

TEST REPORT

Report Number : 14523758-E19V2

- Applicant : APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95104, U.S.A.
 - Model : A2846 (Parent Model) A3089, A3090 (Variant Models)
 - Brand : APPLE
 - FCC ID : BCG-E8427A (Parent Model) BCG-E8428A, BCG-E8429A (Variant Models)
 - IC : 579C-E8427A (Parent model) 579C-E8428A, 579C-E8429A (Variant Models)
- **EUT Description** : SMARTPHONE
- Test Standard(s) : 47 CFR Part 25 ISED RSS-170 ISSUE 4

Date Of Issue: JULY 06, 2023

Prepared by: UL VERIFICATION SERVICES INC. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	7/5/2023	Initial Review	
V2	7/6/2023	Report revised based on reviewer's comments on the following: Cover Page, Sec. nos. 1, 3, 6, & 10.	Bobby Bayani

Page 2 of 50

TABLE OF CONTENTS

 SUMMARY OF TEST RESULTS	7 7
 4. FACILITIES AND ACCREDITATION 5. DECISION RULES AND MEASUREMENT UNCERTAINTY <i>5.1. METROLOGICAL TRACEABILITY</i> 	7
5. DECISION RULES AND MEASUREMENT UNCERTAINTY 5.1. METROLOGICAL TRACEABILITY	
5.1. METROLOGICAL TRACEABILITY	
	-
5.2. DECISION RULES	8
	8
5.3. MEASUREMENT UNCERTAINTY	8
5.4. SAMPLE CALCULATION	8
6. EQUIPMENT UNDER TEST	9
6.1. DESCRIPTION OF EUT	9
6.2. MAXIMUM OUTPUT POWER	9
6.3. SOFTWARE AND FIRMWARE	10
6.4. MAXIMUM ANTENNA GAIN	10
6.5. WORST-CASE CONFIGURATION AND MODE	10
6.6. DESCRIPTION OF TEST SETUP	11
7. TEST AND MEASUREMENT EQUIPMENT	14
8. RF OUTPUT POWER VERIFICATION	15
9. CONDUCTED TEST RESULTS	16
9.1. OCCUPIED BANDWIDTH	16
9.2. EMISSIONS MASK WITHIN 250% OF AUTHORIZED BANDWIDTH	18
9.2.1. ANT 1 9.2.2. ANT 4	
$\mathbf{J}_{\mathbf{L}}\mathbf{L}_{\mathbf{L}}$	
9.3 OUT OF BAND EMISSIONS	23
9.3. OUT OF BAND EMISSIONS 9.3.1. ANT 1	
	24
 9.3.1. ANT 1 10. RADIATED TEST RESULTS 10.1. FIELD STRENGTH OF SPURIOUS RADIATION 	24 25 26
9.3.1. ANT 1 10. RADIATED TEST RESULTS <i>10.1. FIELD STRENGTH OF SPURIOUS RADIATION</i> 10.1.1. ANT 1 (Above 1GHz)	24 25 26 27
9.3.1. ANT 1 10. RADIATED TEST RESULTS 10.1. FIELD STRENGTH OF SPURIOUS RADIATION 10.1.1. ANT 1 (Above 1GHz) 10.1.2. ANT 4 (Above 1GHz) 10.1.3. ANT 1 (Below 1GHz)	24 25 26 27 29 31
9.3.1. ANT 1 10. RADIATED TEST RESULTS 10.1. FIELD STRENGTH OF SPURIOUS RADIATION 10.1.1. ANT 1 (Above 1GHz) 10.1.2. ANT 4 (Above 1GHz) 10.1.3. ANT 1 (Below 1GHz) 10.1.4. ANT 4 (Below 1GHz)	24 25 26 27 29 31 33
9.3.1. ANT 1 10. RADIATED TEST RESULTS 10.1. FIELD STRENGTH OF SPURIOUS RADIATION 10.1.1. ANT 1 (Above 1GHz) 10.1.2. ANT 4 (Above 1GHz) 10.1.3. ANT 1 (Below 1GHz)	24 26 27 31 33 35

Page 3 of 50

10.3.	CARRIER-OFF STATE EMISSIONS (1559MHz – 1610MHz)	
	ANT 1	
10.3.2.	ANT 4	48
10.4. I	REQUENCY STABILITY	
11. SETI	IP PHOTOS	50

Page 4 of 50

1. ATTESTATION OF TEST RESULTS

APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95104, U.S.A.
A2846 (Parent Model, Full Test) A3089, A3090 (Variant Models)
APPLE
BCG-E8427A (Parent Model) BCG-E8428A, BCG-E8429A (Variant Models)
579C-E8427A (Parent model) 579C-E8428A, 579C-E8429A (Variant Models)
SMARTPHONE
H3XX9Y9RXG (Conducted), G6297H594D (Radiated)
FEBRUARY 1, 2023 (Conducted), APRIL 19, 2023 (Radiated)
FEBRUARY 16, 2023 to JUNE 20, 2023
47 CFR PART 25 ISED RSS-170 ISSUE 4
COMPLIES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document.

Approved & Released By: Prepared & Reviewed By: Chin King Thu Chan Chris Xiong Senior Test Engineer Staff Engineer UL Verification Services Inc. UL Verification Services Inc.

Page 5 of 50

2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer which can impact the validity of results. UL Verification Services, Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of data provided by the customer:

- 1. Antenna gain and type (see Section 6.4)
- 2. Cable loss (see Section 8)

Requirement Description	quirement DescriptionRequirement Clause Number (FCC)Requirement Clause Number (ISED)		Result	Remarks
RF Output Power Verification	25.204 (a)	RSS-170 §5.5	Complies	N/A
Occupied Bandwidth	2.1049	RSS-170 RSS-GEN	Reporting purposes only	N/A
Emissions Mask - within 250% of Authorized Bandwidth	25.202 (f)(1) & (2)	RSS-170 §5.8	Complies	N/A
Out of Band Emissions	25.202 (f)(3)	RSS-170 §5.8	Complies	N/A
Additional Unwanted Emission (1559-1610MHz)	25.216 (c)&(g) FCC 03-283	RSS-170 §5.9.1	Complies	N/A
Carrier-Off State Emissions (1559-1610MHz)	25.216 (i) FCC 03-283	RSS-170 §5.10	Complies	N/A
Frequency Stability	25.202 (d)	RSS-170 §5.3	Complies	N/A

Page 6 of 50

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following:

- ANSI C63.26:2015
- ISED RSS-170 ISSUE 4
- 47 CFR Part 2 and 25
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r02: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01. Determining ERP and EIRP

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, CA 94538 USA			
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538 USA			
	Building 3: 843 Auburn Court, Fremont, CA 94538 USA	US0104	2324A	550739
	Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

Page 7 of 50

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement

uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Occupied Channel Bandwidth	±1.22 %
Temperature	±0.57 °C
Supply voltages	±0.57 %
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m)

- = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) Preamp Gain (dB)
- = 36.5 dBuV + 18.7 dB/m + 0.6 dB 26.9 dB = 28.9 dBuV/m

Page 8 of 50

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with cellular GSM, GPRS, EGPRS, UMTS, LTE, 5GNR1, 5GNR2, IEEE 802.11a/b/g/n/ac/ax, Bluetooth (BT), Ultra-Wideband (UWB), GPS, NFC, 802.15.4ab-NB and MSS technologies. The rechargeable battery is not user accessible.

Testing was performed on the parent model and is used to support the application for the parent and variants identified in this report based on the test plan submitted and approved via KDB inquiry by the FCC and by ISED-Canada.

Parent Model: A2846, FCC ID: BCG-E8427A, IC: 579C-E8427A

Variant Models: A3089, FCC ID: BCG-E8428A, IC: 579C-E8428A A3090, FCC ID: BCG-E8429A, IC: 579C-E8429A

6.2. MAXIMUM OUTPUT POWER

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015 KDB 971168 D01 Section 5.6

EIRP = PMeas + GT - LC

where: EIRP = effective isotropic radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

The transmitter has a maximum average conducted and EIRP output powers as follows:

FCC Part 25 & ISED RSS-170 (1610 - 1626.5MHz):

Frequency (MHz)	Conducted (Average)	Antenna Gain	Limit	EIRP		99% BW	Emission
·····,	(dBm)	(dBi)	(W)	(dBm)	(W)	(kHz)	Designator
1610.17	27.54		10000	22.54	0.179	204.09	204KG1D
1618.40	27.98	-5.0	10000	22.98	0.198	200.16	200KG1D
1626.03	28.00		10000	23.00	0.200	200.96	201KG1D

Page 9 of 50

6.3. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was version 0.13.02.

6.4. MAXIMUM ANTENNA GAIN

Antenna Type is IFA.

The antennas' gains, as provided by the manufacturer, are as follows:

Frequency Range (MHz)	ANT 1 Antenna Gain (dBi)	ANT 4 Antenna Gain (dBi)
1610-1626.5	-5.0	-4.2

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X/Y/Z on both ANT 1 and ANT 4 antennas. It was determined that X (Flatbed) orientation was the worst-case orientation with AC/DC adapter for both ANT 1 and ANT 4.

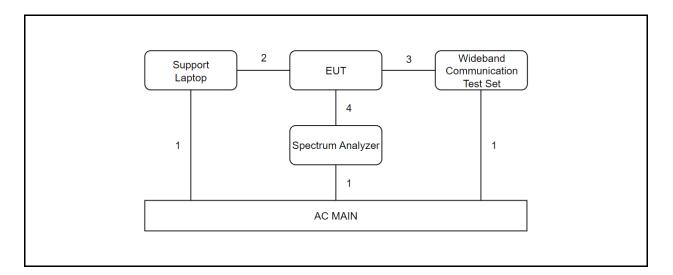
The emissions mask tests were performed based on declared authorized bandwidths of 200kHz, 230kHz and 280kHz.

Conducted spurious emissions tests were performed on the worst case antenna port because it has the highest conducted power.

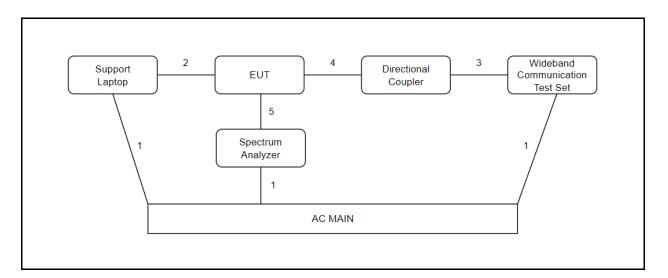
Radiated spurious emissions below 1GHz were performed with the highest output power on both ANT 1 and ANT 4 as worst-case scenario.

Radiated spurious emissions below 30MHz were investigated and there were no emissions found with less than 20dB of margin below the specified emissions limits.

For simultaneous transmission of multiple channels in the 2.4GHz/5GHz WLAN, tests were conducted for various configurations having the highest power, least separation in frequencies and widest operation bandwidths. No noticeable new emission was found.

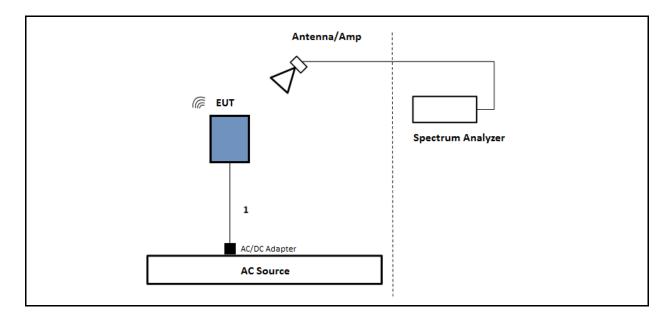

Page 10 of 50

6.6. DESCRIPTION OF TEST SETUP


SUPPORT TEST EQUIPMENT						
De	escription	Manufacturer	Model	Serial Number		FCC ID/ DoC
	Laptop	Apple	MacBook Pro	C02WG84CHV2L		DoC
	otop AC/DC Adapter	Apple	61W Model A1947	C02VR00VJLM5		DoC
	Laptop	Apple	MacBook Pro	C02VT1R	BHV29	DoC
	otop AC/DC Adapter	Apple	B920	N/A	۱.	DoC
EUT A	C/DC Adapter	Apple	B820	C4H9513005	51PF4F4L	DoC
		I/O C	ABLES (RF CONDUCTED	TEST)		
Cable No.	Port	# Of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	3	US 115V	Un-shielded	2.0	N/A
2	USB	1	Туре-С	Shielded	2.0	N/A
3	RF In/Out	1	SMA	Shielded	1.0	N/A
4	RF In/Out	1	SMA	Shielded	0.5	N/A
5	RF In/Out	1	SMA Adapter	N/A	N/A	N/A
		I/O	CABLES (RF RADIATED T	EST)		
Cable No.	Port	# Of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	1	Type-C	Un-shielded	1.0	N/A

Page 11 of 50

CONDUCTED SETUP - ANT 1



CONDUCTED SETUP - ANT 4

Page 12 of 50

RADIATED SETUP

Page 13 of 50

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	85212	02/29/2024			
*Antenna, Horn 1-18GHz	ETS-Lindgren	3117	79834	06/08/2023			
RF Filter Box, 1-18GHz	UL-FR1	NA	168534	01/05/2024			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	200896	02/28/2024			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169937	02/29/2024			
Antenna, Broad Band Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	232076	03/31/2024			
Amplifier, 100KHz to 1GHz, 32dB	Keysight Technologies Inc	8447D	80670	08/10/2023			
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO-METRICS	EM-6871	170014	07/19/2023			
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO-METRICS	EM-6872	170016	07/19/2023			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	85201	02/29/2024			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	200786	03/31/2024			
RF Filter Box, 1-18GHz	UL-FR1	NA	168535	02/01/2024			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	81188	01/31/2024			
Directional Coupler	KRYTAR	152610	231740	02/29/2024			
Wideband Communication Test Set, Call Box	Rohde & Schwarz	CMW500	10763796	08/04/2023			
Environmental Chamber	Cincinnati Sub Zero	ZPHS-8-3.5- SCT/WC	89097	06/08/2024			
	UL AUTOMATI	ON SOFTWARE					
Radiated test software	UL	UL RF	Ver 9.5 Februa	ry 2, 2021			

NOTE: *Testing completed before cal date

Page 14 of 50

8. RF OUTPUT POWER VERIFICATION

<u>LIMITS</u>

FCC: §25.204

(a) In bands shared coequally with terrestrial radio communication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station, other than an ESV, operating in frequency bands between 1 and 15 GHz, shall not exceed the following limits except as provided for in paragraph (c) of this section:

- + 40 dBW in any 4 kHz band for $\theta \leq 0^{\circ}$
- + 40 + 30 dBW in any 4 kHz band for $0^{\circ} < \theta \le 5^{\circ}$

where θ is the angle of elevation of the horizon viewed from the center of radiation of the antenna of the earth station and measured in degrees as positive above the horizontal plane and negative below it.

ISED RSS-170:

5.5 Mobile Earth Stations (MESs)

The application for MES certification shall state the MES e.i.r.p. that is necessary for satisfactory communication. The maximum permissible e.i.r.p. will be the stated e.i.r.p. plus a 2 dB margin. If a detachable antenna is used, the certification application shall state the recommended antenna type and manufacturer, the antenna gain and the maximum transmitter output power at the antenna terminal.

TEST PROCEDURE

The transmitter output is connected to a wideband power meter/sensor which is greater than the occupied bandwidth as worst-case scenario, also the total power readings still comply with the required limit.

The cable assembly insertion loss of 13.25 dB (ANT 1) / 12.10 dB (ANT 4) (including 10.90 dB coupler and 2.35 dB cable (ANT 1) / 10 dB pad and 2.07 dB cable (ANT 4)) was entered as an offset in the power meter to allow for a gated average reading of power.

RESULTS

Test Engineer ID:	26118	Test Date:	4/28/2023
-------------------	-------	------------	-----------

Test Frequency		verage Power 3m)	Antenna	Gain (dBi)	EIRP Average Power (dBm)			
(MHz)	ANT 1	ANT 4	ANT 1	ANT 4	ANT 1	ANT 4		
1610.17	27.54	25.80			22.54	21.60		
1618.40	27.98	25.78	-5.0	-4.2	22.98	21.58		
1626.03	28.00	25.80			23.00	21.60		

Page 15 of 50

9. CONDUCTED TEST RESULTS

9.1. OCCUPIED BANDWIDTH

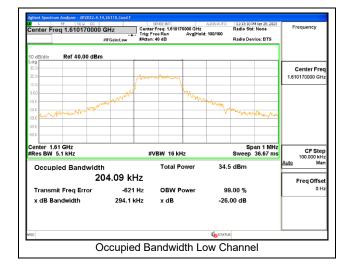
RULE PART(S)

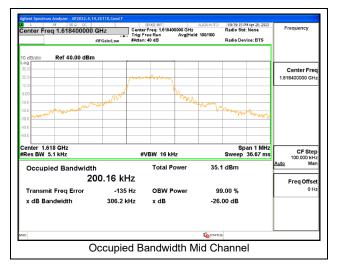
FCC: §2.1049 ISED RSS-170 and RSS-GEN

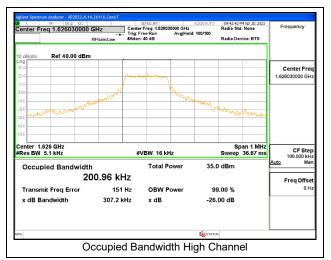
LIMITS

For reporting purposes only.

TEST PROCEDURE


The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \geq 3 × RBW. The 99% bandwidths were measured and recorded.


RESULTS


There is no limit required; therefore, only one port of higher power, ANT1, was tested.

Test Frequency (MHz)	99% BW (kHz)
1610.17	204.09
1618.40	200.16
1626.03	200.96

Page 16 of 50

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 17 of 50

9.2. EMISSIONS MASK WITHIN 250% OF AUTHORIZED BANDWIDTH

<u>LIMITS</u>

FCC §25.202 and ISED RSS-170: 5.8

(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

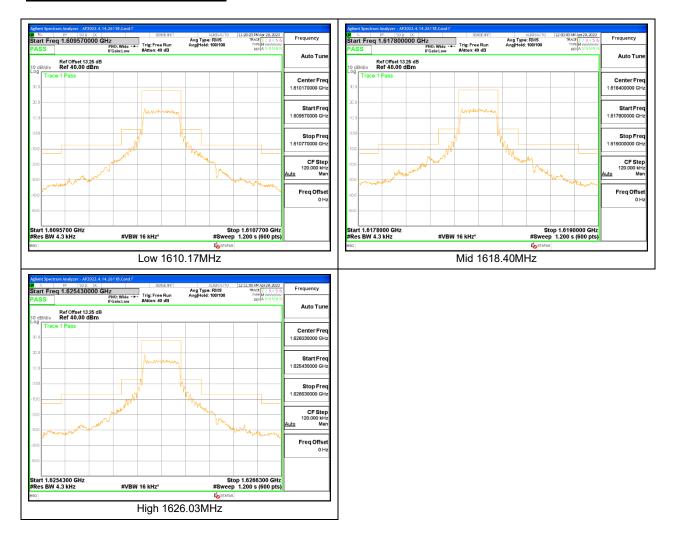
(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The channel edge emissions were measured on the low, mid and high channels. The limits within 250% of the authorized bandwidth are relative to the total in-band (channel) power. The measurement bandwidth (RBW) is set to >= 4kHz and VBW set to at least 3 times the RBW. To measure the average value of the emissions the detector is set to rms while observing the minimum required number of points as detailed in ANSI C63.26 for average rms measurements. The sweep time is set to 2ms multiplied by the number of points to obtain the average over 2ms. Multiple sweeps with max hold enabled are made to capture the maximum average value.

RESULTS

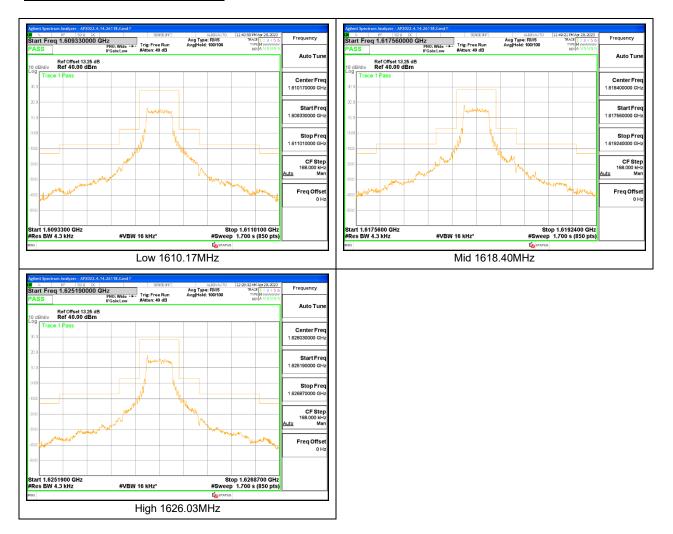

The tests were performed based on declared authorized bandwidths of 200kHz, 230kHz and 280kHz. The ANT 4 were performed only on center channel since it was the same signal to each antenna.

Test Engineer ID: 26118	Test Date:	2/16/23 & 4/28/23
-------------------------	------------	----------------------

Page 18 of 50

9.2.1. ANT 1

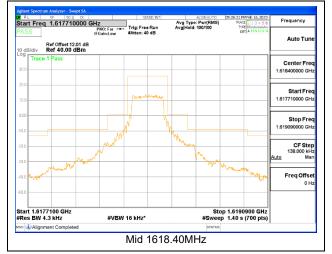
200kHz Authorized Bandwidth:


Page 19 of 50

230kHz Authorized Bandwidth:

Page 20 of 50

280kHz Authorized Bandwidth:


Page 21 of 50

9.2.2. ANT 4

200kHz Authorized Bandwidth:

280kHz Authorized Bandwidth:

Page 22 of 50

9.3. OUT OF BAND EMISSIONS

<u>LIMITS</u>

FCC §25.202 and ISED RSS-170: 5.8

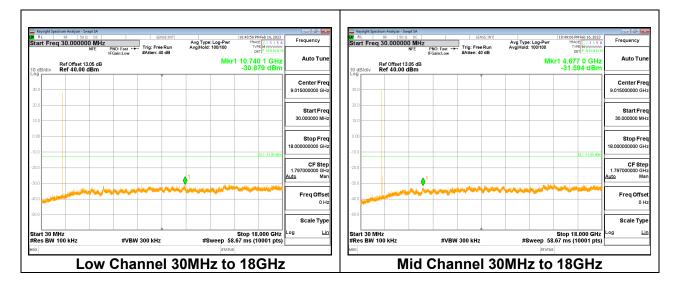
(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

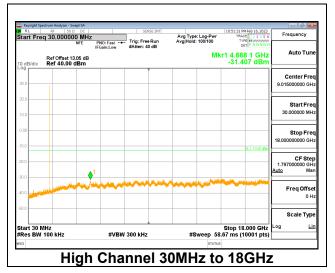
(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts.

TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r02

For each out of band emissions measurement:


- Set display line at -13 dBm (the limit of 43 + 10Log(P))
- Set RWB >= 4kHz and VBW >= 3 x RBW with peak detector for all measurements. The limit is
 an average limit so any emissions that exceed the limit using the peak detector are measured
 using rms detection with an averaging time of 2ms.


RESULTS

Test Engineer ID:	26118	Test Date:	2/16/2023
-------------------	-------	------------	-----------

Page 23 of 50

9.3.1. ANT 1

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 50

10. RADIATED TEST RESULTS

Radiated measurement using the Field Strength Method

Using the test configuration shown in Figure 6 below, we measure the radiated emissions directly from the EUT and convert the measured field strength or received power to EIRP, as required, for comparison to the applicable limits. As stated in 5.5.1 of ANSI C63.26-2015, the field strength measurement method using a test site validated to the requirements of ANSI C63.4 is an alternative to the substitution measurement method.

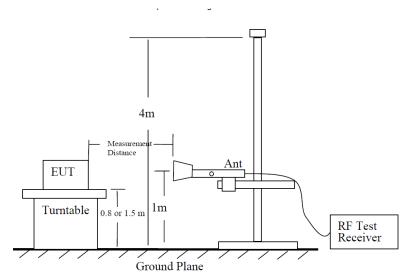


Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Radiated Power Measurement Calculation According to ANSI C63.26-2015

a) E (dBµV/m) = Measured amplitude level (dBµV) + Cable Loss (dB) + Antenna Factor (dB/m).

b) E (dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).

c) E $(dB\mu V/m)$ = EIRP (dBm) – 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.

d) EIRP (dBm) = E (dB μ V/m) + 20log(D) – 104.8; where D is the measurement distance (in the far field region) in m.

So, from d)

The measuring distance is usually at 3m, then 20*Log (3) = 9.5424

Then, EIRP (dBm) = E (dB μ V/m) + 9.5424 - 104.8 = E (dB μ V/m) - 95.2576

Page 25 of 50

10.1. FIELD STRENGTH OF SPURIOUS RADIATION

<u>LIMITS</u>

FCC §25.202 and ISED RSS-170: 5.8

(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r02

For each out of band emissions measurement:

- Set display line at -13 dBm (the limit of 43 + 10Log(P))
- Set RWB >= 4kHz and VBW >= 3 x RBW with peak detector for all measurements. The limit is
 an average limit so any emissions that exceed the limit using the peak detector are measured
 using rms detection with an averaging time of 2ms.

RESULTS

Plots are provided for the center channel. Tabular data for all channels is presented.

Page 26 of 50

10.1.1. ANT 1 (Above 1GHz)

Project #:	14523758
Date:	4/20/23
Test Engineer:	45258
Configuration:	EUT + Charger
Mode:	TX
Chamber:	А

Low channel:

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	3.220328	47.48	Pk	32.7	-95.2	-25.62	-40.64	-13	-27.64	31	156	Н
1	3.220344	44.28	Pk	32.7	-95.2	-25.62	-43.84	-13	-30.84	251	254	V
4	*4.830674	25.7	Pk	34.2	-95.2	-21.84	-57.14	-13	-44.14	0-360	149	Н
3	*4.830674	27.37	Pk	34.2	-95.2	-21.84	-55.47	-13	-42.47	0-360	149	V
6	*6.44098	22.17	Pk	35.6	-95.2	-19.68	-57.11	-13	-44.11	0-360	149	Н
5	*6.44098	21.59	Pk	35.6	-95.2	-19.68	-57.69	-13	-44.69	0-360	149	V

Pk - Peak detector

* - Noise Floor

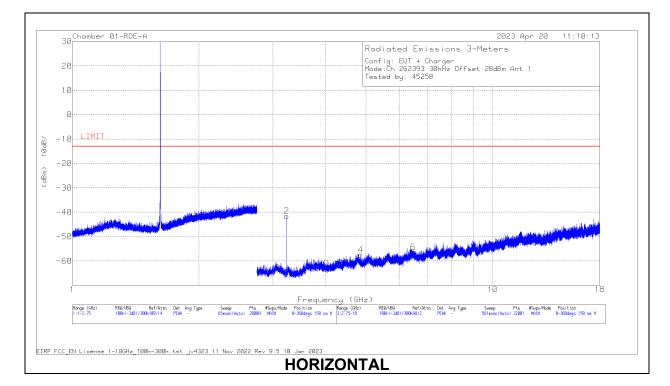
Mid Channel:

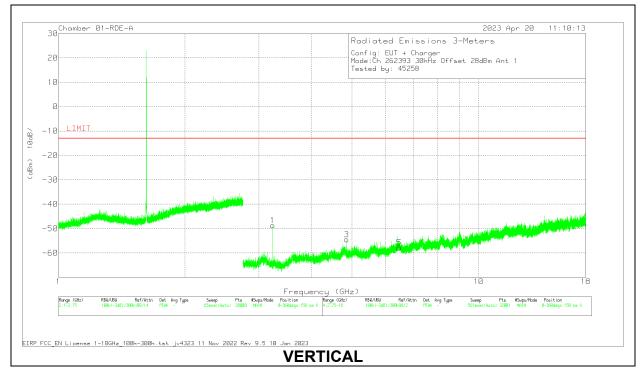
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	3.236857	45.82	Pk	32.7	-95.2	-25.53	-42.21	-13	-29.21	210	312	Н
1	3.236849	40.99	Pk	32.7	-95.2	-25.53	-47.04	-13	-34.04	64	150	V
4	*4.855287	32.51	Pk	34.2	-95.2	-22.16	-50.65	-13	-37.65	94	123	V
3	*4.855455	28.67	Pk	34.2	-95.2	-22.16	-54.49	-13	-41.49	0-360	150	V
6	*6.473863	22.57	Pk	35.6	-95.2	-19.43	-56.46	-13	-43.46	0-360	150	Н
5	*6.473863	21.19	Pk	35.6	-95.2	-19.43	-57.84	-13	-44.84	0-360	150	V

Pk - Peak detector

* - Noise Floor

High Channel:


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.252035	49.68	Pk	33.1	-95.2	-25.31	-37.73	-13	-24.73	204	118	Н
2	3.252057	41.05	Pk	33.1	-95.2	-25.31	-46.36	-13	-33.36	112	173	V
4	4.878075	40.45	Pk	34.2	-95.2	-22.64	-43.19	-13	-30.19	238	103	Н
3	4.878058	42.93	Pk	34.2	-95.2	-22.64	-40.71	-13	-27.71	143	109	V
6	*6.504363	22.35	Pk	35.6	-95.2	-19.66	-56.91	-13	-43.91	0-360	151	Н
5	*6.504363	23.4	Pk	35.6	-95.2	-19.66	-55.86	-13	-42.86	0-360	151	V


Pk - Peak detector

* - Noise Floor

Page 27 of 50

Mid Channel:

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 28 of 50

10.1.2. ANT 4 (Above 1GHz)

Project #:	14523758
Date:	4/20/23
Test Engineer:	45258
Configuration:	EUT + Charger
Mode:	TX
Chamber:	А

Low channel:

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	*3.220368	24.87	Pk	32.7	-95.2	-25.62	-63.25	-13	-50.25	0-360	150	Н
1	*3.220368	23.93	Pk	32.7	-95.2	-25.62	-64.19	-13	-51.19	0-360	150	V
4	4.830489	29.08	Pk	34.2	-95.2	-21.83	-53.75	-13	-40.75	288	122	Н
3	4.830535	30.3	Pk	34.2	-95.2	-21.84	-52.54	-13	-39.54	301	118	V
6	*6.44098	23.49	Pk	35.6	-95.2	-19.68	-55.79	-13	-42.79	0-360	150	Н
5	*6.44098	21.66	Pk	35.6	-95.2	-19.68	-57.62	-13	-44.62	0-360	150	V

Pk - Peak detector

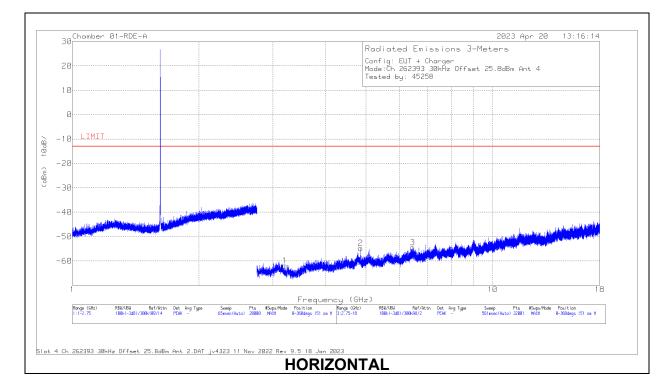
* - Noise Floor

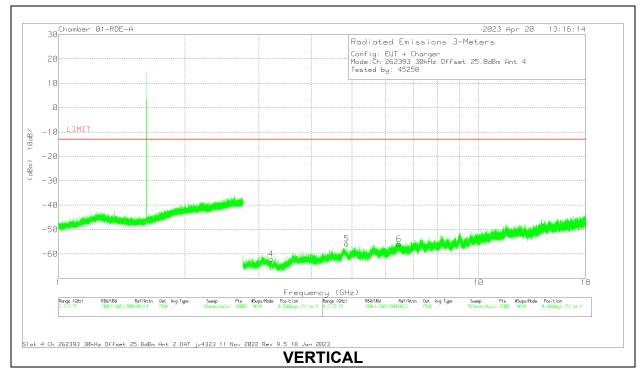
Mid Channel:

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	*3.203211	26.25	Pk	32.8	-95.2	-25.74	-61.89	-13	-48.89	0-360	151	Н
4	*3.2075	26.05	Pk	32.8	-95.2	-25.73	-62.08	-13	-49.08	0-360	151	V
5	4.85529	35.29	Pk	34.2	-95.2	-22.16	-47.87	-13	-34.87	60	110	V
2	4.855286	33.61	Pk	34.2	-95.2	-22.16	-49.55	-13	-36.55	288	153	Н
3	*6.455754	24.58	Pk	35.6	-95.2	-19.5	-54.52	-13	-41.52	0-360	151	Н
6	*6.462426	23.18	Pk	35.6	-95.2	-19.48	-55.9	-13	-42.9	0-360	151	V

Pk - Peak detector

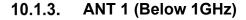
* - Noise Floor

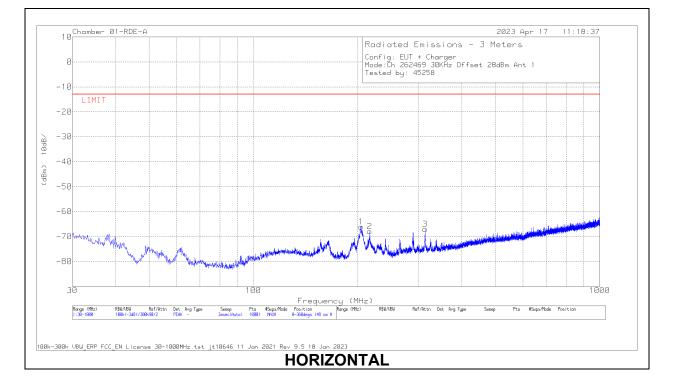

High Channel:

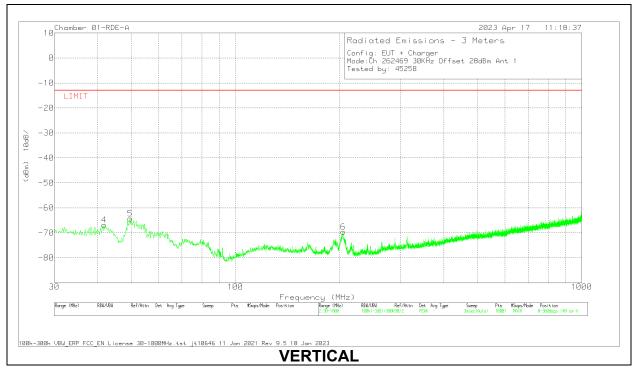

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	EIRP CF	Gain/Loss (dB)	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	*3.251821	24.75	Pk	33.1	-95.2	-25.32	-62.67	-13	-49.67	0-360	151	Н
1	*3.251821	23.46	Pk	33.1	-95.2	-25.32	-63.96	-13	-50.96	0-360	151	V
4	*4.877854	27.31	Pk	34.2	-95.2	-22.64	-56.33	-13	-43.33	0-360	151	Н
3	4.878057	32.51	Pk	34.2	-95.2	-22.64	-51.13	-13	-38.13	57	112	V
6	*6.50484	24.14	Pk	35.6	-95.2	-19.67	-55.13	-13	-42.13	0-360	151	Н
5	*6.50484	21.47	Pk	35.6	-95.2	-19.67	-57.8	-13	-44.8	0-360	151	V

Pk - Peak detector * - Noise Floor

Page 29 of 50


Mid Channel:



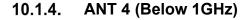

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i TEL: (510) 319-4000 FAX: (510) 661-0888 TREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 TREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 TREET, FREMONT, CA 94538, USA

Page 30 of 50

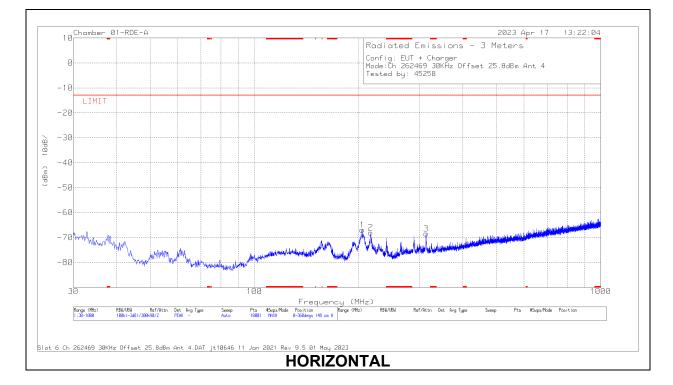
Project #:	14523758
Date:	4/17/2023
Test Engineer:	45258
Configuration:	EUT + Charger
Mode:	TX
Chamber:	А

Page 31 of 50

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i


REPORT NO: 14523758-E19V2 FCC ID: BCG-E8427A

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	232075 ACF (dB) 10m H	Amp/Cbl (dB)	EIRP CF	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	41.737	37.03	Pk	18.4	-27.1	-95.2	-66.87	-13	-53.87	0-360	148	V
5	49.691	43.83	Pk	14.1	-27	-95.2	-64.27	-13	-51.27	0-360	148	V
1	204.212	36.92	Pk	17.3	-25.1	-95.2	-66.08	-13	-53.08	0-360	148	Н
6	204.697	33.51	Pk	17.2	-25.1	-95.2	-69.59	-13	-56.59	0-360	148	V
2	216.628	35.84	Pk	16.4	-25	-95.2	-67.96	-13	-54.96	0-360	148	Н
3	313.24	32.86	Pk	19.7	-24.4	-95.2	-67.04	-13	-54.04	0-360	148	Н


Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 32 of 50

Project #:	14523758
Date:	4/17/2023
Test Engineer:	45258
Configuration:	EUT + Charger
Mode:	TX
Chamber:	A

Page 33 of 50

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i

REPORT NO: 14523758-E19V2 FCC ID: BCG-E8427A

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	232075 ACF (dB) 10m H	Amp/Cbl (dB)	EIRP CF	Corrected Reading (dBm)	LIMIT	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	32.91	31.25	Pk	25	-27.2	-95.2	-66.15	-13	-53.15	0-360	148	V
5	42.416	37.83	Pk	17.9	-27.1	-95.2	-66.57	-13	-53.57	0-360	148	V
6	53.862	44.42	Pk	13.3	-26.9	-95.2	-64.38	-13	-51.38	0-360	148	V
1	204.794	36.24	Pk	17.1	-25.1	-95.2	-66.96	-13	-53.96	0-360	148	Н
2	216.628	35.78	Pk	16.4	-25	-95.2	-68.02	-13	-55.02	0-360	148	Н
3	313.046	31.43	Pk	19.7	-24.4	-95.2	-68.47	-13	-55.47	0-360	148	Н

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 50

10.2. ADDITIONAL UNWANTED EMISSION (1559MHz – 1610MHz)

<u>LIMITS</u>

FCC §25.216

Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service

(a) The e.i.r.p. density of emissions from mobile earth stations placed in service on or before July 21, 2002 ...

(b) The e.i.r.p. density of emissions from mobile earth stations placed in service on or before July 21, 2002 ...

(c) The e.i.r.p. density of emissions from mobile earth stations placed in service after July 21, 2002 with assigned uplink frequencies between 1610 MHz and 1660.5 MHz shall not exceed -70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559-1605 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed -80 dBW, averaged over any 2 millisecond active transmission interval, in the 1559-1605 MHz band.

FCC §25.216 and ISED RSS-170: 5.9.1

(g) Mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies in the 1610-1626.5 MHz band shall suppress the power density of emissions in the 1605-1610 MHz band-segment to an extent determined by linear interpolation from -70 dBW/MHz at 1605 MHz to -10 dBW/MHz at 1610 MHz averaged over any 2 millisecond active transmission interval. The e.i.r.p of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed a level determined by linear interpolation from -80 dBW at 1605 MHz to -20 dBW at 1610 MHz, averaged over any 2 millisecond active transmission interval.

TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r02

Measure wideband emissions using either: RBW = 1MHz, VB = 3MHz RBW < 1MHz, integrate over 1MHz if necessary

Measure narrowband emissions using: RBW = 10kHz, VB = 30kHz as worst case setting

Set detector = rms, sweep time ~ number of points x 2ms, and sweep multiple times with max hold enabled. When the detector is set to rms the number of points is set to exceed the minimum number required by ANSI C63.26 for average measurements. A peak detector may be used (e.g. to avoid slow sweep times for the narrowband emissions measurements) in lieu of average rms detection as this will provide a more conservative (higher) measured value than the rms value.

RESULTS

Both horizontal / vertical polarizations and low/ mid/ high channels were investigated on ANT 1 and ANT 4. It was found low channel to be worst case for both antennas.

Page 35 of 50

Project #:	14523758
Date:	6/14/23
Test Engineer:	30606
Configuration:	EUT + Charger
Mode:	TX
Chamber:	D

Offset Calculation Offset:

Antenna Factor (dB/m)	Amp/Cbl/Fltr/Pad (dB)	EIRP CF	Offset (dB)
28.60	-20.40	11.80	20.00

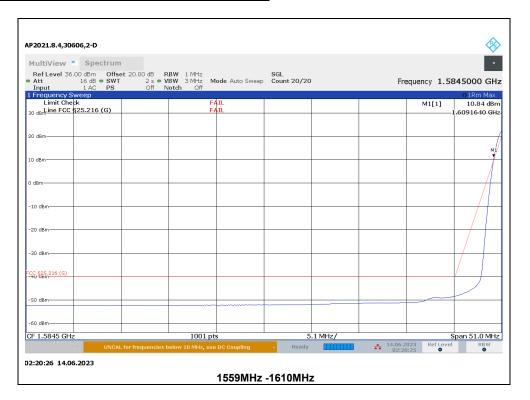
Page 36 of 50

10.2.1. ANT 1

Wideband Low Channel 1610.17MHz Vertical:

lultiView	Spectrum						
Ref Level 36 Att	.00 dBm Offset 2 16 dB • SWT	20.00 dB RBW 1 MI 2 s • VBW 3 MI	Hz Hz Mode Auto Sweep	SGL Count 20/20	Fre	quency 1.5	845000 GH
Input Frequency S	1 AC PS	Off Notch (off			.quene, 110	O1Rm Max
Limit Che	ck		PASS			M1[1]	-51.09 dBr
dBm	§25.216 (G)		PASS				1.6026510 GH
O dBm							
) dBm							
dBm							
ubm							
10 dBm							
20 dBm							
30 dBm							+/-+
0.005.015.15							
C §25.216 (G) HU-UBM							+ +
						M1	
50 dBm	<u> </u>					¥	
50 dBm							
- 1.5845 GH	Z	11	001 pts	5.1 MHz/	14.06.00		Span 51.0 MH RBW
	6.2023	frequencies below 10 M		-1610MHz	14.06.21 03:58	Ref Level	•
2021.8.4,30	6.2023	frequencies below 10 M			▲ 440024 03359	\$53 O	
2021.8.4,30	6.2023 606,2-D Spectrum	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz			•
2021.8.4,30 JultiView Ref Level 31 Att Input	6.2023 506,2-D Spectrum .12 dBm Offset 2 16 dB SWT 1 AC PS	20.00 dB ● RBW 1 MI	1559MHz	-1610MHz		equency 1.60	075000 GH
2021.8.4,30 fultiView fultiView fultiview fult	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60	0175000 GH 12.82 dBr
2021.8.4,30 fultiView Ref Level 31 Att Input Frequency S Limit Che Limit Che Limit Che	6.2023 606,2-D 	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz Hz Hz Mode Auto Sweep	-1610MHz		quency 1.60	075000 GH
2021.8.4,30 fultiView Ref Level 31 Att Input Frequency S Limit Che Limit Che Limit Che	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	0175000 GH 12.82 dBr
2021.8.4,30 AultiView Ref Level 31 Att Input Frequency S Limit FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AultiView Ref Level 31 Att Input Frequency S Limit FC Limit FCC	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AultiView Ref Level 31 Att Input Frequency 2 Limit Che Line FCC 0 dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AultiView Ref Level 31 Att Input Frequency 2 Limit Che Line FCC 0 dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AutiView Att Input Frequency 2 Line FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AutiView Att Input Frequency 2 Line FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 fultiView Ref Level 31 Att Input Enc Linic FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 fultiView Ref Level 31 Att Input Enc Linic FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
Ref Level 31 Att Input Frequency S Limit Che	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,300 fultiView Ref Level 31 Att Input Frequency 5 Linic FCC 0 d8m d8m d8m 20 d8m 30 d8m 30 d8m	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AultiView Ref Level 31 Att Linit Che Linit Che Linit Che Line FCC D dBm	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 fultiView Ref Level 31 Att Input Linic the Linic FCC 0 d8m d8m d8m 20 d8m 20 d8m 20 d8m 20 d8m 20 d8m 20 d8m 20 d8m	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,300 fultiView Ref Level 31 Att Input Frequency 5 Linic FCC 0 d8m d8m d8m 20 d8m 30 d8m 30 d8m	6.2023 606,2-D Spectrum .12 dbm Offset 2 16 db = SWT 1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 AultiView Ref Level 31 Att Input Frequency 2 0 dBm dBm dBm 0 dBm 20 dBm 20 dBm 20 dBm (0 dBm (0 dBm) (0	6.2023 606,2-D - Spectrum -12 dbm Offset 2 16 db = SWT -1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 IultiView Ref Level 31 Att Input Limit Che Limit Che Limit Che Limit Che Mam- dam	6.2023 606,2-D - Spectrum -12 dbm Offset 2 16 db = SWT -1 AC PS weep dk	20.00 dB = RBW 1 M 25 = VBW 3 M	1559MHz	-1610MHz		quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH
2021.8.4,30 IultiView Ref Level 31 Att Input Frequency 2 0 dBm 0 dBm	6.2023	20.00 dB • RBW 1 M 2 s • VBW 3 M Off Notch c	1559MHz	-1610MHz	Fre	quency 1.60 M1[1]	075000 GH 12.82 dB 12.82 dB 60950820 GH

Page 37 of 50

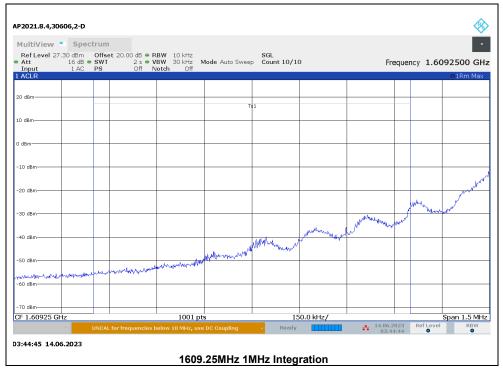

Narrowband Low Channel 1610.17MHz Vertical:

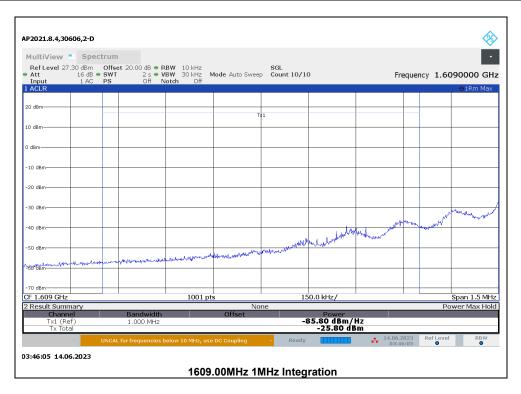
2021.8.4,30606	5,2-D								<u> </u>
IultiView 🍨									•
Ref Level 26.12 Att : Input Frequency Swe	16 dB • SWT 1 AC PS		W 30 kHz N	1ode Auto Sweep	SGL Count 20/20)	Frec	uency 1.58	845000 GH
Limit Check				SS				M1[1]	-60.16 dBrr
D dBm Line FCC §2	25.216 (G)		PA	SS					1.6026510 GHz
) dBm									
dBm									
upm -									
10 dBm									
20 dBm									/
30 dBm									
									/ 🖌
40 dBm									
C_§25.216 (G)									
Jo doll									. Market and the second s
50 dBm								M1	And
1			a dar d	and the second second	d marine	Anal transford	Marrian And	Mr. Ar Ward	eor de
70 dBm	n Merel Materia and and an	hereward	hand the second of the second s	autredititi Vilherbernitane	u Mart Marta Arabana	olatathan oli tan	a sola duchitle	1	
F 1.5845 GHz			1001 pt	S	5	.1 MHz/			span 51.0 MHz
	UNCAL for	frequencies be	elow 10 MHz, use	DC Coupling	- Ready		14.06.202 02:21:2	23 Ref Level	RBW
:21:20 14.06.2	032								

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i

Page 38 of 50

Wideband Low Channel 1610.17MHz Horizontal:




Page 39 of 50

Plots below show passing result using integration method:

Page 40 of 50

Narrowband Low Channel 1610.17MHz Horizontal:

AP2021.8.4,30606,2-D					
					~
MultiView Spectrum					•
Ref Level 26.12 dBm Offset 2 Att 16 dB SWT	0.00 dB • RBW 10 kHz 159 ms • VBW 30 kHz M	SGI Iode Auto Sweep Cor		Frequency	1.5845000 GHz
Input 1 AC PS		,		requency	
1 Frequency Sweep Limit Check	PA	SS		M1[1	O 1Pk Max -60.16 dBm
20 dBm FCC_ §25.216 (G)	PA				1.6026510 GHz
10 dBm					
10 000					
					/ /
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
FCC_ 825.216 (G)					
-60 dBm				M1	he will N
-60 dBm				a contractor of	Nov Mar and
man war war war and the second and the second	phypermetal and the second	mannannannannannan	www.www.handhanahteliah	auniversity where a straight and a s	
- 70 dBm					
CF 1.5845 GHZ	1001 pts	;	5.1 MHZ/		Span 51.0 MHz Level RBW
UNCAL for	frequencies below 10 MHz, use	DC Coupling 🔹	Ready	02:21:20	O O
02:21:20 14.06.2023					
	4	559MHz – 16 ⁴			
		222 ALIA 222			

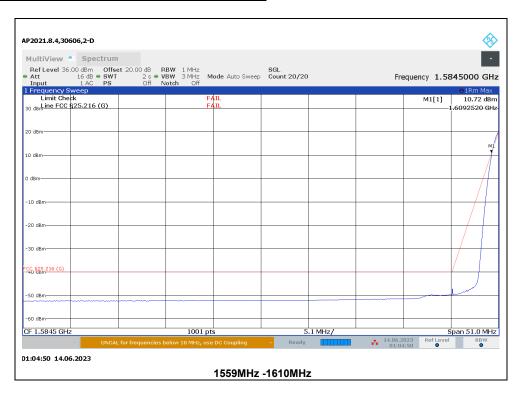
Page 41 of 50

10.2.2. ANT 4

Wideband Low Channel 1610.17MHz Vertical:

ultiView	Spectrum							
Ref Level 36 Att		20.00 dB RBW 1 2 s • VBW 3	MHz MHz Mode Auto Swe	SGL ep Count 20/20		Fre	ouency 1 5	845000 GH
Input Frequency S	1 AC PS	Off Notch	Off		-		quency 1.5	01Rm Max
Limit Che	k l		PASS				M1[1]	-51.03 dBr
dBm FCC	§25.216 (G)		PASS					1.6026510 GH
dBm								
ubm								
dBm								
								//
dBm								<u> </u>
0 dBm								
D dBm								
D dBm								
J JDH								
625.216 (G)								<u> </u>
) dBm					L		M1	
) dBm								
1.5845 GH			1001 pts		5.1 MHz/	14.06.2	023 Ref Leve	Span 51.0 MH
		Trequencies obiew 1	MH2, use DC Coupling	z -1610MH		•• 01:39	:41 0	
2021.8.4,300	506,2-D Spectrum		1559MH	<u>z -1610MH</u>	Z	• 01:39	•	•
2021.8.4,300 ultiView Ref Level 31 Att Input	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWT 1 AC PS		1559MH	<u>z -1610MH</u>	Z	0.03	•	
2021.8.4,300 ultiView Ref Level 31 Att Input Frequency S	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWT 1 AC PS weep		1559MH	<u>z -1610MH</u>	Z	0.03	equency 1.6	075000 GH
2021.8.4,300 ultiView Ref Level 31 Att Input Trequency S Limit Che	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWT 1 AC PS weep		MHz MHz Off	<u>z -1610MH</u>	Z	0.03	equency 1.6	075000 GH 01Rm Max 11.76 dBr
2021.8.4,300 ultiView ' Ref Level 31 Att input Tequency S Limit Che Lime FCC	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	equency 1.6	075000 GH 01Rm Max 11.76 dBr
2021.8.4,300 ultiView ' tet Level 31 tit requency S Limit Che Limit Che Abm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 01Rm Max 11.76 dBr
2021.8.4,300 ultiView ' tet Level 31 tit requency S Limit Che Limit Che Abm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 01Rm Max 11.76 dB 0950820 GH
2021.8.4,300 ultiView ' tef Level 31 tit irequency S Line FCC dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' tef Level 31 tit irequency S Line FCC dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView tequency tim time Limit Che Limit Che Limit Che Mam	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView Ref Level 31 At input Tequency S Linit Che Linit Che dBm dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' Ref Level 31 tit requency 8 Limit Che Limit Che Limit Che Lime FCC dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' Ref Level 31 tit requency 8 Limit Che Limit Che Limit Che Lime FCC dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' RefLevel 31 Att Input ' requency Limit Che Line FCC dBm dBm dBm dBm D dBm D dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' Acf Level 31 At Level 31 At Level 31 Trequency S Line FCC dBm dBm dBm dBm 0 dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' Acf Level 31 At Level 31 At Level 31 Trequency S Line FCC dBm dBm dBm dBm 0 dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' Acf Level 31 Att 'requency fs Limit Che Limit FCC dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
Ref Level 31 Att Input Frequency S Limit Che	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' tef Level 31 titu requency Se Limit Che Limit FCC dBm dBm dBm) dBm) dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' tel Level 31 tht Line FCC dBm dBm dBm dBm dBm dBm dBm dBm	506,2-D Spectrum 12 dBm Offset 2 16 dB • SWI 1 AC PS weep kk		MHz MHz MHz Mode Auto Swe	<u>z -1610MH</u>	Z	0.03	2quency 1.6	075000 GH 11.76 dBr 50950820 GH
2021.8.4,300 ultiView ' tel Level 31 tht Line FCC dBm dBm dBm dBm dBm dBm dBm dBm	506,2-D 506,2-D 12 dbm Offset 2 16 db SWT 1 AC PS weep ck §25.216 (G)	20.00 dB = RBW 1 2 s = VEW 3 Off Notch	MHz MHz MHz Mode Auto Swe	sGL count 20/20	Z	0.03	Aquency 1.6	075000 GH 01Rm Max 11.76 dBr .60950820 GH 91

Page 42 of 50

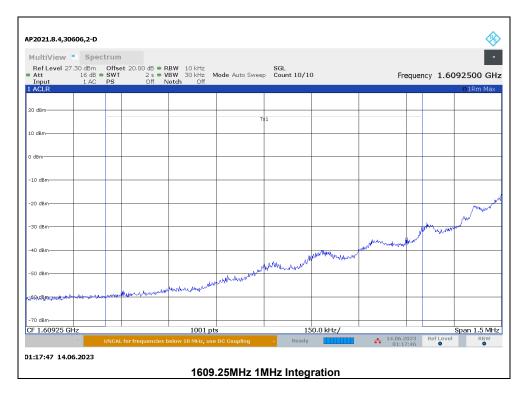

Narrowband Low Channel 1610.17MHz Vertical:

P2021.8.4,30606,2-D					
MultiView Spectrui Ref Level 26.12 dBm Off		10 kHz	SGL		•
		30 kHz Mode Auto Swe		Frequency 1.	.5845000 GHz 01Pk Max
Limit Check OdBmLine FCC §25.216 (G)		PASS PASS		M1[1]	
0 dBm					
) dBm					/-
10 dBm					
20 dBm					
30 dBm					
40 dBm					
CC <u>\$25.216 (G)</u> 50-08m					- Jul
60 dBm	Phase has a share but	starter holes when	and all sheep that he was not	M2 M2	mandreymand
70'd8m	 neos la Polodida illation. 	1001 pts	5.1 MHz/	I ad Anti- Anna	Span 51.0 MHz
	AL for frequencies below	10 MHz, use DC Coupling	• Ready	14.06.2023 Ref Le 01:42:02	
1:42:02 14.06.2023			– 1610MHz		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i

Page 43 of 50

Wideband Low Channel 1610.17MHz Horizontal:



Page 44 of 50

Plots below show passing result using integration method:

Page 45 of 50

Narrowband Low Channel 1610.17MHz Horizontal:

ultivian.	Spectrum								
		et 20.00 dB 🖷 R	BW 10 kHz		SGL				
Att Input	16 dB • SWT 1 AC PS	159 ms 🖷 V Off N		1ode Auto Swee	ep Count 20/2	D	Fre	quency 1.5	845000 GHz
Frequency S Limit Che		1	PA	80	1		1		o1Pk Max
dBm Line FCC_			PA	55 55				M1[1]	-62.31 dBm 1.6026950 GHz
) dBm									
dBm									/
10 dBm									<u> </u>
20 dBm									
30 dBm									
10 dBm									
C_ <u>§25.216 (G)</u>									
i0 dBm								M1	
Manna	www.hurwyl.um	whether when the	WANNAMAN	unyhhumhmuth	windshares	where we wanted and all the	anyanna an Inivitation	mounder	MMMMM.
= 1.5845 GHz			1001 pt		5	.1 MHz/			Span 51.0 MHz
1.00 10 0112		L for frequencies b			 Ready 		+ 14.06.20 01:15		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i

Page 46 of 50

10.3. CARRIER-OFF STATE EMISSIONS (1559MHz – 1610MHz)

<u>LIMITS</u>

FCC §25.216 and ISED RSS-170: 5.10

Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service

(i) The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies between 1 and 3 GHz shall not exceed -80 dBW/MHz in the 1559-1610 MHz band averaged over any two millisecond interval.

ISED RSS-170: 5.10 Carrier-off State Emissions

Mobile equipment with transmitting frequencies between 1 GHz and 3 GHz shall have the e.i.r.p. density of carrier-off state emissions in the band 1559-1610 MHz not exceed –80 dBW/MHz.

TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r02

Set RBW = 1MHz, VB = 3MHz, Detector = RMS, Sweep Time = Number of Points x 2ms, and sweep multiple times with Max Hold enabled.

RESULTS

No emissions were found on both horizontal and vertical polarization for ANT 1 and ANT 4.

Project #:	14523758
Date:	6/14/23
Test Engineer:	31300
Configuration:	EUT + Charger
Mode:	RX (TX Off)
Chamber:	А

Offset Calculation Offset:

Antenna Factor (dB/m)	Amp/Cbl/Fltr/Pad (dB)	EIRP CF	Offset (dB)
27.93	-28.84	11.8	10.89

Page 47 of 50

10.3.1. ANT 1

021.8.4,31300,1A					
ultiView Spectrum Ref Level 26.89 dBm Offset :	10.89 dB BBW 1 MHz	SGL			
Att 16 dB • SWT Input 1 AC PS	2 s = VBW 3 MHz M	ode Auto Sweep Cour	nt 20/20	Freque	ency 1.5845000 GH
Frequency Sweep				1 1	01Rm Clrw
Limit Check Line FCC §25.216 (I)	PA PA				M1[1] -60.79 dBr 1.6031470 G⊢
dBm					
IBm					
D dBm					
0 dBm					
D dBm					
0 dBm					
\$25.216 (I)					
					M1
0 dBm					
0 dBm					
1.5845 GHz	1001 pts		5.1 MHz/	2023-07-01	Span 51.0 MH Ref Level RBW
₹			Ready Ready	02:16:41	0

10.3.2. ANT 4

Page 48 of 50

10.4. FREQUENCY STABILITY

<u>LIMITS</u>

FCC §25.202

(d) Frequency tolerance, Earth stations. The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

ISED RSS-170: 5.3

For mobile earth station equipment, the carrier frequency shall not depart from the reference frequency by more than ±10 ppm.

TEST PROCEDURE

Use spectrum with Frequency Error measurement capability.

- Temp. = -30°C to +50°C
- Voltage = (85% 115%)

Low voltage, 3.23VDC, Normal, 3.8VDC and High voltage, 4.37VDC. End Voltage, 2.88VDC.

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

RESULTS

Test Engineer ID: 26118 Test Date: 3/16/2023
--

Frequency Reference (MHz) Condition		1610.	16916	Frequency	Delta	Frequency
		F low @ -10dB BW	F high @ -10dB BW	Reading (MHz)	(Hz)	Stability (ppm)
Temperature	Voltage	(MHz)	(MHz)			
Normal (20 C)		1610.077938	1610.260375	1610.169156		
Extreme (50C)		1610.079250	1610.259813	1610.169531	375.0	0.23
Extreme (40C)		1610.077563	1610.261250	1610.169406	250.0	0.16
Extreme (30C)		1610.078625	1610.259813	1610.169219	62.5	0.04
Extreme (10C)	Normal	1610.078500	1610.261000	1610.169750	593.8	0.37
Extreme (0C)		1610.079125	1610.260563	1610.169844	687.5	0.43
Extreme (-10C)		1610.077938	1610.262188	1610.170063	906.2	0.56
Extreme (-20C)		1610.078875	1610.262313	1610.170594	1437.5	0.89
Extreme (-30C)		1610.078813	1610.261000	1610.169906	750.0	0.47
	15%	1610.078500	1610.261188	1610.169844	687.5	0.43
20C	-15%	1610.078438	1610.262250	1610.170344	1187.5	0.74
	End Point	1610.078125	1610.261375	1610.169750	593.8	0.37

Page 49 of 50

11. SETUP PHOTOS

Please refer to 14523758-EP1V1 for setup photos

END OF REPORT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701i

Page 50 of 50