used to calculate the field orientation and polarization \vec{k} is the wave propagation direction ### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz. - DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - Note: As the field is measured with a diode detector sensor, it is warrantied that the probe response is linear (E²) below the documented lowest calibrated value. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p). - Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). - Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required). - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup. Certificate No: EUmm-9589_Sep23 Page 2 of 18 EUmmWV4 - SN:9589 September 05, 2023 ## Parameters of Probe: EUmmWV4 - SN:9589 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Unc $(k=2)$ | |-------------------------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ | 0.01962 | 0.02223 | ±10.1% | | DCP (mV) ^B | 105.0 | 105.0 | ±4.7% | | Equivalent Sensor Angle | -61.2 | 35.7 | | ## Calibration Results for Frequency Response (750 MHz - 110 GHz) | Frequency
GHz | Target
E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (<i>k</i> = 2) | |------------------|--------------------------|--------------------------|--------------------------|---------------------| | 0.75 | 77.2 | -0.24 | -0.30 | ±0.43 | | 1.8 | 140.4 | -0.03 | -0.04 | ±0.43 | | 2.0 | 133.0 | 0.14 | 0.14 | ±0.43 | | 2.2 | 124.8 | -0.07 | -0.06 | ±0.43 | | 2.5 | 123.0 | 0.07 | 0.13 | ±0.43 | | 3.5 | 256.2 | -0.15 | -0.17 | ±0.43 | | 3.7 | 249.8 | 0.01 | -0.04 | ±0.43 | | 6.6 | 74.7 | -0.08 | -0.24 | ±0.98 | | 8.0 | 67.2 | -0.05 | -0.13 | ±0.98 | | 10.0 | 66.2 | -0.00 | 0.03 | ±0.98 | | 15.0 | 51.2 | 0.20 | 0.15 | ±0.98 | | 26.6 | 112.6 | 0.09 | 0.08 | ±0.98 | | 30.0 | 121.9 | 0.00 | 0.00 | ±0.98 | | 35.0 | 121.3 | -0.09 | -0.09 | ±0.98 | | 40.0 | 102.3 | -0.16 | -0.15 · | ±0.98 | | 50.0 | 61.5 | 0.07 | 0.05 | ±0.98 | | 55.0 | 75.9 | -0.03 | -0.06 | ±0.98 | | 60.0 | 80.5 | -0.00 | 0.01 | ±0.98 | | 65.0 | 77.1 | 0.12 | 0.16 | ±0.98 | | 70.0 | 74.3 | 0.13 | 0.10 | ±0.98 | | 75.0 | 74.8 | -0.02 | -0.07 | ±0.98 | | 75.0 | 96.6 | -0.01 | -0.04 | ±0.98 | | 80.0 | 95.4 | -0.14 | -0.13 | ±0.98 | | 85.0 | 58.0 | -0.05 | -0.05 | ±0.98 | | 90.0 | 84.0 | 0.01 | 0.02 | ±0.98 | | 92.0 | 83.9 | 0.04 | 0.03 | ±0.98 | | 95.0 | 76.2 | -0.02 | -0.04 | ±0.98 | | 97.0 | 69.1 | 0.01 | -0.03 | ±0.98 | | 100.0 | 66.9 | 0.08 | 0.06 | ±0.98 | | 105.0 | 67.2 | -0.26 | -0.19 | ±0.98 | | 110.0 | 78.1 | 0.17 | 0.14 | ±0.98 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. EUmmWV4 - SN:9589 September 05, 2023 ## Parameters of Probe: EUmmWV4 - SN:9589 ## **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $dB\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|-----------------------------|---|---------|------------------|-------|---------|----------|--------------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 127.8 | ±3.0% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 70.0 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 3.90 | 61.74 | 15.95 | 10.00 | 6.0 | ±1.4% | ±9.6% | | | | Y | 3.10 | 60.00 | 15.89 | | 6.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 3.06 | 63.01 |
15.26 | 6.99 | 12.0 | 12.0 ±0.8%
12.0 | ±9.6% | | | | Y | 2.14 | 60.00 | 14.83 | | 12.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 1.81 | 62.71 | 13.82 | 3.98 | 23.0 | ±1.4% | ±9.6% | | | | Y | 1.29 | 60.00 | 13.59 | | 23.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 0.85 | 60.00 | 11.85 | 2.22 | 27.0 | ±1.0% | ±9.6% | | | , , | Y | 0.82 | 60.00 | 12.65 | | 27.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.26 | 60.00 | 12.14 | 1.00 | 22.0 | ±1.4% | ±9.6% | | | | Y | 1.33 | 60.00 | 12.28 | | 22.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 1.29 | 60.00 | 11.77 | 0.00 | 22.0 | ±0.8% | ±9.6% | | | | Y | 1.40 | 60.00 | 11.87 | | 22.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.72 | 66.35 | 16.33 | 3.01 | 17.0 | ±0.6% | ±9.6% | | | | Y | 20.00 | 87.21 | 23.07 | | 17.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.10 | 60.00 | 12.31 | 0.00 | 19.0 | ±0.9% | ±9.6% | | | | Y | 2.16 | 60.00 | 12.45 | | 19.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.29 | 60.00 | 12.76 | 0.00 | 12.0 | ±0.8% | ±9.6% | | | | Y | 3.26 | 60.00 | 12.92 | F | 12.0 | | | Note: For details on UID parameters see Appendix E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. September 05, 2023 ## Parameters of Probe: EUmmWV4 - SN:9589 ## **Calibration Results for Linearity Response** | Frequency
GHz | Target E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (k = 2)
dB | |------------------|-----------------------|--------------------------|--------------------------|-------------------| | 0.9 | 50.0 | -0.06 | 0.06 | ±0.2 | | 0.9 | 100.0 | 0.01 | 0.00 | ±0.2 | | 0.9 | 500.0 | 0.02 | 0.01 | ±0.2 | | 0.9 | 1000.0 | 0.05 | 0.04 | ±0.2 | | 0.9 | 1500.0 | 0.05 | 0.03 | ±0.2 | | 0.9 | 2100.0 | 0.03 | 0.02 | ±0.2 | # **Sensor Frequency Model Parameters (750 MHz – 55 GHz)** | | Sensor X | Sensor Y | |---------------------|----------|----------| | R (Ω) | 81.31 | 115.13 | | R _p (Ω) | 122.63 | 170.38 | | L (nH) | 0.08365 | 0.10857 | | C (pF) | 0.1682 | 0.1563 | | C _p (pF) | 0.0673 | 0.0519 | # **Sensor Frequency Model Parameters (55 GHz – 110 GHz)** | | Sensor X | Sensor Y | |--------------------|----------|----------| | R (Ω) | 34.80 | 22.11 | | R _p (Ω) | 157.85 | 101.06 | | L (nH) | 0.08011 | 0.05043 | | C (pF) | 0.0570 | 0.0940 | | Cp (pF) | 0.0676 | 0.1083 | #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
msV ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------------------|-------------------------|--------------------------|----------|-----------------------|-----------------------|------| | х | 62.7 | 454.13 | 33.57 | 0.00 | 10.00 | 5.03 | 0.00 | 2.00 | 1.01 | | У | 61.5 | 442.63 | 33.27 | 0.00 | 10.00 | 5.04 | 2.00 | 2.00 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle | -139.6° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 320 mm | | Probe Body Diameter | 8 mm | | Tip Length | 23 mm | | Tip Diameter | 8.0 mm | | Probe Tip to Sensor X Callbration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | Certificate No: EUmm-9589_Sep23 # **Deviation from Isotropy in Air** 60GHz: 3D isotropy, E-field parallel to probe axis X [deg] Probe isotropy for E_{tot} : probe rotated $\phi = 0^{\circ}$ to 360°, tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi=0^{\circ}-90^{\circ}$) at 30 GHz: deviation within ± 0.37 dB Parallel to the field propagation ($\psi=0^{\circ}-90^{\circ}$) at 60 GHz: deviation within ± 0.41 dB Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Research Triangle Park, USA Certificate No. EUmm-9619 Mar24 ## **CALIBRATION CERTIFICATE** Object EUmmWV4 - SN:9619 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8, QA CAL-42.v3 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date March 08, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------|------------|-----------------------------------|-----------------------| | Power sensor NRP110T | SN: 101244 | 12-Apr-23 (No. 0001A300692178) | Apr-24 | | Spectrum analyzer FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Ref. Probe EUmmWV3 | SN: 9374 | 04-Dec-23 (No. EUmm-9374_Dec23) | Dec-24 | | DAE4ip | SN: 1662 | 08-Nov-23 (No. DAE4ip-1662 Nov23) | Nov-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |--------------------------|----------------|-----------------------------------|------------------------| | Generator APSIN26G | SN: 669 | 28-Mar-17 (in house check May-23) | In house check: May-24 | | Generator Agilent E8251A | SN: US41140111 | 28-Mar-17 (in house check May-23) | In house check: May-24 | Name Function Signature Calibrated by Leif Klysner Laboratory Technician Technical Manager Approved by Sven Kühn Issued: March 12, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EUmm-9619 Mar24 Page 1 of 18 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrlerdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization $\varphi = \varphi$ rotation around probe axis Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system sensor Angles sensor deviation from the probe axis, used to calculate the field orientation and polarization \vec{k} is the wave propagation direction #### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y: Assessed for E-field polarization $\theta = 0$ ($f \le 900 \, \text{MHz}$ in TEM-cell; $f > 1800 \, \text{MHz}$: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz. - DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - Note: As the field is measured with a diode detector sensor, it is warrantied that the probe response is linear (E²) below the documented lowest calibrated value. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p). - Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). - Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required). - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup. Certificate No: EUmm-9619 Mar24 ## Parameters of Probe: EUmmWV4 - SN:9619 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Unc (k = 2) | |-------------------------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ | 0.02260 | 0.02516 | ±10.1% | | DCP (mV) B | 105.0 | 105.0 | ±4.7% | | Equivalent Sensor Angle | -58.4 | 34.5 | | # Calibration Results for Frequency Response (750 MHz – 110 GHz) | Frequency Target GHz E-Field V/m | | E-Field Deviation Sensor X V/m Deviation Sensor X dB | | Unc (<i>k</i> = 2)
dB | | |----------------------------------|-------
---|-------|---------------------------|--| | 0.75 | 77.2 | -0.09 | -0.28 | ±0.43 | | | 1.8 | 140.4 | -0.01 | -0.01 | ±0.43 | | | 2.0 | 133.0 | 0.12 | 0.16 | ±0.43 | | | 2.2 | 124.8 | -0.07 | -0.06 | ±0.43 | | | 2.5 | 123.0 | 0.07 | 0.09 | ±0.43 | | | 3.5 | 256.2 | -0.19 | -0.20 | ±0.43 | | | 3.7 | 249.8 | -0.06 | -0.09 | ±0.43 | | | 6.6 | 74.7 | -0.22 | -0.30 | ±0.98 | | | 8.0 | 67.2 | -0.09 | -0.12 | ±0.98 | | | 10.0 | 66.2 | 0.02 | 0.03 | ±0.98 | | | 15.0 | 51.2 | 0.11 | 0.17 | ±0.98 | | | 26.6 | 112.6 | 0.16 | 0.13 | ±0.98 | | | 30.0 | 121.9 | -0.01 | -0.01 | ±0.98 | | | 35.0 | 121.3 | -0.10 | -0.09 | ±0.98 | | | 40.0 | 102.3 | -0.14 | -0.14 | ±0.98 | | | 50.0 | 61.5 | 0.08 | 0.07 | ±0.98 | | | 55.0 | 75.9 | 0.01 | -0.02 | ±0.98 | | | 60.0 | 80.5 | -0.02 | -0.01 | ±0.98 | | | 65.0 | 77.1 | 0.11 | 0.13 | ±0.98 | | | 70.0 | 74.3 | 0.15 | 0.14 | ±0.98 | | | 75.0 | 74.8 | 0.04 | -0.02 | ±0.98 | | | 75.0 | 96.6 | 0.03 | -0.02 | ±0.98 | | | 80.0 | 95.4 | -0.10 | -0.11 | ±0.98 | | | 85.0 | 58.0 | -0.04 | -0.08 | ±0.98 | | | 90.0 | 84.0 | -0.01 | 0.01 | ±0.98 | | | 92.0 | 83.9 | 0.03 | 0.02 | ±0.98 | | | 95.0 | 76.2 | 0.01 | -0.04 | ±0.98 | | | 97.0 | 69.1 | 0.04 | -0.02 | ±0.98 | | | 100.0 | 66.9 | 0.14 | 0.11 | ±0.98 | | | 105.0 | 67.2 | -0.18 | -0.15 | ±0.98 | | | 110.0 | 78.1 | 0.05 | 0.06 | ±0.98 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. ## Parameters of Probe: EUmmWV4 - SN:9619 # **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |----------------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 CW | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 144.2 | ±3.0% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 72.7 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 3.26 | 61.32 | 15.17 | 10.00 | 6.0 | ±3.0% | ±9.6% | | | | Y | 3.07 | 60.00 | 15.28 | | 6.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 2.61 | 62.93 | 14.62 | 6.99 | 12.0 | ±1.1% | ±9.6% | | | | Y | 2.10 | 60.00 | 14.23 | | 12.0 | | | | 10354 Pulse Wa | Pulse Waveform (200Hz, 40%) | X | 1.68 | 63.84 | 13.72 | 3.98 | 23.0 | ±1.5% | ±9.6% | | | | Y | 1.27 | 60.00 | 13.02 | | 23.0 | | | | 10355 Pulse Wa | Pulse Waveform (200Hz, 60%) | X | 0.69 | 60.00 | 11.40 | 2.22 | 27.0 | ±1.1% | ±9.6% | | | | Y | 0.84 | 60.00 | 12.07 | | 27.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.21 | 60.00 | 12.40 | 1.00 | 22.0 | ±1.4% | ±9.6% | | | | Y | 1.35 | 60.00 | 12.15 | | 22.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 1.22 | 60.00 | 12.09 | 0.00 | 22.0 | ±0.9% | ±9.6% | | | | Y | 1.46 | 60.00 | 11.79 | | 22.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.85 | 67.39 | 16.75 | 3.01 | 17.0 | ±0.7% | ±9.6% | | | | Y | 5.32 | 70.16 | 17.71 | | 17.0 | | 1000 | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.06 | 60.08 | 12.56 | 2 | 19.0 | ±1.0% | ±9.6% | | | | Y | 2.23 | 60.00 | 12.37 | | 19.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.53 | 60.99 | 13.34 | 0.00 | 12.0 | ±1.4% | ±9.6% | | | | Y | 3.38 | 60.00 | 12.82 | | 12.0 | | | Note: For details on UID parameters see Appendix E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Parameters of Probe: EUmmWV4 - SN:9619 ## **Calibration Results for Linearity Response** | Frequency
GHz | Target E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (<i>k</i> = 2)
dB | |------------------|-----------------------|--------------------------|--------------------------|---------------------------| | 0.9 | 50.0 | -0.05 | 0.08 | ±0.2 | | 0.9 | 100.0 | -0.01 | 0.12 | ±0.2 | | 0.9 | 500.0 | 0.03 | 0.02 | ±0.2 | | 0.9 | 1000.0 | 0.06 | 0.04 | ±0.2 | | 0.9 | 1500.0 | 0.04 | 0.04 | ±0.2 | | 0.9 | 2100.0 | 0.02 | 0.01 | ±0.2 | ## Sensor Frequency Model Parameters (750 MHz – 55 GHz) | | Sensor X | Sensor Y | |---------------------|----------|----------| | R (Ω) | 54.49 | 91.54 | | R _p (Ω) | 80.23 | 131.09 | | L (nH) | 0.05536 | 0.08227 | | C (pF) | 0.2616 | 0.2102 | | C _p (pF) | 0.0997 | 0.0651 | # Sensor Frequency Model Parameters (55 GHz - 110 GHz) | | Sensor X | Sensor Y | |---------------------|----------|----------| | R (Ω) | 25.51 | 33.64 | | R _p (Ω) | 107.59 | 142.31 | | L (nH) | 0.05292 | 0.06998 | | C (pF) | 0.0882 | 0.0686 | | C _p (pF) | 0.0989 | 0.0772 | #### Sensor Model Parameters | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
msV ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|-------------------------|----------|-----------------------|-----------------------|------| | X | 63.7 | 464.13 | 33.98 | 2.66 | 7.68 | 5.00 | 0.00 | 1.87 | 1.01 | | у | 57.3 | 415.99 | 33.77 | 2.66 | 8.53 | 5.01 | 2.00 | 2.00 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle | -21.5° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 320 mm | | Probe Body Diameter | 8 mm | | Tip Length | 23 mm | | Tip Diameter | 8.0 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | ## **Deviation from Isotropy in Air** 30GHz: 3D isotropy, E-field parallel to probe axis 60GHz: 3D isotropy, E-field parallel to probe axis Probe isotropy for E_{tot}: probe rotated $\phi=0^\circ$ to 360°, tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 30 GHz: deviation within ± 0.42 dB Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 60 GHz: deviation within ± 0.39 dB