

TEST REPORT

Report Number: 14523772-E1V2

- Applicant : APPLE, INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
 - Model : A3105 (Full Test Model) A3106, A3108 (Variant Model)
 - Brand : APPLE
 - FCC ID : BCG-E8440A (Full Test Model) BCG-E8441A, BCG-E8442A (Variant Model)
 - IC : 579C-E8440A (Full Test Model) 579C-E8441A, 579C-E8442A (Variant Model)
- **EUT Description** : SMART PHONE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue: August 23, 2023

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	8/22/2023	Initial Issue	Tony Li
V2	8/23/2023	Address TCB Question sections 6, 8	Eric Ting

Page 2 of 149

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	6
2.	TES	ST SUMMARY	8
3.	TES	T METHODOLOGY	8
4.	FAG	CILITIES AND ACCREDITATION	9
5	DEC	CISION RULES AND MEASUREMENT UNCERTAINTY	9
U .	51	METROLOGICAL TRACEABILITY	9
5	52	DECISION RULES	9
5	5.3	MEASUREMENT UNCERTAINTY	10
5	5.4.	SAMPLE CALCULATION	10
6.	EQI	JIPMENT UNDER TEST	11
6	5.1.	EUT DESCRIPTION	11
6	6.2.	MAXIMUM OUTPUT POWER	11
6	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	12
6	6.4.	SOFTWARE AND FIRMWARE	12
6	6.5.	WORST-CASE CONFIGURATION AND MODE	12
6	6	DESCRIPTION OF TEST SETLIP	13
C	. 0.		
7.	TES	ST AND MEASUREMENT EQUIPMENT	17
7. 8.	TES	ST AND MEASUREMENT EQUIPMENT	17 19
7. 8. 9.	TES ME	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS	17 17 19 20
7. 8. 9.	TES MEA AN [®] 2.1.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS FENNA PORT TEST RESULTS	17 19 20 20
7. 8. 9.	TES MEA AN ^T 0.1.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	17 19 20 21
7. 8. 9.	TES ME AN [•] 0.1. 0.2. 9.2.	ASUREMENT METHODS FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION	17 19 20 21 22
7. 8. 9.	TES ME AN 0.1. 9.2. 9.2. 9.2. 9.2.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS Image: Star Star Star Star Star Star Star Star	17 19 20 21 22 23 24
7. 8. 9. g	TES ME AN 0.1. 9.2. 9.2. 9.2. 9.2. 9.2.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS Image: Star Star Star Star Star Star Star Star	17 19 20 21 22 23 24 25
7. 8. 9. g	TES ME AN 0.1. 0.2. 0.2. 0.2. 0.2. 0.2. 0.2. 0.3. 0.3	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS IENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 4. HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION 5. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 6. HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION	17 19 20 20 21 22 23 24 25 26 27
7. 8. 9. g	TES ME AN 0.1 . 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3.	ASUREMENT METHODS ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 4. HIGH POWER ENHANCED DATA RATE GFSK MODULATION 4. HIGH POWER ENHANCED DATA RATE GFSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 4. HIGH POWER BASIC DATA RATE GFSK MODULATION 4. HIGH POWER BASIC DATA RATE GFSK MODULATION 4. HIGH POWER BASIC DATA RATE SFSK MODULATION 4. HIGH POWER BASIC DATA RATE FOR SK MODULATION 5. HIGH POWER BASIC POWER BASIC POWER F	17 19 20 21 22 23 24 25 26 27 28
7. 8. 9. g	TES ME AN 0.1 . 9.2 . 9.2 . 9.2 . 9.2 . 9.2 . 9.3 . 9.3 . 9.4 . 9.4 .	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS IENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE TXBF SPSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION	17 19 20 20 21 22 23 24 25 26 27 28 29
7. 8. 9. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TES MEA AN 0.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS IENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 5. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 6. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 6. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION AVERAGE TIME OF OCCUPANCY 1. HIGH POWER BASIC DATA RATE GFSK MODULATION	17 19 20 20 21 22 23 24 25 26 27 28 29 21 21 22 23 24 25 26 27 28 29 21 23
7. 8. 9. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TES MEA 0.1. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3. 9.4. 9.4. 9.5. 9.5. 9.5.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS IENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION. 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION. 3. HIGH POWER ENHANCED DATA RATE TXBF GFSK MODULATION. 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION. 1. HIGH POWER BASIC DATA RATE GFSK MODULATION. AVERAGE TIME OF OCCUPANCY. 1. HIGH POWER BASIC DATA RATE GFSK MODULATION. AVERAGE TIME OF OCCUPANCY. 1. HIGH POWER BASIC DATA RATE GFSK MODULATION. OUTPUT POWER.	17 19 20 20 20 20 21 23 24 25 26 27 28 29 29 31 32
7. 8. 9. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TES MEA 0.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS IENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION AVERAGE TIME OF OCCUPANCY 1. HIGH POWER BASIC DATA RATE GFSK MODULATION OUTPUT POWER 1. HIGH POWER BASIC DATA RATE GFSK MODULATION	17 19 20 20 20 21 22 23 24 25 26 27 28 29 31 38 38
7. 8. 9. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TES MEA AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ST AND MEASUREMENT EQUIPMENT ASUREMENT METHODS ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB AND 99% BANDWIDTH 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION 3. HIGH POWER ENHANCED DATA RATE TXBF SPSK MODULATION 4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 1. HIGH POWER BASIC DATA RATE GFSK MODULATION AVERAGE TIME OF OCCUPANCY. 1. HIGH POWER BASIC DATA RATE GFSK MODULATION OUTPUT POWER 1. HIGH POWER BASIC DATA RATE GFSK MODULATION AVERAGE TIME OF OCCUPANCY. 1. HIGH POWER BASIC DATA RATE GFSK MODULATION 2. HIGH POWER BASIC DATA RATE GFSK MODULATION 3. HIGH POWER BASIC DATA RATE GFSK MODULATION 3. HIGH POWER BASIC DATA RATE GFSK MODULATION	17 19 20 20 20 21 22 23 24 25 26 27 28 29 31 32 36 38 38 38 38

9.6.4. 9.6.5. 9.6.6. 9.6.7. 9.6.8. 9.6.9. 9.6.10. 9.6.11. 9.6.12.	HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION HIGH POWER ENHANCED DATA RATE 8PSK MODULATION HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION LOW POWER BASIC DATA RATE GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE QPSK MODULATION LOW POWER ENHANCED DATA RATE TXBF SPSK MODULATION	39 40 41 41 41 42 42 43 43
9.7. AVE 9.7.1. 9.7.2. 9.7.3. 9.7.4. 9.7.5. 9.7.6. 9.7.6. 9.7.7. 9.7.8. 9.7.9. 9.7.10.	ERAGE POWER HIGH POWER BASIC DATA RATE GFSK MODULATION HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION HIGH POWER ENHANCED DATA RATE QPSK MODULATION HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION HIGH POWER ENHANCED DATA RATE 8PSK MODULATION HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION LOW POWER BASIC DATA RATE GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE TXBF GFSK MODULATION	
9.7.11. 9.7.12. 9.8. CO 9.8.1. 9.8.2. 9.8.3. 9.8.4. 9.8.5. 9.8.6. 9.8.7. 9.8.8.	LOW POWER ENHANCED DATA RATE 8PSK MODULATION LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION NDUCTED SPURIOUS EMISSIONS HIGH POWER BASIC DATA RATE GFSK MODULATION HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION HIGH POWER ENHANCED DATA RATE 8PSK MODULATION HIGH POWER TXBF ENHANCED DATA RATE 8PSK MODULATION LOW POWER BASIC DATA RATE GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE 8PSK MODULATION	50 50 51 52 56 60 64 68 72 76 80
10. RADI	ATED TEST RESULTS	84
10.1. T 10.1.1. 10.1.2. 10.1.3. 10.1.4. 10.1.5. 10.1.6. 10.1.7. 10.1.8. 10.1.9.	RANSMITTER ABOVE 1 GHz HIGH POWER BASIC DATA RATE GFSK MODULATION HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION HIGH POWER ENHANCED DATA RATE 8PSK MODULATION HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION LOW POWER BASIC DATA RATE GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER BASIC DATA RATE TXBF GFSK MODULATION LOW POWER ENHANCED DATA RATE 8PSK MODULATION LOW POWER ENHANCED DATA RATE 8PSK MODULATION GFSK, HIGH POWER HARMONICS AND SPURIOUS EMISSIONS	86 94 98 106 110 118 122 130 134
10.2. VI 10.3 VI	VORST CASE BELOW 1 GHZ	140
11.1. AC PC	C Power Line With AC/DC Adapter	145
11.2. A	C Power Line With Laptop	147
	Page 4 of 149	

12. SETUP PHOTOS	149
------------------	-----

Page 5 of 149

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A
EUT DESCRIPTION:	SMART PHONE
MODEL:	A3105 (Full Test Model) A3106, A3108 (Variant Model)
BRAND:	APPLE
SERIAL NUMBER:	JKX4322779 (Conducted) CW34G74L6C, DWP17WGX91 (Radiated)
SAMPLE RECEIPT DATE:	MARCH 23, 2023
DATE TESTED:	April 04 – August 21, 2023

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart C	Complies			
ISED RSS-247 Issue 2	Complies			
ISED RSS-GEN Issue 5 + A1 + A2	Complies			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not considered unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 6 of 149

Approved & Released For UL Verification Services Inc. By:

Chin Pan

Chin Pang Senior Lab Engineer Consumer Technology Division UL Verification Services Inc.

Prepared By:

Tony Li Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

Page 7 of 149

2. TEST SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	Per ANSI C63.10,
See Comment		Duty Cycle	purposes only	Section 11.6.
Soo Commont	RSS-GEN 6.7		Reporting	ANSI C63.10 Sections
See Comment		2008 800/99 /8 0800	purposes only	6.9.2 and 6.9.3
15.247 (a)(1)	RSS-247 (5.1) (b)	Hopping Frequency Separation	Complies	None.
15.247 (a)(1)(iii)	RSS-247 (5.1) (d)	Number of Hopping Channels	Complies	None.
15.247 (a)(1)(iii)	RSS-247 (5.1) (d)	Average Time of Occupancy	Complies	None.
15.247 (b)(1)	RSS-247 (5.4) (b)	Output Power	Complies	None.
See Commont		Average Bower	Reporting	Per ANSI C63.10,
See Comment		Average Fower	purposes only	Section 11.9.2.3.2.
15.247 (d)	RSS-247 (5.5)	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 2.

Page 8 of 149

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
	Building 3: 843 Auburn Court, Fremont, CA 94538 USA			
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
\boxtimes	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not considered when stating conformity with a specified requirement.)

Page 9 of 149

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	Ulab
Conducted Antenna Port Emission Measurement	1.94
Time Domain Measurements Using SA	3.39
RF Power Measurement Direct Method Using Power Meter	0.450 (Peak), 1.3 (Ave)
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.2%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB+ 0 dB = 46.6 dBuV

Page 10 of 149

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with cellular GSM, GPRS, EGPRS, UMTS, LTE, 5GNR1, IEEE 802.11a/b/g/n/ac/ax, Bluetooth (BT), Ultra-Wideband (UWB), GPS, NFC, NB UNII, 802.15.4, 802.15.4ab-NB and MSS technologies. The rechargeable battery is not user accessible.

The Model and FCC/IC ID covered by this report includes:

Full Test Model: A3105, FCC ID: BCG-E8440A, IC ID: 579C-E8440A

Variant Model: A3106, FCC ID: BCG-E8441A, IC ID: 570C-E8441A A3108, FCC ID: BCG-E8442A, IC ID: 579C-E8442A

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Config	Frequency Range	Mode	Output	Output
		(MHz)		Power	Power
				(dBm)	(mW)
		2402 - 2480	Basic GFSK	20.25	105.93
	High Power	2402 - 2480	DQPSK	19.22	83.56
		2402 - 2480	Enhanced 8PSK	19.33	85.70
ANT 4		2402 - 2480	Basic GFSK	11.77	15.03
	Low Power	2402 - 2480	DQPSK	11.32	13.55
		2402 - 2480	Enhanced 8PSK	11.46	14.00
	High Power	2402 - 2480	Basic GFSK	20.30	107.15
		2402 - 2480	DQPSK	19.31	85.31
		2402 - 2480	Enhanced 8PSK	19.33 8	85.70
AINT 5		2402 - 2480	Basic GFSK	11.85	15.31
	Low Power	2402 - 2480	DQPSK	11.31	13.52
		2402 - 2480	Enhanced 8PSK	11.48	14.06
		2402 - 2480	Basic GFSK TxBF	20.31	107.40
	High Power	2402 - 2480	DQPSK TxBF	19.40	87.10
		2402 - 2480	Enhanced 8PSK TxBF	19.45	88.10
dr, ANT 4 T ANT 5		2402 - 2480	Basic GFSK TxBF	14.85	30.55
	Low Power	2402 - 2480	DQPSK TxBF	14.36	27.29
		2402 - 2480	Enhanced 8PSK TxBF	14.55	28.51

Note: GFSK, DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on these modes to showing compliance.

Page 11 of 149

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

Frequency Range (GHz)	ANT 4 (dBi)	ANT 3 (dBi)
2.4	-1.1	-0.9

6.4. SOFTWARE AND FIRMWARE

The EUT firmware version installed during testing was 21.1.306.2344.

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on ANT 4 and ANT 3, it was determined that X (Flatbed) was the worst-case orientation for ANT 4 and 2TX Beamforming and Y (Landscape) orientation for ANT 3.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT was set to transmit at highest power on Low/Middle/High channels.

Radiated emissions below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario. There were no emissions found below 30MHz within 20dB of the limit.

For below 1GHz tests EUT was connected to AC power adapter as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BT and 5GHz bands, No noticeable emission was found.

GFSK, DQPSK, 8PSK average power are all investigated, The GFSK & 8PSK power are the worst case. For average power data please refer to section 9.7.

Worst-case data rates as provided by the client were:

GFSK mode : DH5 8PSK mode : 3-DH5 Beamforming: GFSK, DH5, 8PSK, 3-DH5

For radiated harmonic spurious emissions test, high power beamforming GFSK mode is set to maximum power per chain to cover both SISO and MIMO modes to complies with radiated spurious emissions limits in the restricted bands between 1GHz and 18GHz low/mid/high channel.

Note: In the Radiated Plots and emissions data, ANT0=ANT4 and ANT1=ANT3.

Page 12 of 149

SUPPORT TEST EQUIPMENT						
Description		Manufacturer	Model	Serial Nu	mber	FCC ID/ DoC
	Laptop	Apple	Macbook Pro	C02VD7SA	AHV22	BCGA1708
Laptop	AC/DC adapter	Liteon Technology	A1424	NSW25679		DoC
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC
Condu	cted Switch Box	UL	n/a	20828	31	N/A
10dB Fi Watts	10dB Fixed Attenuator, 2 Pasternack Watts Up to 26,5 GHz Enterprises		58	N/A		
		I/O CAE	BLES (RF CONDUC	FED TEST)		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	SMA	1	SMA	Shielded	0.75	To spectrum Analyzer
2	Antenna	2	SMA	Un-shielded	0.2	To Conducted Switch Box
3	USB-C	1	USB-C	Shielded	1.0	N/A
4	AC	1	AC	Un-shielded	2	N/A
	I/O	CABLES (RF RA	DIATED AND AC LI	NE CONDUCTED T	EST)	
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	1	AC	Un-shielded	2	N/A
2	USB	1	USB	Shielded	1	N/A

6.6. DESCRIPTION OF TEST SETUP

TEST SETUP

The EUT setup is shown as below. Test software exercised the radio card.

Page 13 of 149

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 14 of 149

SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz

Page 15 of 149

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

Page 16 of 149

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Antenna, Horn 1-18GHz	ETS Lindgren	3117	222740	08/31/2023	08/31/2022
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	170063	02/29/2024	02/29/2023
RF Filter Box, 1-18GHz, 12 Port.	UL-FR1	RATS 2	226781	04/30/2024	04/30/2023
Antenna, Horn 1-18GHz	ETS Lindgren	3117	226673	01/09/2024	01/09/2023
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169935	02/29/2024	02/29/2023
Filter Box, 1-18GHz 12 Port	UL-FR1	Frankenstein	216812	09/17/2023	09/17/2022
Antenna, Horn 1-18GHz	ETS Lindgren	3117	200784	01/31/2024	01/31/2023
RF Filter Box, 1-18GHz, 12 Port.	UL-FR1	Frankenstein	231874	04/19/2024	04/19/2023
EMI Receiver	Rohde & Schwarz	ESW44	201502	02/29/2024	02/29/2023
Antenna, Horn 1-18GHz	ETS Lindgren	3117	206807	02/28/2024	02/28/2023
EMI Receiver	Rohde & Schwarz	ESW44	235670	04/30/2024	04/30/2023
*Filter Box, 1-18GHz 12 Port	UL-FR1	Frankenstein	217255	08/23/2023	08/23/2022
*Antenna, Passive Loop 100KHz to 30MHz	ETS-Lindgren	EM-6872	170015	07/28/2023	07/28/2022
*Antenna, Passive Loop 30Hz to 1MHz	Electro-Metrics	EM-6871	170013	07/28/2023	07/28/2022
*Antenna Horn, 18 to 26.5GHz	ARA	MWH-1826/B	172353	06/01/2023	06/01/2022
Antenna, Broadband Hybrid, 30MHz to 3000MHz	Sunol Sciences Corp.	JB3	230635	01/31/2024	01/23/2023
*Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	89831	08/10/2023	08/10/2022
RF Amplifier Assembly, 18- 26.5GHz, 60dB Gain	AMPLICAL	AMP18G26.5- 60	171583	02/29/2024	02/29/2023
Spectrum Analyzer, PSA, 3Hz to 26.5GHz	Keysight Technologies Inc	E4440A	81311	02/29/2024	02/23/2023
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	80397	02/28/2024	02/28/2023
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	85214	02/28/2024	02/28/2023
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A-544	87738	02/28/2024	02/23/2023
*Conducted Switch Box	N/Ă	CSB	221008	06/21/2023	06/21/2022
Conducted Switch Box	N/A	CSB	208281	04/30/2024	04/30/2023
10dB Fixed Attenuator, 2 Watts Up to 26 5 GHz	Pasternack Enterprises	PE7024-10	236358	Verified/Characterized before	
10dB Fixed Attenuator. 2	Pasternack	PE7024-10	236355	Verified/Characte	rized before
Watts Up to 26.5 GHz	Enterprises			use	
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90756	01/31/2024	01/31/2023
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90389	01/31/2024	01/31/2023
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	200897	03/312024	03/31/2023
RF Filter Box, 1-18GHz, 17 Ports	UL-FR1	RATS 2	226779	03/05/2024	03/05/2023
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	226078	02/29/2024	02/29/2023

Page 17 of 149

Description	N16	NA 1 - 1			
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Antenna, Horn 1-18GHz	ETS Lindgren	3117	226672	01/09/2024	01/09/2023
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201502	02/29/2024	02/29/2023
RF Filter Box, 1-18GHz	UL-FR1	NA	168534	01/05/2024	01/05/2023
Antenna, Horn 1-18GHz	ETS Lindgren	3117	230300	01/12/2024	01/12/2023
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	02/29/2024	02/29/2023
RF Filter Box, 1-18GHz, 17 Ports	UL-FR1	RATS 2	226780	03/29/2024	03/29/2023

AC Line Conducted							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESR	93091	02/29/2024	03/29/2023		
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN- 50/250-25-2-01- 480V	175764	01/31/2024	01/31/2023		
*Transient Limiter	TE	TBFL1	207996	07/15/2023	07/15/2022		
UL AUTOMATION SOFTWARE							
Radiated Software UL UL EMC Ver 9.5, May 1			r 9.5, May 1 , 2	023			
Conducted Software	UL	UL EMC	2020.8.16				
AC Line Conducted Software	UL	UL EMC	Ve	er 9.5, Mar 3, 20)23		

*Testing was completed before equipment calibration date

Page 18 of 149

&

8. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Carrier Frequency Separation: ANSI C63.10-2013 Section 7.8.2

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4 & 13

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3, 6.5 & 13

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3, 6.6 & 13

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5 & 13

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Page 19 of 149

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6 : Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	0.08	0.08	1.000	100.0%	0.00	0.010
Bluetooth 8PSK	4.00	4.00	1.000	100.0%	0.00	0.010

Note: There are the same DC factors on 1TX and 2TX.

DUTY CYCLE PLOTS

Agilent Spectrum Analyzer - AP2021.8.27,19336,Cond F Od E Od SENSE:INT	ALIGN AUTO 04:17:22 PM Jul 18, 2023	Eraguanay	Applent Spectrum Analyzer - AP2021.8.27,19336,Cond F Δ2 RF 50 Ω SENSE:INT ALIGNAUTO [04:26:07 FM]\u018, 2023 118, 2023	Fragueney
Center Freq 2.402000000 GHz PN0: Fast +++ Trig: Free Run If Calud up # Affen: 30 dB	#Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 1/1 Type A WWWWWW DET P NNNNN	Frequency	Center Freq 2.40200000 GHz PN0: Fast →→ If Grand user for the fast	Frequency
10 dB/dly Ref 20.00 dBm	ΔMkr2 80.00 μs 0.152 dB	Auto Tune	∆Mkr2 4.000 ms -0.205 dB -0.205 dB	Auto Tune
	2Δ1	Center Freq 2.402000000 GHz		Center Freq 2.402000000 GHz
20.0		Start Freq 2.402000000 GHz		Start Freq 2.402000000 GHz
500		Stop Freq 2.402000000 GHz		Stop Freq 2.402000000 GHz
Center 2.402000000 GHz Res BW 8 MHz #VBW 50 MHz Marg (Marga Inse) 1621 X 7 PU	Span 0 Hz Sweep 100.0 µs (1001 pts) NOTION FUNCTION WIDTH FUNCTION VALUE	CF Step 8.000000 MHz <u>Auto</u> Man	Center 2: 402000000 GHz Span 0 Hz Res BW 8 MHz #VBW 50 MHz Sweep 5.000 ms (1001 pts) Bitwoot (19 500 × v state) totelcowdom state(19 500 ms)	CF Step 8.000000 MHz <u>suto</u> Man
1 N 1 t 10.00 μs 9.585 dBm 2 Δ1 1 t (Δ) 80.00 μs (Δ) 0.152 dB 4 5		Freq Offset 0 Hz	N t 8000 μs 6.728 dBm Δ t (Δ) 4.000 ms (Δ) - 0.206 dB 1 2 2 2	Freq Offset 0 Hz
7 8 9 10 11 11 €	2			
MSG STATUS			MSG STATUS	
BLUETOOTH GFSK			BLUETOOTH 8PSK	

9.2. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to $\ge 1\%$ of the 20 dB bandwidth. The VBW is set to $\ge 3x$ RBW. The sweep time is coupled.

RESULTS

Only High-Power modes result is reported, it covers all Low Power modes. Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 21 of 149

9.2.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.92780	0.87426
Mid	2441	0.92850	0.87501
High	2480	0.92830	0.87487

<u>ANT 3</u>

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.92950	0.87374
Mid	2441	0.92970	0.87436
High	2480	0.92900	0.87579

Page 22 of 149

9.2.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Channel	Frequency 20dB Bandwidth		20dB Bandwidth	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3	ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2402	0.92630	0.92870	0.87221	0.87146
Mid	2441	0.92820	0.92690	0.87300	0.87240
High	2480	0.92820	0.92730	0.87303	0.87325

Note: Test procedures and setting on beamforming mode are same as BT basic and EDR mode

Page 23 of 149

9.2.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.3550	1.2178
Mid	2441	1.3540	1.2162
High	2480	1.3720	1.2254

<u>ANT 3</u>

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.3510	1.2092
Mid	2441	1.3510	1.2112
High	2480	1.3500	1.2116

Page 24 of 149

9.2.4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

Channel	Frequency	20dB Bandwidth	20dB Bandwidth	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3	ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2402	1.3500	1.3500	1.2091	1.2095
Mid	2441	1.3510	1.3510	1.2105	1.2118
High	2480	1.3500	1.3510	1.2109	1.2111

Page 25 of 149

9.3. HOPPING FREQUENCY SEPARATION

LIMITS

FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to VBW >= 3xRBW. The sweep time is coupled.

RESULTS

Only High-Power GFSK mode result is reported since EDR (QPSK/8PSK) has exactly same channel plan.

Page 26 of 149

9.3.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

HOPPING FREQUENCY SEPARATION

Page 27 of 149

9.4. NUMBER OF HOPPING CHANNELS

<u>LIMITS</u>

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels Observed. Only High-Power GFSK mode result is reported since EDR (QPSK/8PSK) has exactly same channel plan.

Page 28 of 149

9.4.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Page 29 of 149

<u>ANT 3</u>

Page 30 of 149

9.5. AVERAGE TIME OF OCCUPANCY

LIMITS

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

Only High-Power GFSK mode result is reported since EDR (QPSK/8PSK) has exact same timing.

Page 31 of 149

9.5.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)		
GFSK Normal	Mode						
DH1	0.380	32	0.122	0.4	-0.278		
DH3	1.632	16	0.261	0.4	-0.139		
DH5	2.872	13	0.373	0.4	-0.027		
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)		
GFSK AFH Mode							
DH1	0.380	8	0.030	0.4	-0.370		
DH3	1.632	4	0.065	0.4	-0.335		
DH5	2.872	3.25	0.093	0.4	-0.307		

Page 32 of 149

Page 33 of 149

<u>ANT 3</u>

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Normal	Mode					
DH1	0.380	32	0.122	0.4	-0.278	
DH3	1.634	15	0.245	0.4	-0.155	
DH5	2.876	13	0.374	0.4	-0.026	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH Mode						
DH1	0.380	8	0.030	0.4	-0.370	
DH3	1.634	3.75	0.061	0.4	-0.339	
DH5	2.876	3.25	0.093	0.4	-0.307	

Page 34 of 149

Page 35 of 149

9.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

TEST PROCEDURE

Measurements performed using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband peak power sensor. Peak output power was read directly from the power meter.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2 TX:

Tx chains are correlated for power due to the device supporting Beamforming. The directional gains are as follows:

	ANT 4	ANT 3	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	-1.1	-0.9	-1.00	2.01

DIRECTIONAL GAIN CALCULATION:

ANSI C63.10-2013 section 14.4.3

Uncorrelated directional gain=10*LOG((10^(Ant1/10) +10^(Ant2/10))/2) Correlated directional Gain=10*LOG(((10^(Ant1/20) +10^(Ant2/20)) ^2)/2)

Sample Calculation:

Ant4=-1.1, Ant3=-0.9

Uncorrelated Antenna gain=10log [(10^ (-1.1/10) +10^ (-0.9/10))/2] =-1.00dBi

Correlated Antenna gain=10log [(10^ (-1.1/20) +10^ (-0.9/20)) ^2)/2] =2.01dBi

RESULTS

Page 37 of 149

9.6.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	20.19	21	-0.81
Middle	2441	20.25	21	-0.75
High	2480	20.23	21	-0.77

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	20.25	21	-0.75
Middle	2441	20.30	21	-0.7
High	2480	20.26	21	-0.74

9.6.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	17.18	17.27	20.24	21	-0.76
Middle	2441	17.32	17.16	20.25	21	-0.75
High	2480	17.28	17.31	20.31	21	-0.69

9.6.3. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	19.22	21	-1.78
Middle	2441	19.18	21	-1.82
High	2480	19.10	21	-1.9

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	19.15	21	-1.85
Middle	2441	19.31	21	-1.69
High	2480	19.20	21	-1.8

9.6.4. HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION

Tested By:	32543					
Date:	5/15/2023					
Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	16.31	16.30	19.32	21	-1.68
Middle	2441	16.37	16.41	19.40	21	-1.60
High	2480	16.35	16.35	19.36	21	-1.64

9.6.5. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	19.33	21	-1.67
Middle	2441	19.32	21	-1.68
High	2480	19.27	21	-1.73

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	19.27	21	-1.73
Middle	2441	19.33	21	-1.67
High	2480	19.29	21	-1.71

9.6.6. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	16.41	16.41	19.42	21	-1.58
Middle	2441	16.43	16.40	19.43	21	-1.57
High	2480	16.44	16.43	19.45	21	-1.55

9.6.7. LOW POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.75	21	-9.25
Middle	2441	11.75	21	-9.25
High	2480	11.77	21	-9.23

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.83	21	-9.17
Middle	2441	11.85	21	-9.15
High	2480	11.80	21	-9.2

9.6.8. LOW POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.84	11.83	14.85	21	-6.15
Middle	2441	11.82	11.83	14.84	21	-6.16
High	2480	11.83	11.78	14.82	21	-6.18

9.6.9. LOW POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.25	21	-9.75
Middle	2441	11.25	21	-9.75
High	2480	11.32	21	-9.68

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.26	21	-9.74
Middle	2441	11.28	21	-9.72
High	2480	11.31	21	-9.69

9.6.10. LOW POWER ENHANCED DATA RATE TXBF QPSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.34	11.25	14.31	21	-6.69
Middle	2441	11.35	11.35	14.36	21	-6.64
High	2480	11.37	11.32	14.36	21	-6.64

Page 42 of 149

9.6.11. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.42	21	-9.58
Middle	2441	11.31	21	-9.69
High	2480	11.46	21	-9.54

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.32	21	-9.68
Middle	2441	11.48	21	-9.52
High	2480	11.47	21	-9.53

9.6.12. LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.41	11.32	14.38	21	-6.62
Middle	2441	11.42	11.46	14.45	21	-6.55
High	2480	11.63	11.45	14.55	21	-6.45

Page 43 of 149

9.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

Measurements performed using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband average power sensor. Gated average output power was read directly from the power meter.

RESULTS

Page 44 of 149

9.7.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	19.83
Middle	2441	19.88
High	2480	19.85

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	19.90
Middle	2441	19.94
High	2480	19.91

9.7.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power	Average Powei	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	16.81	16.91	19.87
Middle	2441	16.96	16.8	19.89
High	2480	16.92	16.95	19.95

9.7.3. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	16.47
Middle	2441	16.43
High	2480	16.35

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	16.30
Middle	2441	16.46
High	2480	16.35

9.7.4. HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average PowerAverage Power		Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	13.41	13.4	16.42
Middle	2441	13.47	13.46	16.48
High	2480	13.45	13.45	16.46

9.7.5. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023
	-

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	16.48
Middle	2441	16.47
High	2480	16.42

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	16.42
Middle	2441	16.47
High	2480	16.45

9.7.6. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	13.46	13.46	16.47
Middle	2441	13.48	13.45	16.48
High	2480	13.48	13.46	16.48

9.7.7. LOW POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Tested By:	32543	
Date:	5/15/2023	
Channel	Frequency	Ave

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	11.37
Middle	2441	11.37
High	2480	11.38

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	11.45
Middle	2441	11.48
High	2480	11.41

9.7.8. LOW POWER BASIC DATA RATE TXBF GFSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	11.46	11.46	14.47
Middle	2441	11.45	11.46	14.47
High	2480	11.46	11.4	14.44

Page 48 of 149

9.7.9. LOW POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.30
Middle	2441	8.30
High	2480	8.37

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.30
Middle	2441	8.33
High	2480	8.35

9.7.10. LOW POWER ENHANCED DATA RATE TXBF QPSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	8.39	8.3	11.36
Middle	2441	8.40	8.4	11.41
High	2480	8.42	8.37	11.41

Page 49 of 149

9.7.11. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.43
Middle	2441	8.31
High	2480	8.46

<u>ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.32
Middle	2441	8.48
High	2480	8.47

9.7.12. LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	32543
Date:	5/15/2023

Channel	Frequency	Average Power	Average Power	Total Power	
		ANT 4	ANT 3		
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	8.41	8.32	11.38	
Middle	2441	8.42	8.46	11.45	
High	2480	8.45	8.45	11.46	

Page 50 of 149

9.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

RSS-247 5.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

Page 51 of 149

9.8.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

Page 52 of 149

ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 53 of 149

ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

Page 54 of 149

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 55 of 149

9.8.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Note: Test procedure on beamforming mode is same as BT basic and EDR mode

Page 56 of 149

ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 57 of 149

<u>ANT 3</u>

Page 58 of 149

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 59 of 149

9.8.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

Page 60 of 149

ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 61 of 149

ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

Page 62 of 149

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 63 of 149

9.8.4. HIGH POWER TXBF ENHANCED DATA RATE 8PSK MODULATION

Note: Test procedure on beamforming mode is same as BT basic and EDR mode

Page 64 of 149

ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Agilent Spectrum Analyzer - AP2021.8	3.27,19336,Cond F				Agilent Spectrum Analyzer - AP.	2021.8.27,19336,Cond F				
Center Freq 2.40000000	IO GHZ	ALIGNAUTO #Avg Type: RMS AvglHold: 100/100	09:26:23 AM Jul 24, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWWW	Frequency	Center Freq 2.48350	DC D0000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS AvgiHold: 100/100	09:33:42 AM Jul 24, 2023 TRACE 1 2 3 4 5 6 TYPE M VANNAM	Frequency
Ref Offset 11.95 di 10 dB/div Ref 31.00 dBm	IFGain:Low #Atten: 40 dB	Mkr1	0er № NNNNN 2.404 185 GHz 18.223 dBm	Auto Tune	Ref Offset 11	IFGain:Low	#Atten: 40 dB	Mkr1	2.477 170 GHz 18.279 dBm	Auto Tune
21.0 11.0		monorth	My ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Center Freq 2.400000000 GHz	21.0 11.0	mon			4.2248m	Center Freq 2.483500000 GHz
-9.00				Start Freq 2.392500000 GHz	-9.00 -19.0 -29.0	- h.	3 (2		Start Freq 2.476000000 GHz
-39.0	~~~~×××			Stop Freq 2.407500000 GHz	-38.0 -49.0 -58.0	······	n na			Stop Freq 2.491000000 GHz
Center 2.400000 GHz Span 15.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.467 ms (1001 pts) weg toot the first state stat			CF Step 1.500000 MHz Auto Man	Center 2.483500 GHz #Res BW 100 kHz	#VB	W 300 kHz	Sweep 1	Span 15.00 MHz .467 ms (1001 pts)	CF Step 1.500000 MHz <u>Auto</u> Man	
1 N 1 F 2.4 2 N 1 F 2.4 3 N 1 F 2.3 4 5 6	104 196 GHz 18.223 dBm 100 000 GHz -38.009 dBm 199 610 GHz -36.898 dBm			Freq Offset 0 Hz	N 1 F 2 N 1 F 3 N 1 F 4 6	2.477 170 GHz 2.484 730 GHz 2.483 500 GHz	-37.378 dBm -39.785 dBm -39.785 dBm			Freq Offset 0 Hz
7 8 9 10 11			~		7 8 9 10 11				~	
MSG STATUS					MSG STATUS					
LOW BANDEDGE				HIGH BANDEDGE						

Page 65 of 149