Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-7569_Apr22

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7569
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 26, 2022
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	d. the
			V
Approved by:	Sven Kühn	Deputy Manager	5.10
			Issued: April 27, 2022
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	1.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\theta = 0$ is normal to probe axis
	information used in DASV system to align probe concert 4 to the report coordinate system

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, v, z = NORMx, v, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.63	0.62	0.62	± 10.1 %
DCP (mV) ^B	102.3	100.5	100.8	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^e (k=2)
0	CW	X	0.00	0.00	1.00	0.00	146.1	± 2.2 %	± 4.7 %
		Y	0.00	0.00	1.00		166.7	1	
		Z	0.00	0.00	1.00	· · · · · · · · ·	169.0		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.92	22.03	10.00	60.0	± 2.7 %	± 9.6 %
AAA	, .,	Y	20.00	90.99	20.83		60.0	1	
		Z	20.00	93.60	22.57		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	93.20	21.22	6.99	80.0	± 1.2 %	± 9.6 %
AAA	(, , , ,	Y	20.00	91.66	20.34		80.0	1	
		Z	20.00	93.48	21.52	·	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	95.80	21.21	3.98	95.0	± 1.0 %	± 9.6 %
AAA	`` ,	Y	20.00	94.64	20.65		95.0	1	
		Z	20.00	95.30	21.09		95.0		-
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	99.24	21.54	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	99.09	21.59		120.0	1	
		Z	20.00	97.69	20.94		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.60	64.90	14.26	1.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	1.63	65.42	14.54	1	150.0	1	
		Z	1.57	64.29	13.87		150.0	· · · · · · · · · · · · · · · · · · ·	
10388-	QPSK Waveform, 10 MHz	X	2.10	66.83	14.95	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.15	67.21	15.26	1	150.0		
		Z	2.05	66.11	14.53		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.96	70.50	18.58	3.01	150.0	± 0.8 %	± 9.6 %
AAA		Y	2.92	70.80	19.02		150.0		
		Z	2.90	69.94	18.51		150.0	C	1
10399-	64-QAM Waveform, 40 MHz	X	3.43	66.64	15.39	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	3.47	66.81	15.54		150.0		
		Z	3.41	66.30	15.19		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.84	65.43	15.30	0.00	150.0	± 3.0 %	± 9.6 %
AAA		Y	4.85	65.55	15.42		150.0		
		Z	4.84	65.25	15.21		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

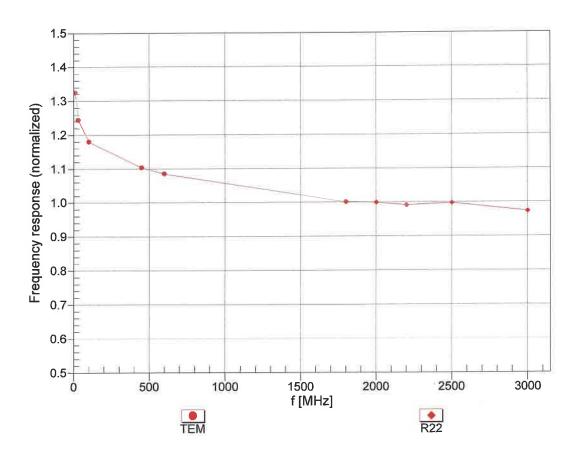
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	48.9	360.02	34.64	21.73	0.20	5.10	1.51	0.20	1.01
Y	45.3	335.68	34.92	23.67	0.00	5.09	1.55	0.14	1.01
Z	49.3	368.74	35.48	22.91	0.28	5.10	1.26	0.24	1.01

Other Probe Parameters

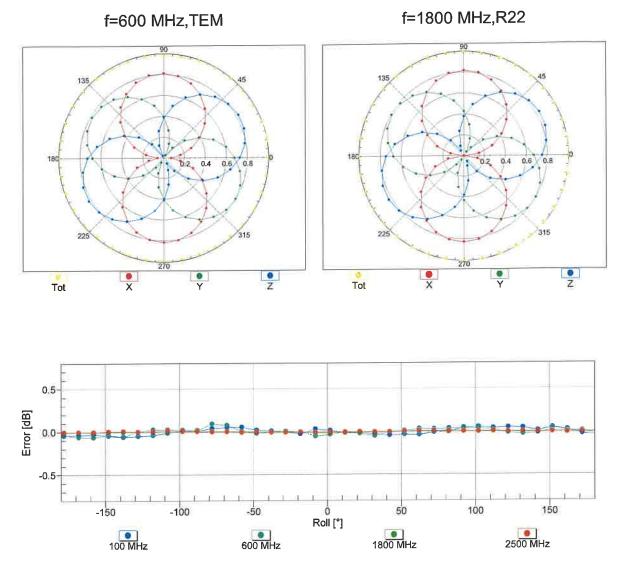
Sensor Arrangement	Triangular
Connector Angle (°)	-88
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

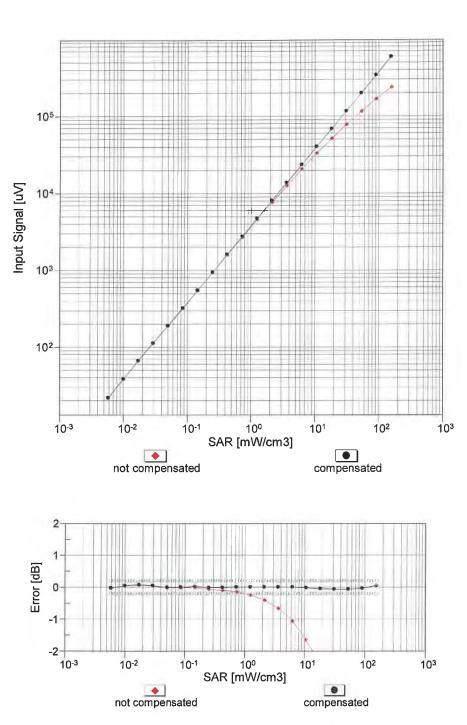

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.48	10.48	10.48	0.57	0.80	± 12.0 %
900	41.5	0.97	10.01	10.01	10.01	0.39	0.98	± 12.0 %
1750	40.1	1.37	8.37	8.37	8.37	0.39	0.86	± 12.0 %
1900	40.0	1.40	8.02	8.02	8.02	0.35	0.86	± 12.0 %
2300	39.5	1.67	7.85	7.85	7.85	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.58	7.58	7.58	0.41	0.90	± 12.0 %
2600	39.0	1.96	7.45	7.45	7.45	0.41	0.90	± 12.0 %
5250	35.9	4.71	5.30	5.30	5.30	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.73	4.73	4.73	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.79	4.79	4.79	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

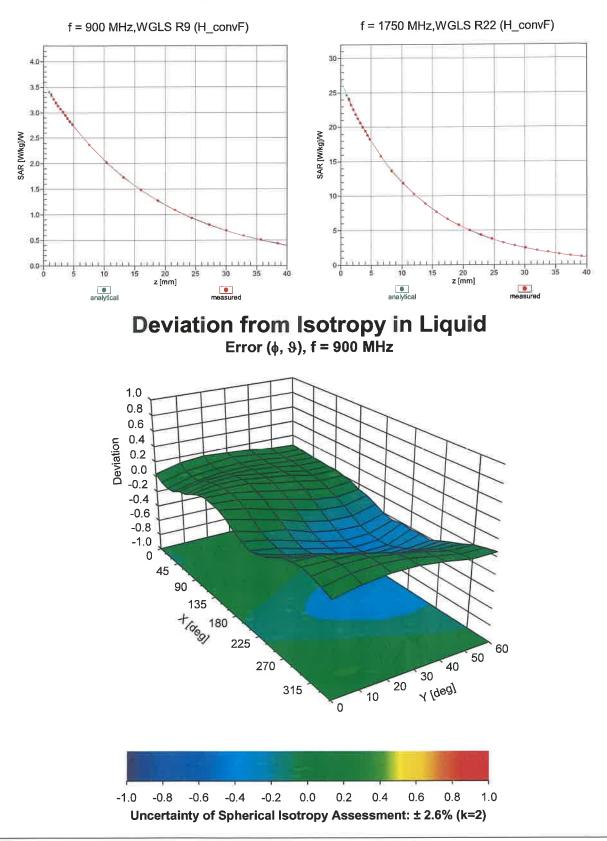
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Certificate No: EX3-7356_Mar22

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7356
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	March 24, 2022
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	410
Approved by:	Niels Kuster	Quality Manager	the -
			Issued: March 28, 2022
This calibration certificate	shall not be reproduced except in ful	without written approval of the Jaboratory	issued. March 20, 2022

Certificate No: EX3-7356_Mar22

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY outcome to align probe senser V to the relation and in the subtract

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.36	0.53	0.56	± 10.1 %
DCP (mV) ^B	105.2	101.2	99.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	151.6	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		165.0	1	
		Z	0.00	0.00	1.00	1	146.3		
10352-	Pulse Waveform (200Hz, 10%)	X	2.23	63.64	9.64	10.00	60.0	± 3.7 %	± 9.6 %
AAA		Y	20.00	91.89	20.62	1	60.0	1	
		Z	20.00	93.92	22.44		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.45	63.10	8.22	6.99	80.0	± 2.5 %	± 9.6 %
AAA		Y	20.00	95.01	21.09		80.0		
		Z	20.00	95.75	22.14	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.65	61.17	6.10	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	20.00	104.38	24.22		95.0	1	
		Z	20.00	99.87	22.62		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	0.30	60.00	4.55	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	120.71	30.20	1	120.0		
		Z	20.00	104.20	23.15		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.67	67.26	15.40	1.00	150.0	± 2.3 %	± 9.6 %
AAA		Y	1.85	67.31	16.04	1	150.0		
		Z	1.75	65.65	14.98		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.26	68.97	16.19	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.52	69.85	16.84		150.0		
		Z	2.33	68.11	15.68		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.88	71.35	18.98	3.01	150.0	± 0.8 %	± 9.6 %
AAA		Y	3.06	71.19	19.25		150.0		
		Z	2.94	69.32	18.17		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.52	67.58	16.00	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	3.68	67.82	16.31		150.0		
		Z	3.61	67.25	15.84		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.84	65.97	15.70	0.00	150.0	± 2.8 %	± 9.6 %
AAA		Y	5.04	66.00	15.87		150.0		
		Z	5.05	65.81	15.66		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

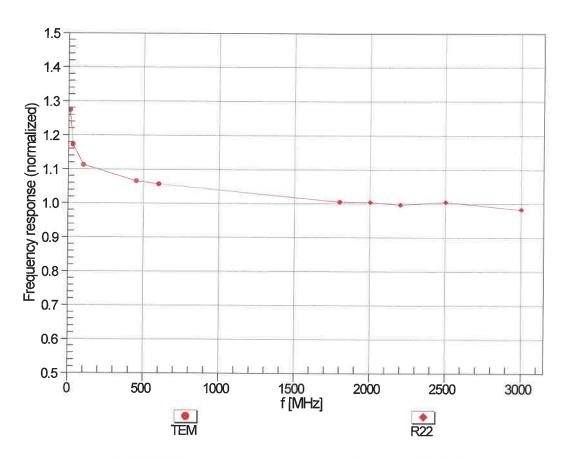
Sensor Model Parameters

	C1	C2 α	α Τ1		T2	Т3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V ^{−2}	ms.V⁻¹	ms	V-2	V-1	
Х	42.2	310.97	34.85	6.24	0.57	4.96	1.41	0.15	1.00
Y	52.1	394.35	36.48	11.34	0.00	5.08	1.05	0.30	1.01
Z	57.1	434.91	36.81	13.40	0.29	5.10	0.21	0.51	1.01

Other Probe Parameters

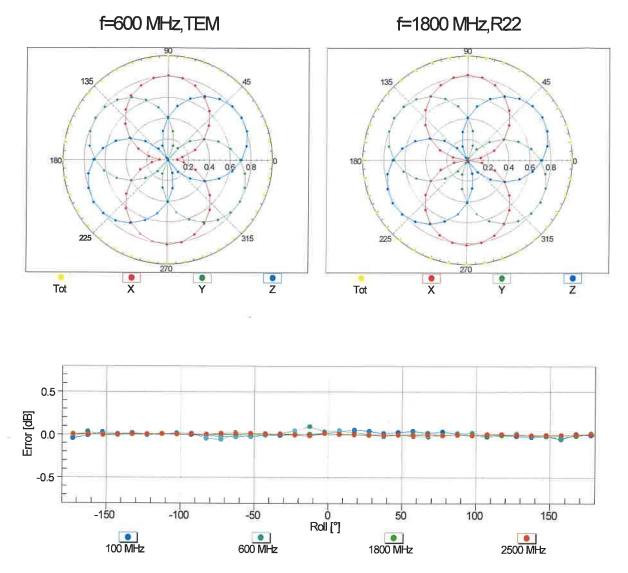
Sensor Arrangement	Triangular
Connector Angle (°)	177.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

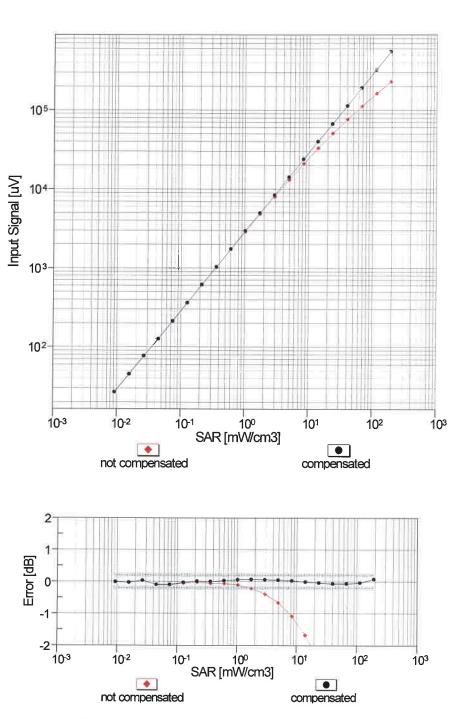

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.70	10.70	10.70	0.58	0.80	± 12.0 %
900	41.5	0.97	10.31	10.31	10.31	0.53	0.84	± 12.0 %
1750	40.1	1.37	9.09	9.09	9.09	0.36	0.86	± 12.0 %
1900	40.0	1.40	8.85	8.85	8.85	0.37	0.86	± 12.0 %
2300	39.5	1.67	8.48	8.48	8.48	0.36	0.90	± 12.0 %
2450	39.2	1.80	8.17	8.17	8.17	0.38	0.90	± 12.0 %
2600	39.0	1.96	7.99	7.99	7.99	0.44	0.90	± 12.0 %
3300	38.2	2.71	7.70	7.70	7.70	0.30	1.35	± 13.1 %
3500	37.9	2.91	7.20	7.20	7.20	0.30	1.35	± 13.1 %
3700	37.7	3.12	7.15	7.15	7.15	0.30	1.35	± 13.1 %
3900	37.5	3.32	7.10	7.10	7.10	0.40	1.60	± 13.1 %
4100	37.2	3.53	7.03	7.03	7.03	0.40	1.60	± 13.1 %
4200	37.1	3.63	6.90	6.90	6.90	0.40	1.70	± 13.1 %
5250	35.9	4.71	5.59	5.59	5.59	0.40	1.80	± 13.1 %
5600	35.5	5.07	5.10	5.10	5.10	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.19	5.19	5.19	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

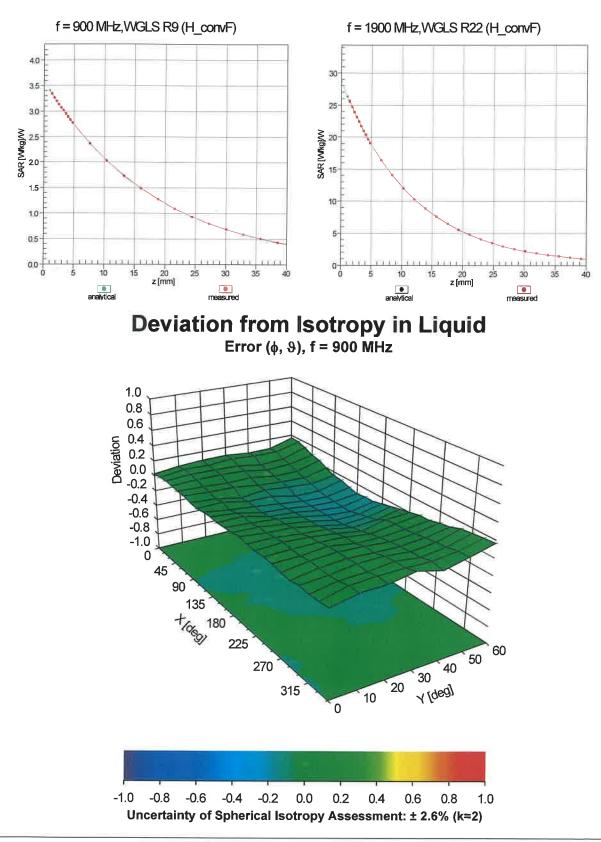
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-3929_Mar22

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3929
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	March 23, 2022
	nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22	
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22	
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22	
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22	
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22	
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22	

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	ATTLE
Approved by:	Niels Kuster	Quality Manager	N/K
This self set as a difference		I without written approval of the laborat	Issued: March 28, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Enaineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization §	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DAOV sustains to allow much sustain a Vita the last of the test

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.53	0.49	0.39	± 10.1 %
DCP (mV) ^B	100.6	99.2	100.8	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	166.6	±2.7 %	±4.7%
		Y	0.00	0.00	1.00	1	152.1	1	
		Z	0.00	0.00	1.00	1	156.0		
10352-	Pulse Waveform (200Hz, 10%)	X	15.44	84.67	17.53	10.00	60.0	± 2.8 %	± 9.6 %
AAA		Y	20.00	89.95	19.93	1	60.0	1	
_		Z	20.00	88.50	18.92	1	60.0	1	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	87.87	17.52	6.99	80.0	± 1.7 %	± 9.6 %
AAA		Y	20.00	90.85	19.02	1	80.0		
		Z	20.00	90.95	18.94	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	90.55	17.65	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	92.38	18.22	1	95.0		
		Z	20.00	99.15	21.44	1	95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	95.80	19.02	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	92.87	17.13		120.0		
		Z	20.00	102.30	21.61	·	120.0		
10387-	QPSK Waveform, 1 MHz	X	1.81	66.74	15.67	1.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	1.73	65.82	14.95		150.0		
		Z	1.83	68.03	16.11	1	150.0		
10388-	QPSK Waveform, 10 MHz	X	2.43	69.15	16.43	0.00	150.0	±0.9 %	± 9.6 %
AAA		Y	2.31	68.17	15.70]	150.0		
		Z	2.47	69.95	16.85		150.0	9	
10396-	64-QAM Waveform, 100 kHz	X	3.11	71.29	19.26	3.01	150.0	±0.9 %	± 9.6 %
AAA		Y	2.89	69.22	18.09		150.0		
		Z	2.58	68.94	18.17		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.65	67.59	16.14	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	3.61	67.32	15.87		150.0		
		Ζ	3.53	67.39	16.07		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	Х	5.03	65.93	15.80	0.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	4.83	65.15	15.32		150.0		
		Z	4.83	65.60	15.63		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5, and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V2	V ⁻¹	
Х	52.0	393.95	36.48	10.05	0.00	5.04	0.00	0.00	1.00
Y	53.7	409.44	36.83	8.90	0.31	5.05	0.17	0.50	1.01
Z	44.8	335.70	35.83	7.73	0.04	5.05	0.42	0.29	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	164.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

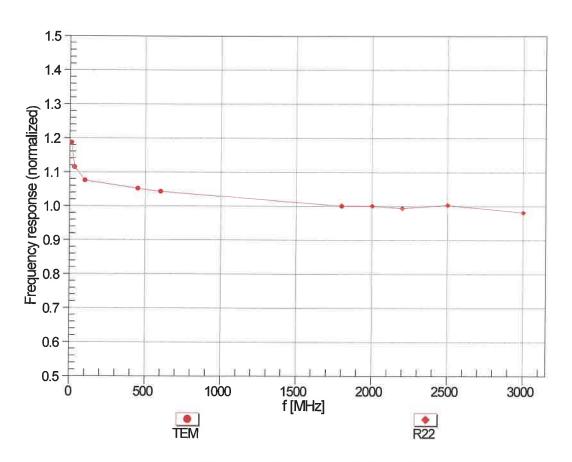
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6	55.0	0.75	15.96	15.96	15.96	0.00	1.00	± 13.3 %
13	55.0	0.75	14.62	14.62	14.62	0.00	1.00	± 13.3 %
30	55.0	0.75	13.55	13.55	13.55	0.00	1.00	± 13.3 %
750	41.9	0.89	9.01	9.01	9.01	0.53	0.84	± 12.0 %
900	41.5	0.97	8.54	8.54	8.54	0.35	1.04	± 12.0 %
1750	40.1	1.37	8.14	8.14	8.14	0.38	0.86	± 12.0 %
1900	40.0	1.40	7.83	7.83	7.83	0.38	0.86	± 12.0 %
2300	39.5	1.67	7.34	7.34	7.34	0.31	0.90	± 12.0 %
2450	39.2	1.80	7.10	7.10	7.10	0.36	0.90	± 12.0 %
2600	39.0	1.96	6.98	6.98	6.98	0.37	0.90	± 12.0 %
3300	38.2	2.71	6.55	6.55	6.55	0.30	1.30	± 13.1 %
3500	37.9	2.91	6.50	6.50	6.50	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.40	6.40	6.40	0.30	1.30	± 13.1 %
3900	37.5	3.32	6.34	6.34	6.34	0.40	1.60	± 13.1 %
4100	37.2	3.53	6.32	6.32	6.32	0.40	1.60	± 13.1 %
4200	37.1	3.63	6.20	6.20	6.20	0.40	1.60	± 13.1 %
4400	36.9	3.84	5.98	5.98	5.98	0.40	1.60	± 13.1 %
4600	36.7	4.04	5.89	5.89	5.89	0.40	1.80	± 13.1 %
4800	36.4	4.25	5.80	5.80	5.80	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.57	5.57	5.57	0.40	1.80	± 13.1 %
5250	35.9	4.71	4.65	4.65	4.65	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.37	4.37	4.37	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.29	4.29	4.29	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

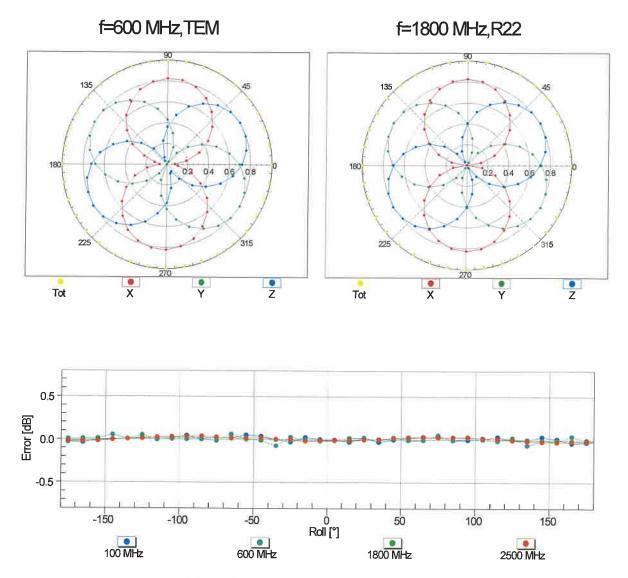
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

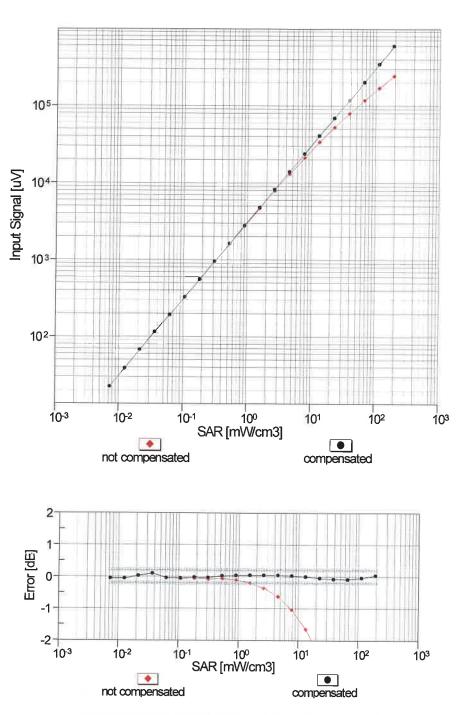

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6500	34.5	6.07	5.25	5.25	5.25	0.20	2.50	± 18.6 %

Calibration Parameter Determined in Body Tissue Simulating Media

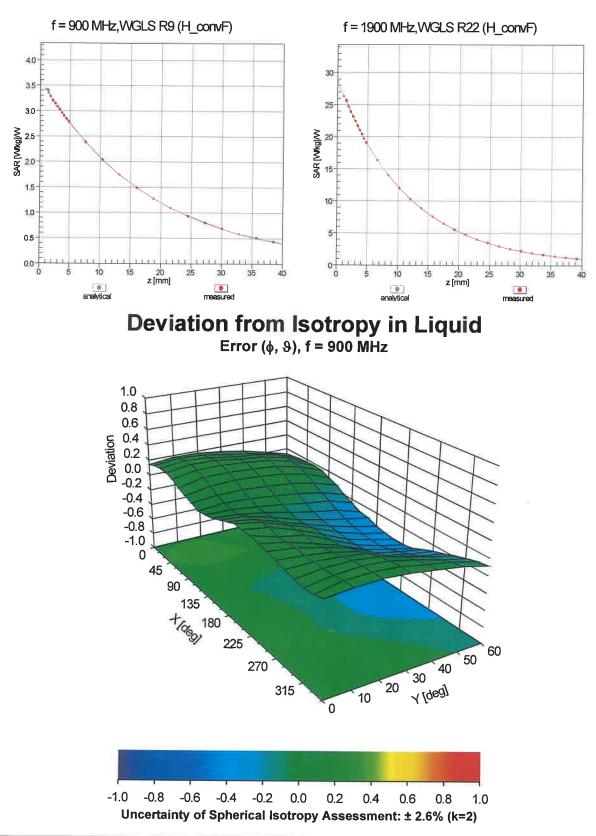
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Ŝ

Service suisse d'étalonnage С

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL USA Client

Certificate No: EX3-3990_Feb22

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3990
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 25, 2022
	cuments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	nducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Арг-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	1 These
Approved by:	Niels Kuster	Quality Manager	NR
This calibration certificate shall	I not be reproduced except in full w	ithout written approval of the laboratory	Issued: March 1, 2022

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TSL NORMx,y,z ConvF DCP CF A, B, C, D Polarization φ	tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis
Polarization 9	S rotation around an axis that is in the plane normal to pack a single to
Connector Angle	i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align used in DASY system to

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Com M	-		
Norm $(\mu V/(V/m)^2)^A$	0.59	Sensor Y	Sensor Z	Unc (k=2)	
DCP (mV) ^B		0.63	0.59	± 10.1 %	
	105.4	100.2	98.5	10.1%	

Calibration Results for Modulation Response UID

UID	Communication System Man	1	ponou						
0	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E
0	CW	X	0.00	0.00	1				(k=2)
		Y	0.00		1.00	0.00	174.0	± 3.5 %	± 4.7 %
10050		Z	0.00	0.00	1.00		154.9	-	/
10352- AAA	Pulse Waveform (200Hz, 10%)	X	20.00	0.00	1.00	1	178.3	1	
AAA		Y	20.00	92.23	21.23	10.00	60.0	± 3.6 %	± 9.6 %
10050		Z	20.00	92.24	21.04		60.0	0.0 70	1 3.0 7
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	92.23	21.20		60.0		1
AAA	(== == == == == == == == == == == == ==	Ŷ		93.91	20.98	6.99	80.0	± 1.9 %	± 9.6 %
1		Z	20.00	93.45	20.70		80.0	- 1.0 70	± 9.0 %
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	93.25	20.60		80.0	1	
AAA	(Ŷ	20.00	96.80	20.95	3.98	95.0	± 1.0 %	1000
		Z	20.00	96.98	21.19	1	95.0	- 1.0 %	± 9.6 %
10355-	Pulse Waveform (200Hz, 60%)		20.00	95.41	20.23	1	95.0		
AAA	(200112, 00%)	X	20.00	98.79	20.49	2.22	120.0	110.00	
	in the second	Y	20.00	101.63	22.12		120.0	± 1.0 %	± 9.6 %
10387-	QPSK Waveform, 1 MHz	Z	20.00	96.28	19.28		120.0		
AAA	and the version in, 1 Minz	X	1.58	65.14	14.23	1.00	150.0	10500	
		Y	1.70	66.10	14.91	1.00		± 2.5 %	± 9.6 %
10388-	QPSK Waveform, 10 MHz	Z	1.57	65.19	14.17	1	150.0	5	
AAA	ar on vavelorm, 10 MHz	X	2.10	66.98	15.00	0.00	150.0		
		Y	2.26	68.06	15.65	0.00	150.0	± 1.1 %	± 9.6 %
0396-	64 0000 10/	Z	2.09	66.96	14.98		150.0		
AA	64-QAM Waveform, 100 kHz	X	2.85	69.54	18.18	2.04	150.0		
		Y	2.89	70.15	18.64	3.01	150.0	± 0.8 %	± 9.6 %
0399-	SA CAMANY	Z	2.74	68.96	17.97		150.0	6	
AA	64-QAM Waveform, 40 MHz	X	3.44	66.74	15.46	0.00	150.0	· · · · · · · · · · ·	
501		Y	3.42	66.62		0.00	150.0	± 1.6 %	± 9.6 %
0414-	340 411 2 2	Z	3.45	66.76	15.48		150.0		
AA	WLAN CCDF, 64-QAM, 40MHz	X	4.85	65.54	15.47		150.0	· · · · · · · · · · · · · · · · · · ·	
~~~		Y	4.78	65.29	15.41	0.00	150.0	± 3.2 % ±	± 9.6 %
to: Ea			4.86	65.62	15.31	L	150.0	1	/3
ne: For d	etails on UID parameters see App	andin	4.00	03.02	15.46		150.0		

Ν ote: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage

⁴ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Numerical linearization parameter: uncertainty not required.

- ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

### Sensor Model Parameters

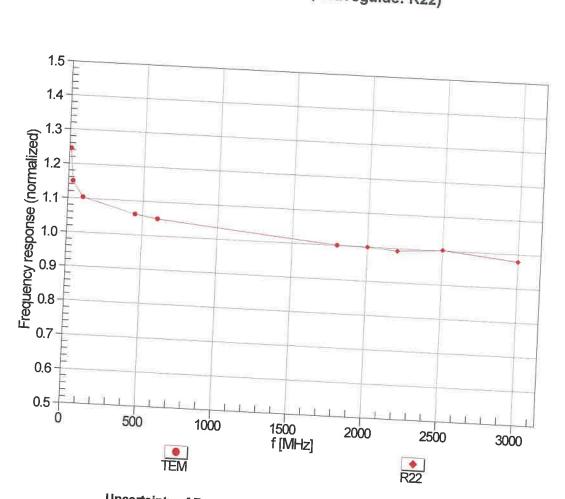
	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ^{~2}	T2 ms.V ^{~1}	T3 ms	T4 V ⁻²	T5 V-1	T6
X	46.2	346.37	35.67	14.10	0.15	5.10	0.74	0.07	1.0
Y	46.5	345.70	35.20					0.37	1.01
7	44.7			15.90	0.00	5.09	0.79	0.30	1.01
<u></u>	44./	337.05	36.10	14.28	0.15	5.10	0.49	0.38	1.01

# Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	
Mechanical Surface Detection Mode	169.4
	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	
Probe Body Diameter	337 mm
	10 mm
Tip Length	9 mm
Tip Diameter	
Probe Tip to Sensor X Calibration Point	2.5 mm
	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	
Recommended Measurement Distance from Surface	1 mm
recommended measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

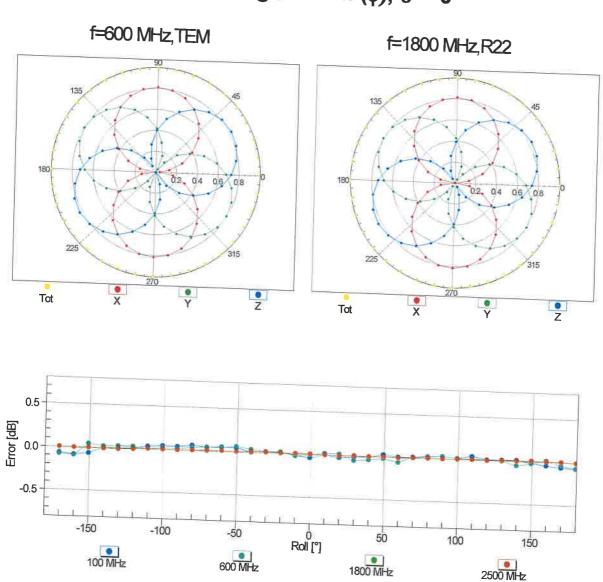
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y		1	Depth ^G	Unc
750	41.9	0.00		CONVE 1	ConvF Z	Alpha ^G	(mm)	(k=2)
	41.5	0.89	10.08	10.08	10.08	0.52	0.88	+ 12.0.0
900	41.5	0.97	9.70	9.70	0.70			± 12.0 %
1750	40.1	1.37			9.70	0.55	0.80	± 12.0 %
1900		1.57	8.71	8.71	8.71	0.28	0.86	± 12.0 %
1900	40.0	1.40	8.18	8.18	8.18	0.30	0.00	
2300	39.5	1.67	7.98	7.00			0.86	± 12.0 %
2450	39.2			7.98	7.98	0.32	0.90	± 12.0 %
	00.2	1.80	7.70	7.70	7.70	0.31	0.90	± 12.0 %
2600	39.0	1.96	7.53	7.53	7.53			12.0 %
3300	38.2	2.71	7.05		1.55	0.24	0.90	± 12.0 %
3500	27.0		7.05	7.05	7.05	0.35	1.30	± 13.1 %
	37.9	2.91	6.92	6.92	6.92	0.35	1.30	
3700	37.7	3.12	6.90	6.90	0.00		1.50	± 13.1 %
3900	37.5	2.22		0.30	6.90	0.35	1.30	± 13.1 %
4400		3.32	6.76	6.76	6.76	0.35	1.60	± 13.1 %
4100	37.2	3.53	6.69	6.69	6.69	0.35		
4200	37.1	3.63	6.25		- 10	0.35	1.60	± 13.1 %
5250	35.9		0.20	6.25	6.25	0.40	1.70	± 13.1 %
	30.9	4.71	5.54	5.54	5.54	0.40	1.80	
5600	35.5	5.07	4.85	4.85	4.95	1		± 13.1 %
5750	35.4	5.22			4.85	0.40	1.80	± 13.1 %
		J.22	5.05	5.05	5.05	0.40	1.80	± 13.1 %


# Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The The Prequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to The requencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% in includic compensation roundle is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

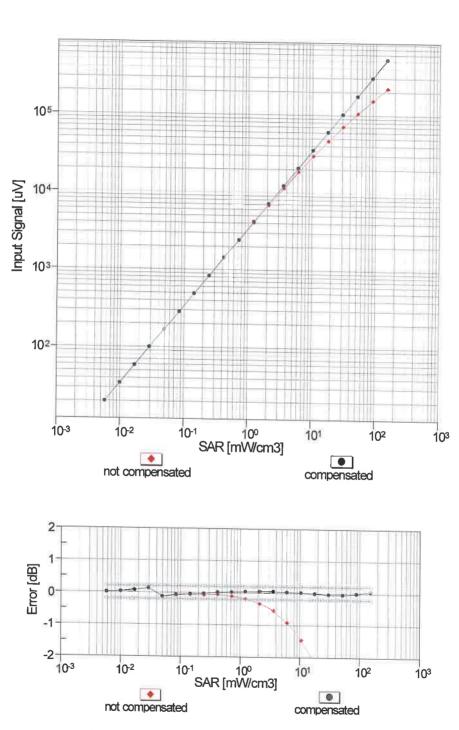
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip


February 25, 2022



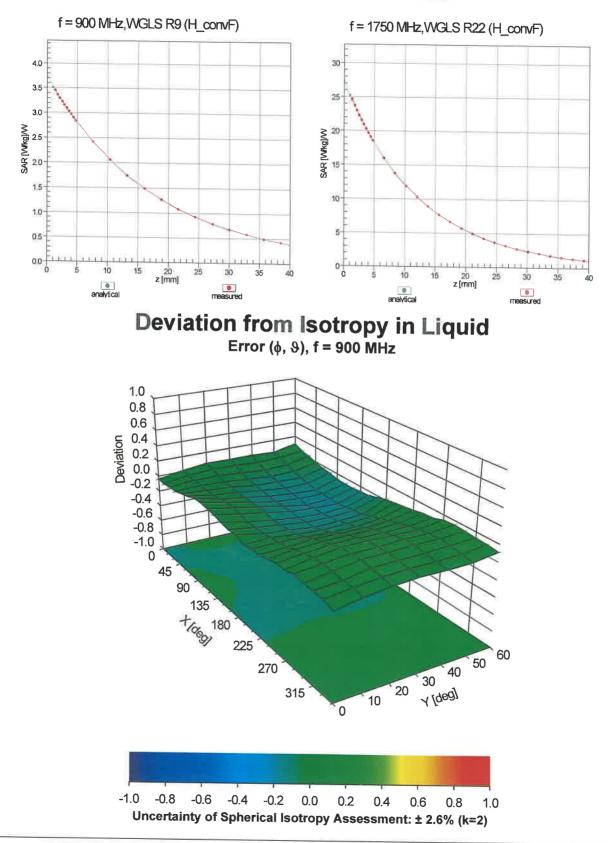
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


February 25, 2022



Receiving Pattern ( $\phi$ ),  $\vartheta = 0^{\circ}$ 


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

February 25, 2022



# Dynamic Range f(SARhead) (TEM cell , feval= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



# **Conversion Factor Assessment**

Certificate No: EX3-3990_Feb22

### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

**UL USA** Client

Certificate No: EX3-3773_Feb22

S

## **CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:3773
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 28, 2022
	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	cted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Арг-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Attfullyhij
Approved by:	Niels Kuster	Quality Manager	N.KS
This calibration cortificate	a shall not be reproduced event in full	without written approval of the laborato	issued: March 1, 2022

of the laborator

### Calibration Laboratory of Schmid & Partner

Enaineerina AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

## Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Methods Applied and Interpretation of Parameters:

- NORMx, y.z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$  (see Frequency Response Chart). This linearization is . implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v,z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ² ) ^A	0.57	0.54	0.51	± 10.1 %
DCP (mV) ^B	98.5	100.4	99.7	

### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	140.0	± 2.7 %	± 4.7 %
0		Y	0.00	0.00	1.00		144.2		
	A REAL PROPERTY AND A REAL	Z	0.00	0.00	1.00		140.4		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	93.30	22.33	10.00	60.0	± 4.1 %	± 9.6 %
AAA		Y	20.00	92.76	21.59		60.0		
		Z	20.00	94.04	23.01		60.0	· · · · · ·	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	94.65	21.77	6.99	80.0	± 2.1 %	± 9.6 %
AAA		Y	20.00	92.91	20.79		80.0	1	
		Z	20.00	94.97	22.29		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	96.66	21.16	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	95.35	20.75		95.0		
		Z	20.00	97.00	21.73		95.0		
10355- Pulse Wavefor AAA	Pulse Waveform (200Hz, 60%)	X	20.00	96.76	19.72	2.22	120.0	± 1.0 %	± 9.6 %
		Y	20.00	98.77	21.09		120.0		
		Z	20.00	98.60	21.03		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.44	63.82	13.33	1.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	1.65	65.75	14.74		150.0		
		Z	1.50	64.04	13.63		150.0		
10388-	QPSK Waveform, 10 MHz	X	1.91	65.43	14.14	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.20	67.69	15.50		150.0		
		Z	1.97	65.80	14.34	J	150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.44	67.00	17.19	3.01	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.93	69.95	18.52		150.0		
		Z	3.03	70.24	18.55		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.29	65.86	14.96	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.50	66.99	15.68		150.0		
		Z	3.33	66.08	15.07		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.70	64.96	15.08	0.00	150.0	± 3.9 %	± 9.6 %
AAA		Y	4.89	65.65	15.54		150.0		
		Z	4.76	65.09	15.12		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

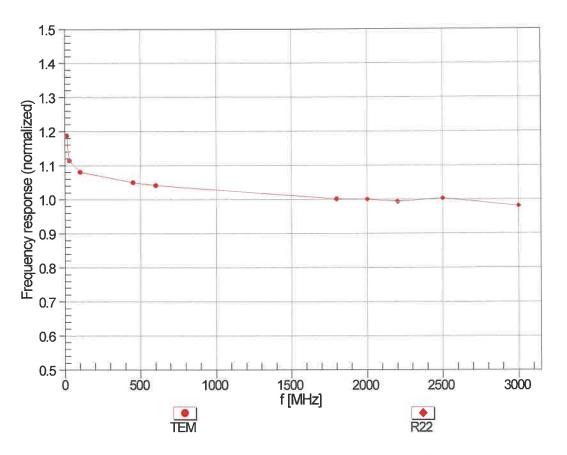
## Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ^{−2}	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	44.2	335.94	36.44	14.59	0.46	5.10	0.00	0.42	1.01
Y	46.9	352.33	35.90	21.10	0.12	5.10	0.76	0.37	1.01
Z	47.4	355.44	35.60	17.67	0.56	5.10	1.20	0.34	1.01

## **Other Probe Parameters**

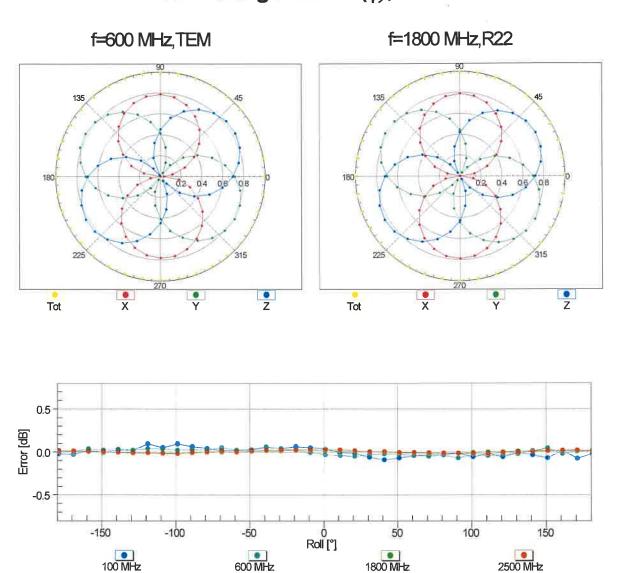
Sensor Arrangement	Triangular
Connector Angle (°)	161
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.41	9.41	9.41	0.52	0.80	± 12.0 %
900	41.5	0.97	8.74	8.74	8.74	0.51	0.80	± 12.0 %
1750	40.1	1.37	7.93	7.93	7.93	0.31	0.86	± 12.0 %
1900	40.0	1.40	7.67	7.67	7.67	0.31	0.86	± 12.0 %
2300	39.5	1.67	7.35	7.35	7.35	0.32	0.90	± 12.0 %
2450	39.2	1.80	7.17	7.17	7.17	0.19	0.90	± 12.0 %
2600	39.0	1.96	7.08	7.08	7.08	0.27	0.90	± 12.0 %
5250	35.9	4.71	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.30	4.30	4.30	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.50	4.50	4.50	0.40	1.80	± 13.1 %

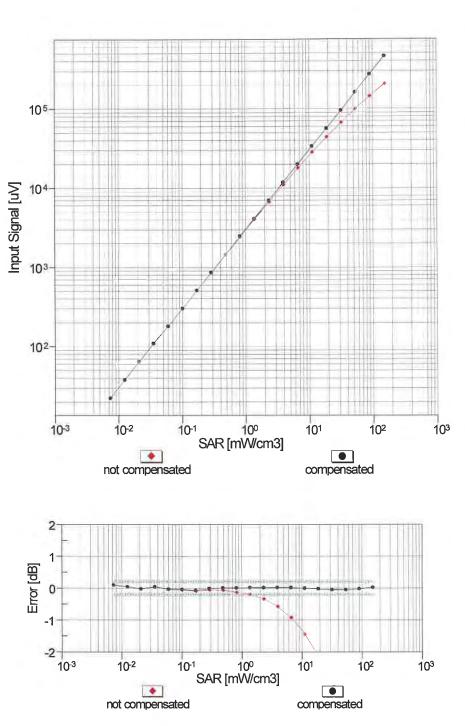
#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

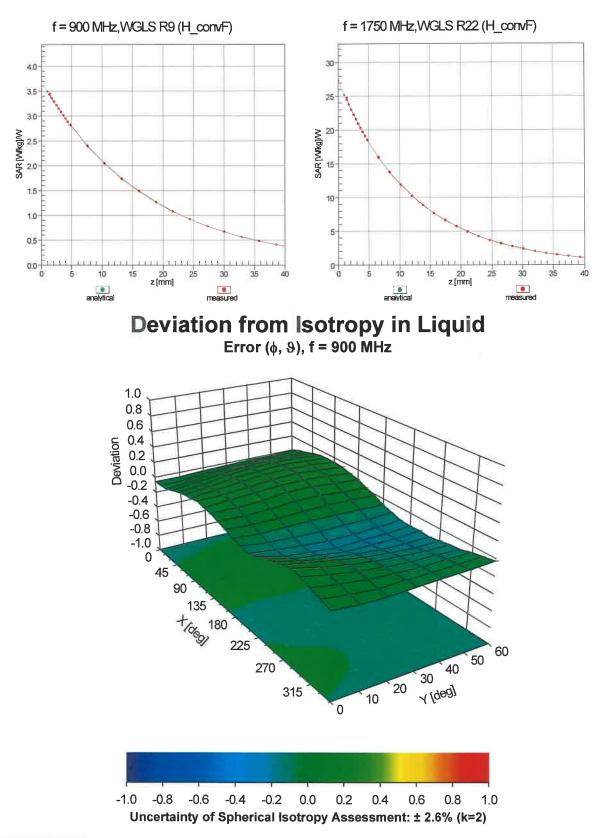
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern (φ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-3989_Jan22

# CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3989					
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes					
Calibration date:	January 19, 2022					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	A. the
			0 0
Approved by	Sven Kühn	Deputy Manager	5.45
			Issued: January 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	$\phi$ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
	information would in DAOV suptain to all an analysis appears V to the select coordinate system.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ² ) ^A	0.54	0.51	0.46	± 10.1 %
DCP (mV) ^B	101.7	99.1	101.1	

### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	140.0	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		142.5		
		Z	0.00	0.00	1.00		151.0		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	91.00	20.65	10.00	60.0	± 4.1 %	± 9.6 %
AAA		Y	20.00	91.63	20.60		60,0		
		Z	20.00	90.66	20.56	i	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	92.42	20.15	6.99	80.0	± 2.5 %	± 9.6 %
AAA		Y	20.00	93.05	20,36		80.0		
		Z	20.00	91.37	19.62	·	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	95.43	20.11	3.98	95.0	± 1.4 %	± 9.6 %
AAA		Y	20.00	97.30	21.14		95.0		
		Z	20.00	92.30	18.48		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	97.36	19.61	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	101.93	21.94		120.0		
		Z	20.00	90.38	16.17		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.55	64.83	14.16	1.00	150.0	± 2.6 %	± 9.6 %
AAA		Y	1.70	66.01	15.05		150.0		
		Z	1.58	65.55	14.44		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.05	66.69	14.88	0.00	150.0	± 0.8 %	± 9.6 %
AAA		Y	2.28	68.27	15.81		150.0	]	
		Z	2.14	67.59	15.27		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.02	70.92	18.83	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	3.09	71.03	19.13		150.0		
		Z	2.90	70.01	18.39		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.37	66.48	15.33	0.00	150.0	± 2.1 %	± 9.6 %
AAA		Y	3.54	67.20	15.83		150.0		
		Z	3.45	66.97	15.58		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.78	65.30	15.27	0.00	150.0	± 3.9 %	± 9.6 %
AAA		Y	4.93	65.66	15.57		150.0		
		Z	4.85	65.65	15.48		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required,

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

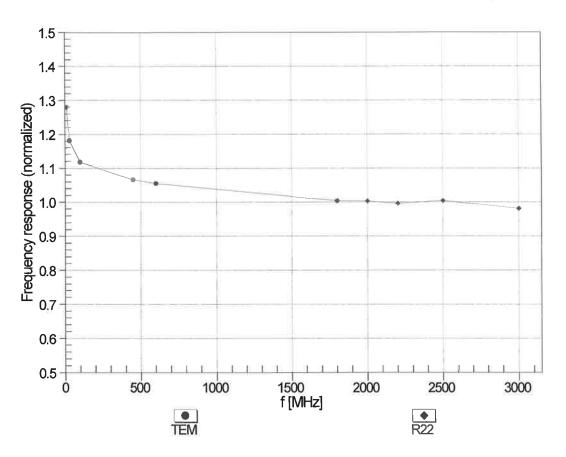
## **Sensor Model Parameters**

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	47.9	355.69	35.16	12.30	0.28	5.08	1.46	0.24	1.01
Y	51.3	386.77	36.15	15.82	0.00	5.10	0.88	0.36	1.01
Z	47.5	356.18	35.72	11.65	0.40	5.09	0.52	0.42	1.01

## **Other Probe Parameters**

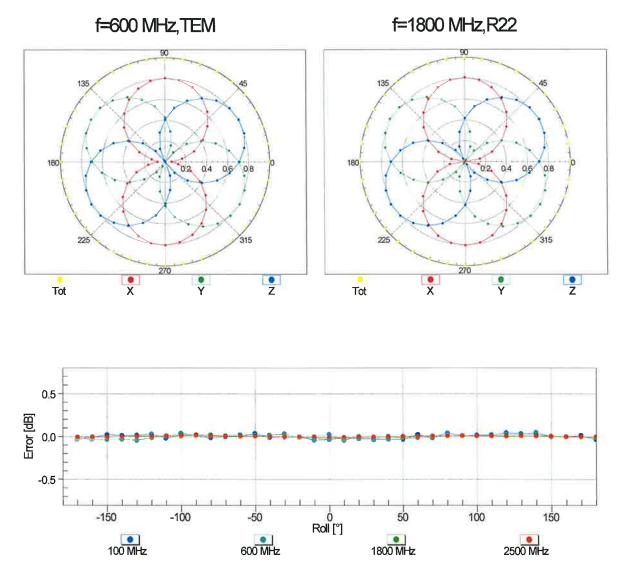
Sensor Arrangement	Triangular
Connector Angle (°)	-100.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.59	10.59	10.59	0.44	0.80	± 12.0 %
900	41.5	0.97	10.18	10.18	10.18	0.44	0.80	± 12.0 %
1750	40.1	1.37	8.80	8.80	8.80	0.41	0.86	± 12.0 %
1900	40.0	1.40	8.43	8.43	8.43	0.42	0.86	± 12.0 %
2300	39.5	1.67	8.37	8.37	8.37	0.32	0.90	± 12.0 %
2450	39.2	1.80	8.04	8.04	8.04	0.39	0.90	± 12.0 %
2600	39.0	1.96	7.94	7.94	7.94	0.42	0.90	± 12.0 %
3300	38.2	2.71	7.30	7.30	7.30	0.30	1.35	± 13.1 %
3500	37.9	2.91	7.12	7.12	7.12	0.30	1.35	± 13.1 %
3700	37.7	3.12	7.05	7.05	7.05	0.30	1.35	± 13.1 %
3900	37.5	3.32	6.90	6.90	6.90	0.40	1.60	± 13.1 %
4100	37.2	3.53	6.70	6.70	6.70	0.40	1.60	± 13.1 %
4200	37.1	3.63	6.65	6.65	6.65	0.40	1.70	± 13.1 %
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.06	5.06	5.06	0.40	1.80	± 13.1 %

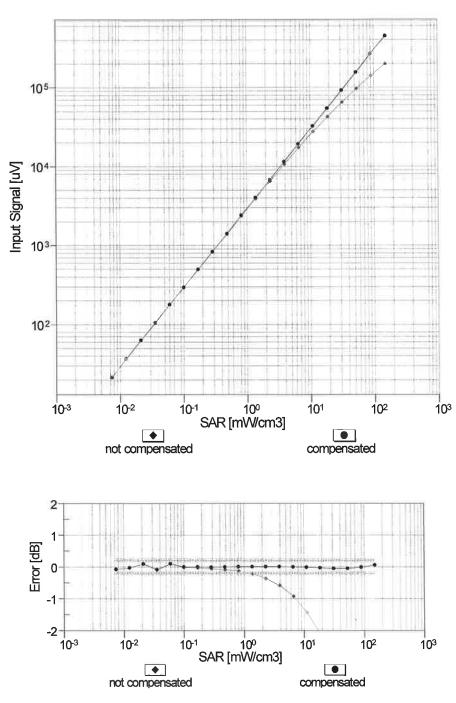
<b>Calibration Parameter</b>	<b>Determined in He</b>	ead Tissue \$	Simulating Media
------------------------------	-------------------------	---------------	------------------

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

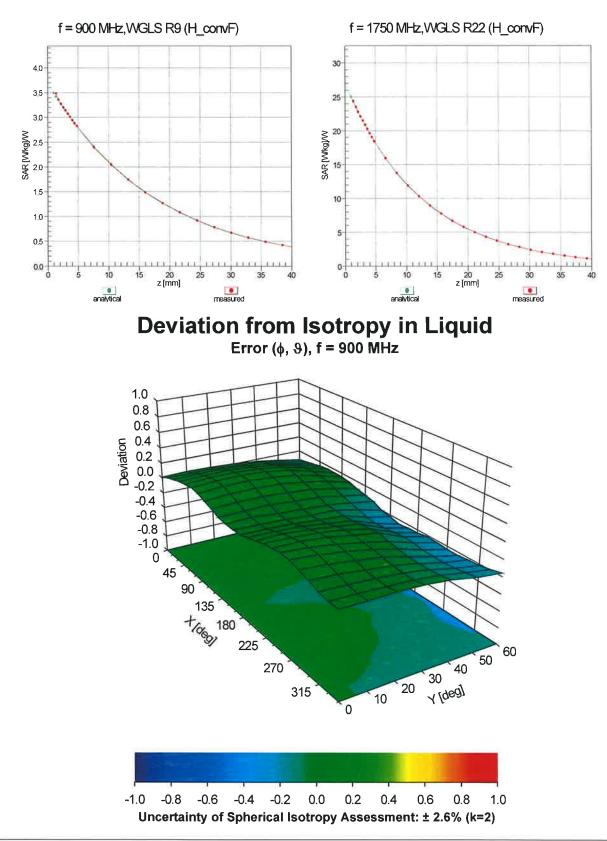
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

#### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Issued: April 27, 2022

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

**UL USA** Client

## Certificate No: EX3-7482_Apr22

## **IBRATION CERTIFICATE**

Object	EX3DV4 - SN:748	2							
Calibration procedure(s)		QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes							
Calibration date:	April 26, 2022								
The measurements and the uno	certainties with confidence pro ucted in the closed laboratory	nal standards, which realize the physical units bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	are part of the certificate.						
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration						
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23						
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23						
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23						
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23						
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22						
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22						
Secondary Standards	ID	Check Date (in house)	Scheduled Check						
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22						
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22						
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22						
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22						
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22						
	Name	Function	Signature						
Calibrated by:	Jeffrey Katzman	Laboratory Technician	Atto						

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Sven Kühn

Approved by:

**Deputy Manager** 

## Calibration Laboratory of

-

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

## Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW . signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer . Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.58	0.59	± 10.1 %
DCP (mV) ^B	97.2	97.8	98.2	

#### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	155.5	±2.7 %	± 4.7 %
•		Y	0.00	0.00	1.00		157.7	1	12.00
		Z	0.00	0.00	1.00		156.5		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	88.00	18.34	10.00	60.0	± 3.6 %	± 9.6 %
AAA		Y	1.85	62.07	7.85		60.0	1	
		Z	15.16	85.53	17.76	_	60.0	· · · · · · · · · · · · · · · · · · ·	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	89.60	17.72	6.99	80.0	±2.4 %	± 9.6 %
AAA		Y	1.15	60.78	6.45		80.0		
		Z	20.00	89.41	17.82		80.0		
10354- Pulse Waveform (200Hz	Pulse Waveform (200Hz, 40%)	X	20.00	91.93	17.23	3.98	95.0	± 1.4 %	± 9.6 %
AAA		Y	0.63	60.00	5.49		95.0		
		Z	20.00	92.42	17.87		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	90.16	15.13	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Y	0.38	60.00	5.21		120.0		
		Z	20.00	94.57	17.68		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.58	66.83	14.85	1.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	1.63	66.15	14.91		150.0		
		Z	1.61	65.22	14.23		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.13	67.89	15.70	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.16	67.57	15.60		150.0		(
		Z	2.14	66.96	14.99		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.34	67.31	17.45	3.01	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.30	66.61	17.14		150.0		
		Z	2.59	67.95	17.51	1	150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.47	67.10	15.83	0.00	150.0	± 1.6 %	± 9.6 %
AAA		Y	3.46	66.87	15.70		150.0		
		Z	3.33	65.99	15.10		150.0		-
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.79	65.77	15.69	0.00	150.0	± 3.3 %	± 9.6 %
AAA		Y	4.79	65.48	15.49		150.0		
		Z	4.71	64.94	15.11		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

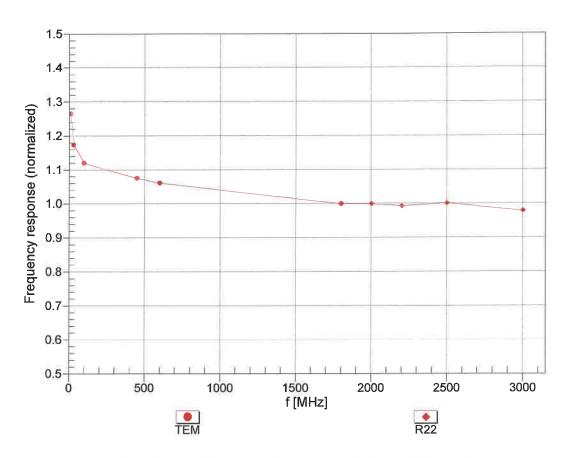
## **Sensor Model Parameters**

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	36.3	277.97	37.19	5.19	0.00	5.06	0.00	0.34	1.01
Y	41.3	310.41	35.89	13.97	0.00	4.94	0.00	0.33	1.01
Z	44.8	338.32	36.08	7.93	0.00	5.04	0.27	0.37	1.01

## **Other Probe Parameters**

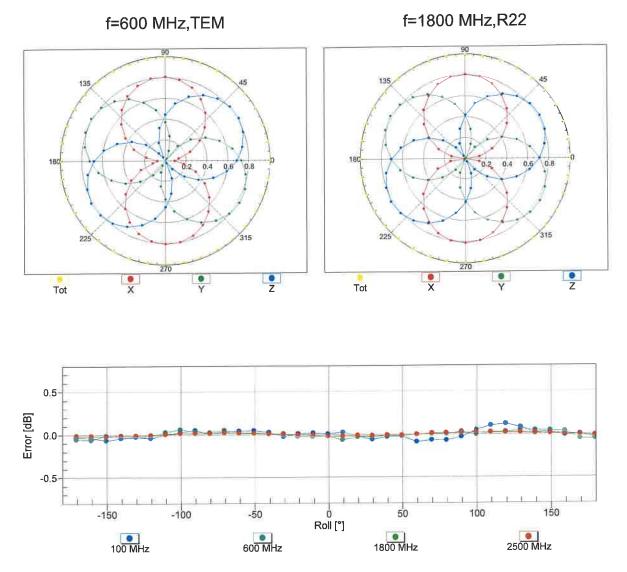
Sensor Arrangement	Triangular
Connector Angle (°)	-100.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.44	9.44	9.44	0.44	0.92	± 12.0 %
900	41.5	0.97	9.01	9.01	9.01	0.34	1.03	± 12.0 %
1750	40.1	1.37	8.39	8.39	8.39	0.29	0.86	± 12.0 %
1900	40.0	1.40	8.12	8.12	8.12	0.33	0.86	± 12.0 %
2300	39.5	1.67	7.52	7.52	7.52	0.32	0.90	± 12.0 %
2450	39.2	1.80	7.23	7.23	7.23	0.41	0.90	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.39	0.90	± 12.0 %
5250	35.9	4.71	5.54	5.54	5.54	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

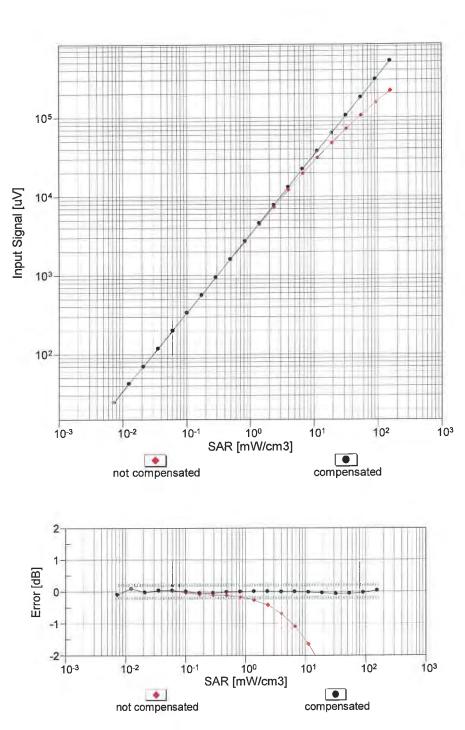
## Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

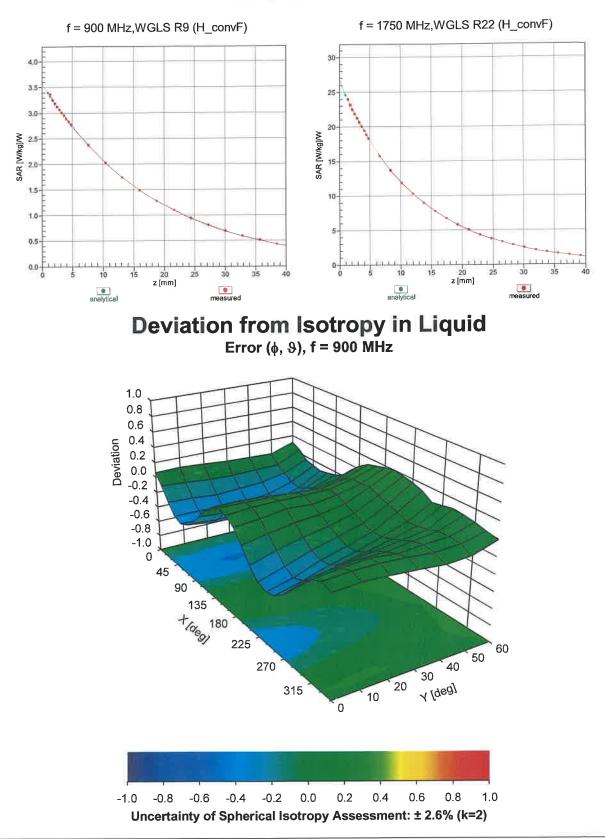
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-3686_Jan22

S

# CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3686
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	January 18, 2022
	ents the traceability to national standards, which realize the physical units of measurements (SI), rtainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Applisig
Approved by:	Sven Kühn	Deputy Manager	SE
This calibration certificate	shall not be reproduced except in full	without written approval of the loberatory	Issued: January 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	$\phi$ rotation around probe axis
Polarization §	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ² ) ^A	0.33	0.40	0.40	± 10.1 %
DCP (mV) ^B	105.1	101.7	99.5	

### Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	142.8	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		138.5		
		Z	0.00	0.00	1.00		133.4		
10352-	Pulse Waveform (200Hz, 10%)	X	10.00	80.00	17.00	10.00	60.0	± 3.2 %	± 9.6 %
AAA		Y	20.00	92.35	21.49		60.0		
		Z	74.00	110.00	27.00		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	3.43	70.25	12.20	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	20.00	94.44	21.48		80.0		
		Z	20.00	92.53	20.94	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	1.81	67.41	9.74	3,98	95.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	99.11	22.29		95.0	1	
		Z	20.00	92.69	19.37		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.44	60.72	5.74	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	98.03	20.37	1	120.0	1	
		Z	20.00	91.37	17.25		120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.34	64.93	13.56	1.00	150.0	± 3.3 %	± 9.6 %
AAA		Y	1.67	66.46	15.00	1	150.0	1	
		Z	1.51	64.97	13.92		150.0	1	
10388-	QPSK Waveform, 10 MHz	X	1.82	66.09	14.51	0.00	150.0	±0.9 %	± 9.6 %
AAA		Y	2.26	68.43	15.81	]	150.0	1	
		Z	2.03	66.77	14.79	1	150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.57	68.60	17.56	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.79	69.48	18.28	]	150.0	]	
		Z	2.84	68.99	17.92		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.34	66.94	15.47	0.00	150.0	± 2.7 %	±9.6 %
AAA		Y	3.55	67.44	15.87		150.0	]	
		Z	3.38	66.58	15.34		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.67	65.72	15.42	0.00	150.0	± 4.6 %	± 9.6 %
AAA		Y	4.73	65.28	15.32		150.0		
		Z	4.80	65.51	15.39	1	150.0	]	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

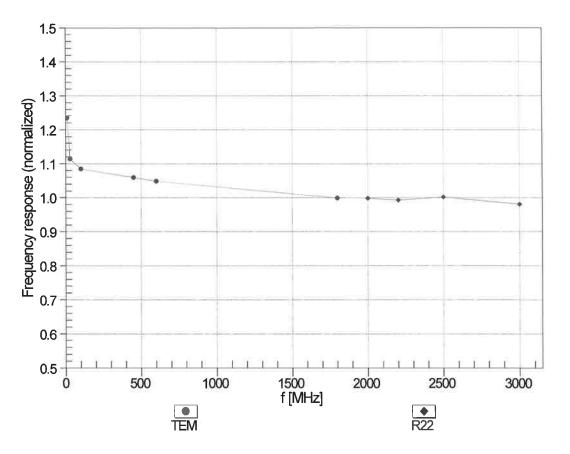
## Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	36.0	264.51	34.41	11.35	0.91	5.01	0.73	0.33	1.01
Y	45.3	336.89	35.22	15.93	0.26	5.10	0.26	0.41	1.01
Z	45.0	340.05	36.25	16.37	0.79	5.10	0.00	0.56	1.01

## **Other Probe Parameters**

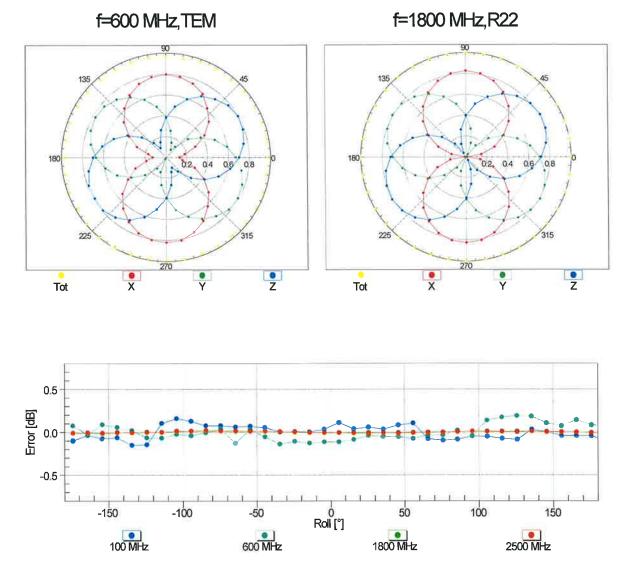
Sensor Arrangement	Triangular
Connector Angle (°)	-114.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	9.70	9.70	9.70	0.16	1.30	± 13.3 %
750	41.9	0.89	9.75	9.75	9.75	0.45	0.80	± 12.0 %
900	41.5	0.97	9.20	9.20	9.20	0.52	0.80	± 12.0 %
1450	40.5	1.20	7.76	7.76	7.76	0.24	0.80	± 12.0 %
1640	40.2	1.31	7.68	7.68	7.68	0.37	0.86	± 12.0 %
1750	40.1	1.37	7.67	7.67	7.67	0.33	0.86	± 12.0 %
1900	40.0	1.40	7.52	7.52	7.52	0.28	0.86	± 12.0 %
2300	39.5	1.67	7.31	7.31	7.31	0.36	0.95	± 12.0 %
2450	39.2	1.80	7.09	7.09	7.09	0.29	0.95	± 12.0 %
2600	39.0	1.96	6.99	6.99	6.99	0.36	0.95	± 12.0 %
5250	35.9	4.71	5.15	5.15	5.15	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.55	4.55	4.55	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.50	4.50	4.50	0.40	1.80	± 13.1 %

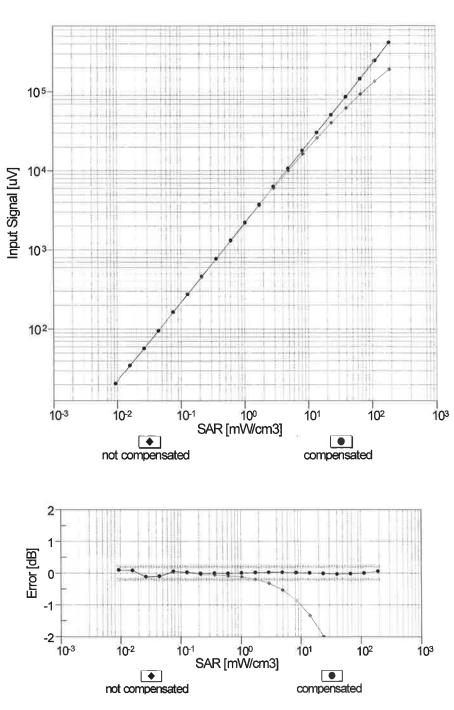
## Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

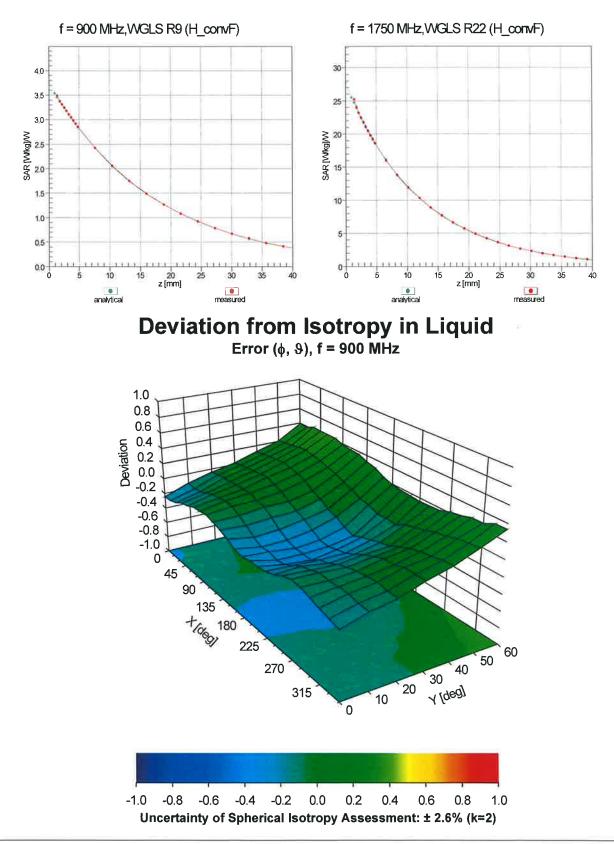
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



### **Conversion Factor Assessment**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

.

Servizio svizzero di taratura

Swiss Calibration Service

Accred

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-7589_Apr22

## CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:758	39	
Calibration procedure(s)		A CAL-14.v6, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v7
Calibration date:	April 28, 2022		
The measurements and the unc	certainties with confidence pro	nal standards, which realize the physical units obability are given on the following pages and r facility: environment temperature $(22 \pm 3)^{\circ}$ C	are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NKP-291	SN: 103245	U4-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22

27-Dec-21 (No. ES3-3013_Dec21) Reference Probe ES3DV2 SN: 3013 Dec-22 Scheduled Check ID Secondary Standards Check Date (in house) 06-Apr-16 (in house check Jun-20) Power meter E4419B SN: GB41293874 In house check: Jun-22 In house check: Jun-22 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-22 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-22 Network Analyzer E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	ATEL
Approved by:	Sven Kühn	Deputy Manager	ST
			Issued: April 28, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.65	0.53	0.62	± 10.1 %
DCP (mV) ^B	101.0	100.0	97.0	

#### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	166.3	±2.2 %	± 4.7 %
Ť		Y	0.00	0.00	1.00		153.4		
		Z	0.00	0.00	1.00		158.7		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.61	21.96	10.00	60.0	± 3.0 %	± 9.6 %
AAA		Y	16.98	85.33	17.80		60.0		
		Z	20.00	92.42	21.35		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	93.47	21.35	6.99	80.0	± 1.7 %	± 9.6 %
AAA		Y	20.00	87.22	17.46		80.0		
		Z	20.00	94.75	21.43		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	96.54	21.51	3.98	95.0	± 1.0 %	± 9.6 %
AAA	(, ,,	Y	20.00	89.24	17.35		95.0		
		Z	20.00	99.31	22.26		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	100.53	22.05	2.22	120.0	± 0.9 %	± 9.6 %
AAA		Y	20.00	93.01	18.10		120.0		
		Z	20.00	103.14	22.70		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.70	64.93	14.59	1.00	150.0	± 2.4 %	± 9.6 %
AAA		Y	1.77	66.44	15.24		150.0		
		Z	1.61	64.27	14.01		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.23	67.34	15.23	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.37	68.57	15.98		150.0		
		Z	2.09	66.20	14.65		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.24	70.74	18.74	3.01	150.0	± 1.2 %	± 9.6 %
AAA		Y	2.50	67.27	17.36		150.0		
		Z	2.90	69.48	18.30		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.52	66.86	15.55	0.00	150.0	± 1.4 %	± 9.6 %
AAA		Y	3.50	66.86	15.67		150.0		
		Z	3.45	66.31	15.28		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.97	65.50	15.40	0.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	4.88	65.45	15.47	6	150.0		
		Z	4.88	65.20	15.27		150.0		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^B Numerical linearization parameter: uncertainty not required.

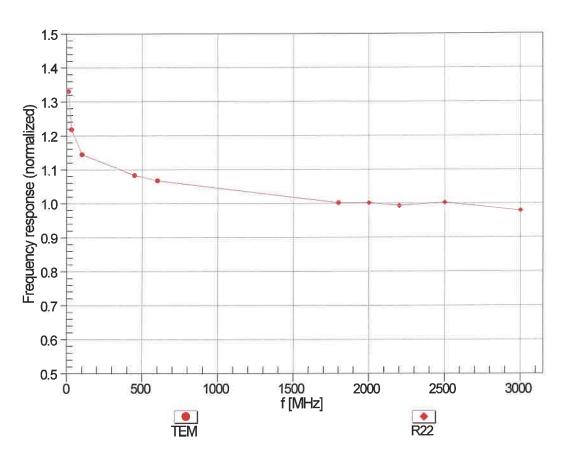
#### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻¹	Т6
Х	59.0	440.74	35.51	20.17	0.23	5.10	0.92	0.44	1.01
Y	48.9	368.31	36.03	19.77	0.00	5.04	0.00	0.42	1.01
Z	52.1	397.53	36.71	14.36	0.00	5.09	1.09	0.31	1.01

#### **Other Probe Parameters**

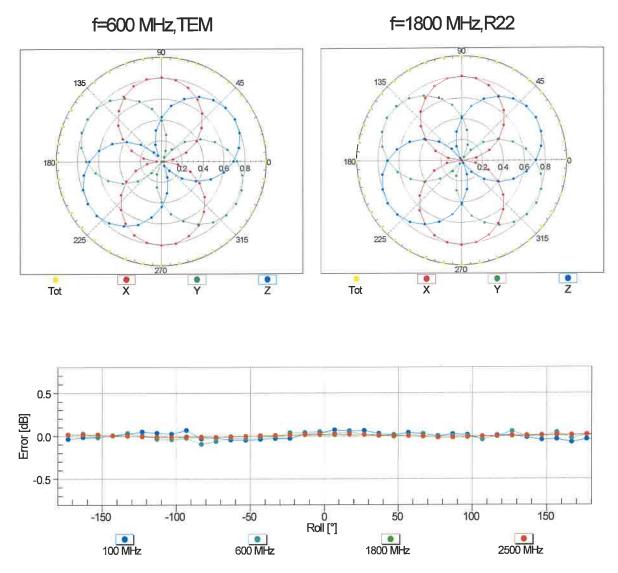
Sensor Arrangement	Triangular
Connector Angle (°)	-123.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.63	10.63	10.63	0.42	0.90	± 12.0 %
900	41.5	0.97	10.09	10.09	10.09	0.51	0.80	± 12.0 %
1750	40.1	1.37	8.67	8.67	8.67	0.35	0.86	± 12.0 %
1900	40.0	1.40	8.35	8.35	8.35	0.30	0.86	± 12.0 %
2300	39.5	1.67	8.26	8.26	8.26	0.33	0.90	± 12.0 %
2450	39.2	1.80	7.91	7.91	7.91	0.38	0.90	± 12.0 %
2600	39.0	1.96	7.62	7.62	7.62	0.40	0.90	± 12.0 %
5250	35.9	4.71	5.59	5.59	5.59	0.40	1.80	± 13.1 %
5600	35.5	5.07	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.13	5.13	5.13	0.40	1.80	± 13.1 %

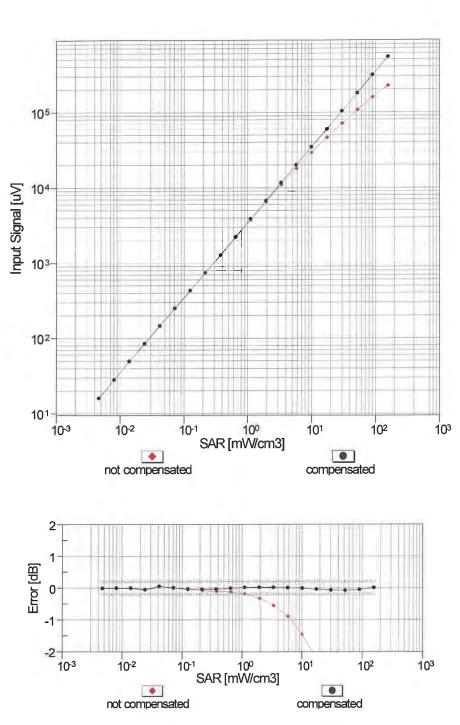
#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

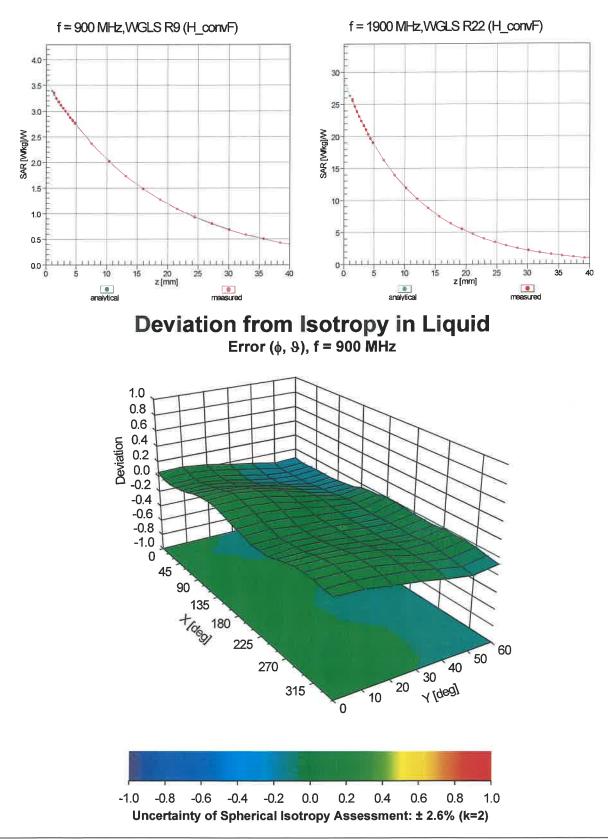
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.




### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



### **Conversion Factor Assessment**

#### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura S

**Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Apple USA Client

Certificate No: EX3-3988_Oct21

# **ALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:3988	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
Calibration date:	October 27, 2021	

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
			Issued: October 29, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura S
  - **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\phi$	$\phi$ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sonser X to the robot coordinate system

#### information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*,*z*: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the  $E^2$ -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside wavequide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm$  50 MHz to  $\pm$  100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.37	0.43	0.27	± 10.1 %
DCP (mV) ^B	104.5	104.9	97.9	

#### Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^e (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	136.8	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		128.2		
		Z	0.00	0.00	1.00		129.3		
10352-	Pulse Waveform (200Hz, 10%)	Х	20.00	90.99	20.85	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	10.05	81.83	18.04		60.0		
		Z	20.00	92.54	21.28		60.0		
10353-	Pulse Waveform (200Hz, 20%)	Х	20.00	92.58	20.47	6.99	80.0	± 1.6 %	± 9.6 %
AAA		Y	20.00	90.15	19.26		80.0		
		Z	20.00	96.56	22.03		80.0		
10354-	Pulse Waveform (200Hz, 40%)	Х	20.00	97.63	21.57	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	91.96	18.70		95.0		
		Z	20.00	105.30	24.75		95.0		
10355-	Pulse Waveform (200Hz, 60%)	Х	20.00	101.90	22.43	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	95.90	19.38		120.0		
		Z	20.00	116.32	28.44		120.0		
10387-	QPSK Waveform, 1 MHz	Х	1.74	66.87	15.29	1.00	150.0	± 1.7 %	± 9.6 %
AAA		Y	1.63	65.60	14.62		150.0		
		Z	1.72	66.12	15.08		150.0		
10388-	QPSK Waveform, 10 MHz	Х	2.29	68.48	15.93	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.15	67.38	15.30		150.0		
		Z	2.27	67.91	15.76		150.0		
10396-	64-QAM Waveform, 100 kHz	Х	2.76	70.26	18.45	3.01	150.0	± 0.8 %	± 9.6 %
AAA		Y	3.01	71.27	18.85		150.0		
		Z	2.38	67.53	17.52		150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.43	66.93	15.60	0.00	150.0	± 0.8 %	± 9.6 %
AAA		Y	3.48	67.04	15.58		150.0		
		Z	3.42	66.48	15.52		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	Х	4.77	65.60	15.37	0.00	150.0	± 1.6 %	± 9.6 %
AAA		Y	4.66	65.08	15.09		150.0		
		Z	4.77	65.17	15.33		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5, 6 and 7).

^B Numerical linearization parameter: uncertainty not required.

#### C1 T1 Т3 C2 T2 **T4** T5 **T6** α **V**⁻¹ fF fF ms.V⁻² ms.V⁻¹ ms **V**^{−2} **V**⁻¹ Х 41.6 295.39 32.52 12.72 0.35 5.02 2.00 0.01 1.00 Υ 318.34 33.10 44.4 11.89 0.63 5.00 1.83 0.09 1.01 Ζ 45.2 338.41 35.72 8.30 0.69 1.00 0.08 5.06 0.18

#### **Sensor Model Parameters**

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	164.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	42.7	0.88	10.59	10.59	10.59	0.10	1.25	± 13.3 %
750	41.9	0.89	10.44	10.44	10.44	0.46	0.92	± 12.0 %
835	41.5	0.90	10.36	10.36	10.36	0.42	0.80	± 12.0 %
900	41.5	0.97	10.00	10.00	10.00	0.26	1.30	± 12.0 %
1450	40.5	1.20	8.94	8.94	8.94	0.37	0.80	± 12.0 %
1640	40.2	1.31	8.77	8.77	8.77	0.31	0.86	± 12.0 %
1750	40.1	1.37	8.71	8.71	8.71	0.30	0.88	± 12.0 %
1900	40.0	1.40	8.44	8.44	8.44	0.32	0.88	± 12.0 %
2000	40.0	1.40	8.39	8.39	8.39	0.39	0.88	± 12.0 %
2300	39.5	1.67	8.03	8.03	8.03	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.78	7.78	7.78	0.38	0.90	± 12.0 %
2600	39.0	1.96	7.54	7.54	7.54	0.44	0.90	± 12.0 %
3300	38.2	2.71	6.97	6.97	6.97	0.40	1.20	± 13.1 %
3500	37.9	2.91	6.83	6.83	6.83	0.35	1.20	± 13.1 %
3700	37.7	3.12	6.80	6.80	6.80	0.40	1.20	± 13.1 %
3900	37.5	3.32	6.60	6.60	6.60	0.45	1.60	± 13.1 %
4100	37.2	3.53	6.38	6.38	6.38	0.45	1.60	± 13.1 %
4200	37.1	3.63	6.25	6.25	6.25	0.45	1.60	± 13.1 %
4400	36.9	3.84	6.23	6.23	6.23	0.40	1.60	± 13.1 %
4600	36.7	4.04	6.10	6.10	6.10	0.40	1.70	± 13.1 %
4800	36.4	4.25	5.90	5.90	5.90	0.40	1.70	± 13.1 %
4950	36.3	4.40	5.78	5.78	5.78	0.40	1.70	± 13.1 %
5200	36.0	4.66	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.20	5.20	5.20	0.40	1.80	± 13.1 %
5500	35.6	4.96	5.10	5.10	5.10	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.90	4.90	4.90	0.40	1.80	± 13.1 %
5800	35.3	5.27	5.00	5.00	5.00	0.40	1.80	± 13.1 %

#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

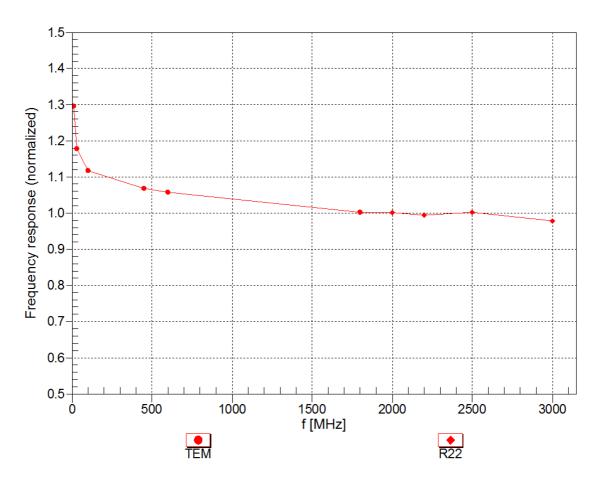
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	56.1	0.95	10.91	10.91	10.91	0.10	1.20	± 13.3 %
750	55.5	0.96	10.37	10.37	10.37	0.45	0.83	± 12.0 %
835	55.2	0.97	10.19	10.19	10.19	0.48	0.80	± 12.0 %
900	55.0	1.05	10.08	10.08	10.08	0.41	0.86	± 12.0 %
1450	54.0	1.30	8.88	8.88	8.88	0.29	0.80	± 12.0 %
1640	53.7	1.42	8.70	8.70	8.70	0.40	0.88	± 12.0 %
1750	53.4	1.49	8.34	8.34	8.34	0.43	0.88	± 12.0 %
1900	53.3	1.52	8.20	8.20	8.20	0.28	0.88	± 12.0 %
2000	53.3	1.52	8.12	8.12	8.12	0.30	0.88	± 12.0 %
2300	52.9	1.81	7.90	7.90	7.90	0.39	0.90	± 12.0 %
2450	52.7	1.95	7.86	7.86	7.86	0.30	0.90	± 12.0 %
2600	52.5	2.16	7.63	7.63	7.63	0.40	0.90	± 12.0 %
3300	51.6	3.08	6.65	6.65	6.65	0.40	1.30	± 13.1 %
3500	51.3	3.31	6.52	6.52	6.52	0.40	1.30	± 13.1 %
3700	51.0	3.55	6.47	6.47	6.47	0.40	1.30	± 13.1 %
3900	50.8	3.78	6.28	6.28	6.28	0.45	1.75	± 13.1 %
4100	50.5	4.01	6.13	6.13	6.13	0.45	1.75	± 13.1 %
4200	50.4	4.13	6.01	6.01	6.01	0.45	1.80	± 13.1 %
4400	50.1	4.37	5.98	5.98	5.98	0.40	1.80	± 13.1 %
4600	49.8	4.60	5.95	5.95	5.95	0.40	1.80	± 13.1 %
4800	49.6	4.83	5.40	5.40	5.40	0.50	1.90	± 13.1 %
4950	49.4	5.01	5.10	5.10	5.10	0.50	1.90	± 13.1 %
5200	49.0	5.30	4.85	4.85	4.85	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.75	4.75	4.75	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.21	4.21	4.21	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.38	4.38	4.38	0.50	1.90	± 13.1 %

#### **Calibration Parameter Determined in Body Tissue Simulating Media**

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

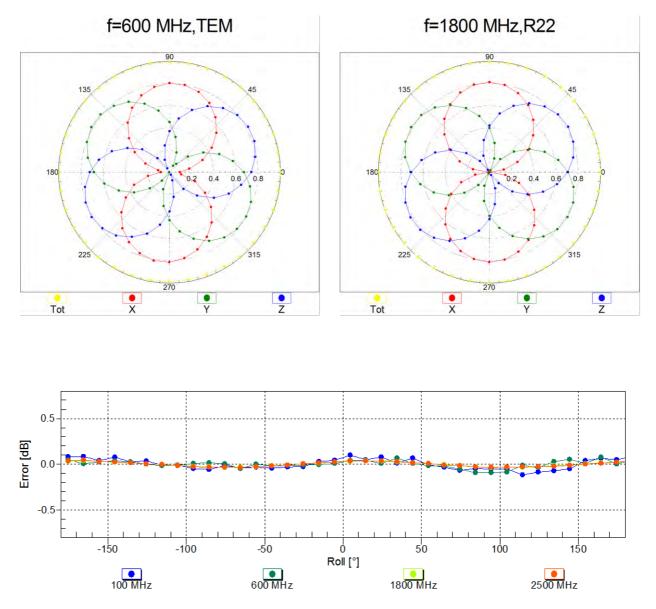
^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6500	34.5	6.07	5.70	5.70	5.70	0.20	2.50	± 18.6 %

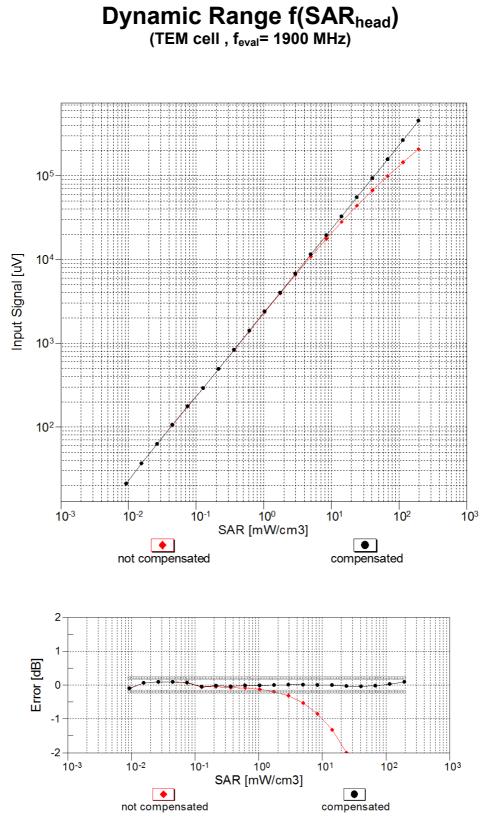
#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for

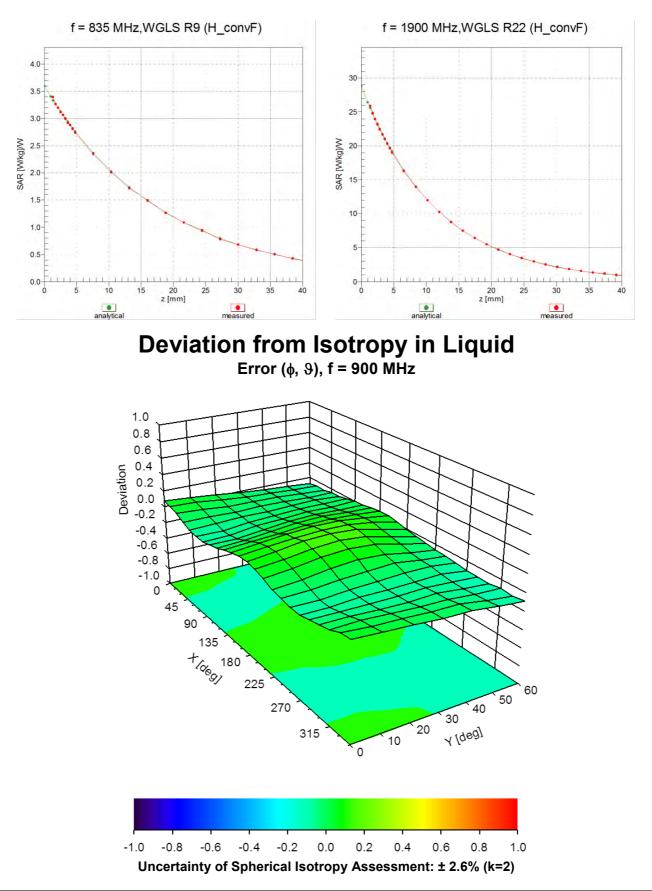

the indicated frequency band. ^F At frequencies 6-10 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured

SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz; below  $\pm$  2% for frequencies between 3-6 GHz; and below  $\pm$  4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.




### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)



### **Conversion Factor Assessment**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cilent Apple USA

Certificate No: EX3-3785_Oct21

S

С

S

Object	EX3DV4 - SN:378	35	
Calibration procedure(s)	QA CAL-25.v7	A CAL-12.v9, QA CAL-14.v6, QA dure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	October 27, 2021		
	lucted in the closed laboratory	obability are given on the following pages and facility: environment temperature $(22 \pm 3)^{\circ}$ C a	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
		Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	Scheduled Calibration
Power meter NRP	ID SN: 104778 SN: 103244	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power meler NRP Power sensor NRP-Z91	SN: 104778	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	Apr-22 Apr-22
Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22 Apr-22 Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778     SN: 103244     SN: 103245	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	Apr-22 Apr-22
	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03243)	Apr-22     Apr-22     Apr-22     Apr-22     Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-22     Apr-22     Apr-22     Apr-22     Dec-21     Dec-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Date (in house)     06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID     SN: GB41293874	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Date (in house)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Altenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID     SN: GB41293874     SN: MY41498087	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Date (in house)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID     SN: GB41293874     SN: MY41498087     SN: 000110210	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Date (in house)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID     SN: GB41293874     SN: 000110210     SN: US3642U01700	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Dale (in house)     06-Apr-16 (in house check Jun-20)	Apr-22   Apr-22   Apr-22   Dec-21   Dec-21   Scheduled Check   In house check: Jun-22   In house check: Ocl-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Altenuator DAE4	SN: 104778     SN: 103244     SN: 103245     SN: CC2552 (20x)     SN: 660     SN: 3013     ID     SN: GB41293874     SN: 000110210     SN: US3642U01700     SN: US41080477	09-Apr-21 (No. 217-03291/03292)     09-Apr-21 (No. 217-03291)     09-Apr-21 (No. 217-03292)     09-Apr-21 (No. 217-03343)     23-Dec-20 (No. DAE4-660_Dec20)     30-Dec-20 (No. ES3-3013_Dec20)     Check Date (in house)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)     06-Apr-16 (in house check Jun-20)     04-Aug-99 (in house check Jun-20)     31-Mar-14 (in house check Oct-20)	Apr-22   Apr-22   Apr-22   Dec-21   Dec-21   Scheduled Check   In house check: Jun-22

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.41	0.53	± 10.1 %
DCP (mV) ^B	102.0	104.5	102.0	

#### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^e (k=2)
0	CW	X	0.00	0.00	1.00	0.00	133.1	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		145.9	1	
		Z	0.00	0.00	1.00		144.4	1	
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	90.84	20.04	10.00	60.0	± 4.0 %	± 9.6 %
AAA		Y	14.43	85.71	18.66	1	60.0		
		Z	20.00	95.87	23.26		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	93.41	20.24	6.99	80.0	± 2.6 %	± 9.6 %
AAA		Y	20.00	90.46	18.91	1	80.0		
		Z	20.00	99.24	23.96	1	80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	100.40	22.30	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	20.00	93.43	18.88		95.0	2	
		Z	20.00	106.75	26.25		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	110.87	25.82	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	98.05	19.80		120.0		
		Z	20.00	114.93	28.66		120.0	[	
10387-	QPSK Waveform, 1 MHz	X	1.66	66.99	15.25	1.00	150.0	± 2.4 %	± 9.6 %
AAA		Y	1.46	65.70	14.15		150.0	1	
		Z	1.61	65.67	14.61		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.18	68.11	15.87	0.00	150.0	± 1.2 %	± 9.6 %
AAA		Y	1.94	66.45	14.86		150.0		
		Z	2.11	67.05	15.27		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.73	70.23	18.85	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.64	69.97	18.52		150.0		
		Z	2.84	70.44	18.98		150.0	i	
10399-	64-QAM Waveform, 40 MHz	X	3.49	67.25	15.85	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	3.33	66.58	15.36		150.0		
		Z	3.46	66.78	15.57		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.81	65.83	15.62	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	4.64	65.54	15.34		150.0		
		Z	4.82	65.57	15.46		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertaintles of Norm X,Y,Z do not affect the E2-field uncertainly inside TSL (see Pages 5, 6 and 7).

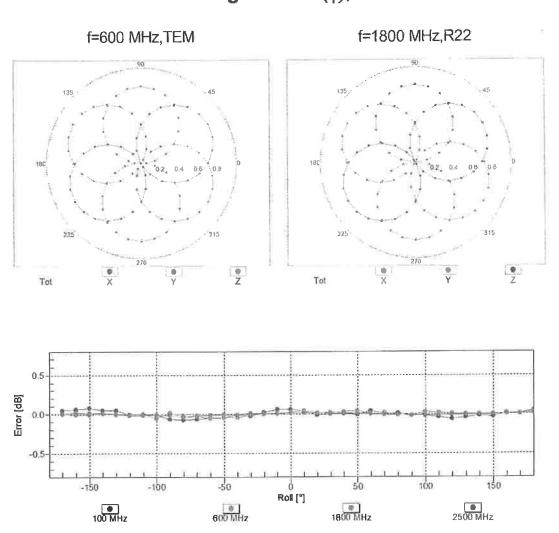
^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	42.7	0.88	9.39	9.39	9.39	0.10	1.25	± 13.3 %
750	41.9	0.89	9.37	9.37	9.37	0.52	0.80	± 12.0 %
835	41.5	0.90	9.05	9.05	9.05	0.41	1.00	± 12.0 %
900	41.5	0.97	8.88	8.88	8.88	0.45	0.92	± 12.0 %
1450	40.5	1.20	7.97	7.97	7.97	0.50	0.80	± 12.0 %
1640	40.2	1.31	7.92	7.92	7.92	0.28	0.86	± 12.0 %
1750	40.1	1.37	7.75	7.75	7.75	0.37	0.86	± 12.0 %
1900	40.0	1.40	7.34	7.34	7.34	0.34	0.86	± 12.0 %
2000	40.0	1.40	7.34	7.34	7.34	0.33	0.86	± 12.0 %
2300	39.5	1.67	7.18	7.18	7.18	0.22	0.90	± 12.0 %
2450	39.2	1.80	6.75	6.75	6.75	0.34	0.90	± 12.0 %
2600	39.0	1.96	6.70	6.70	6.70	0.34	0.90	± 12.0 %
3300	38.2	2.71	6.45	6.45	6.45	0.35	1.30	± 13.1 %
3500	37.9	2.91	6.15	6.15	6.15	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.10	6.10	6.10	0.45	1.30	± 13.1 %
3900	37.5	3.32	6.09	6.09	6.09	0.40	1.60	± 13.1 %
4100	37.2	3.53	5.80	5.80	5.80	0.40	1.60	± 13.1 %
4200	37.1	3.63	5.75	5.75	5.75	0.40	1.60	± 13.1 %
4400	36.9	3.84	5.73	5.73	5.73	0.40	1.60	± 13.1 %
4600	36.7	4.04	5.61	5.61	5.61	0.40	1.60	± 13.1 %
4800	36.4	4.25	5.50	5.50	5.50	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.30	5.30	5.30	0.40	1.80	± 13.1 %
5200	36.0	4.66	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.55	4.55	4.55	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.40	4.40	4.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.31	4.31	4.31	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.40	4.40	4.40	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to

The queries below 3 GHz, the values of the value parameters ( $\epsilon$  and  $\sigma$ ) can be released to  $\pm$  10% in liquid compensation formula is applied to measured SAR values. At frequencies a GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

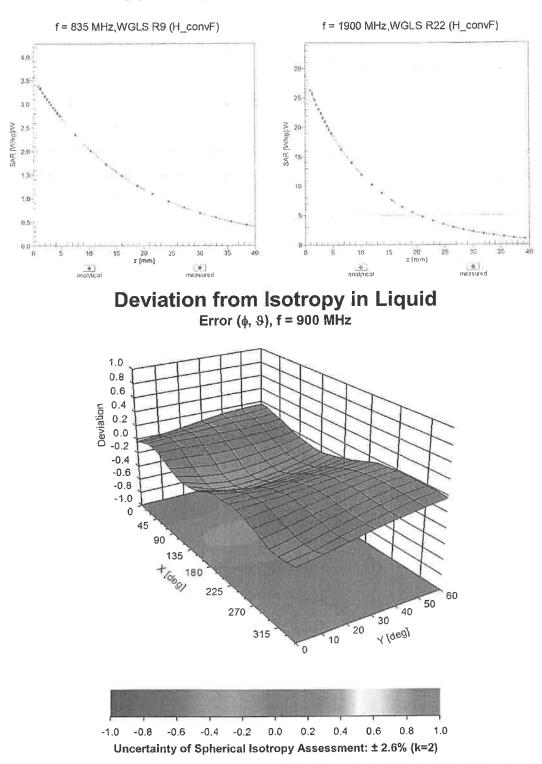

f	(MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
	6500	34.5	6.07	5.30	5.30	5.30	0.20	2.50	± 18.6 %

#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for

The direct and the constrainty is the COS of the Convertient of the c

October 27, 2021




## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

October 27, 2021

EX3DV4-SN:3785



### **Conversion Factor Assessment**