

TEST REPORT

Report Number. : 14523758-E5V4

- Applicant : APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A
 - Model : A2846 (Parent Model) A3089, A3090, A3092 (Variant Models)
 - Brand : APPLE

FCC ID : BCG-E8427A (Parent Model) BCG-E8428A, BCG-E8429A, BCG-E8430A (variant Models)

- IC : 579C-E8427A (Parent Model) 579C-E8428A, 579C-E8429A, 579C-E8430A (Variant Models)
- EUT Description : SMARTPHONE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART E ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue: July 24, 2023

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	6/28/2023	Initial Issue	Chin Pang
V2	7/12/2023	Address TCB's question section 8 and 9	Chin Pang
		Measure power using PXA	
V3	7/15/2023	Measure Power using power meter without gated. On duty cycle, EUT on tested sample measured is	Chin Pang
V4	7/24/2023	76.5%. and page 26 & 27 power was added in the duty cycle statement.	Chin Pang

Page 2 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS		5
2. TE	ST RESULT SUMMARY		7
3. TE	ST METHODOLOGY		
4. FA	CILITIES AND ACCREDITATION		
5. DE	CISION RULES AND MEASUREMENT UNCE		٩
5.1.	METROLOGICAL TRACEABILITY		
5.2.	DECISION RULES		
5.2.	MEASUREMENT UNCERTAINTY		
5.3. 5.4.	SAMPLE CALCULATION		
-			
6.1.	EUT DESCRIPTION		
6.2.	MAXIMUM OUTPUT POWER		
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS		
6.4.	SOFTWARE AND FIRMWARE		
6.5.	WORST-CASE CONFIGURATION AND MO		
6.6	DESCRIPTION OF TEST SETUP		13
7. ME	EASUREMENT METHOD		17
	EASUREMENT METHOD		
8. TE			18
8. TE	ST AND MEASUREMENT EQUIPMENT		18 19
8. TE 9. AN	ST AND MEASUREMENT EQUIPMENT		18 19 19
 8. TE 9. AN 9.1. 9.2. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE		18 19 19
 8. TE 9. AN 9.1. 9.2. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH		
 8. TE: 9. AN 9.1. 9.2. 9.3. 9.4. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH 6 dB BANDWIDTH		18 19
 8. TE: 9. AN 9.1. 9.2. 9.3. 9.4. 10. RA 10.1. 10. 10. 10. 10. 10. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH 6 dB BANDWIDTH OUTPUT POWER AND PSD	DGE NICS AND SPURIOU	
 8. TE: 9. AN 9.1. 9.2. 9.3. 9.4. 10. RA 10.1. 10. 10. 10. 10. 10. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH 6 dB BANDWIDTH OUTPUT POWER AND PSD DIATED TEST RESULTS TRANSMITTER ABOVE 1 GHz 1.1. ANT 6, 500Kbps LOW POWER BAND E .1.2. ANT 6, 500Kbps LOW POWER HARMO 1.3. ANT 5, 500Kbps LOW POWER BAND E .1.4. ANT 5, 500Kbps LOW POWER HARMO	DGE NICS AND SPURIOUS	
 8. TE: 9. AN 9.1. 9.2. 9.3. 9.4. 10. RA 10.1. 10. 10. 10. 10. 10. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH 6 dB BANDWIDTH OUTPUT POWER AND PSD DIATED TEST RESULTS TRANSMITTER ABOVE 1 GHz 1.1. ANT 6, 500Kbps LOW POWER BAND E 1.2. ANT 6, 500Kbps LOW POWER HARMO 1.3. ANT 5, 500Kbps LOW POWER BAND E 1.4. ANT 5, 500Kbps LOW POWER HARMO WORST CASE BELOW 1 GHz	DGE NICS AND SPURIOUS	18 19 19 20 22 24 24 28 30 30 S EMISSIONS34 40 S EMISSIONS44 50
 8. TE: 9. AN 9.1. 9.2. 9.3. 9.4. 10. RA 10.1. 10. 10. 10. 10. 10.2. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH	DGE NICS AND SPURIOUS DGE NICS AND SPURIOUS	
 TE: AN 9.1. 9.2. 9.3. 9.4. TO. RA 10.1. 10. 10. 10. 10.2. 10.3. 10.4. 	ST AND MEASUREMENT EQUIPMENT ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 26 dB BANDWIDTH 6 dB BANDWIDTH OUTPUT POWER AND PSD DIATED TEST RESULTS TRANSMITTER ABOVE 1 GHz 1.1. ANT 6, 500Kbps LOW POWER BAND E 1.2. ANT 6, 500Kbps LOW POWER BAND E 1.2. ANT 6, 500Kbps LOW POWER HARMO 1.3. ANT 5, 500Kbps LOW POWER HARMO MORST CASE BELOW 1 GHz WORST CASE 18-26 GHz	DGE NICS AND SPURIOU DGE NICS AND SPURIOU	

11. AC	POWER LINE CONDUCTED EMISSIONS	.56
11.1.	AC Power Line WITH LAPTOP	.57
11.2.	AC Power Line WITH AC/DC Adapter	.59
12. SE	TUP PHOTOS	.61

Page 4 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A
EUT DESCRIPTION:	SMARTPHONE
MODEL:	A2846 (Parent Model) A3089, A3090, A3092 (Variant Models)
BRAND:	APPLE
SERIAL NUMBER:	NVC62T26VW
SAMPLE RECEIPT DATE:	JANUARY 30, 2023
DATE TESTED:	APRIL 26, 2023 – JULY 15, 2023

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart E	Complies			
ISED RSS-247 Issue 2	Complies			
ISED RSS-GEN Issue 5 + A1 + A2	Complies			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

Approved & Released For UL Verification Services Inc. By:

Chin Pany

Chin Pang Senior Lab Engineer Consumer Technology Division UL Verification Services Inc.

Prepared By:

Long Li

Tony Li Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

2. TEST RESULT SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting purposes only	Per ANSI C63.10, Section 12.2.
See Comment	RSS-GEN 6.7	26dB BW/99% OBW	Reporting purposes only	Per ANSI C63.10 Sections 6.9.2 and 6.9.3
15.407 (e)	RSS-247 6.2.4.1	6 dB BW	Complies	None.
15.407 (a) (1-4), (h) (1)	RSS-247 6.2	Output Power	Complies	None.
15.407 (a) (1-3, 5)	RSS-247 6.2	PSD	Complies	None.
15.209, 15.205, 15.407 (b)	RSS-GEN 8.9, 8.10, RSS-247 6.2	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

Page 7 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with:

- FCC 15.407
- FCC CFR 47 Part 15
- FCC KDB 662911 D01 v02r01
- FCC KDB 789033 D02 v02r01
- ANSI C63.10-2013
- RSS-GEN Issue 5 + A1 +A2
- RSS-247 Issue 2.
- KDB 414788 D01 Radiated Test Site v01r01
- -RSP-100 Issue 12

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
	Building 3: 843 Auburn Court, Fremont, CA 94538 USA			
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

Page 8 of 61

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	ULAB
Conducted Antenna Port Emission Measurement	1.94
Power Spectral Density	2.466
Time Domain Measurements Using SA	3.39
RF Power Measurement Direct Method Using Power Meter	0.450 (Peak), 1.3 (Ave)
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.2%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 9 of 61

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

Page 10 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video),cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC, 802.15.4ab-NB and MSS technologies. The rechargeable battery is not user accessible.

Testing was performed on the parent model and is used to support the application for the parent and variants identified in this report based on the test plan submitted and approved via KDB inquiry by the FCC and by ISED-Canada.

The Model and FCC/IC ID covered by this report includes:

Parent Model: A2846, FCC ID: BCG-E8427A, IC ID: 579C-E8427A

Variant Models: A3089; FCC ID: BCG-E8428A, IC ID: 579C-E8428A A3090, FCC ID: BCG-E8429A, IC ID: 579C-E8429A A3092; FCC ID: BCG-E8430A, IC ID: 579C-E8430A

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

5.8 GHz BAND

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)			
5.8 GHz band, 1TX	5.8 GHz band, 1TX					
5725-5850	802.15.4ab	16.37	43.35			

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows: The radio utilizes. Cable loss is 3.15 dB.

Frequency Range (GHz)	Antenna 6 (dBi)	Antenna 5 (dBi)
5728.75 - 5846.25	-0.1	-2.3

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 1868.0.30.0.1~1432.4601.33

Page 11 of 61

6.5. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z on Ant 6 and Ant 5. It was determined that Z (Portrait) orientation was the worst-case orientation for Ant 6; and Y (Landscape) orientation for ANT 5.

There are index 1, index 2 and index 3 corresponding to 250Kbps, 500Kpbs and 1000Kbps data rate. Baseline investigation on the different data rate, based on highest PSD 500Kbps is determined to be the worst case, therefore 500Kbps was used to perform all final test.

For radiated harmonics spurious below 1GHz, 1-18GHz L/M/H channels, 18-40GHz, and power line conducted emissions were performed with the EUT with power setting as worst-case scenario.

For Radiated band edge test all test modes have been investigated with power set at higher setting as worst-case scenario.

Below 1GHz tests were performed with EUT connected to AC power adapter as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop. There were no emissions found below 30MHz within 20dB of the limit.

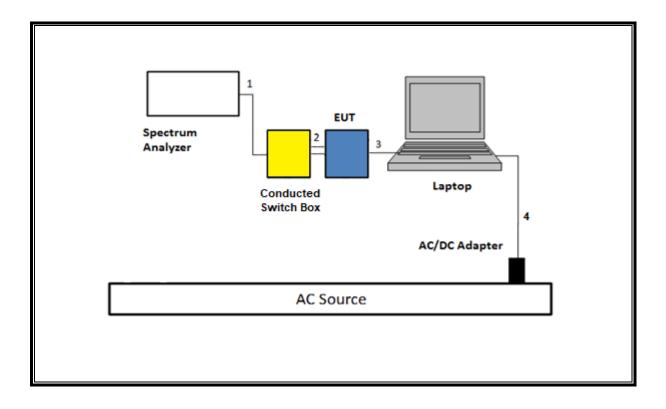
Simultaneous transmission with the Bluetooth was investigated, and no noticeable emission was found.

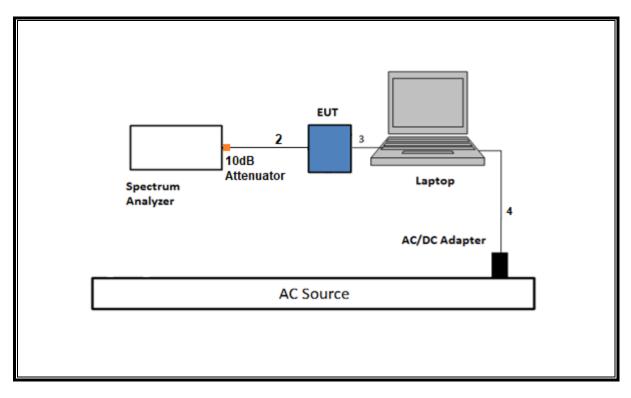
For radiated bandedge and emssions spurious, 500Kbps is set as the worst-case data rates for final test

Page 12 of 61

6.6 DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT							
D	escription	Manufacturer	Model	Serial Number		FCC ID/ DoC	
	Laptop	Apple	Macbook Pro	C02VD7SA	AHV22	BCGA1708	
Laptop	AC/DC adapter	Liteon Technology	A1424	NSW25	NSW25679		
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC	
Condu	cted Switch Box	UL	n/a	20828	31	N/A	
	xed Attenuator, 2 Up to 26.5 GHz	Pasternack Enterprises	PE7024-10	23635	58	N/A	
		I/O CAE	BLES (RF CONDUCT	FED TEST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Type Cable Length (m)		
1	SMA	1	SMA	Shielded	0.75	To spectrum Analyzer	
2	Antenna	2	SMA	Un-shielded 0.2		To Conducted Switch Box	
3	USB-C	1	USB-C	Shielded	1.0	N/A	
4	AC	1	AC	Un-shielded	2	N/A	
	I/O	CABLES (RF RA	DIATED AND AC LI	NE CONDUCTED T	EST)		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	1	AC	Un-shielded	2	N/A	
2	USB	1	USB	Shielded	1	N/A	

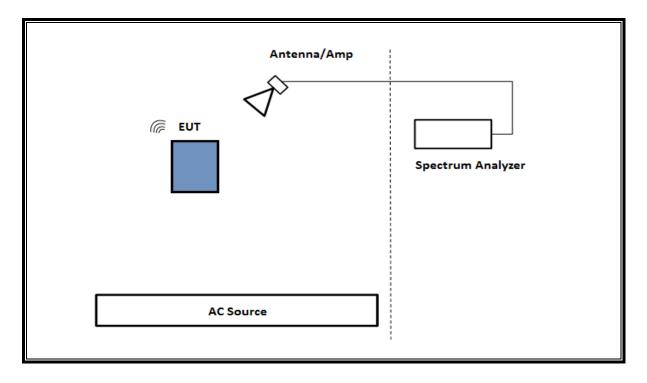

TEST SETUP


The EUT setup is shown as below. Test software exercised the radio card.

Page 13 of 61

TEL:(510) 319-4000

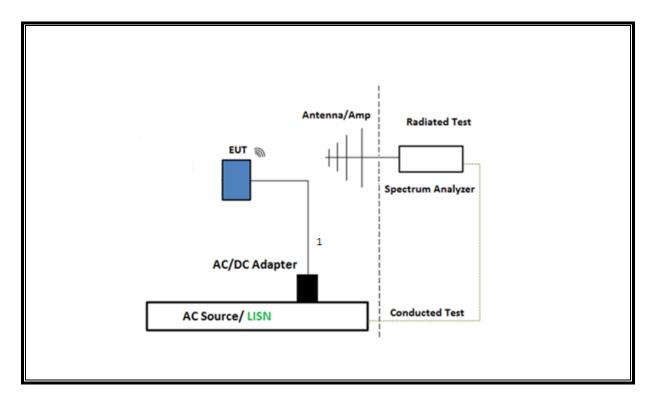
SETUP DIAGRAM FOR RF CONDUCTED TESTS

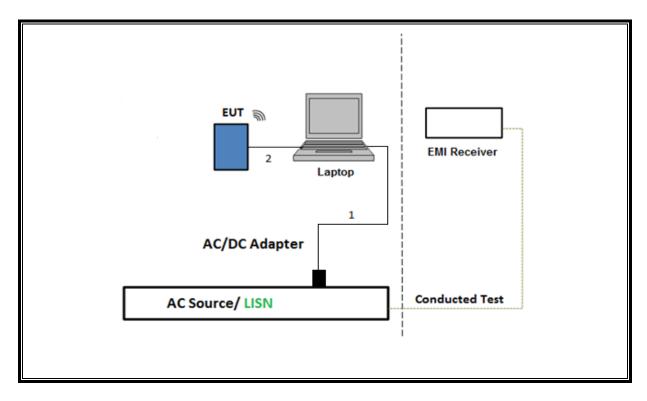

Page 14 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888


SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz


Page 15 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

Page 16 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 789033 D02 v02r01, Section B.

6 dB Emission BW: KDB 789033 D02 v02r01, Section C.2

26 dB Emission BW: KDB 789033 D02 v02r01, Section C.1

99% Occupied BW: KDB 789033 D02 v02r01, Section D.

Conducted Output Power: KDB 789033 D02 v02r01

Power Spectral Density: KDB 789033 D02 v02r01, Section F

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v02r01, Sections G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v02r01, Sections G.3, G.4, and G.5.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

Page 17 of 61

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal	
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	206807	02/28/2024	02/28/2023	
RF Filter Box 1-18GHz	UL-FR	NA	206359	08/13/2023	08/13/2022	
EMI Receiver	Rohde & Schwarz	ESW44	201500	02/29/2024	02/29/2023	
Antenna, Broadband Hybrid, 30MHz to 3GHz	Sunol Sciences Corp	JB3	80714	10/06/2023	10/06/2022	
Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	175953	02/08/2024	02/08/2023	
*Antenna Horn, 18 to 26.5GHz	ARA	MWH-1826/B	172353	06/01/2023	06/01/2022	
RF Amplifier Assembly, 18- 26.5GHz, 60dB Gain	AMPLICAL	AMP18G26.5- 60	171583	02/29/2024	02/29/2023	
Antenna, Passive Loop 100KHz to 30MHz	ETS-Lindgren	EM-6872	170016	07/19/2023	07/19/2022	
Antenna, Passive Loop 30Hz to 1MHz	Electro-Metrics	EM-6871	170014	07/19/2023	07/19/2022	
Link File, RF Amplifier Assembly, 26-40GHz, 65dB Gain	AMPLICAL	AMP26G40-65	221834	02/29/2024	02/29/2023	
RF Filter Box, 1-18GHz, 12 Port.	UL-FR1	NA	230878	02/29/2024	02/29/2023	
*Antenna Horn, 26.5 to 40GHz	ARA	MWH-2640/B	172367	06/01/2023	06/01/2022	
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	87738	01/31/2024	01/31/2023	
Conducted Switch Box	N/Ā	CSB	208281	04/30/2024	04/30/2023	
10dB Fixed Attenuator, 2 Watts Up to 26.5 GHz	Pasternack Enterprises	PE7024-10	236358		cterized before se	
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90756	01/31/2024	01/24/2023	
Power Sensor, P- series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90389	01/31/2024	01/24/2023	

AC Line Conducted							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESR	93091	02/29/2024	02/29/2023		
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN- 50/250-25-2-01- 480V	175764	01/31/2024	01/31/2023		
Transient Limiter	TE	TBFL1	207996	07/15/2023	07/15/2022		
	UL AUTOMATION SOFTWARE						
Radiated Software UL		UL EMC	Ver 9.5, May 1 , 2023		023		
Conducted Software	UL	UL EMC	2020.8.16				
AC Line Conducted Software	UL	UL EMC	Ve	er 9.5, Mar 3, 20)23		

*Testing is completed before equipment expiration date.

Page 18 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.15.4ab						
5786.25MHz	1.530	2.000	0.765	76.50%	1.16	0.654

DUTY CYCLE PLOTS

L RF	50 9 DC		SENSE:INT	ALIGNAUTO	11:10:00 PM May 28, 2023	Frequency
Center Freq 5.	PI	Z IO: Fast ····	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE A WWWWW DET P NNNNN	requercy
10 dB/div Ref 3	30.00 dBm	ain:Low	Maten: 40 ab	2	Mkr3 2.000 ms 0.007 dB	Auto Tune
20.0	~2		o 162 o 362			Center Freq
0.00						5.726250000 GHz
-10.0						Start Freq
30.0			- HILLING			5.726250000 GHz
-40.0	in the ded				Museus (Stop Freq
60.0						5.726250000 GHz
Center 5.726250 Res BW 8 MHz	0000 GHz	#VBW	50 MHz	Sweep 8	Span 0 Hz .000 ms (8001 pts)	CF Step 8.000000 MHz
1 Δ2 1 t (4 2 N 1 t 3 Δ2 1 t (4 4	1.9	30 ms (Δ) 59 ms 00 ms (Δ)	-0.073 dB 2.651 dBm 0.007 dB	NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man Freq Offset 0 Hz
5 6 7 8 9						
10 11					×	
nsg				K ostatu	5	
				E 802.1	- 4 1	

Page 19 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

9.2. 26 dB BANDWIDTH

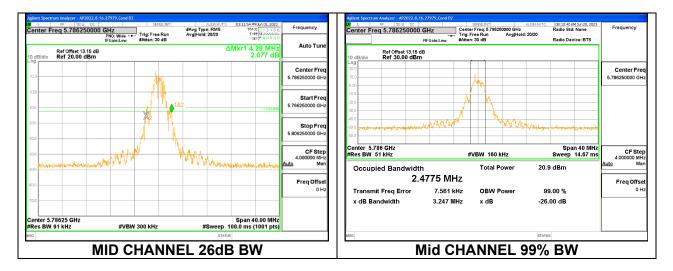
LIMITS

None; for reporting purposes only.

RESULTS

Only High Power modes result is reported, it covers all Low Power modes. Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 20 of 61


UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

1TX Antenna 6 MODE

Channel	Frequency	26dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5728.75	3.960	2.4653	
Mid	5786.25	4.280	2.4775	
High	5846.25	4.240	2.4652	

1TX Antenna 5 MODE

Channel	Frequency	26dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5728.75	3.840	2.2122
Mid	5786.25	4.120	2.4137
High	5846.25	3.960	2.4620

Page 21 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

9.3. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

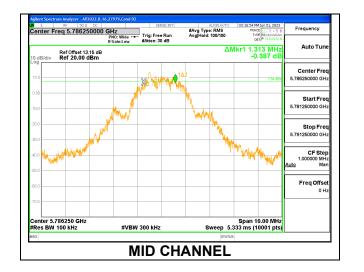
RSS-247 6.2.4.1

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 22 of 61


UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

1TX Antenna 6 MODE

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5728.75	1.395	0.5
Mid	5786.25	1.313	0.5
High	5846.25	1.371	0.5

1TX Antenna 5 MODE

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5728.75	1.355	0.5
Mid	5786.25	1.309	0.5
High	5846.25	1.365	0.5

Page 23 of 61

9.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407

Band 5.725-5.85 GHz

The maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Page 24 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

RSS-247

Band 5.725-5.85 GHz

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

TEST PROCEDURE

The measurement method used for output power is KDB 789033 D02 v02r01, Section E.3 a. Method PM.

The measurement method used for power spectral density is KDB 789033 D02 v02r01, Section F.

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 25 of 61

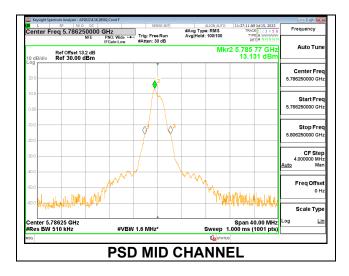
Low Power 1TX Antenna 6 MODE (FCC + IC)

 Test Engineer:
 27979

 Test Date:
 6/27-7/15, 2023

Antenna Gain and Limit

Channel	Frequency (MHz)	Directional Gain (dBi)	Power Limit (dBm)	PSD Limit (dBm/500KHz)
Low	5728.75	-0.1	30.00	30.00
Mid	5786.25	-0.1	30.00	30.00
High	5846.25	-0.1	30.00	30.00


Duty Cycle CF (d	B) 1.16	Included in Calculations of Corr'd PSD and Power

Output Power Results

Channel	Frequency	Antenna 6	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5728.75	14.99	16.15	30.00	-13.85
Mid	5786.25	15.11	16.27	30.00	-13.73
High	5846.25	15.21	16.37	30.00	-13.63

PSD Results

Channel	Frequency	Antenna 6	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm/500KHz)	(dBm/500KHz)	(dBm/500KHz)	(dB)
Low	5728.75	13.014	14.174	30.00	-15.83
Mid	5786.25	13.131	14.291	30.00	-15.71
High	5846.25	13.079	14.239	30.00	-15.76

Page 26 of 61

TEL:(510) 319-4000

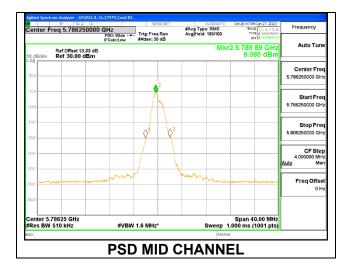
Low Power 1TX Antenna 5 MODE (FCC + IC)

 Test Engineer:
 27979

 Test Date:
 6/27-7/15, 2023

Antenna Gain and Limit

Channel	Frequency	Directional Gain	Power Limit	PSD Limit
	(MHz)	(dBi)	(dBm)	(dBm/500KHz)
Low	5728.75	-2.3	30.00	30.00
Mid	5786.25	-2.3	30.00	30.00
High	5846.25	-2.3	30.00	30.00


Duty Cycle CF (d	B) 1.16	Included in Calculations of Corr'd PSD and Power

Output Power Results

Channel	Frequency	Antenna 5 Meas Power	Total Corr'd Power	Power Limit	Power Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5728.75	11.25	12.41	30.00	-17.59
Mid	5786.25	11.20	12.36	30.00	-17.64
High	5846.25	11.15	12.31	30.00	-17.69

PSD Results

Channel	Frequency	Antenna 5	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm/500KHz)	(dBm/500KHz)	(dBm/500KHz)	(dB)
Low	5728.75	9.735	10.895	30.00	-19.11
Mid	5786.25	9.095	10.255	30.00	-19.75
High	5846.25	8.405	9.565	30.00	-20.44

Page 27 of 61

10. RADIATED TEST RESULTS

<u>LIMITS</u>

FCC §15.205 and §15.209 -Restriced bands FCC §15.407(b)(1-3) -Un-Restriced bands RSS 247 Issue 2 Sections 6.2.1.2 (for 5150-5250 MHz band) 6.2.2.2 (for 5250-5350 MHz band) 6.2.3.2 (for 5470-5600 MHz and 5650-5725 MHz bands) 6.2.4.2 (for 5725-5850 MHz band)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 1GHz and 18GHz to 40 GHz is investigated with the transmitter set to transmit at the channel with highest output power as worst-case scenario. 1GHz to 18GHz was set to the lowest, middle, and highest channels in the 5 GHz bands.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 28 of 61

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only. Blue color trace on plots: Parallel orientation. Green color trace on plots: Perpendicular orientation.

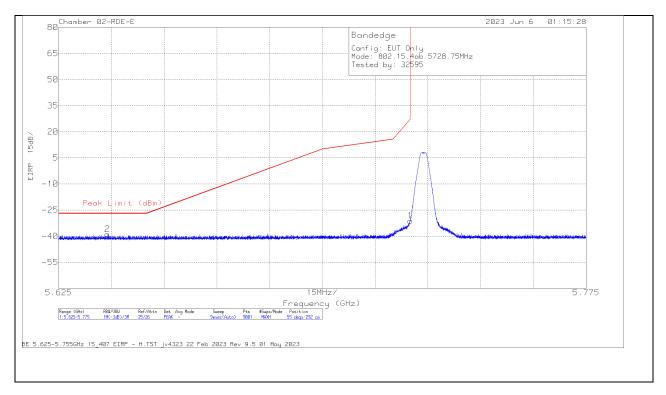
Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

RESULTS

Page 29 of 61

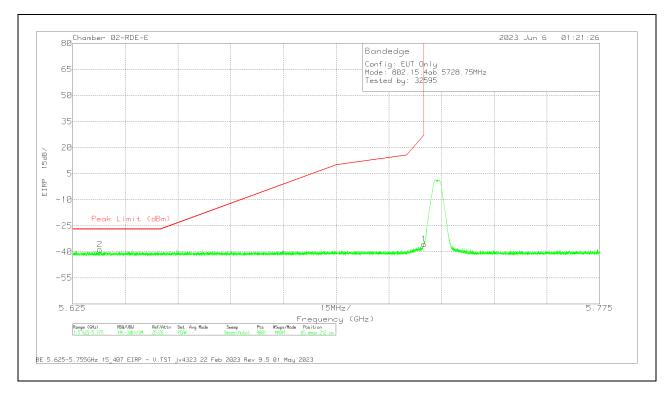

10.1. TRANSMITTER ABOVE 1 GHz

10.1.1. ANT 6, 500Kbps LOW POWER BAND EDGE

1TX Antenna 6

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT



Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.638884	-48.13	Pk	34.5	11.8	0	-37.05	-38.88	-27	-11.88	55	292	Н
1	5.725	-40.76	Pk	34.6	11.8	0	-36.76	-31.12	27	-58.12	55	292	Н

Pk - Peak detector

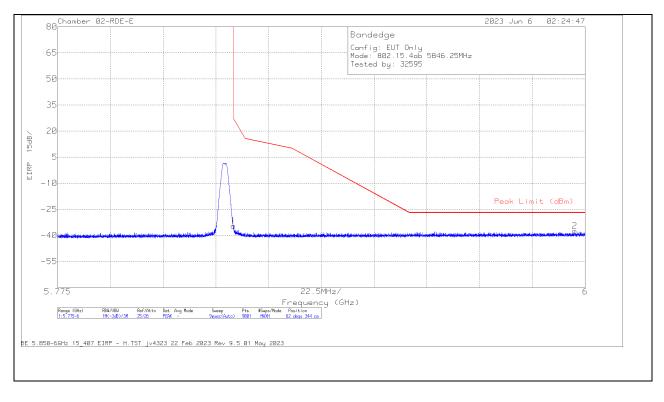
Page 30 of 61

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.632767	-47.88	Pk	34.5	11.8	0	-37.08	-38.66	-27	-11.66	65	212	V
1	5.725	-45.26	Pk	34.6	11.8	0	-36.76	-35.62	27	-62.62	65	212	V

Pk - Peak detector

Page 31 of 61

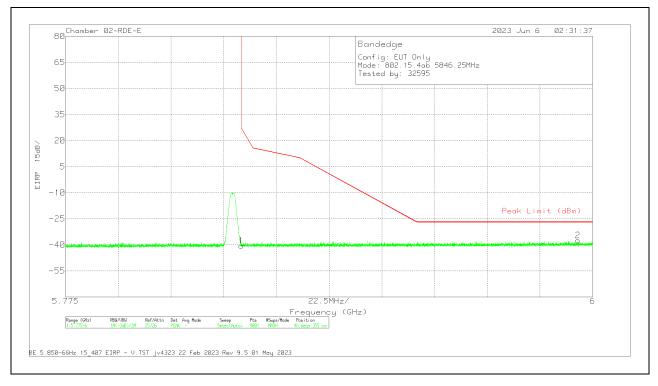

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

BANDEDGE (HIGH CHANNEL)

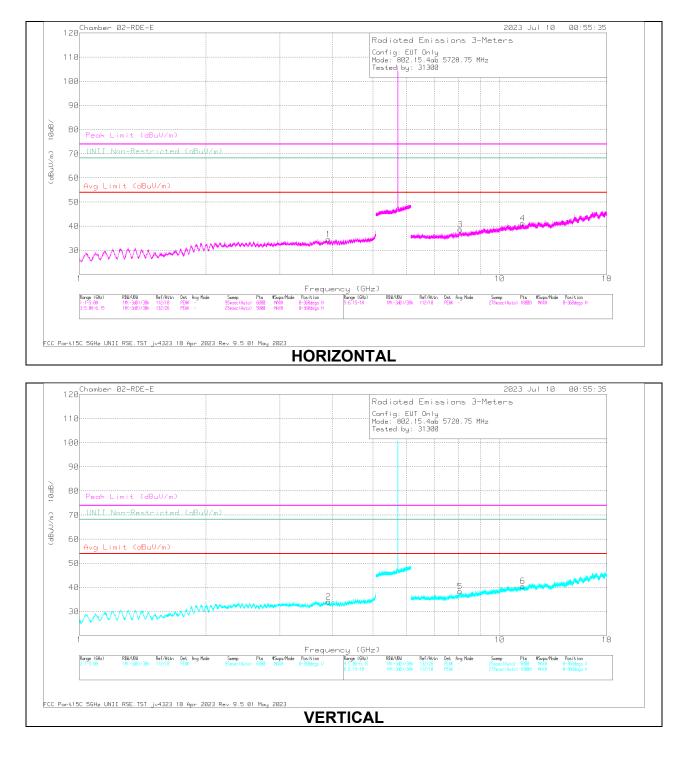
HORIZONTAL RESULT



Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-44.96	Pk	34.9	11.8	0	-36.3	-34.56	27	-61.56	62	344	Н
2	5.995575	-48.68	Pk	35.2	11.8	0	-35.8	-37.48	-27	-10.48	62	344	Н

Pk - Peak detector

Page 32 of 61


VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-50.91	Pk	34.9	11.8	0	-36.3	-40.51	27	-67.51	46	355	V
2	5.99365	-48.71	Pk	35.2	11.8	0	-35.78	-37.49	-27	-10.49	46	355	V

Pk - Peak detector

Page 33 of 61

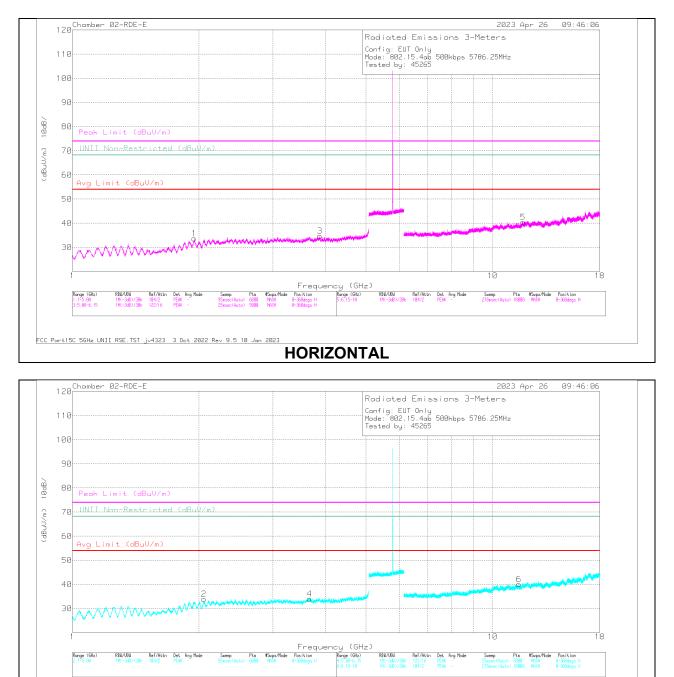
10.1.2. ANT 6, 500Kbps LOW POWER HARMONICS AND SPURIOUS EMISSIONS

Page 34 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888


RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB/m)	DCCF (dB)	Gain/L oss (dB)	Correc ted Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarit y
1	* 3.916977	56.11	PK-U	33.5	0	-45.6	44.01	-	-	74	-29.99	302	101	Н
	* 3.917362	43.89	ADR	33.5	1.16	-45.61	32.94	54	-21.06	-	-	302	101	Н
2	* 3.918645	56.1	PK-U	33.5	0	-45.65	43.95	-	-	74	-30.05	242	127	V
	* 3.921653	44.05	ADR	33.5	1.16	-45.7	33.01	54	-20.99	-	-	242	127	V
3	* 8.068735	55.87	PK-U	35.9	0	-44.45	47.32	-	-	74	-26.68	214	163	н
	* 8.069017	43.92	ADR	35.9	1.16	-44.45	36.53	54	-17.47	-	-	214	163	Н
4	* 11.351763	54.32	PK-U	38.1	0	-42.29	50.13	-	-	74	-23.87	177	198	Н
	* 11.351715	42.07	ADR	38.1	1.16	-42.29	39.04	54	-14.96	-	-	177	198	Н
5	* 8.063219	56.24	PK-U	35.9	0	-44.34	47.8	-	-	74	-26.2	327	256	V
	* 8.063781	44.06	ADR	35.9	1.16	-44.36	36.76	54	-17.24	-	-	327	256	V
6	* 11.364761	53.8	PK-U	38.1	0	-42.26	49.64	-	-	74	-24.36	147	184	V
	* 11.365334	41.97	ADR	38.1	1.16	-42.26	38.97	54	-15.03	-	-	147	184	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 35 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

MID CHANNEL RESULTS

VERTICAL

Page 36 of 61

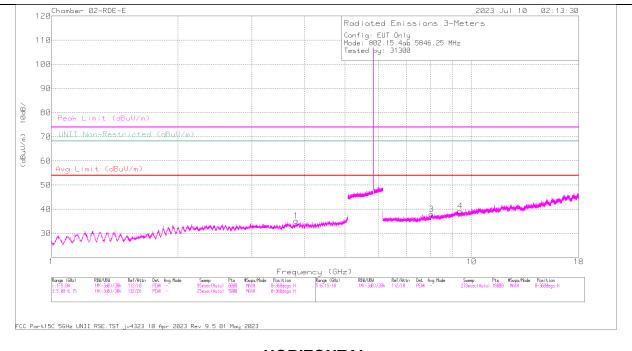
UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

FCC Part15C 56Hz UNII RSE.TST jv4323 3 Oct 2022 Rev 9.5 18 Jan 2023

TEL:(510) 319-4000

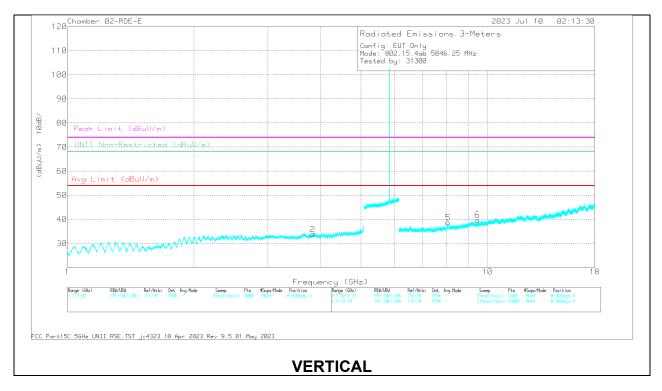
FAX:(510) 661-0888

Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB) 3mH	Gain/Lo ss (dB)	DCCF (dB)	Correct ed Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	UNII Non- Restrict ed (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarity
3	* 3.87982	56.19	PK-U	33.5	-45.76		43.93	-	-	74	-30.07	-	-	1	199	Н
	* 3.879167	44.78	ADR	33.5	-45.77	1.16	33.67	54	-20.33	-	-	-	-	1	199	Н
4	* 3.669437	57.1	PK-U	33.4	-46.02		44.48	-	-	74	-29.52	-	-	1	200	V
	* 3.667312	45.23	ADR	33.4	-46.05	1.16	33.74	54	-20.26	-	-	-	-	1	200	V
5	* 11.806495	52.35	PK-U	38.6	-42.84		48.11	-	-	74	-25.89	-	-	1	101	Н
	* 11.807946	41.17	ADR	38.6	-42.8	1.16	38.13	54	-15.87	-	-	-	-	1	101	Н
6	* 11.551043	53.53	PK-U	38.3	-42.44		49.39	-	-	74	-24.61	-	-	1	200	V
	* 11.55334	42.24	ADR	38.3	-42.51	1.16	39.19	54	-14.81	-	-	-	-	1	200	V
1	1.950284	61.4	PK-U	30.9	-48.87		43.43	-	-	-	-	68.2	-24.77	1	101	Н
	2.057938	60.51	PK-U	31.5	-49.15		42.86	-	-	-	-	68.2	-25.34	1	101	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 37 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA


TEL:(510) 319-4000

FAX:(510) 661-0888

HIGH CHANNEL RESULTS

HORIZONTAL

Page 38 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

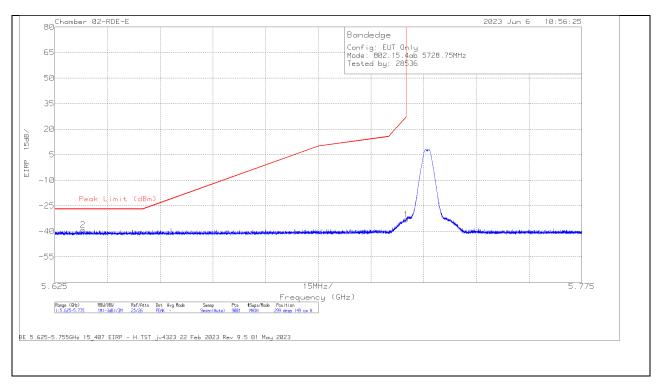
FAX:(510) 661-0888

Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB/m)	DCCF (dB)	Gain/L oss (dB)	Correc ted Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarit y
1	* 3.821289	56.82	PK-U	33.4	0	-46.19	44.03	-	-	74	-29.97	88	101	Н
	* 3.822283	44.84	ADR	33.4	1.16	-46.2	33.2	54	-20.8	-	-	88	101	Н
2	* 3.833056	56.56	PK-U	33.5	0	-46.09	43.97	-	-	74	-30.03	4	154	V
	* 3.832631	44.46	ADR	33.5	1.16	-46.08	33.04	54	-20.96	-	-	4	154	V
3	* 8.028051	55.3	PK-U	35.9	0	-44.2	47	-	-	74	-27	68	204	Н
	* 8.02928	43.48	ADR	35.9	1.16	-44.18	36.36	54	-17.64	-	-	68	204	Н
4	* 9.405824	56.21	PK-U	36.5	0	-43.9	48.81	-	-	74	-25.19	114	283	Н
	* 9.406156	44.07	ADR	36.5	1.16	-43.92	37.81	54	-16.19	-	-	114	283	Н
5	* 8.061703	56.75	PK-U	35.9	0	-44.35	48.3	-	-	74	-25.7	265	227	V
	* 8.062862	43.88	ADR	35.9	1.16	-44.34	36.6	54	-17.4	-	-	265	227	V
6	* 9.469812	56.75	PK-U	36.6	0	-44.33	49.02	-	-	74	-24.98	304	166	V
	* 9.471673	44.39	ADR	36.6	1.16	-44.42	37.73	54	-16.27	-	-	304	166	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 39 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

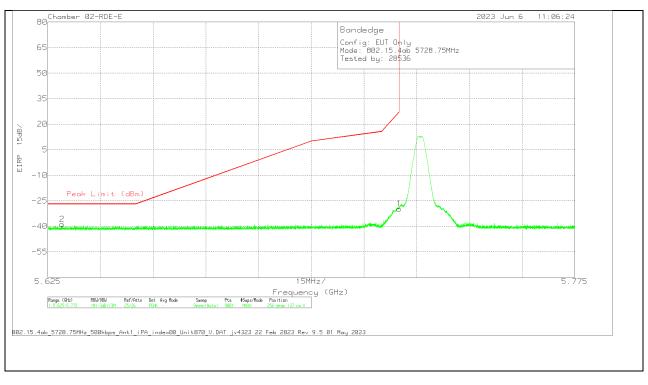

TEL:(510) 319-4000

FAX:(510) 661-0888

10.1.3. ANT 5, 500Kbps LOW POWER BAND EDGE

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT



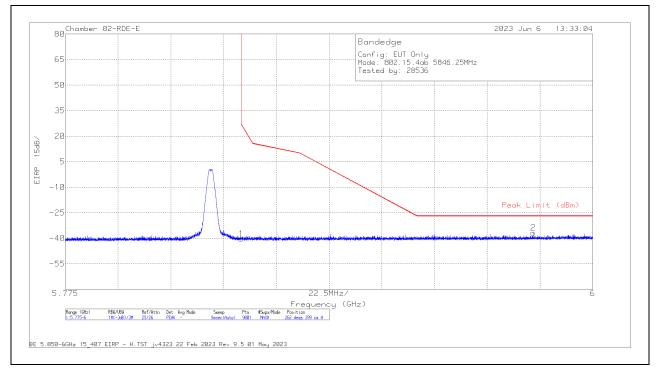
Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.633033	-48.31	Pk	34.5	11.8	0	-37.08	-39.09	-27	-12.09	299	149	н
1	5.725	-42.64	Pk	34.6	11.8	0	-36.76	-33	27	-60	299	149	Н

Pk - Peak detector

Page 40 of 61

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	5.62905	-48.04	Pk	34.5	11.8	0	-37.09	-38.83	-27	-11.83	256	137	V
1	5.725	-39.3	Pk	34.6	11.8	0	-36.76	-29.66	27	-56.66	256	137	V

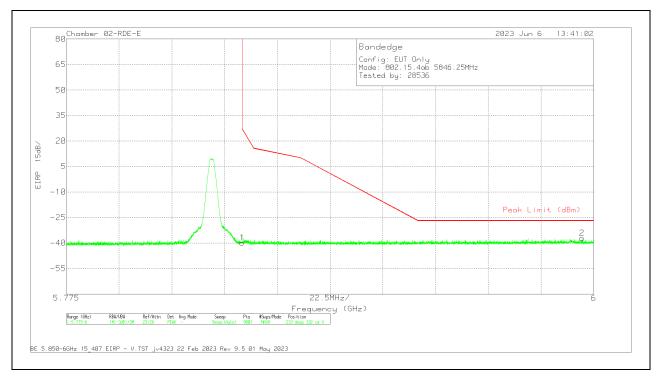

Pk - Peak detector

Page 41 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

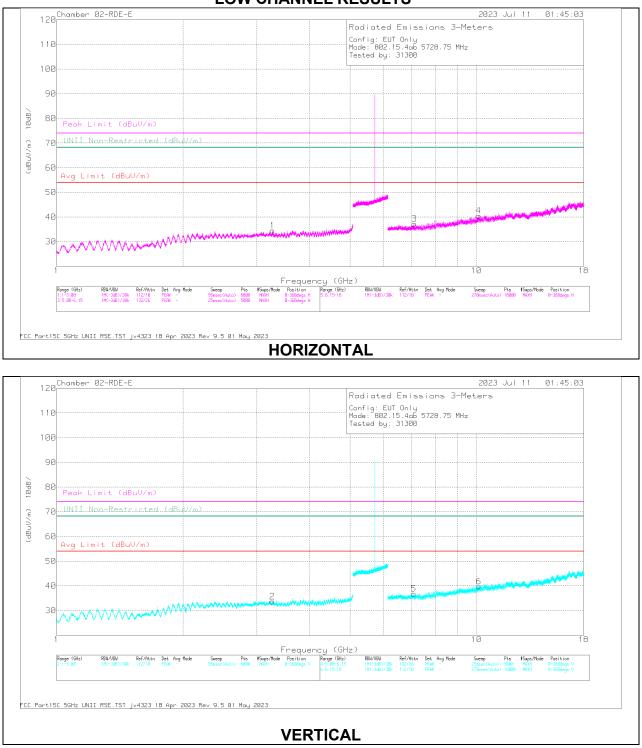


Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-50.59	Pk	34.9	11.8	0	-36.3	-40.19	27	-67.19	262	399	Н
2	5.9746	-47.78	Pk	35.2	11.8	0	-35.88	-36.66	-27	-9.66	262	399	Н

Pk - Peak detector

Page 42 of 61

VERTICAL RESULT



Marker	Frequency (GHz)	Meter Reading (dBm)	Det	206807 ACF (dB/m)	Conversion Factor (dB)	DCCF (dB)	Gain/Loss (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-50.25	Pk	34.9	11.8	0	-36.3	-39.85	27	-66.85	233	332	V
2	5.9951	-48.37	Pk	35.2	11.8	0	-35.8	-37.17	-27	-10.17	233	332	V

Pk - Peak detector

Page 43 of 61

10.1.4. ANT 5, 500Kbps LOW POWER HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

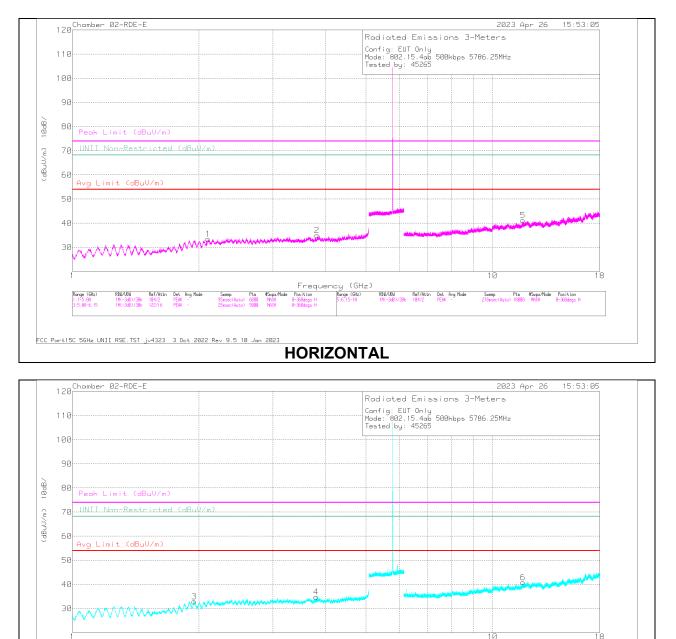
Page 44 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB/m)	DCCF (dB)	Gain/L oss (dB)	Correc ted Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	UNII Non- Restric ted (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarit y
2	* 3.263276	58.05	PK-U	32.9	0	-46.82	44.13	-	-	74	-29.87	-	-	265	162	V
	* 3.26596	45.44	ADR	32.9	1.16	-46.74	32.76	54	-21.24	-	-	-	-	265	162	V
1	3.268907	57.47	PK-U	32.9	0	-46.7	43.67	-	-	-	-	68.2	-24.53	342	206	Н
	7.092612	55.24	PK-U	35.7	0	-44.64	46.3	-	-	-	-	68.2	-21.9	70	108	V
3	7.108573	56.33	PK-U	35.7	0	-44.79	47.24	-	-	-	-	68.2	-20.96	175	192	Н
4	10.116557	57.37	PK-U	37.5	0	-45.5	49.37	-	-	-	-	68.2	-18.83	82	173	Н
6	10.125238	56.65	PK-U	37.5	0	-45.5	48.65	-	-	-	-	68.2	-19.55	82	173	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 45 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

MID CHANNEL RESULTS

VERTICAL

RBN/UBW

Ref/Attn Det Avg Mode

Sueep

 Frequency
 (GHz)

 Pta
 #Sups/Mode
 Positian
 Range (GHz)

 (498)
 NV04
 0-3502degs V
 455,886-615

 616:15-16
 616:15-16
 616:15-16

Page 46 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

RBU/VBU

Range (GHz)

Ref/Attn Det Avg Mode

FCC Part15C 56Hz UNII RSE.TST jv4323 3 Oct 2022 Rev 9.5 18 Jan 2023

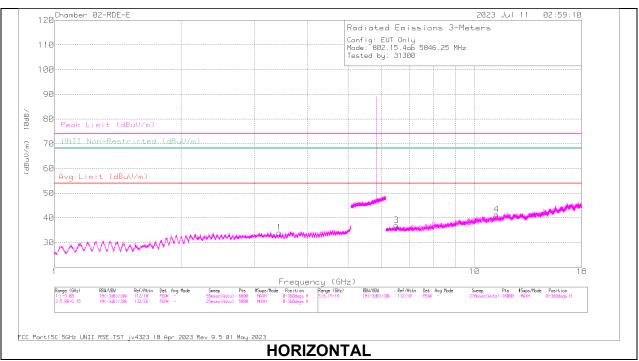
Sxeep

TEL:(510) 319-4000

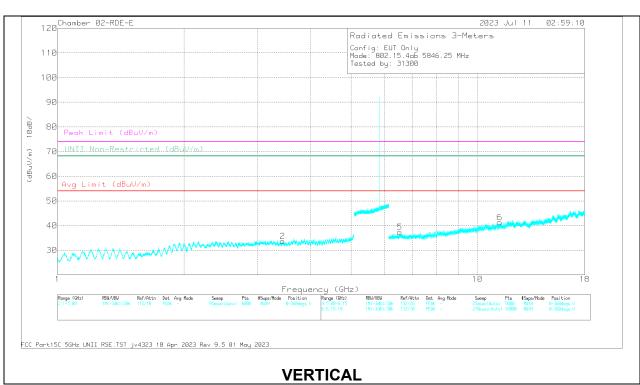
FAX:(510) 661-0888

Pts #Sups/Mode Position

Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB) 3mH	Gain/Lo ss (dB)	DCCF (dB)	Correct ed Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	UNII Non- Restrict ed (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarity
2	* 3.822993	57.82	PK-U	33.4	-46.2		45.02	-	-	74	-28.98	-	-	0	101	Н
	* 3.822523	45.12	ADR	33.4	-46.2	1.16	33.48	54	-20.52	-	-	-	-	0	101	Н
4	* 3.805437	56.88	PK-U	33.4	-46.14		44.14	-	-	74	-29.86	-	-	0	200	V
	* 3.805461	44.75	ADR	33.4	-46.14	1.16	33.17	54	-20.83	-	-	-	-	0	200	V
5	* 11.809215	52.62	PK-U	38.6	-42.75		48.47	-	-	74	-25.53	-	-	0	101	Н
	* 11.81029	41.08	ADR	38.6	-42.7	1.16	38.14	54	-15.86	-	-	-	-	0	101	Н
6	* 11.81445	52.95	PK-U	38.6	-42.7		48.85	-	-	74	-25.15	-	-	0	200	V
	* 11.813399	41.19	ADR	38.6	-42.68	1.16	38.27	54	-15.73	-	-	-	-	0	200	V
3	1.949769	60.79	PK-U	30.9	-48.87		42.82	-	-	-	-	68.2	-25.38	0	200	V
1	2.102871	61.19	PK-U	31.7	-49.21		43.68	-	-	-	-	68.2	-24.52	0	101	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 47 of 61


UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

HIGH CHANNEL RESULTS

Page 48 of 61

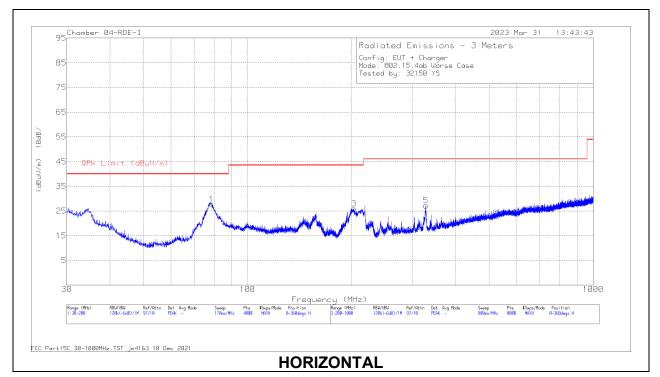
UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

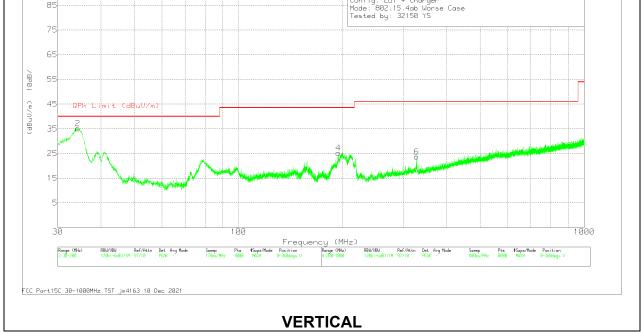
Marker	Frequency (GHz)	Meter Readin g (dBuV)	Det	206807 ACF (dB/m)	DCCF (dB)	Gain/L oss (dB)	Correc ted Readin g (dBuV/ m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	UNII Non- Restric ted (dBuV/ m)	PK Margin (dB)	Azimut h (Degs)	Height (cm)	Polarit y
1	* 11.29161	54.41	PK-U	38.1	0	-42.49	50.02	-	-	74	-23.98	-	-	271	153	Н
	* 11.292273	42.43	ADR	38.1	1.16	-42.49	38.04	54	-15.96	-	-	-	-	271	153	Н
2	* 11.298462	54.06	PK-U	38.1	0	-42.47	49.69		-	74	-24.31		-	338	148	V
	* 11.299254	42.31	ADR	38.1	1.16	-42.46	37.95	54	-16.05	-	-	-	-	338	148	V
3	3.427857	56.98	PK-U	32.8	0	-46.47	43.31	-	-	-	-	68.2	-24.89	355	114	Н
5	3.435094	56.44	PK-U	32.8	0	-46.22	43.02	-	-	-	-	68.2	-25.18	297	136	V
4	6.521869	54.91	PK-U	35.5	0	-44.18	46.23	-	-	-	-	68.2	-21.97	317	150	Н
6	6.529847	54.64	PK-U	35.5	0	-44.13	46.01	-	-	-	-	68.2	-22.19	261	119	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average


Page 49 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000


FAX:(510) 661-0888

95 Chamber 04-RDE-I

10.2. WORST CASE BELOW 1 GHz

2023 Radiated Emissions - 3 Meters Config: EUT + Charger Mode: 802.15.4ab Worse Case Tested by: 32150 YS

Page 50 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

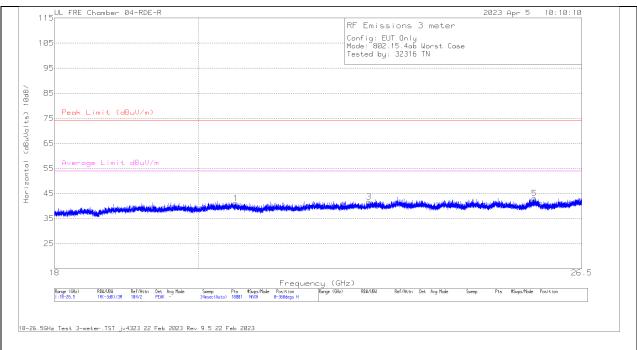
2023 Mar 31 13:43:43

Below 1GHz DATA

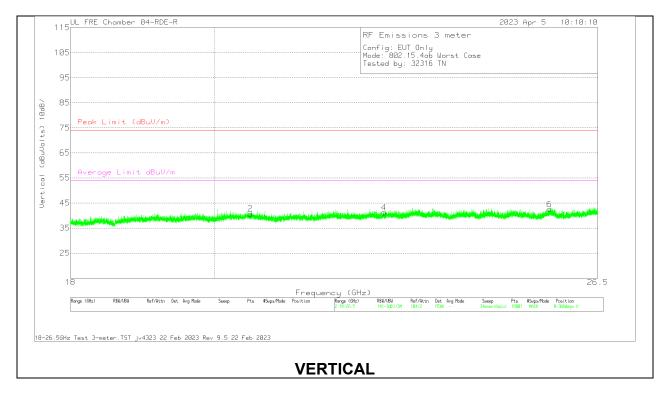
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	80714 ACF (dB) - 10mH	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	78.6751	44.21	Pk	14.3	-30.8	27.71	40	-12.29	0-360	298	Н
2	34.2511	41.47	Pk	24.7	-31.1	35.07	40	-4.93	0-360	101	V
	34.6022	38.33	Qp	24.4	-31.2	31.53	40	-8.47	356	108	V
4	194.39	37.32	Pk	17.9	-30	25.22	43.52	-18.3	0-360	101	V
3	202.9	38.41	Pk	17.6	-30	26.01	43.52	-17.51	0-360	101	Н
5	* 327.717	36.99	Pk	19.7	-29.5	27.19	46.02	-18.83	0-360	101	Н
6	* 327.517	33.47	Pk	19.7	-29.5	23.67	46.02	-22.35	0-360	199	V

Pk - Peak detector

Qp - Quasi-Peak detector


Page 51 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA


TEL:(510) 319-4000

FAX:(510) 661-0888

10.3. WORST CASE 18-26 GHz

HORIZONTAL

Page 52 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

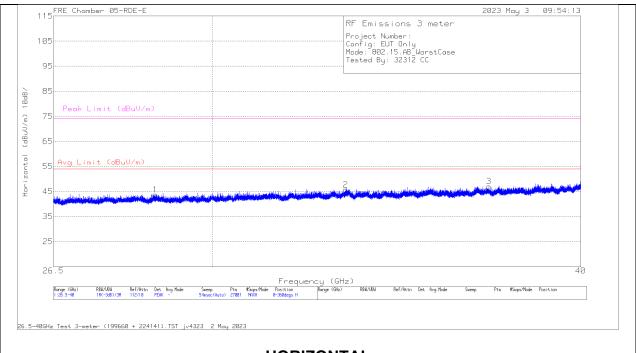
TEL:(510) 319-4000

FAX:(510) 661-0888

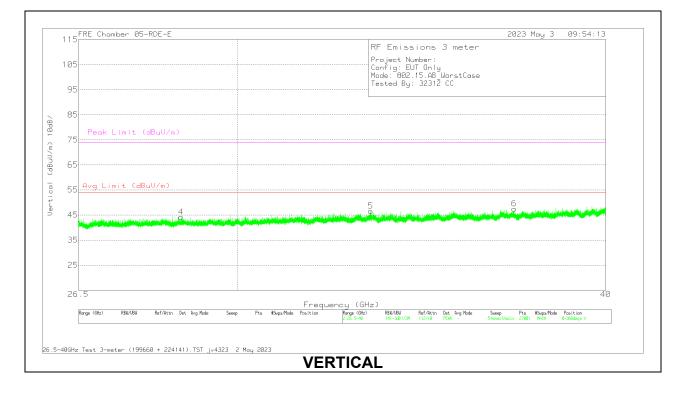
<u> 18 – 26GHz DATA</u>

Marke r	Frequency (GHz)	Meter Readi ng (dBuV)	Det	17235 3 ACF (dB) - 3mH	17158 3 Amp Asse mbly (dB)	Cable s (dB)	Correc ted Readi ng (dBuV olts)	Peak Limit (dBuV/ m)	PK Margi n (dB)	Avera ge Limit dBuV/ m	Margi n (dB)	Azimu th (Degs)	Height (cm)	Polarit y
2	20.542443	55.06	Pk	33.4	-63.8	16.1	40.76	74	-33.24	54	-13.24	0-360	99	V
1	20.559443	55.34	Pk	33.4	-63.8	16.1	41.04	74	-32.96	54	-12.96	0-360	100	Н
4	22.657053	56.28	Pk	33.8	-65.7	16.8	41.18	74	-32.82	54	-12.82	0-360	99	V
3	22.669331	56.86	Pk	33.8	-65.7	16.8	41.76	74	-32.24	54	-12.24	0-360	100	Н
6	25.577746	53.4	Pk	34.7	-63.6	18	42.5	74	-31.5	54	-11.5	0-360	99	V
5	25.59333	54	Pk	34.7	-63.6	18	43.1	74	-30.9	54	-10.9	0-360	100	Н

Pk - Peak detector


Page 53 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA


TEL:(510) 319-4000

FAX:(510) 661-0888

10.4. WORST CASE 26-40 GHz

HORIZONTAL

Page 54 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

<u> 26 – 40GHz DATA</u>

Marker	Frequency (GHz)	Meter Readi ng (dBuV)	Det	Horn ACF (dB/m)	amp/c bl (dB)	CBL/SWIT CH (dB)	Corre cted Readi ng (dBuV /m)	Avg Limit (dBuV /m)	Margin (dB)	Peak Limit (dBuV /m)	PK Margin (dB)	Azimu th (Degs)	Heigh t (cm)	Polari ty
1	28.693	56.29	Pk	36.4	-65.5	16.5	43.69	54	-10.31	74	-30.31	0-360	101	Н
4	28.7115	56.87	Pk	36.4	-65.5	16.5	44.27	54	-9.73	74	-29.73	0-360	200	V
2	33.294	55.84	Pk	37	-65	17.9	45.74	54	-8.26	74	-28.26	0-360	101	Н
5	33.298	56.69	Pk	37	-65	17.9	46.59	54	-7.41	74	-27.41	0-360	101	V
3	37.235	55.64	Pk	37.8	-65.9	19.5	47.04	54	-6.96	74	-26.96	0-360	101	Н
6	37.24	56.14	Pk	37.8	-65.9	19.5	47.54	54	-6.46	74	-26.46	0-360	101	V

Page 55 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

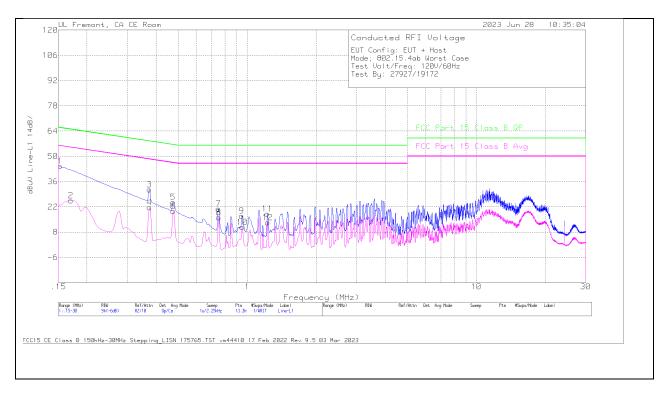
RSS-Gen 8.8

Erequency of Emission (MHz)	Conducted Limit (dBµV)					
Frequency of Emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56 *	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 56 of 61

11.1. AC Power Line WITH LAPTOP

LINE 1 RESULTS

Range 1: Line-L1 .15 - 30MHz Av(CISPR)M L1_LISN.csv QP Margin Frequency (MHz) C1&C3 207996 FCC Part 15 FCC Part 15 Marker Meter Det Corrected Reading (dBuV) cable path loss dB Reading dBuV Limiter with Class B QP (dB) Class B Avg dB argin (dB) short cabl dBuV dBuV dB Ca Ca 9.4 9.3 2 .1703 16.02 0 0 25.42 54.95 -29.53 4 .375 12.24 0 21.64 48.39 -26.75 _ .1 -6 .4763 10.1 Ca 9.3 19.5 46.4 -26.9 0 .1 --8 .7508 6.71 Ċa 0 9.3 16.11 46 -29.89 .1 -10 .951 1.35 Са 0 .1 9.3 10.75 _ 46 -35.25 12 1.2278 3.97 Са 0 9.3 13.37 46 -32.63 .1 1 .1523 35.13 Qp 0 0 9.4 44.53 65.88 -21.35 .375 .474 3 22.22 Qp 0 .1 9.3 31.62 58.39 -26.77 --9.3 9.3 -31.84 15.2 56.44 5 7 Qp 0 .1 24.6 --.7485 11.6 21 Qp Qp 0 56 -35 --.1 7.58 Ō 9.3 -39.02 9 .9465 16.98 56 .1 --18.17 11 1.2233 8.77 Qp 0 .1 9.3 56 -37.83

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 57 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

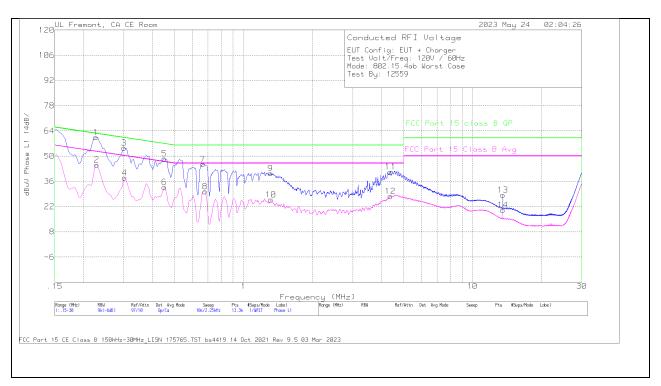
120<mark>UL Fremont, CA CE Room</mark> 2023 Jun 28 10:35:04 Conducted RFI Voltage EUT Config: EUT + Host Mode; 802.15.4ab Worst Case Test Volt/Freq: 120V/60Hz Test By: 27927/19172 106 92 78 dBuU Line-L2 14dB/ 64 ¢lass B Avg 50 13 36 15 195 28 2 14 17 s. Militi 22 8 -6 15 noy (MHz) Range (MHz) 2:.15-30 Frequer Ronge (MHz) RBU Ref/Attn Det Avg Mode Pts #Sups/Node Labe RBN Ref/Attn Det Avg Mode 82/10 Op/Co Pts #Swps/Mode Lobel 13.3k 1/WRIT Line-Li Sweep 1s/2.25kHz -6dB) FCC15 CE Class B 150kHz-30MHz Stepping_LISN 175765.TST vm44410 17 Feb 2022 Rev 9.5 03 Mar 2023

LINE 2 RESULTS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	L2_LISN (dB)	C2&C3 cable path loss (dB)	207996 Limiter with short cabl (dB)	Corrected Reading dBuV	FCC Part 15 Class B QP dBuV	QP Margin (dB)	FCC Part 15 Class B Avg dBuV	Av(CISPR)M argin (dB)
14	.1703	16.65	Са	0	0	9.4	26.05	-	-	54.95	-28.9
16	.375	19.21	Ca	0	.1	9.3	28.61	-	-	48.39	-19.78
18	.474	13.76	Ca	0	.1	9.3	23.16	-	-	46.44	-23.28
20	.7508	14.97	Ca	0	.1	9.3	24.37	-	-	46	-21.63
22	.9488	11.49	Ca	0	.1	9.3	20.89	-	-	46	-25.11
24	1.2278	14.22	Ca	0	.1	9.3	23.62	-	-	46	-22.38
13	.1613	34.69	Qp	0	0	9.4	44.09	65.4	-21.31	-	-
15	.375	23.57	Qp	0	.1	9.3	32.97	58.39	-25.42	-	-
17	.474	17.3	Qp	0	.1	9.3	26.7	56.44	-29.74	-	-
19	.753	17.34	Qp	0	.1	9.3	26.74	56	-29.26	-	-
21	.9465	15.43	Qp	0	.1	9.3	24.83	56	-31.17	-	-
23	1.2233	17.64	Qp	0	.1	9.3	27.04	56	-28.96	-	-

Qp - Quasi-Peak detector

Ca - CISPR average detection


Page 58 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

11.2. AC Power Line WITH AC/DC Adapter

LINE 1 RESULTS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	C1&C3 cable path loss (dB)	PRE0186447 LISN L1 (dB)	207996 Limiter with short cabl	10 dB Pad	Corrected Reading dBuV	FCC Part 15 Class B Avg (dBuV)	Margin (dB)	FCC Part 15 class B QP (dBuV)	Margin (dB)
2	.2288	25.86	Са	0	0	(dB) 9.3	10	45.16	52.49	-7.33		
2	.303	18.77	Ca	0	0	9.3	10	38.07	50.16	-12.09	-	-
4	.303	13.42	Ca	1	0	9.3	10	32.82	46.85	-12.09	-	-
0					0						-	-
8	.6788	10.99	Ca	.1	0	9.3	10	30.39	46	-15.61	-	-
10	1.3155	6.36	Ca	.1	0	9.3	10	25.76	46	-20.24	-	-
12	4.3868	8.32	Ca	.1	0	9.3	10	27.72	46	-18.28	-	-
14	13.56	.52	Ca	.2	.1	9.3	10	20.12	50	-29.88	-	-
1	.2265	41.16	Qp	0	0	9.3	10	60.46	-	-	62.58	-2.12
3	.3008	35.15	Qp	0	0	9.3	10	54.45	-	-	60.22	-5.77
5	.4515	29.27	Qp	.1	0	9.3	10	48.67	-	-	56.85	-8.18
7	.6653	26.13	Qp	.1	0	9.3	10	45.53	-	-	56	-10.47
9	1.3133	21.03	Qp	.1	0	9.3	10	40.43	-	-	56	-15.57
11	4.389	21.93	Qp	.1	0	9.3	10	41.33	-	-	56	-14.67
13	13.56	8.82	Qp	.2	.1	9.3	10	28.42	-	-	60	-31.58

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 59 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

120 UL Fremont, CA CE Room 2023 May 24 02:04:26 Conducted RFI Voltage EUT Config: EUT + Charger Test Volt/Freq: 128V / 60Hz Mode: 802.15.4ab Warst Case Test By: 12559 106 92 78 Phase L2 14dB. FCC Part 15 class B QP 64 lass B Ave 1.9 50 16 Warran Y Ô 25 18 dBuU 36 20 22 27 26 24 28 22 15 Frequency (MHz) Pts #Swps/Mode Label Range (MHz) 21.15-30 21.15-30 21.15-30 21.15-30 21.15-30 RBW 9k(-6dB) Range (MHz) RBN Ref/Attn Det Avg Mode Sweep Ref/Attn Det Avg Mode 97/18 Dp/Co Pts #Swps/Mode Lobel 13.3k 1/kRIT Phose L2 Sxeep 18s/2.25kHz FCC Part 15 CE Class B 150kHz-30MHz_LISN 175765.TST bs4419 14 Oct 2021 Rev 9.5 03 Mar 2023

LINE 2 RESULTS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	C2&C3 cable path loss (dB)	PRE0186447 LISN L2 (dB)	207996 Limiter with short cabl (dB)	10 dB Pad	Corrected Reading dBuV	FCC Part 15 Class B Avg (dBuV)	Margin (dB)	FCC Part 15 class B QP (dBuV)	Margir (dB)
16	.2288	24.17	Ca	0	0	9.3	10	43.47	52.49	-9.02	-	-
18	.303	17.03	Ca	0	0	9.3	10	36.33	50.16	-13.83	-	-
20	.4515	12.87	Ca	.1	0	9.3	10	32.27	46.85	-14.58	-	-
22	.6765	10.4	Ca	.1	0	9.3	10	29.8	46	-16.2	-	-
24	1.2795	4.59	Ca	.1	0	9.3	10	23.99	46	-22.01	-	-
26	4.6433	6.57	Ca	.1	0	9.3	10	25.97	46	-20.03	-	-
28	13.56	2.61	Ca	.2	.1	9.3	10	22.21	50	-27.79	-	-
15	.2265	40.37	Qp	0	0	9.3	10	59.67	-	-	62.58	-2.91
17	.3008	34.28	Qp	0	0	9.3	10	53.58	-	-	60.22	-6.64
19	.4515	28.4	Qp	.1	0	9.3	10	47.8	-	-	56.85	-9.05
21	.6765	24.22	Qp	.1	0	9.3	10	43.62	-	-	56	-12.3
23	1.2795	19.86	Qp	.1	0	9.3	10	39.26	-	-	56	-16.7
25	4.6275	19.33	Qp	.1	0	9.3	10	38.73	-	-	56	-17.2
27	13.56	11.34	Qp	.2	.1	9.3	10	30.94	-	-	60	-29.0

Qp - Quasi-Peak detector

Ca - CISPR average detection

END OF TEST REPORT

Page 60 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

12. SETUP PHOTOS

Please refer to 14523758-EP1V1 FCC IC for setup photos

Page 61 of 61

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888