Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D750V3-1019_Apr22

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

CALIBRATION C	ERTIFICATI		
Object	D750V3 - SN:10	19	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	April 26, 2022	State Series y name a list of	
The measurements and the uncerta	ainties with confidence predicted in the closed laborator	onal standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature (22 ± 3)°(d are part of the certificate.
Primary Standards	D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Sven Kühn	Deputy Manager	Suc
		full without written approval of the laboratory.	Issued: April 28, 2022

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	750 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	2.16 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	8.62 W/kg ± 17.0 % (k=2)	
	1		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	1.42 W/kg	

normalized to 1W

5.67 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.4 Ω + 2.5 jΩ
Return Loss	- 23.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.042 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

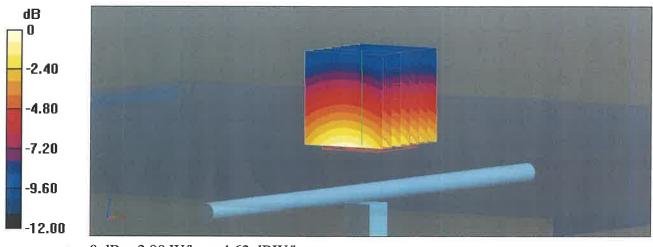
DASY5 Validation Report for Head TSL

Date: 26.04.2022

Test Laboratory: SPEAG, Zurich, Switzerland

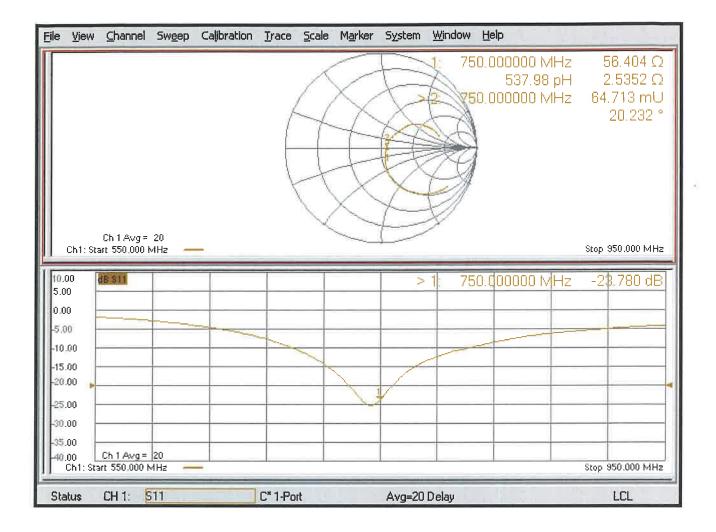
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1019

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.73 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.28 W/kg **SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 65.8\% Maximum value of SAR (measured) = 2.00 W/kg**

Maximum value of SAR (measured) = 2.90 W/kg

0 dB = 2.90 W/kg = 4.62 dBW/kg

Impedance Measurement Plot for Head TSL

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 29/Nov/2021

CERTIFICATE NUMBER : 13685241JD01A

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 6

5772

APPROVED SIGNATORY

M. Marce

Naseer Mirza

19/Nov/2021

Customer : UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:
Manufacturer:	SPEAG	
Type/Model Number:	D750V3	
Serial Number:	1071	
Calibration Date:	24/Nov/2021	
Calibrated By:	Masood Khan Test Engineer	

Signature:

MARAL

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 13685241JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. IEC 62209-1:2016: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. IEEE 1528: 2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cai. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	16 Mar 2021	12
PRE0133692	Dipole	SPEAG	D750V3	SN1011	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND 1328.5170K92	100151	23 Mar 2021	12
ULEID212645	Calibration Kit	Rhode & Schwarz	ZN-Z135 (f)	101005	22 Oct 2021	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	25 Mar 2021	12

CERTIFICATE NUMBER : 13685241JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	nber: F17/5ENYG1/A/01			
DASY Version:	ion: cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency: 750 MHz				

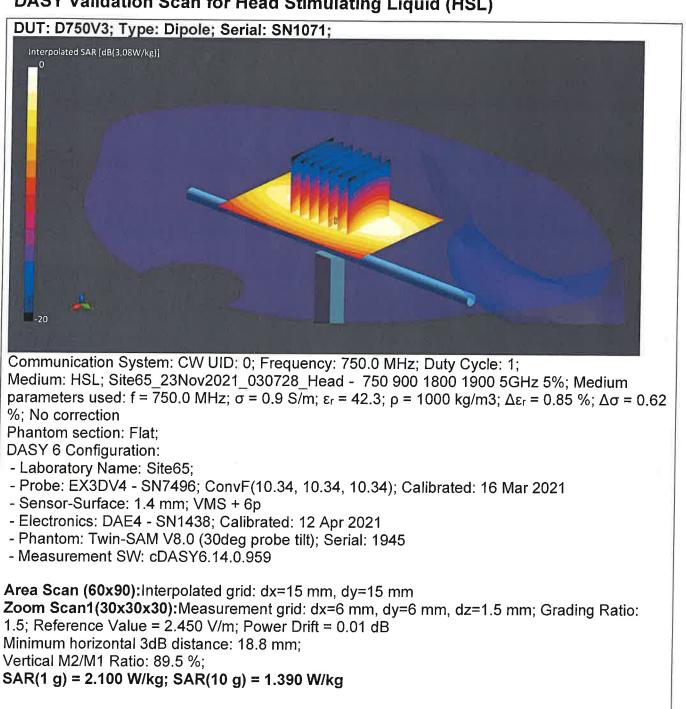
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid Temp Parameters	Target	Measured	Uncertainty				
onnoiant Eigena	(MHz)	Start	End	Start	End	Farameters	Value	Value	(%)
Head	750	21.2 %	21 %	21100	21 %	٤r	41.94	42.29	± 5%
	100	21.2 0	21 0	21.1 0	210	σ	0.89	0.90	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.1 W/Kg	8.36 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	1.39 W/Kg	5.53 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.26 + 0.862j Ω	± 3.01
Ticau	Return Loss	27.89	± 2.97

CERTIFICATE NUMBER : 13685241JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

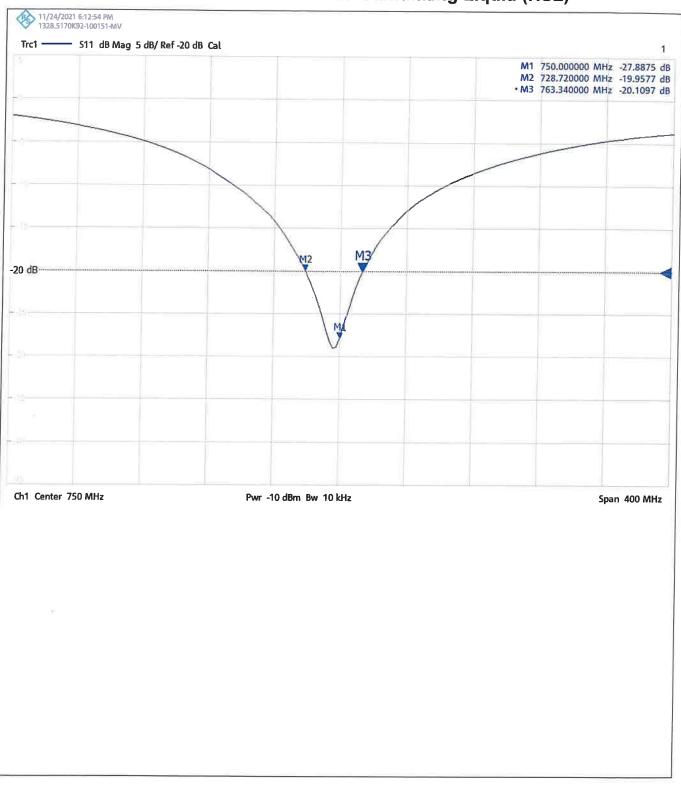
DASY Validation Scan for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER : 13685241JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13685241JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01A

Instrument ID: 1071

Calibration Date: 24/Nov/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 13685241JD01A

Instrument ID: 1071

Calibration Date: 24/Nov/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner

UL USA

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No:	D835V2-4d142	Aug21

S

CALIBRATION CERTIFICATE Object D835V2 - SN:4d142 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz August 10, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Saf Them
Approved by:	Katja Pokovic	Technical Manager	le us
This calibration certificate shall not I			Issued: August 10, 2021

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ē. connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1 <u>1111111</u>	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.59 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 4.9 jΩ	
Return Loss	- 26.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

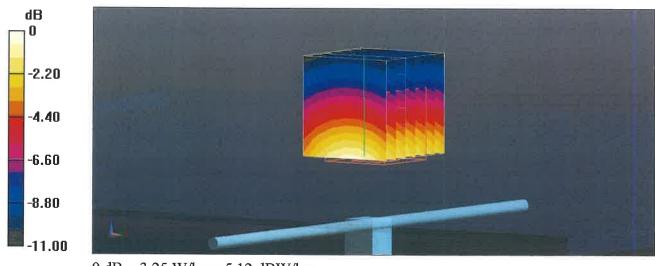
Additional EUT Data

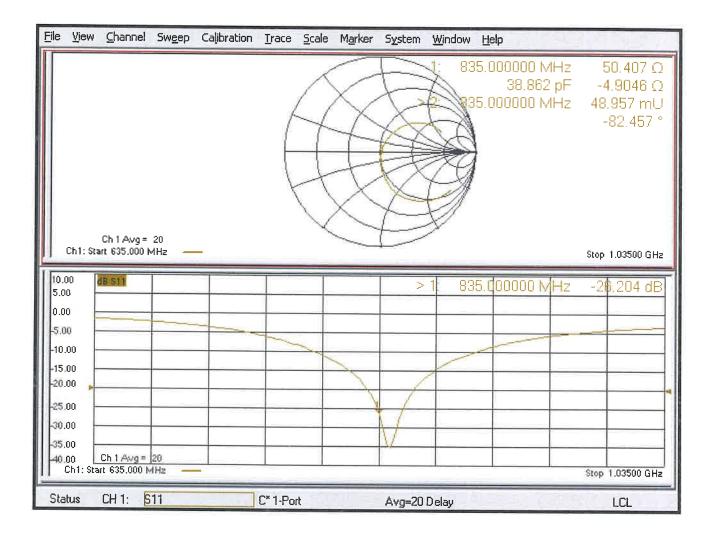
Manu da atura di l	07710
Manufactured by	SPEAG

Date: 10.08.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d142


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.24 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.66 W/kg **SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg** Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 3.25 W/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIFICATE NUMBER : 13697410JD01A

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D900V2		
Serial Number:	1d143		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	MADAN		

-

Mans

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0134199	Dipole	SPEAG	D900V2	SN035	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	15 mm (with spacer)
Frequency:	900 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

								· /	
Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	900	21.1 °C	20.9 °C	20.8 °C	20.6 °C	٤r	41.50	42.05	± 5%
neau	900	21.1 C	20.9 C	20.0 L	20.0 C	σ	0.97	0.95	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.69 W/Kg	10.71 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	1.75 W/Kg	6.97 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	48.64 - 0.027j Ω	± 3.01
пеао	Return Loss	36.76	± 3.34

CERTIFICATE NUMBER : 13697410JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 10

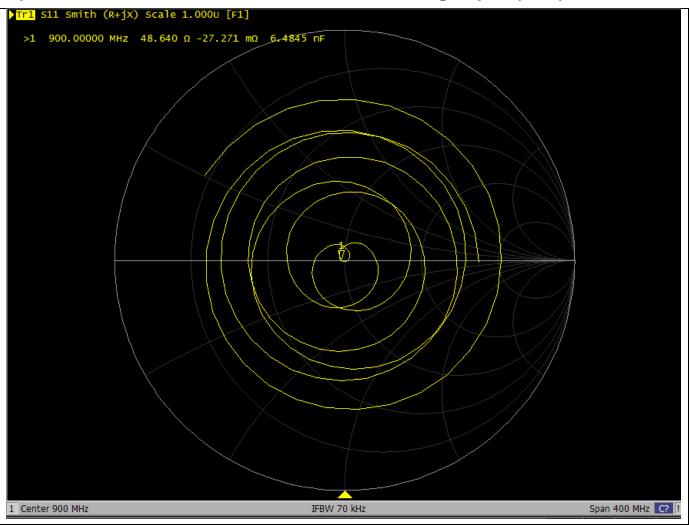
DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D900V2; Type: Dipole; Serial: SN1d143;

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 900.0 MHz; σ = 0.946 S/m; ϵ_r = 42.1; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 1.33 %; $\Delta \sigma$ = -2.48 %; No correction Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(6.18, 6.18, 6.18); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

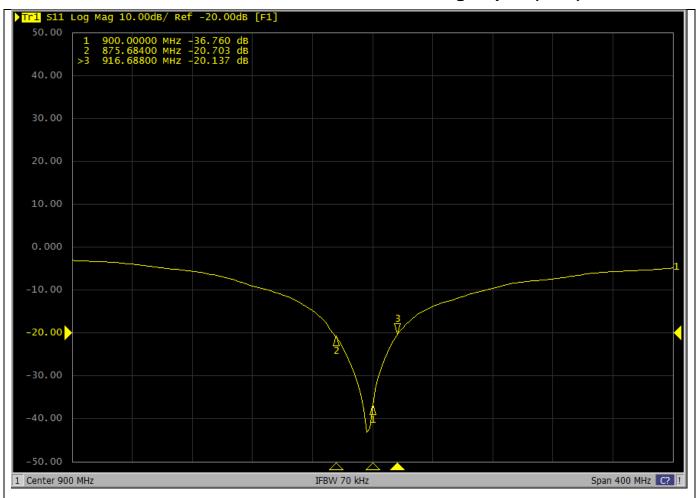

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 3.130 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 22.1 mm; Vertical M2/M1 Ratio: 88.9 %; SAR(1 g) = 2.690 W/kg; SAR(10 g) = 1.750 W/kg

CERTIFICATE NUMBER : 13697410JD01A

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13697410JD01A
	Instrument ID: 1d143
UKAS CALIBRATION 5772	Calibration Date: 29/Sep/2021
5772	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01A

Instrument ID: 1d143

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01A

Instrument ID: 1d143

Calibration Date: 29/Sep/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD DATE OF ISSUE: 09/Mar/2022 CERTIFICATE NUMBER : 12345678JD01B

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Harmohan Sahota

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	07/Mar/2022
Manufacturer:	Speag		
Type/Model Number:	D1640V2		
Serial Number:	324		
Calibration Date:	08/Mar/2022		
Calibrated By:	Gizem Kodal Laboratory Technician		
Signature:	G. Otio		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

.....

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

issuing laboratory. Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

CERTIFICATE NUMBER : 12345678JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528-2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. IEC/IEEE 62209-1528:2020: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
- 5. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 6. DASY 6 System Handbook
- 7. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0135113	Probe	SPEAG	ES3DV3	3995	23 Jul 2021	12
PRE0176086	Dipole	SPEAG	D1640V2	501	11 Feb 2022	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
PRE0151154	Vector Network Analyser	Rohde & Schwarz	ZND	100151	23 Mar 2021	12
212645	Calibration Kit	Rohde & Schwarz	ZN-Z135	101005	22 Oct 2021	12
M1838	Signal Generator	Rohde & Schwarz	SME 06	831377/005	29 Mar 2021	12

CERTIFICATE NUMBER : 12345678JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version: cDASY6.14.0.959			
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1640 MHz		

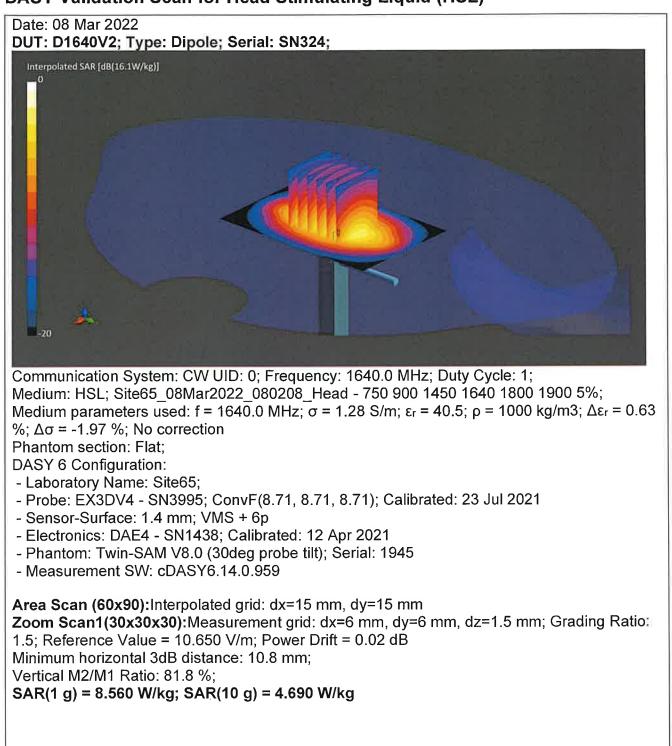
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Simulani Liquid	(MHz)	Start	End	Start	End	r arameters	Value	Value	(%)
Head	1640	20.8 °C	21.0.%	21.0 °C	21.2 %	13	40.2	40.5	± 5%
Heau	1040	20.0 ℃	21.0 ℃	21.0 ℃	21.2 0	σ	1.31	1.29	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llaad	SAR averaged over 1g	8.560 W/Kg	34.08 W/Kg	+18.70 / -18.48
Head	SAR averaged over 10g	4.690 W/Kg	18.67 W/Kg	+18.62 / -18.43

Antenna Parameters – Head Simulating Liquid (HSL)

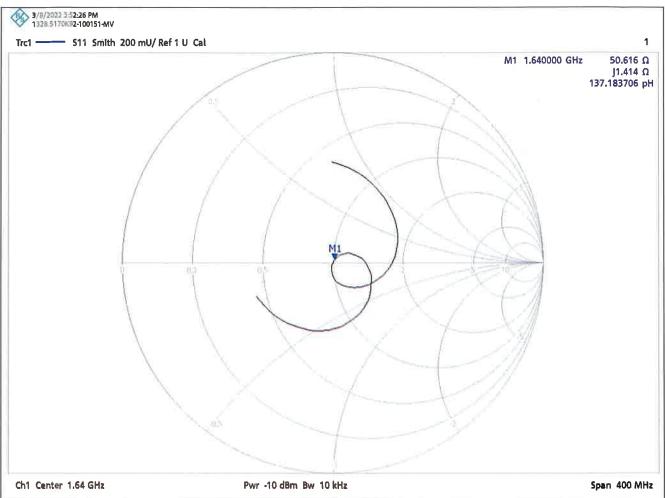

Simulant Liquid	Parameter	Measured Level	Uncertainty
Used	Impedance	50.62 + 1.41 Ω	± 10.83 %
Head	Return Loss	36.29	± 1.37 dB

CERTIFICATE NUMBER : 12345678JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

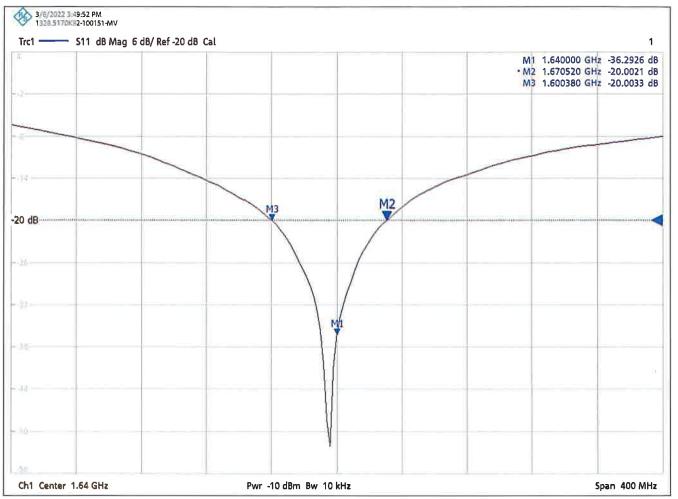


CERTIFICATE NUMBER : 12345678JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 12345678JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 12345678JD01B

Calibration Date: 09/Mar/2022

Calibration Due Date:


UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 12345678JD01B

Instrument ID: 324

Calibration Date: 09/Mar/2022

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D1750V2-1050_Apr22

CALIBRATION C	ERTIFICATI	the second second	10 3 C 1 C 2 C 2 C 2
Object	D1750V2 - SN:1	050	
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz		
Calibration date:	April 27, 2022		
The measurements and the uncert	ainties with confidence p ed in the closed laborato	ional standards, which realize the physical u robability are given on the following pages a ny facility: environment temperature (22 \pm 3)	and are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Alfhlishij
Approved by:	Sven Kühn	Deputy Manager	S.E
This calibration certificate shall not I	be reproduced except in	full without written approval of the laboratory	Issued: April 28, 2022 /.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω - 1.7 jΩ		
Return Loss	- 35.3 dB		

General Antenna Parameters and Design

1.223 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

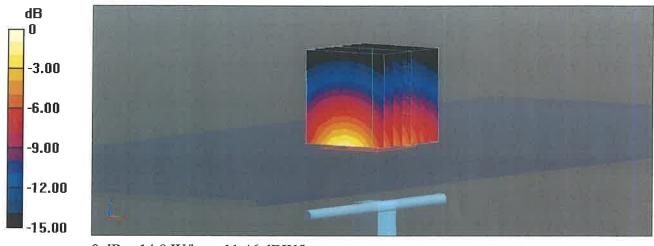
Manufactured by SPEAG

DASY5 Validation Report for Head TSL

Date: 27.04.2022

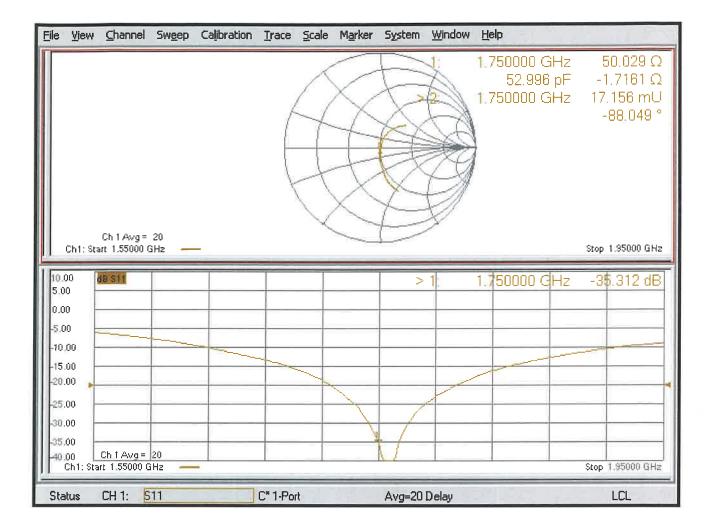
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1050


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.35 S/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.9 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.7 W/kg **SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.77 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Head TSL

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021

CERTIFICATE NUMBER : 13697410JD01B

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

5772

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D1750V2		
Serial Number:	1053		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	MARIAN		

Signature:

Want

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22 \pm 3) 0 C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0131610	Dipole	SPEAG	D1800V2	SN2d009	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1750 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

								. ,	
Simulant Liquid	Frequency	Room	n Temp Liquid Temp Parameters	Target	Measured	Uncertainty			
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	1750	21.1 ℃	20.6 °C	20.8 °C	20.4 °C	٤r	40.08	40.44	± 5%
neau	1750	21.1 C	20.0 C	20.0 C	20.4 C	σ	1.37	1.35	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	9.25 W/Kg	36.82 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	4.94 W/Kg	19.67 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.66 - 1.73j Ω	± 3.01
пеао	Return Loss	34.74	± 3.34

CERTIFICATE NUMBER : 13697410JD01B

UKAS Accredited Calibration Laboratory No. 5772

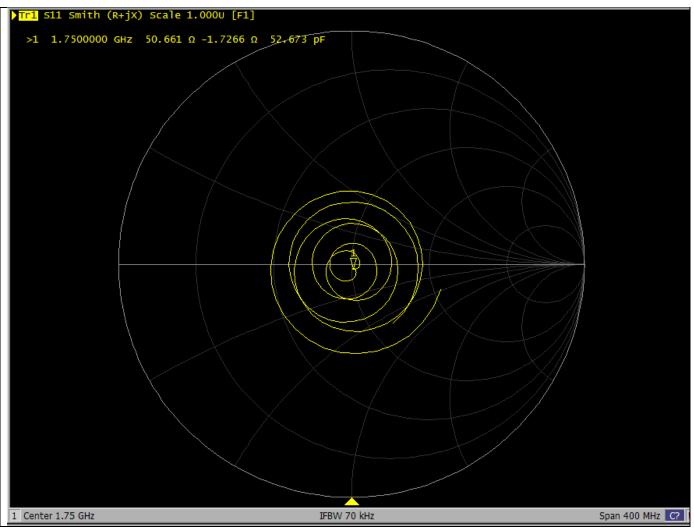
Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1750V2; Type: Dipole; Serial: SN1053;

Communication System: CW UID: 0; Frequency: 1750.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 1750.0 MHz; σ = 1.35 S/m; ε_r = 40.4; ρ = 1000 kg/m3; Δε_r = 0.91 %; Δσ = -1.51 %; No correction

Phantom section: Flat; DASY 6 Configuration:

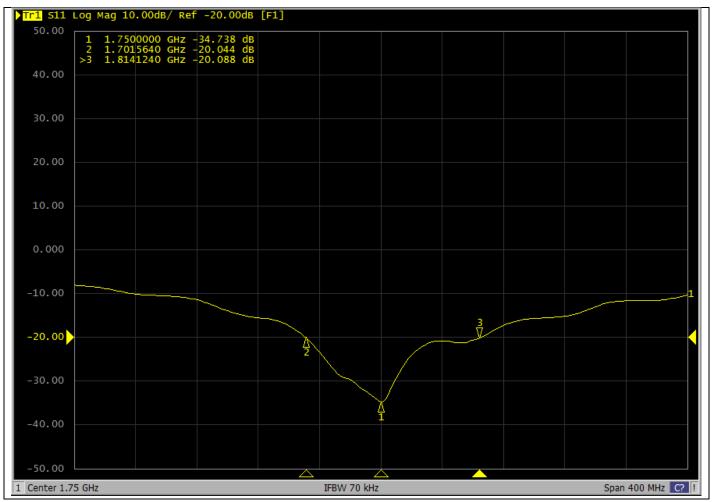

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(5.25, 5.25, 5.25); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 11.670 V/m; Power Drift = 0.00 dB Minimum horizontal 3dB distance: 9.9 mm; Vertical M2/M1 Ratio: 84.4 %; SAR(1 g) = 9.250 W/kg; SAR(10 g) = 4.940 W/kg

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13697410JD01B
UKAS CALIBRATION	Instrument ID: 1053
	Calibration Date: 29/Sep/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01B

Instrument ID: 1053

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01B

Instrument ID: 1053

Calibration Date: 29/Sep/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIFICATE NUMBER : 13697410JD01C

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

5772

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D1750V2		
Serial Number:	1077		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Signatura	MARINA		

Signature:

Molanz

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0131610	Dipole	SPEAG	D1800V2	SN2d009	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	1750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

								. ,	
Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	1750	21.1 ℃	20.6 °C	20.8 °C	20.4 °C	٤r	40.08	40.44	± 5%
neau	1750	21.1 C	20.0 C	20.0 C	20.4 C	σ	1.37	1.35	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Llood	SAR averaged over 1g	9.19 W/Kg	36.59 W/Kg	+16.80 / -16.43%
Head	SAR averaged over 10g	4.90 W/Kg	19.51 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llaad	Impedance	50.33 - 2.50j Ω	± 3.01
Head	Return Loss	32.20	± 3.34

CERTIFICATE NUMBER : 13697410JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 10

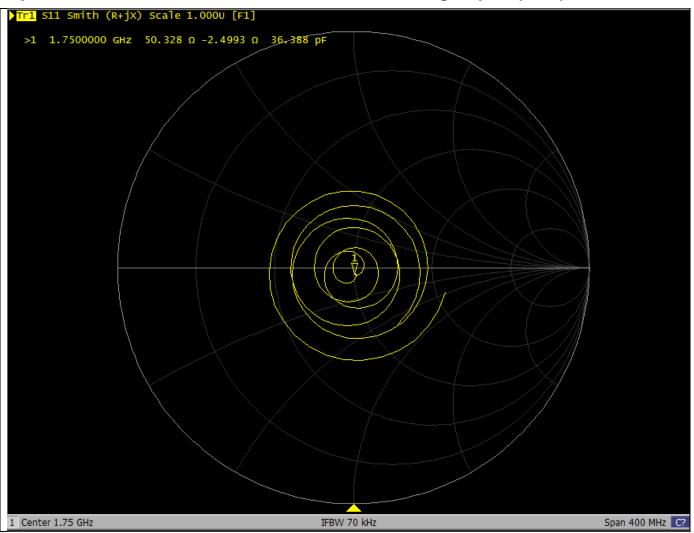
DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1750V2; Type: Dipole; Serial: SN1077;

Communication System: CW UID: 0; Frequency: 1750.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 1750.0 MHz; σ = 1.35 S/m; ε_r = 40.4; ρ = 1000 kg/m3; Δε_r = 0.91 %; Δ σ = -1.51 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

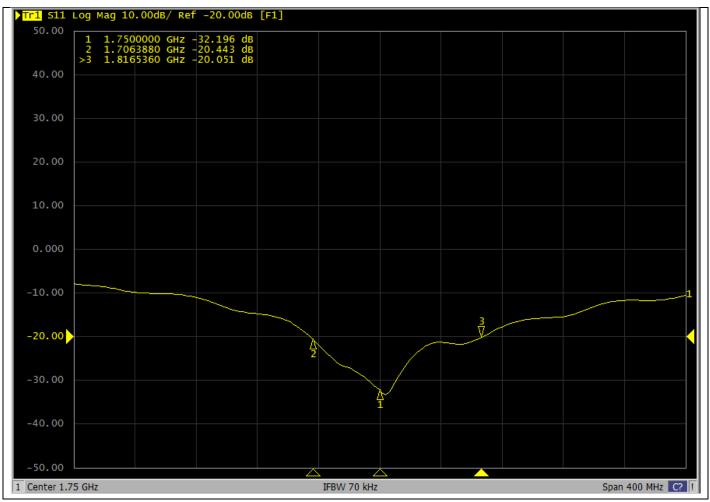

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(5.25, 5.25, 5.25); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 11.500 V/m; Power Drift = 0.01 dB Minimum horizontal 3dB distance: 10.7 mm; Vertical M2/M1 Ratio: 84.5 %; SAR(1 g) = 9.190 W/kg; SAR(10 g) = 4.900 W/kg

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13697410JD01C
	Instrument ID: 1077
UKAS CALIBRATION 5772	Calibration Date: 29/Sep/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01C

Instrument ID: 1077

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01C

Instrument ID: 1077

Calibration Date: 29/Sep/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D1900V2-5d140_Apr22

	D1900V2 - SN:5d140			
alibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz	
alibration date:	April 28, 2022			
he measurements and the uncer Il calibrations have been conduc	tainties with confidence p ted in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an γ facility: environment temperature (22 ± 3)°C	d are part of the certificate.	
Calibration Equipment used (M&T	E critical for calibration)			
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23	
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23	
wer sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23	
ference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23	
	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	A == 00	
pe-N mismatch combination	014. 0100027 00027		Apr-23	
	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Apr-23 Dec-22	
ference Probe EX3DV4				
oference Probe EX3DV4 AE4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22	
oference Probe EX3DV4 AE4 econdary Standards	SN: 7349 SN: 601	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21)	Dec-22 Nov-22	
eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 7349 SN: 601	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Dec-22 Nov-22 Scheduled Check	
ference Probe EX3DV4 E4 condary Standards wer meter E4419B wer sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Dec-22 Nov-22 Scheduled Check In house check: Oct-22	
ofference Probe EX3DV4 AE4 condary Standards wer meter E4419B wer sensor HP 8481A wer sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22	
ference Probe EX3DV4 E4 condary Standards wer meter E4419B wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22	
eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A = generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22	
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A = generator R&S SMT-06 etwork Analyzer Agilent E8358A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22	
ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A alibrated by:	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	11111	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω + 6.6 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

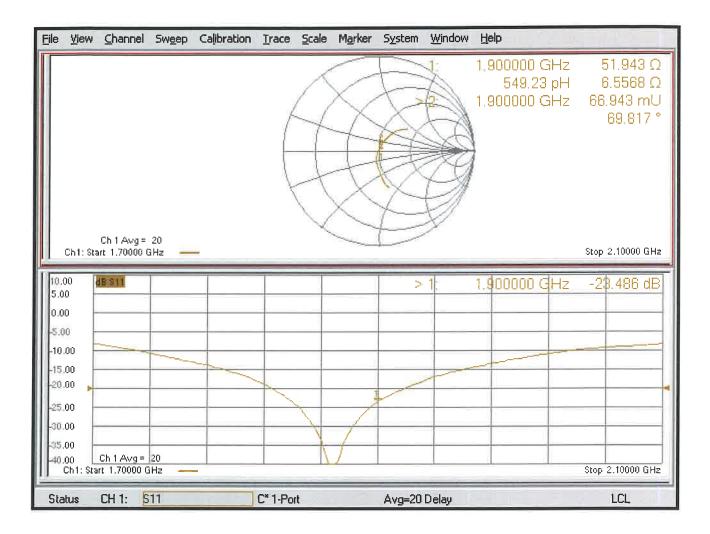
Date: 28.04.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d140

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.7 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.5 W/kg **SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIFICATE NUMBER : 13697410JD01E

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D1900V2		
Serial Number:	5d163		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	Monay		

.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0134198	Dipole	SPEAG	D19000V2	SN537	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY16.0.0.116
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	1900 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Doromotoro	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	1900	21.2 °C	20.6 °C	20.8 °C	20.5 °C	٤r	40.00	40.26	± 5%
neau	1900	21.2 L	20.0 C	20.0 L	20.5 L	σ	1.40	1.44	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	10.20 W/Kg	40.61 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	5.28 W/Kg	21.02 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	51.95 - 4.40j Ω	± 3.01
пеаа	Return Loss	26.51	± 2.97

CERTIFICATE NUMBER : 13697410JD01E

UKAS Accredited Calibration Laboratory No. 5772

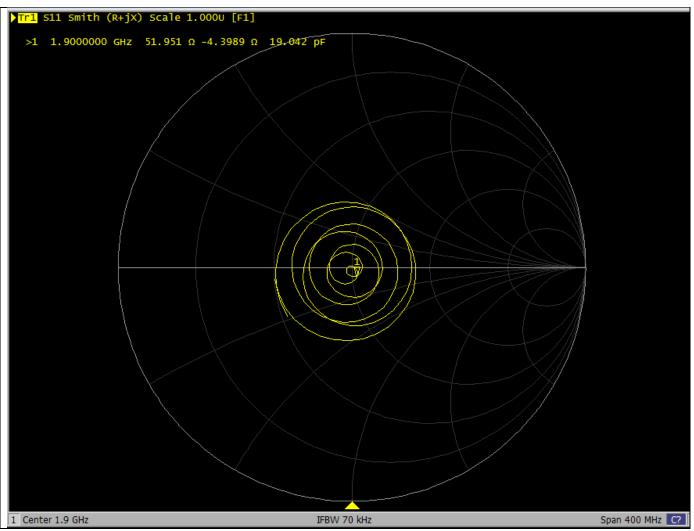
Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1900V2; Type: Dipole; Serial: SN5d163;

Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 1900.0 MHz; σ = 1.44 S/m; ϵ_r = 40.3; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.66 %; $\Delta \sigma$ = 2.96 %; No correction Phantom section: Flat;

DASY 6 Configuration:

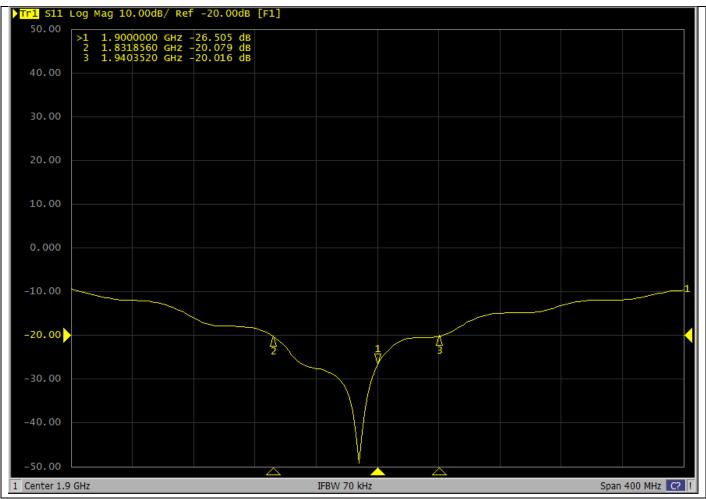

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(5.13, 5.13, 5.13); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 12.810 V/m; Power Drift = 0.02 dB Minimum horizontal 3dB distance: 10.7 mm; Vertical M2/M1 Ratio: 83.9 %; SAR(1 g) = 10.200 W/kg; SAR(10 g) = 5.280 W/kg

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13697410JD01E
	Instrument ID: 5d163
UKAS CALIBRATION 5772	Calibration Date: 29/Sep/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01E

Instrument ID: 5d163

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01E

Instrument ID: 5d163

Calibration Date: 29/Sep/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D1950V3-1136_Apr22

Dbject	D1950V3 - SN:1136				
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz		
Calibration date:	April 28, 2022				
The measurements and the uncerta	ainties with confidence p ad in the closed laborator	onal standards, which realize the physical unit robability are given on the following pages and γ facility: environment temperature (22 ± 3)°C	d are part of the certificate.		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23		
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23		
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23		
	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23		
Reference 20 dB Attenuator					
	SN: 310982 / 06327		Apr-23		
ype-N mismatch combination	SN: 310982 / 06327 SN: 7349	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)			
Type-N mismatch combination Reference Probe EX3DV4		04-Apr-22 (No. 217-03528)	Apr-23		
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 7349	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)	Apr-23 Dec-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 7349 SN: 601	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21)	Apr-23 Dec-22 Nov-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 7349 SN: 601	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Apr-23 Dec-22 Nov-22 Scheduled Check		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1950 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω - 2.0 jΩ
Return Loss	- 33.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

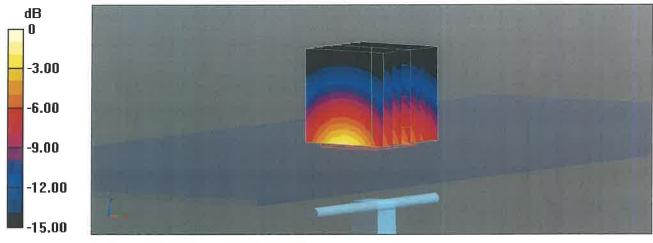
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

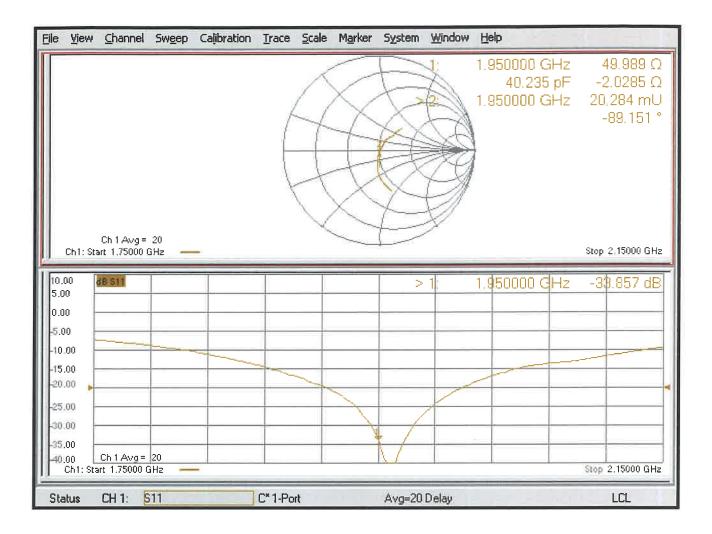
Date: 28.04.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN:1136


Communication System: UID 0 - CW; Frequency: 1950 MHz Medium parameters used: f = 1950 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.41, 8.41, 8.41) @ 1950 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.7 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 19.4 W/kg **SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.29 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.09 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

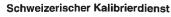
Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D2300V2-1002_Apr22

S


С

Object	D2300V2 - SN:1002					
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz			
Calibration date:	April 25, 2022					
	ed in the closed laborato	probability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^\circ$				
rimary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration			
	ID #	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	Scheduled Calibration			
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23			
ower meter NRP ower sensor NRP-Z91		04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	Apr-23 Apr-23			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23 Apr-23 Apr-23			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	SN: 104778 SN: 103244	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	Apr-23 Apr-23 Apr-23 Apr-23			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23 Apr-23 Apr-23			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23			
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22			
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A = generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22			

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled ø phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	2300 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.71 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.02 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω - 3.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

IS
3 n

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

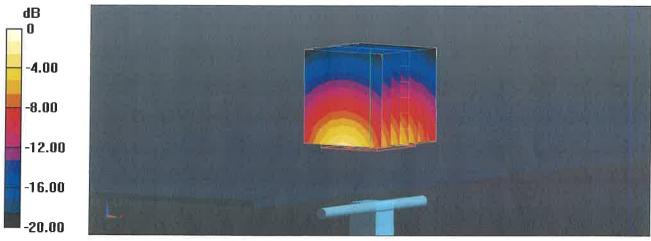
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

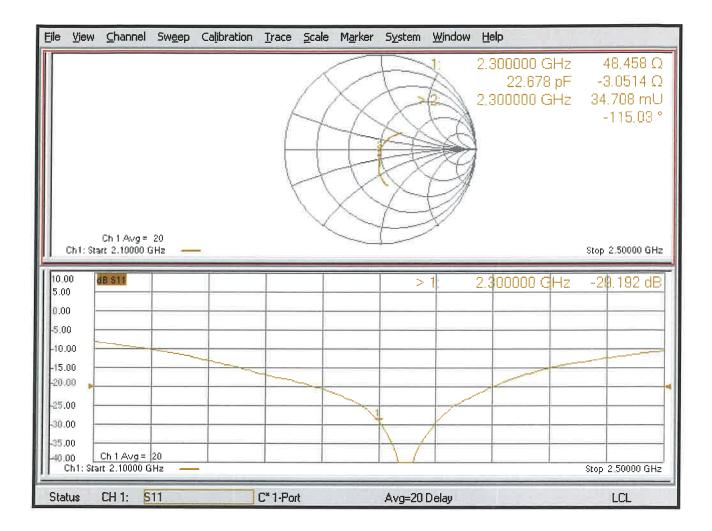
Date: 25.04.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1002


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.71$ S/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 114.7 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 22.6 W/kg **SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.02 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.3% Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIFICATE NUMBER : 13697410JD01G

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Sep/2021
Manufacturer:	Speag		
Type/Model Number:	D2300V2		
Serial Number:	1058		
Calibration Date:	29/Sep/2021		
Calibrated By:	Masood Khan Test Engineer		
Signature:	Monay		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0134944	Dipole	SPEAG	D2300V2	SN1036	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	2300 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquic	Temp Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	2300	21.3 ℃	20.5 °C	20.8 °C	20.5 °C	٤r	39.47	39.61	± 5%
neau	2300	21.5 C	20.5 C	20.0 L	20.5 C	σ	1.67	1.71	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	12.70 W/Kg	50.56 W/Kg	+16.80 / -16.43%
	SAR averaged over 10g	6.16 W/Kg	24.52 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.03 - 1.77j Ω	± 3.01
	Return Loss	34.91	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

NUMBER : 13697410JD01G

CERTIFICATE

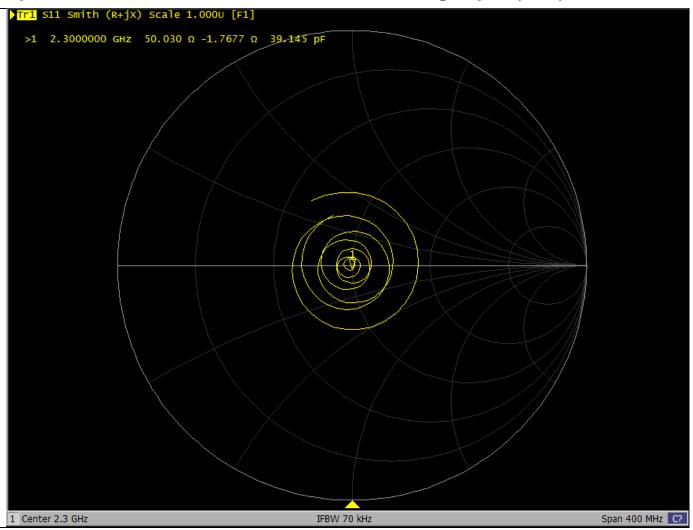
Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 2300.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 2300.0 MHz; σ = 1.71 S/m; ϵ_r = 39.6; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.38 %; $\Delta \sigma$ = 2.71 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

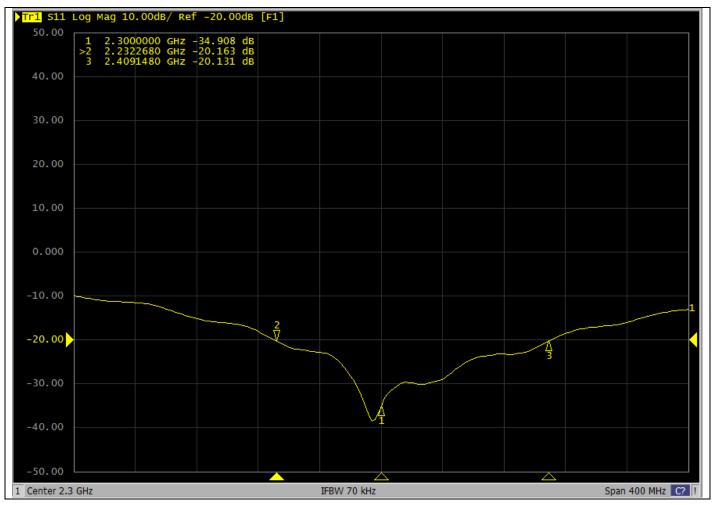

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(4.76, 4.76, 4.76); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 12 Apr 2021
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY16.0.0.116

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 16.420 V/m; Power Drift = 0.01 dB Minimum horizontal 3dB distance: 10.0 mm; Vertical M2/M1 Ratio: 82.6 %; SAR(1 g) = 12.700 W/kg; SAR(10 g) = 6.160 W/kg

Page 6 of 10

UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697410JD01G

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13697410JD01G
	Instrument ID: 1058
UKAS CALIBRATION 5772	Calibration Date: 29/Sep/2021
	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01G

Instrument ID: 1058

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01G

Instrument ID: 1058

Calibration Date: 29/Sep/2021

Calibration Due Date: