

TEST REPORT

Report Number: 14523778-E2V2

- Applicant : APPLE, INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A
 - Model : A2847 (Parent Model) A3093, A3094, A3096 (Variant Model)
 - Brand : APPLE
 - FCC ID : BCG-E8431A (Parent Model) BCG-E8432A, BCG-E8433A, BCG-E8434A (Variant Model)
 - IC : 579C-E8431A (Parent Model) 579C-E8432A, 579C-E8433A, 579C-E8434A (Variant Model)
- EUT Description : SMARTPHONE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue:

August 11, 2023

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	08/10/2023	Initial Issue	Francisco Guarnero
V2	08/11/2023	Address TCB's Questions sections 6, 8	Chin Pang

Page 2 of 124

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TE	ST SUMMARY	7
3.	TE	ST METHODOLOGY	7
4.	FA	CILITIES AND ACCREDITATION	7
5.	DE	CISION RULES AND MEASUREMENT UNCERTAINTY	8
5	5.1.	METROLOGICAL TRACEABILITY	8
5	5.2.	DECISION RULES	8
5	5.3.	MEASUREMENT UNCERTAINTY	8
6.	EQ	UIPMENT UNDER TEST	9
6	6.1.	EUT DESCRIPTION	9
6	6.2.	MAXIMUM OUTPUT POWER	9
6	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
e	6.4.	SOFTWARE AND FIRMWARE	10
6	6.5.	WORST-CASE CONFIGURATION AND MODE	10
e	6.6.	DESCRIPTION OF TEST SETUP	11
7.	ME	ASUREMENT METHOD1	16
7. 8.	ME TES	ASUREMENT METHOD1 ST AND MEASUREMENT EQUIPMENT1	16 17
7. 8. 9.	ME TES	ASUREMENT METHOD1 ST AND MEASUREMENT EQUIPMENT1 TENNA PORT TEST RESULTS1	16 17 19
7. 8. 9.	ME TE AN 0.1.	ASUREMENT METHOD	16 17 19 19
7. 8. 9.	ME TES AN 9.1. 9.2.	ASUREMENT METHOD	16 17 19 19 20
7. 8. 9.	ME TES AN 9.1. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22
7. 8. 9.	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22 23
7. 8. 9.	ME TE: AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22 23 24
7. 8. 9.	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22 23 24 25 26
7. 8. 9. 2 2	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22 23 24 25 26 27
7. 8. 9. 5 5	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	 16 17 19 20 21 22 23 24 25 26 27 28
7. 8. 9. 5 5	ME TES AN 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2	ASUREMENT METHOD	16 17 19 20 21 22 23 24 25 26 27 28 20
7. 8. 9. 9.	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	16 17 19 20 21 223 24 25 26 27 28 29
7. 8. 9. 5 5	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	16 17 19 20 21 22 23 24 25 26 27 28 29 30
7. 8. 9. 3 3	ME TES AN 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2	ASUREMENT METHOD	16 17 19 20 21 223 24 25 26 27 28 29 30 31

Page 3 of 124

9.5. A 9.5.1. 9.5.2. 9.5.3. 9.5.4. 9.5.5.	VERAGE POWER HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (2Mbps) LOW POWER BLE (1Mbps)	32 33 33 34 34 35
9.5.6. 9.5.7. 9.5.8.	LOW POWER BLE TXBF (1Mbps) LOW POWER BLE (2Mbps) LOW POWER BLE TXBF (2Mbps)	35 36 36
9.6. P 9.6.1. 9.6.2. 9.6.3. 9.6.4.	POWER SPECTRAL DENSITY HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE TXBF (2Mbps)	37 38 39 40 41
9.7. C 9.7.1. 9.7.2. 9.7.3. 9.7.4. 9.7.5. 9.7.6. 9.7.6. 9.7.7. 9.7.8.	CONDUCTED SPURIOUS EMISSIONS HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE TXBF (2Mbps) LOW POWER BLE (1Mbps) LOW POWER BLE TXBF (1Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps)	42 43 45 47 49 51 53 55 57
10. RA	DIATED TEST RESULTS	59
10. RA <i>10.1.</i> <i>10.1.1</i> <i>10.1.2</i> <i>10.1.3</i> <i>10.1.4</i> <i>10.1.6</i> <i>10.1.7</i> <i>10.1.8</i> <i>10.1.9</i>	DIATED TEST RESULTS LIMITS AND PROCEDURE TRANSMITTER ABOVE 1 GHz I. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE TXBF (2Mbps) 6. LOW POWER BLE (1Mbps) 7. LOW POWER BLE TXBF (1Mbps) 8. LOW POWER BLE TXBF (2Mbps) 9. LOW POWER BLE TXBF (2Mbps)	59 61 61 69 73 81 85 91 99 .103 .111
10. RA <i>10.1.</i> <i>10.1.</i> <i>10.1.2</i> <i>10.1.3</i> <i>10.1.4</i> <i>10.1.6</i> <i>10.1.6</i> <i>10.1.8</i> <i>10.1.9</i> <i>10.2.</i>	DIATED TEST RESULTS LIMITS AND PROCEDURE. TRANSMITTER ABOVE 1 GHz. I. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE (1Mbps) 6. HIGH POWER BLE (2Mbps) 7. LOW POWER BLE (1Mbps) 7. LOW POWER BLE TXBF (1Mbps) 8. LOW POWER BLE (2Mbps) 9. LOW POWER BLE (2Mbps) 9. LOW POWER BLE TXBF (2Mbps)	59 61 61 69 73 81 85 91 99 .103 .111 115
10. RA <i>10.1.</i> <i>10.1.</i> <i>10.1.2</i> <i>10.1.3</i> <i>10.1.4</i> <i>10.1.6</i> <i>10.1.6</i> <i>10.1.8</i> <i>10.1.8</i> <i>10.1.8</i> <i>10.2.</i> <i>10.3.</i>	DIATED TEST RESULTS LIMITS AND PROCEDURE. TRANSMITTER ABOVE 1 GHz. HIGH POWER BLE (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE TXBF (2Mbps) HIGH POWER BLE (1Mbps) LOW POWER BLE (1Mbps) LOW POWER BLE TXBF (1Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps) WORST CASE BELOW 1 GHZ WORST CASE 18-26 GHz	59 61 61 69 73 81 91 99 .103 .111 .115 117
10. RAI 10.1. 10.1.1 10.1.2 10.1.2 10.1.3 10.1.4 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.2. 10.3. 10.3. 10.4	DIATED TEST RESULTS LIMITS AND PROCEDURE. TRANSMITTER ABOVE 1 GHz. HIGH POWER BLE (1Mbps) HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE TXBF (2Mbps) HIGH POWER BLE TXBF (2Mbps) <td>59 61 61 69 73 81 91 99 .103 .111 .115 .117 .119</td>	59 61 61 69 73 81 91 99 .103 .111 .115 .117 .119
10. RAI 10.1. 10.1.1 10.1.2 10.1.2 10.1.3 10.1.4 10.1.4 10.1.5 10.1.6 10.1.6 10.1.8 10.1.9 10.2. 10.3. 10.3. 11. AC 11.1. 11. AC 11.1 11.2	DIATED TEST RESULTS LIMITS AND PROCEDURE. TRANSMITTER ABOVE 1 GHz. HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE TXBF (2Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (1Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE (1Mbps) HIGH POWER BLE (1Mbps) HIGH POWER BLE (1Mbps) HIGH POWER BLE (1Mbps) LOW POWER BLE (1Mbps) LOW POWER BLE TXBF (1Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps) WORST CASE BELOW 1 GHZ WORST CASE 18-26 GHz POWER LINE CONDUCTED EMISSIONS AC Power Line WITH AC/DC ADAPTER AC Power Line With Lanton	59 61 61 69 73 81 91 99 .103 .111 .115 .117 .120 .120
10. RAI 10.1. 10.1.1 10.1.2 10.1.2 10.1.3 10.1.4 10.1.4 10.1.5 10.1.6 10.1.6 10.1.8 10.1.8 10.2. 10.3. 11. AC 11.1. 11.2.	DIATED TEST RESULTS LIMITS AND PROCEDURE TRANSMITTER ABOVE 1 GHz. HIGH POWER BLE (1Mbps) HIGH POWER BLE TXBF (1Mbps) HIGH POWER BLE TXBF (2Mbps) HIGH POWER BLE (2Mbps) HIGH POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (1Mbps) LOW POWER BLE TXBF (1Mbps) LOW POWER BLE TXBF (2Mbps) LOW POWER BLE TXBF (2Mbps) VORST CASE BELOW 1 GHZ WORST CASE BELOW 1 GHZ WORST CASE 18-26 GHz POWER LINE CONDUCTED EMISSIONS AC Power Line WITH AC/DC ADAPTER AC Power Line With Laptop	59 61 61 69 73 81 91 99 .103 .111 .115 .117 .117 .120 .122

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	MARCH 13 – AUGUST 14, 2023
SAMPLE RECEIPT DATE:	FEBRUARY 20, 2023
SERIAL NUMBER:	TP9VPMHF29 (Conducted) GM66G6WQ4Q, TV3HK457C7 (Radiated)
BRAND:	APPLE
MODEL:	A2847(Parent Model) A3093, A3094, A3096 (Variant Model)
EUT DESCRIPTION:	SMARTPHONE
COMPANY NAME:	APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	Complies				
ISED RSS-247 Issue 2	Complies				
ISED RSS-GEN Issue 5 + A1 + A2	Complies				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 124

Approved & Released For UL Verification Services Inc. By:

Chin Pany

Chin Pang Senior Lab Engineer Consumer Technology Division UL Verification Services Inc.

Prepared By:

Francisco Guarnero Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 6 of 124

2. TEST SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment			purposes only	11.6.
	RSS-GEN 6.7		Reporting	ANSI C63.10 Section
-		9970 OBVV	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Complies	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Complies	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Complies	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 2.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc.is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA			
\boxtimes	Building 3: 843 Auburn Court, Fremont, CA 94538 USA	US0104	2324A	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
\boxtimes	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{LAB}
Conducted Antenna Port Emission Measurement	1.94 dB
Power Spectral Density	2.466 dB
Time Domain Measurements Using SA	3.39 dB
RF Power Measurement Direct Method Using Power Meter	0.450 dB(Peak), 1.3 dB (Ave)
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.2%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB

Uncertainty figures are valid to a confidence level of 95%.

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC, 802.15.4ab-NB and MSS technologies. The rechargeable battery is not user accessible.

The Model and FCC/IC ID covered by this report includes:

Parent Model: A2847, FCC ID: BCG-E8431A, IC ID: 579C-E8431A

Variant Model: A3093, FCC ID: BCG-E8432A, IC ID: 579C-E8432A A3094, FCC ID: BCG-E8433A, IC ID: 579C-E8433A A3096, FCC ID: BCG-E8434A, IC ID: 579C-E8434A

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Configuration	Frequency Range	Mode	Output	Output
		(MHz)		Power	Power
				(dBm)	(mW)
	High Power	2402 2480		20.86	121.90
	Low Power	2402 - 2400		11.94	15.63
ANT 4	High Power	2404 2479	BLE 2M	21.28	134.28
	Low Power	2404 - 2478		11.95	15.67
	High Power	2402 - 2480	BLE 1M	21.32	135.52
	Low Power			11.89	15.45
AINT 5	High Power	2404 - 2478	BLE 2M	21.46	139.96
	Low Power			11.95	15.67
	High Power	2402 2490		24.11	257.63
	Low Power	2402 - 2400		14.98	31.48
br, ANT 4 + ANT 3	High Power	2404 2479		24.41	276.06
	Low Power	2404 - 2470		15.00	31.62

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

Frequency Range (GHz)	ANT 4 (dBi)	ANT3 (dBi)
2.4	-1.7	-1.0

Page 9 of 124

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 21.1.547.9113

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y, and Z on ANT 4, ANT 3 and 2TX Beamforming. It was determined that X (Flatbed) was the worst-case orientation for both ANT 4 and ANT3, and Y (Landscape) was the worst-case orientation for 2TX beamforming.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT was set to transmit at highest power on Low/Middle/High channels.

High Power Beamforming BLE 1Mbps mode is set to maximum power per chain to cover both SISO and MIMO modes to complies with radiated spurious emissions limits in the restricted bands between 1GHz and 18GHz low/mid/high channel (except the band edge).

Radiated emissions below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario. There were no emissions found below 30MHz within 20dB of the limit

For below 1GHz tests were performed with EUT connected to AC power adapter as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BLE and 5GHz bands. No noticeable emission was found.

Note: Note: In the Radiated Plots and emissions data, ANT0=ANT4 and ANT1=ANT3.

Page 10 of 124

6.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT							
Description		Manufacturer	Model	Serial Number		FCC ID/ DoC	
	Laptop	Apple	Macbook Pro	C02VD7SAHV22		BCGA1708	
Laptop AC/DC adapter		Liteon Technology	A1424	NSW25	679	DoC	
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC	
Condu	cted Switch Box	UL	n/a	20828	31	N/A	
10dB Fi Watts	xed Attenuator, 2 Up to 26.5 GHz	Pasternack Enterprises	PE7024-10	23635	58	N/A	
		I/O CAE	BLES (RF CONDUC ⁻	TED TEST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	SMA	1	SMA	Shielded	0.75	To spectrum Analyzer	
2	Antenna	2	SMA	Un-shielded	0.2	To Conducted Switch Box	
3	USB-C	1	USB-C	Shielded	1.0	N/A	
4	AC	1	AC	Un-shielded	2	N/A	
	I/O	CABLES (RF RA	DIATED AND AC LI	NE CONDUCTED T	EST)		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	1	AC	Un-shielded	2	N/A	
2	USB	1	USB	Shielded	1	N/A	

TEST SETUP

The EUT setup is shown as below. Test software exercised the radio card.

Page 11 of 124

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 12 of 124

SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

Page 14 of 124

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

Page 15 of 124

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v05r02, Section 6.

6 dB BW: ANSI C63.10 Subclause 11.8.1

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause 11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause 11.9.2.3.2 Measurement using gated average power meter.

<u>PSD:</u> ANSI C63.10 Subclause 1.10.2 Method PKPSD (peak PSD)

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause 1.12.1 & Clause 13

<u>Conducted emissions in restricted frequency bands</u>: ANSI C63.10 Subclause 11.12.2

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.2 & Clause 13: Integration method -Peak detection

<u>Band-edge:</u> ANSI C63.10 Subclause 11.13.3.3 & Clause 13: Integration method -Trace averaging with continuous transmission at full power

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated emissions non-restricted frequency bands ANSI C63.10 Subclause 1.11 & Clause 13

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4 & 13

NOTE: All conducted antenna port tests for Beamforming applied the same test procedures as BLE 1Mbps and BLE 2Mbps normal modes.

Page 16 of 124

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
*Antenna, Horn 1-18GHz	ETS-Lindgren	3117	80404	08/08/2023	08/08/2022
RF Filter Box, 1-18GHz, 12 Port	UL-FR1	Frankenstein	216812	09/17/2023	09/17/2022
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	230548	02/29/2024	02/14/2023
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	226672	01/09/2024	01/09/2023
RF Filter Box, 1-18GHz, 12 Port.	UL-FR1	Frankenstein	231876	02/27/2024	02/27/2023
*EMI TEST RECEIVER	Rohde & Schwarz	ESW44	235670	04/30/2023	04/30/2022
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	206807	02/28/2024	02/28/2023
RF Filter Box, 1-18GHz, 12 Port.	UL-FR1	Frankenstein	230878	02/29/2024	02/29/2023
*Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB1	80508	06/15/2023	06/15/2022
*Amplifier, 10KHz to 1GHz, 32dB	Sonoma Instrument Co.	310N	89831	08/10/2023	08/10/2022
EMI TEST RECEIVER, with B8 option	Rohde & Schwarz	ESW44	169937	02/29/2024	02/29/2023
*Antenna, Passive Loop 30Hz to 1MHz	Electro-Metrics	EM-6871	170013	07/28/2023	07/28/2022
*Antenna, Passive Loop 100KHz - 30MHz	ELECTRO-METRICS	EM-6872	170015	07/28/2023	07/28/2022
Antenna, Horn 18 to 26.5GHz	A.R.A.	MWH-1826/B	199658	12/06/2023	12/06/2022
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	226078	02/29/2024	02/29/2023
Power Meter, P-series single channel	Keysight	N1911A	90754	01/31/2024	01/31/2023
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90389	01/31/2024	01/31/2023
*Conducted Switch Box	N/A	CSB	221008	06/21/2023	06/21/2022
Conducted Switch Box	N/A	CSB	208281	04/30/2024	04/30/2023
10dB Fixed Attenuator, 2 Watts Up to 26.5 GHz	Pasternack Enterprises	PE7024-10	236358	Verified/Characterized befor use	
10dB Fixed Attenuator, 2 Watts Up to 26.5 GHz	Pasternack Enterprises	PE7024-10	236355	Verified/Characterized befour use	
Spectrum Analyzer, PSA, 3Hz to 26.5GHz	Keysight Technologies Inc	E4440A	81311	02/29/2024	02/29/2023
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A-544	87738	02/28/2024	02/28/2023
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	80396	01/31/2024	01/31/2023

AC Line Conducted					
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESR	93091	02/29/2024	02/29/2023
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN- 50/250-25-2-01- 480V	175764	01/31/2024	01/31/2023
*Transient Limiter	TE	TBFL1	207996	07/15/2023	07/15/2022
UL AUTOMATION SOFTWARE					
Radiated Software	Radiated Software UL UL EMC Ver 9.5, May 1 , 2023)23		
Conducted Software	UL	UL EMC	2020.8.16		
AC Line Conducted Software	UL	UL EMC	Ve	Ver 9.5, Mar 3, 2023	

*Testing was completed before equipment calibration date

Page 18 of 124

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE, 1Mbps	100.00	100.00	1.000	100.00%	0.00	0.010
BLE, 2Mbps	100.00	100.00	1.000	100.00%	0.00	0.010

DUTY CYCLE PLOTS

Page 19 of 124

9.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Only High-Power modes result is reported, it covers all Low Power modes. Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 20 of 124

9.2.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0414
Middle	2440	1.0402
High	2480	1.0442

<u>ANT 3</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0465
Middle	2440	1.0457
High	2480	1.0450

Page 21 of 124

9.2.2. HIGH POWER BLE TXBF (1Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2402	1.0449	1.0474
Mid	2440	1.0457	1.0456
High	2480	1.0434	1.0457

Note: Test procedures and setting are same as BLE normal mode.

Page 22 of 124

9.2.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	1.8826
Middle	2440	1.8819
High	2478	1.9132

<u>ANT 3</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	2.0837
Middle	2440	2.0830
High	2478	2.0837

Page 23 of 124

9.2.4. HIGH POWER BLE TXBF (2Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2404	2.0750	2.0817
Mid	2440	2.0749	2.0815
High	2478	2.0773	2.0824

Note: Test procedures and setting are same as BLE normal mode.

Page 24 of 124

9.3. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

The 6dB bandwidth was measured for the narrowest bandwidth mode, High Power 1Mbps, to demonstrate compliance with the minimum required bandwidth of 500 kHz. Other modes were not tested as their bandwidth is greater than the High Power 1Mbps mode, as demonstrated by the 99% bandwidth measurements performed on all modes.

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 25 of 124

9.3.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.696	0.5
Middle	2440	0.726	0.5
High	2480	0.684	0.5

<u>ANT 3</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.711	0.5
Middle	2440	0.696	0.5
High	2480	0.702	0.5

Page 26 of 124

9.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband peak power sensor. Peak output power was read directly from the power meter.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2TX:

Tx chains are correlated for power and PSD due to the device supporting Beamforming mode. The directional gains are as follows:

	ANT 4	ANT 3	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	-1.7	-1.0	-1.34	1.67

DIRECTIONAL GAIN CALCULATION:

ANSI C63.10-2013 section 14.4.3

Uncorrelated directional gain=10*LOG((10^(Ant1/10)+10^(Ant2/10))/2) Correlated directional Gain=10*LOG(((10^(Ant1/20)+10^(Ant2/20))^2)/2)

Sample Calculation:

Ant4 = -1.7, Ant3 = -1.0

Uncorrelated Antenna gain=10log[(10^(-1.8/10)+10^(0.6/10))/2]=-1.34dBi Correlated Antenna gain=10log[(10^(-1.8/20)+10^(0.6/20))^2)/2]=1.67dBi

RESULTS

Page 27 of 124

9.4.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.86	30	-9.14
Middle	2440	20.49	30	-9.51
High	2480	20.78	30	-9.22

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	21.02	30	-8.98
Middle	2440	21.32	30	-8.68
High	2480	21.20	30	-8.80

9.4.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	20.66	21.01	23.85	30	-6.15
Middle	2440	20.81	21.37	24.11	30	-5.89
High	2480	20.74	21.13	23.95	30	-6.05

9.4.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2404	21.04	30	-8.96
Middle	2440	20.97	30	-9.03
High	2478	21.28	30	-8.72

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	21.24	30	-8.76
Middle	2440	21.46	30	-8.54
High	2478	21.31	30	-8.69

9.4.4. HIGH POWER BLE TXBF (2Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Output Power ANT 4	Output Power ANT 3	Total Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	20.83	21.44	24.16	30	-5.84
Middle	2440	21.15	21.64	24.41	30	-5.59
High	2478	20.82	21.26	24.06	30	-5.94

9.4.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	11.77	30	-18.23
Middle	2440	11.82	30	-18.18
High	2480	11.94	30	-18.06

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.86	30	-18.14
Middle	2440	11.89	30	-18.11
High	2480	11.62	30	-18.38

9.4.6. LOW POWER BLE TXBF (1Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.88	11.86	14.88	30	-15.12
Middle	2440	11.99	11.95	14.98	30	-15.02
High	2480	11.94	11.76	14.86	30	-15.14

9.4.7. LOW POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	11.89	30	-18.11
Middle	2440	11.88	30	-18.12
High	2478	11.95	30	-18.05

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	11.73	30	-18.27
Middle	2440	11.95	30	-18.05
High	2478	11.62	30	-18.38

9.4.8. LOW POWER BLE TXBF (2Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	11.91	11.63	14.78	30	-15.22
Middle	2440	11.99	11.98	15.00	30	-15.00
High	2478	11.82	11.69	14.77	30	-15.23

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband average power sensor. Gated average output power was read directly from power meter.

RESULTS

Page 32 of 124

9.5.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

24971
7/27/2023

Channel	Frequency	AV power
	(IVI⊓Z)	(автт)
Low	2402	20.49
Middle	2440	20.09
High	2480	20.44

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	20.65
Middle	2440	20.99
High	2480	20.87

9.5.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	20.29	20.66	23.49
Middle	2440	20.47	20.99	23.75
High	2480	20.34	20.75	23.56

9.5.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	20.28
Middle	2440	20.27
High	2478	20.45

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2404	20.79
Middle	2440	20.99
High	2478	20.81

9.5.4. HIGH POWER BLE TXBF (2Mbps)

<u>ANT 4 + ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	20.26	20.72	23.51
Middle	2440	20.49	20.98	23.75
High	2478	20.27	20.64	23.47

Page 34 of 124

9.5.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency (MHz)	AV power
low	2402	11.28
Middle	2440	11.23
High	2480	11.41

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	11.38
Middle	2440	11.47
High	2480	11.21

9.5.6. LOW POWER BLE TXBF (1Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	11.38	11.31	14.36
Middle	2440	11.48	11.49	14.50
High	2480	11.44	11.21	14.34

9.5.7. LOW POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	AV power	
	(MHz)	(dBm)	
Low	2404	11.43	
Middle	2440	11.41	
High	2478	11.47	

<u>ANT 3</u>

Tested By:	24971
Date:	7/27/2023

Channel	Frequency (MHz)	AV power
Low	2404	11.24
Middle	2440	11.47
High	2478	11.11

9.5.8. LOW POWER BLE TXBF (2Mbps)

Tested By:	24971
Date:	7/27/2023

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	11.21	11.14	14.19
Middle	2440	11.41	11.38	14.41
High	2478	11.31	11.19	14.26

9.6. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Only High-Power modes result is reported, it covers all Low Power modes.

Page 37 of 124

9.6.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	2.643	8	-5.36
Middle	2440	2.675	8	-5.33
High	2480	2.820	8	-5.18

<u>ANT 3</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	2.644	8	-5.36
Middle	2440	2.780	8	-5.22
High	2480	2.808	8	-5.19

Page 38 of 124

9.6.2. HIGH POWER BLE TXBF (1Mbps)

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd PSD

PSD Results							
Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin	
		Meas	Meas	Corr'd			
				PSD			
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/		
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)	
Low	2402	3.298	3.240	6.28	8.0	-1.7	
Mid	2440	3.484	3.728	6.62	8.0	-1.4	
Hjigh	2480	3.376	2.880	6.15	8.0	-1.9	

Note: Test procedures and setting are same as BLE normal mode.

Page 39 of 124

9.6.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2404	-2.640	8	-10.64
Middle	2440	-2.724	8	-10.72
High	2478	-2.344	8	-10.34

<u>ANT 3</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2404	-2.452	8	-10.45
Middle	2440	-2.629	8	-10.63
High	2478	-2.700	8	-10.70

Page 40 of 124

9.6.4. HIGH POWER BLE TXBF (2Mbps)

 Duty Cycle CF (dB)
 0.00
 Included in Calculations of Corr'd PSD

PSD Results						
Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin
		Meas	Meas	Corr'd		
				PSD		
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/	
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)
Low	2404	-1.617	-2.106	1.16	8.0	-6.8
Mid	2440	-2.084	-1.389	1.29	8.0	-6.7
Hjigh	2478	-1.911	-2.044	1.03	8.0	-7.0

Note: Test procedures and setting are same as BLE normal mode.

Page 41 of 124

9.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dBc.

Note: Test procedures and setting are same as BLE normal mode.

RESULTS

Page 42 of 124

9.7.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Page 43 of 124

<u>ANT 3</u>

Page 44 of 124

9.7.2. HIGH POWER BLE TXBF (1Mbps)

Note: Test procedures and setting are same as BLE normal mode.

Page 45 of 124

Page 46 of 124

9.7.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Page 47 of 124

<u>ANT 3</u>

Page 48 of 124

2.477 902 GHz 2.488 324 GHz 2.483 500 GHz

N N

f

18.330 dBm -38.822 dBm -39 195 dBm

HIGH CHANNEL BANDEDGE ANT 4

9.7.4. HIGH POWER BLE TXBF (2Mbps)

Note: Test procedures and setting are same as BLE normal mode.

Page 49 of 124

Freq Offs

Scale Typ

15.355 dBm -50.192 dBm -51.653 dBm

HIGH CHANNEL OUT-OF-BAND ANT 4

Freq Offse 0 H Scale Typ

2.478 0 GHz 4.956 0 GHz 7.434 0 GHz 25 958 4 GHz

Page 50 of 124

9.7.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Page 51 of 124

<u>ANT 3</u>

Page 52 of 124

9.7.6. LOW POWER BLE TXBF (1Mbps)

Note: Test procedures and setting are same as BLE normal mode.

Page 53 of 124

Page 54 of 124