CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD DATE OF ISSUE: 29/Nov/2021 CERTIFICATE NUMBER : 13685241JD01B 5772 UL INTERNATIONAL (UK) LTD Page 1 of 6 **UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD APPROVED SIGNATORY BASINGSTOKE, HAMPSHIRE RG24 8AH, UK M. Marca TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com Naseer Mirza Customer : UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA **Equipment Details:** Description: Dipole Validation Kit Date of Receipt: 19/Nov/2021 Manufacturer: SPEAG Type/Model Number: D835V2

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

4d002

24/Nov/2021

Masood Khan Test Engineer

VILAN

Serial Number:

Calibration Date:

Calibrated By:

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 13685241JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	16 Mar 2021	12
PRE0135218	Dipole	SPEAG	D900V2	SN1d168	19 Oct 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	1.
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND 1328.5170K92	100151	23 Mar 2021	12
ULEID212645	Calibration Kit	Rhode & Schwarz	ZN-Z135 (f)	101005	22 Oct 2021	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	25 Mar 2021	12

CERTIFICATE NUMBER : 13685241JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number: F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	15 mm (with spacer)	
Frequency:	835 MHz	

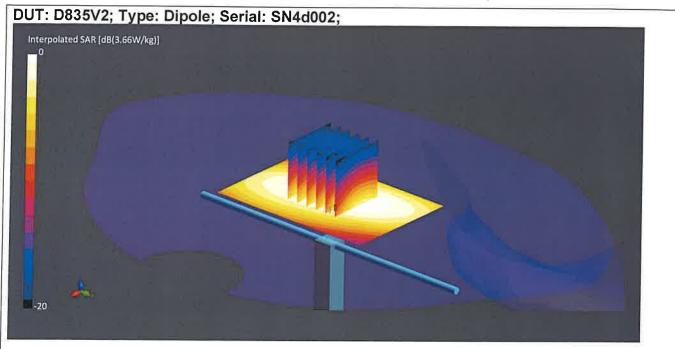
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Ligui	d Temp	Decomotore	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	835	21.2 °C	21 %	21100	21.00	εr	41.50	42.10	± 5%
ricau	000	21.2 0	21 0	21.1 C	21 6	σ	0.97	0.93	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.44 W/Kg	9.71 W/Kg	+16.80 / -16.43%
Tieau	SAR averaged over 10g	1.61 W/Kg	6.41 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	48.70 - 0.937 jΩ	± 3.01
Tieau	Return Loss	35.98	± 3.34

CERTIFICATE NUMBER : 13685241JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

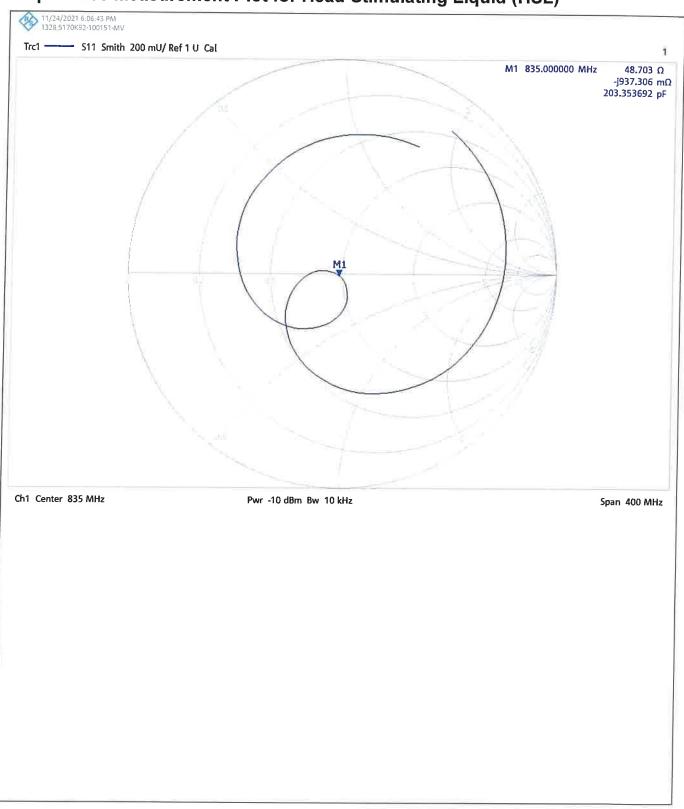
Communication System: CW UID: 0; Frequency: 835.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_23Nov2021_030728_Head - 750 900 1800 1900 5GHz 5%; Medium parameters used: f = 835.0 MHz; σ = 0.93 S/m; ϵ_r = 42.1; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 1.19 %; $\Delta \sigma$ = 2.01 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(9.97, 9.97, 9.97); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY6.14.0.959

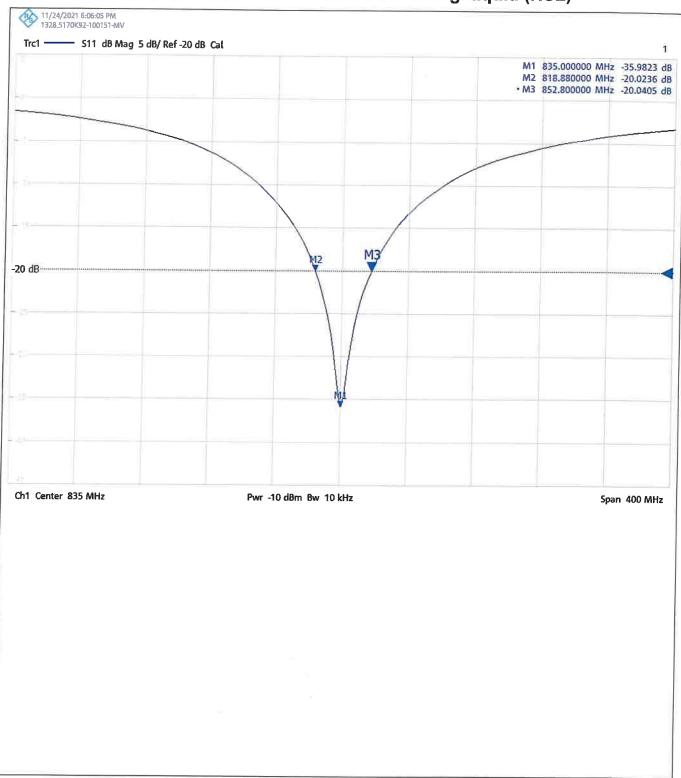

Area Scan (60x90):Interpolated grid: dx=15 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 2.870 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 16.3 mm; Vertical M2/M1 Ratio: 88.4 %; SAR(1 g) = 2.440 W/kg; SAR(10 g) = 1.610 W/kg

CERTIFICATE NUMBER : 13685241JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

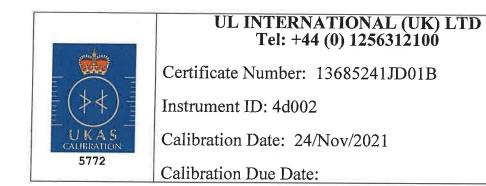


CERTIFICATE NUMBER : 13685241JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01B

Instrument ID: 4d002

Calibration Date: 24/Nov/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01B

Instrument ID: 4d002

Calibration Date: 24/Nov/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D2450V2-706_Jan22

S

С

Dbject	D2450V2 - SN:706				
alibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz		
alibration date:	January 13, 2022	2			
he measurements and the uncert	ainties with confidence pre-	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.		
Calibration Equipment used (M&TE	- ondoar for ounbradon)				
	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
imary Standards	1	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	Scheduled Calibration Apr-22		
mary Standards wer meter NRP	ID #				
imary Standards ower meter NRP ower sensor NRP-Z91	ID # SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22		
imary Standards wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91	ID # SN: 104778 SN: 103244	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	Apr-22 Apr-22		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291)	Apr-22 Apr-22 Apr-22		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator rpe-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243)	Apr-22 Apr-22 Apr-22 Apr-22		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ope-N mismatch combination eference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22		
alibration Equipment used (M&TE rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator rpe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator ope-N mismatch combination oference Probe EX3DV4 AE4 ocondary Standards ower meter E4419B	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check		
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check In house check: Oct-22		
mary Standards wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91 ference 20 dB Attenuator be-N mismatch combination ference Probe EX3DV4 E4 condary Standards wer meter E4419B wer sensor HP 8481A wer sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22		
imary Standards wer meter NRP ower sensor NRP-Z91 ofference 20 dB Attenuator pe-N mismatch combination ofference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.8 W/kg ± 17.0 % (k=2)
	r f	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 W/kg
SAR measureu	230 mv input power	0.52 W/Kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω + 3.9 jΩ
Return Loss	- 27.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.143 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

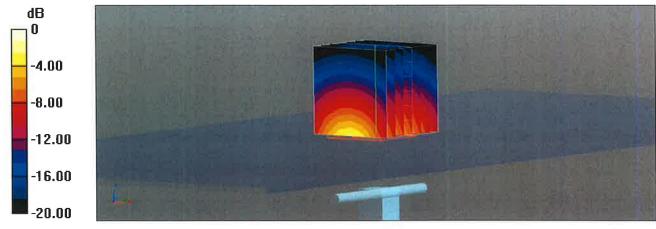
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

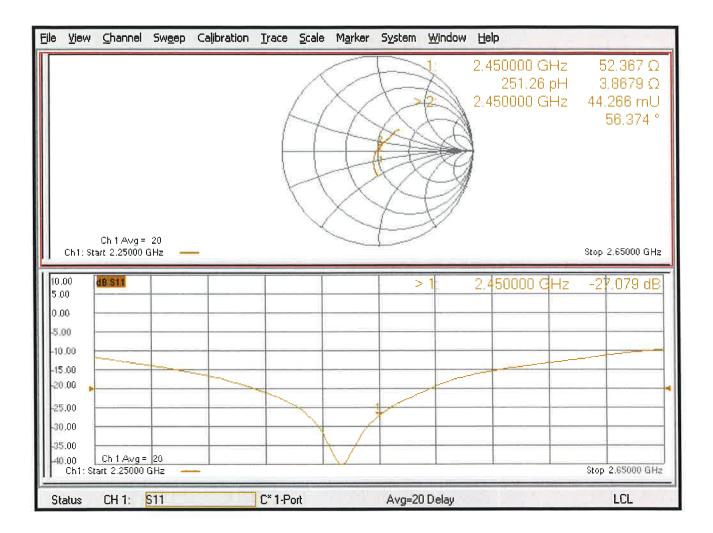
Date: 13.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.3 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.32 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.3% Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIF

CERTIFICATE NUMBER : 13697410JD01H

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

INCOMPANIE INCOMPANIE I

5774

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D2600V2		
Serial Number:	1006		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Cianatura	112.1		

Signature:

Molanz

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22 \pm 3) 0 C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0135603	Dipole	SPEAG	D2600V2	SN1109	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	2600 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	2600	21.6 °C	21.2 %	20.8 °C	21.1 %	٤r	39.00	39.23	± 5%
neau	2000	21.0 C	21.2 C	20.0 C	21.1 C	σ	1.96	1.94	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.80 W/Kg	54.94 W/Kg	+16.80 / -16.43%
neau	SAR averaged over 10g	6.34 W/Kg	25.24 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	44.09 + 0.92j Ω	± 3.01
пеац	Return Loss	23.74	± 2.93

CERTIFICATE NUMBER : 13697410JD01H

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2600V2; Type: Dipole; Serial: SN1006;

Communication System: CW UID: 0; Frequency: 2600.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 2600.0 MHz; σ = 1.94 S/m; ϵ_r = 39.2; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.57 %; $\Delta \sigma$ = -1.03 %; No correction

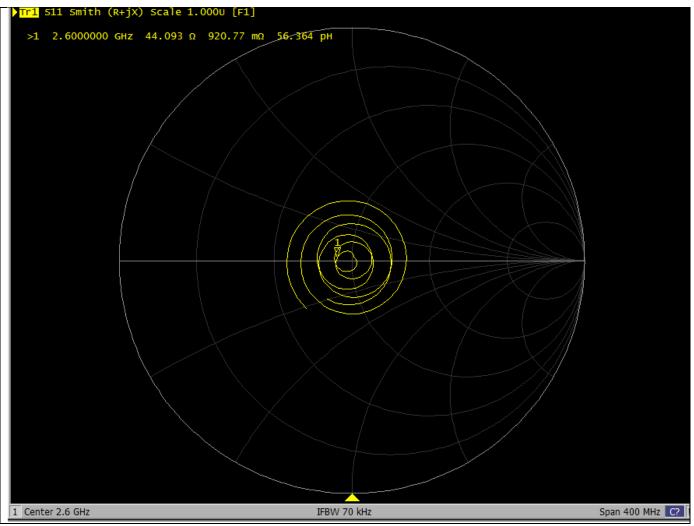
Phantom section: Flat;

DASY 6 Configuration: - Laboratory Name: Site65;

- Laboratory Name: Sileos; Drobo: ES2DV2 - SN2225; ConvE(4.44

- Probe: ES3DV3 - SN3335; ConvF(4.44, 4.44, 4.44); Calibrated: 14 Jan 2021

- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

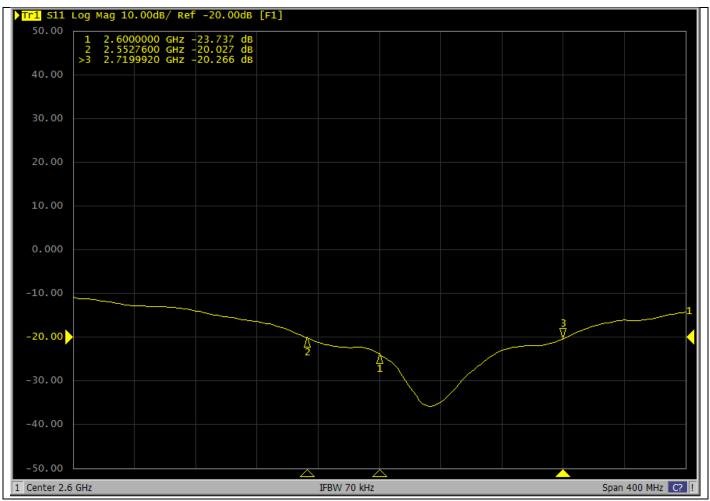

- Measurement SW: cDASY16.0.0.116

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 18.620 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 9.1 mm; Vertical M2/M1 Ratio: 81.0 %; SAR(1 g) = 13.800 W/kg; SAR(10 g) = 6.340 W/kg

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01H

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
UKAS CALIBRATION 5772	Certificate Number: 13697410JD01H
	Instrument ID: 1006
	Calibration Date: 29/Sep/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01H

Instrument ID: 1006

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01H

Instrument ID: 1006

Calibration Date: 29/Sep/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S

С

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D3500V2-1060_Feb22

CALIBRATION CERTIFICATE

Object	D3500V2 - SN:1060
Calibration procedure(s)	QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz
Calibration date:	February 25, 2022
	ints the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	31-Dec-21 (No. EX3-3503_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Alle 2
			110
Approved by:	Niels Kuster	Quality Manager	VA
		/	
		A 71 N	Issued: March 1, 2022
his calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the 0 nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	2.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	7.5512	<u></u>

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 7.4 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.13	2 ns
---------------------------------------	------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

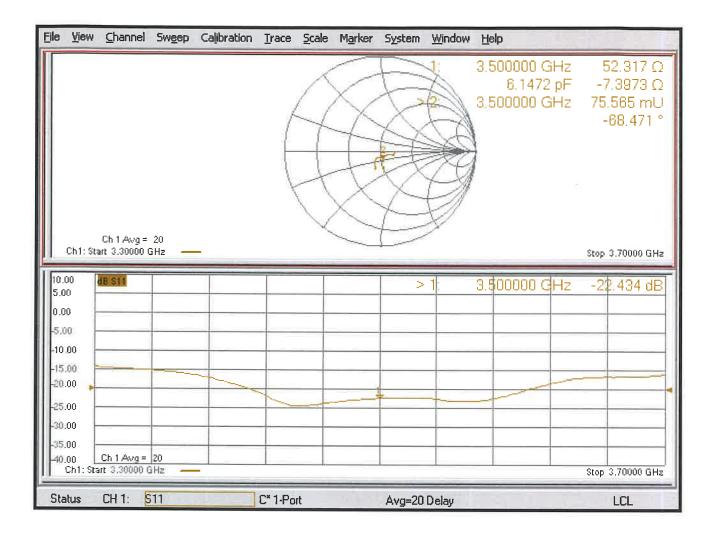
Manufactured by	SPEAG	
-----------------	-------	--

Date: 25.02.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1060

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; σ = 2.93 S/m; ϵ_r = 37.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.72 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.65 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.3% Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.08 dBW/kg

CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD DATE OF ISSUE: 29/Nov/2021 CERTIFICATE NUMBER: 13685241JD01E UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE

M. Marce

Naseer Mirza

19/Nov/2021

Date of Receipt:

Customer : UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Equipment Details:

RG24 8AH, UK

Description:	Dipole Validation Kit
Manufacturer:	SPEAG

Type/Model Number: D5GHzV2

Serial Number: 1168

Calibration Date: 24/Nov/2021

Calibrated By:

Masood Khan Test Engineer

Signature:

MAAL

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 9

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	16 Mar 2021	12
PRE0132081	Dipole	SPEAG	D5GHzV2	SN1016	9 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	ā
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND 1328.5170K92	100151	23 Mar 2021	12
ULEID212645	Calibration Kit	Rhode & Schwarz	ZN-Z135 (f)	101005	22 Oct 2021	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	25 Mar 2021	12

CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 9

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)	

Frequency: 5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Room Temp		d Temp	Parameters	Target	Measured	Uncertainty	
onnaiant Eigena	(MHz)	Start	End	Start	End	Parameters	Falameters	Value	Value	(%)
Head	5250	21.2 °C	21 %	21100	21 %	۲3	35.93	35.83	± 5%	
lioud	0200	21.2 0	210	21.1 C	21 0	σ	4.71	4.66	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	7.36 W/Kg	73.6 W/Kg	+16.77 / -16.70%
Ticau	SAR averaged over 10g	2.12 W/Kg	21.2 W/Kg	±16.70%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter Measured Level		Uncertainty (%)
Head	Impedance	60.19 + 3.72j Ω	± 3.01
ricau	Return Loss	20.19	± 2.93

Frequency: 5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp		Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Farameters	Value	Value	(%)
Head	5600	21.2 °C	21 %	21.1.00	21.00	13	35.53	35.15	± 5%
Hodd		21.2 0	210	21.1 6	21 0	σ	5.065	5.059	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.17 W/Kg	81.7 W/Kg	+16.77 / -16.70%
	SAR averaged over 10g	2.33 W/Kg	23.3 W/Kg	±16.70%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid Parameter		Measured Level	Uncertainty (%)	
Head	Impedance	45.95 + 4.75j Ω	± 3.01	
	Return Loss	23.66	± 2.93	

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 13685241JD01E

Page 4 of 9

Frequency: 5750 MHz

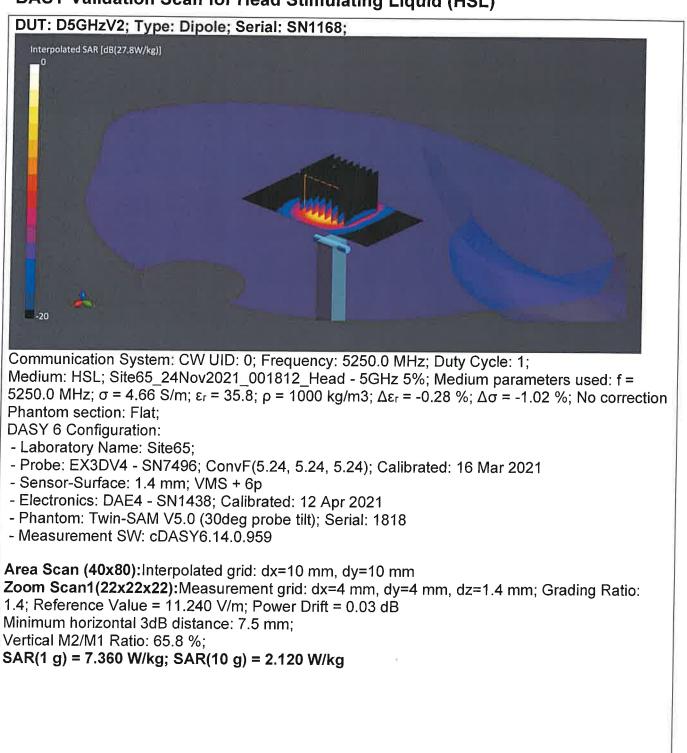
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	Farameters	Value	Value	(%)
Head	5750	21.2 °C 21 °C		21100	21.00	٦3	35.36	34.85	± 5%
			21.1 0	21 0	σ	5.22	5.23	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	7.7 W/Kg	77.0 W/Kg	+16.77 / -16.70%
	SAR averaged over 10g	2.21 W/Kg	22.1 W/Kg	±16.70%

Antenna Parameters – Head Simulating Liquid (HSL)

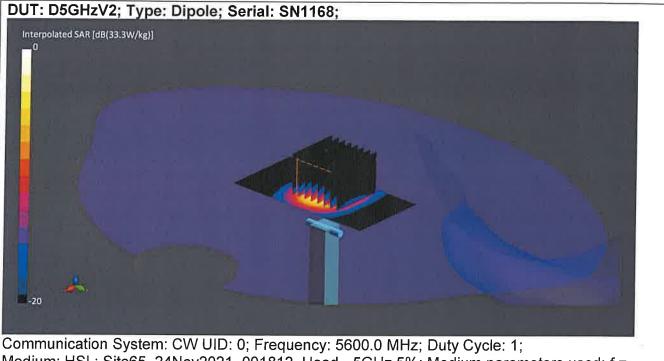

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	59.36 – 4.05j Ω	± 3.01
	Return Loss	20.64	± 2.93

CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 9

DASY Validation Scan for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

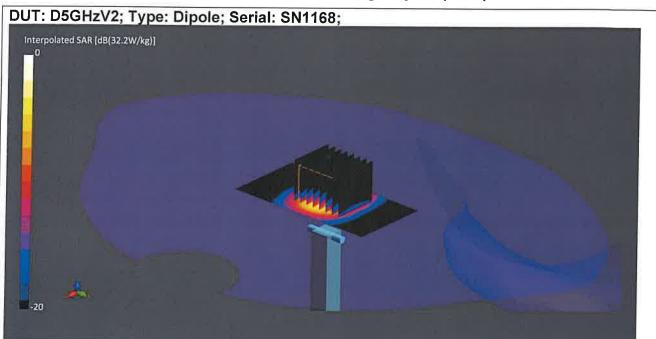
Page 6 of 9

DASY Validation Scan for Head Stimulating Liquid (HSL)

Medium: HSL; Site65_24Nov2021_001812_Head - 5GHz 5%; Medium parameters used: f = 5600.0 MHz; σ = 5.06 S/m; ϵ_r = 35.1; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = -1.07 %; $\Delta \sigma$ = -0.10 %; No correction Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(4.7, 4.7, 4.7); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818
- Measurement SW: cDASY6.14.0.959


Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(22x22x22):Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio: 1.4; Reference Value = 12.360 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 7.2 mm; Vertical M2/M1 Ratio: 62.7 %; SAR(1 g) = 8.170 W/kg; SAR(10 g) = 2.330 W/kg

CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

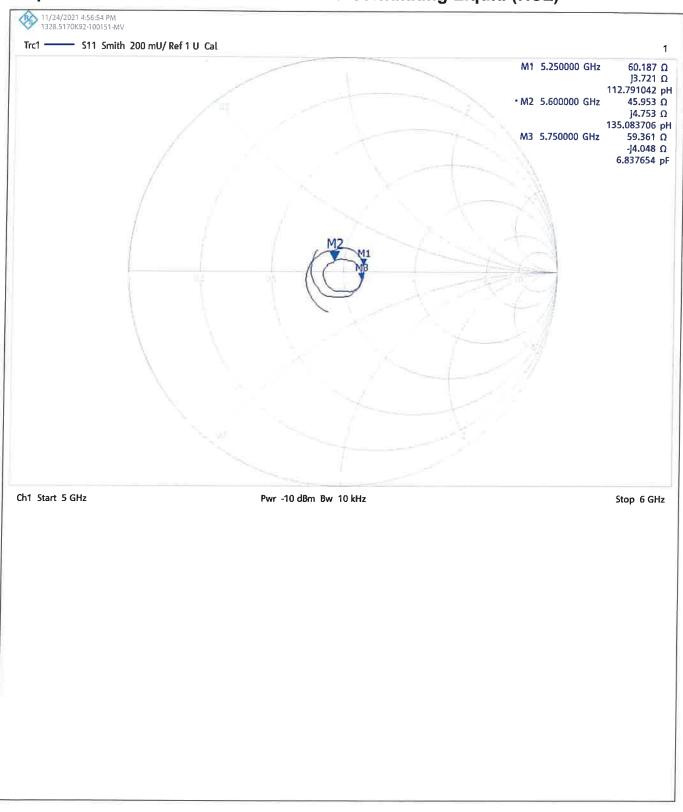
Page 7 of 9

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 5750.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_24Nov2021_001812_Head - 5GHz 5%; Medium parameters used: f = 5750.0 MHz; σ = 5.23 S/m; ϵ_r = 34.9; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = -1.43 %; $\Delta \sigma$ = 0.30 %; No correction Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(4.79, 4.79, 4.79); Calibrated: 16 Mar 2021
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818
- Measurement SW: cDASY6.14.0.959

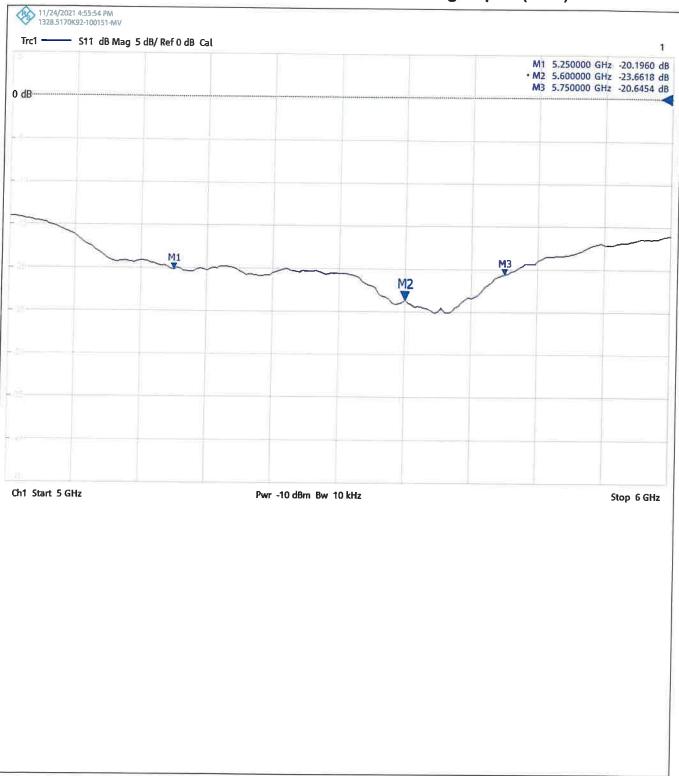

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(22x22x22):Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio: 1.4; Reference Value = 11.980 V/m; Power Drift = -0.01 dB Minimum horizontal 3dB distance: 7.5 mm; Vertical M2/M1 Ratio: 61.8 %; SAR(1 g) = 7.700 W/kg; SAR(10 g) = 2.210 W/kg

CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 8 of 9

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13685241JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 9 of 9

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01E

Instrument ID: 1168

Calibration Date: 24/Nov/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01E

Instrument ID: 1168

Calibration Date: 24/Nov/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01E

Instrument ID: 1168

Calibration Date: 24/Nov/2021

Calibration Due Date: