

TEST REPORT

Report Number: 14040867-E2V2

- Applicant : APPLE, INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A
 - Model : A2649 (Parent Model, Full Test) A2881, A2882, A2883, A2884 (Variant Models)
 - FCC ID : BCG-E8138A (Parent Model) BCG-E8142A, BCG-E8143A, BCG-E8144A (Variant Models)
 - IC : 579C-E8138A (Parent Model) 579C-E8142A, 579C-E8143A, 579C-E8144A (Variant Models)
- **EUT Description** : SMARTPHONE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue: July 10, 2022

Prepared by:

UL LLC 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	7/1/2022	Initial Issue	Francisco deAnda
V2	7/10/2022	Addressed TCB Feedback on Sections 8, 9.2, 9,6 and 10.2.3	Tony X. Li

Page 2 of 123

TABLE OF CONTENTS

1.	ATI	ESTATION OF TEST RESULTS	5
2.	TES	ST SUMMARY	7
3.	TES	ST METHODOLOGY	7
4.	FAG	CILITIES AND ACCREDITATION	7
5.	DEC	CISION RULES AND MEASUREMENT UNCERTAINTY	8
5	5.1.	METROLOGICAL TRACEABILITY	.8
5	5.2.	DECISION RULES	.8
5	5.3.	MEASUREMENT UNCERTAINTY	. 8
5	5.4.	SAMPLE CALCULATION	. 8
6.	EQ	JIPMENT UNDER TEST	9
e	6.1.	EUT DESCRIPTION	.9
e	6.2.	MAXIMUM OUTPUT POWER	.9
e	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	10
e	6.4.	SOFTWARE AND FIRMWARE	10
e	6.5.	WORST-CASE CONFIGURATION AND MODE	10
6	6	DESCRIPTION OF TEST SETUR	11
C	.0.	DESURIF HUN OF IEST SETUP	''
7.	 ME	ASUREMENT METHOD	14
7. 8.	MEA TES	ASUREMENT METHOD	14 15
7. 8. 9.	MEA TES	ASUREMENT METHOD	14 15 16
7. 8. 9.	,.o. MEA TES AN	ASUREMENT METHOD	14 15 16 16
7. 8. 9.	ME TES AN ⁻ 0.1.	ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH.	 14 15 16 16 18
7. 8. 9.	ME TES AN ⁻ 9.1. 9.2. 9.2.	ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 1. HIGH POWER BLE (1Mbps)	 14 15 16 16 18 19
7. 8. 9.	ME TES AN ⁻ 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD ASUREMENT METHOD TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH. 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps). 3. HIGH POWER BLE TXBF (1Mbps).	14 15 16 <i>18</i> <i>19</i> <i>20</i> <i>21</i>
7. 8. 9.	ME TES AN ⁻ 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH. 1. HIGH POWER BLE (1Mbps). 2. HIGH POWER BLE TXBF (1Mbps). 3. HIGH POWER BLE TXBF (2Mbps). 4. HIGH POWER BLE TXBF (2Mbps).	14 15 16 <i>18</i> 19 20 21 22
7. 8. 9.	ME TES AN ⁻ 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2.	ASUREMENT METHOD	14 15 16 <i>16</i> <i>18</i> <i>19</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i>
7. 8. 9.	ME TES AN ⁻ 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ASUREMENT METHOD ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE TXBF (2Mbps) 6 dB BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (1Mbps) 4. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE (1Mbps)	14 15 16 <i>16</i> <i>18</i> 19 20 21 22 23 24 25
7. 8. 9.	MEA TES AN ⁻ 9.1. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3.	ASUREMENT METHOD	14 15 16 <i>16</i> <i>18</i> 19 20 21 22 23 24 25 26
7. 8. 9. 9.		ASUREMENT METHOD ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH	14 15 16 <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i>
7. 8. 9.	ME TES AN 0.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE TXBF (2Mbps) 6 dB BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (1Mbps) 4. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE TXBF (1Mbps) 5. HIGH POWER BLE (1Mbps) 5. HIGH POWER	14 15 16 <i>16</i> <i>18</i> 19 20 21 22 23 24 25 26 27 27
7. 8. 9. 5	MEA TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3. 9.3	ASUREMENT METHOD ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE (2Mbps) 5 dB BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (1Mbps) 4. HIGH POWER BLE (1Mbps) 5 dB BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (1Mbps) 4. HIGH POWER BLE (1Mbps) 5 dI BANDWIDTH 5 dI BAN	14 15 16 <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i>
7. 8. 9.		ASUREMENT METHOD ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE (2Mbps) 4. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE (1Mbps) 3. HIGH POWER BLE (1Mbps) 4. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE (1Mbps) 5. HIGH POWER BLE (2Mbps) 5. HIGH POWER BLE (2Mbps)	14 15 16 <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i> <i>17</i>
7. 8. 9. 3	ME TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ASUREMENT METHOD ASUREMENT METHOD AST AND MEASUREMENT EQUIPMENT FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH. 1. HIGH POWER BLE (1Mbps). 2. HIGH POWER BLE TXBF (1Mbps). 3. HIGH POWER BLE (2Mbps). 4. HIGH POWER BLE TXBF (2Mbps). 5. HIGH POWER BLE (1Mbps). 2. HIGH POWER BLE (1Mbps). 3. HIGH POWER BLE (1Mbps). 4. HIGH POWER BLE (1Mbps). 5. LOW POWER BLE (2Mbps). 5. LOW POWER BLE TXBF (1Mbps). 6. LOW POWER BLE TXBF (1Mbps). 5. LOW POWER BLE (1Mbps). 5. LOW POWER BLE (1Mbps). 5. LOW POWER BLE TXBF (1Mbps).	14 15 16 <i>16</i> <i>18</i> 19 20 21 22 23 24 25 26 27 28 29 29
7. 8. 9. 9.	MEA TES AN 9.1. 9.2. 9.2. 9.2. 9.2. 9.2. 9.2. 9.3. 9.3	ASUREMENT METHOD ASUREMENT METHOD ST AND MEASUREMENT EQUIPMENT IFENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 99% BANDWIDTH. 1. HIGH POWER BLE (1Mbps) 2. HIGH POWER BLE TXBF (1Mbps). 3. HIGH POWER BLE (2Mbps). 4. HIGH POWER BLE TXBF (2Mbps). 6 dB BANDWIDTH 1. HIGH POWER BLE (1Mbps). 2. HIGH POWER BLE (1Mbps). 2. HIGH POWER BLE (1Mbps). 3. HIGH POWER BLE (1Mbps). 4. HIGH POWER BLE (1Mbps). 5. LOW POWER BLE TXBF (1Mbps). 5. LO	14 15 16 <i>16</i> <i>18</i> 19 20 21 22 23 24 25 26 27 28 29 20 30

9.4.8.	LOW POWER BLE TXBF (2Mbps)	30
9.5. A	VERAGE POWER	
9.5.1.	HIGH POWER BLE (1Mbps)	32
9.5.2.	HIGH POWER BLE TXBF (1Mbps)	32
9.5.3.	HIGH POWER BLE (2Mbps)	33
9.5.4.	HIGH POWER BLE TXBF (2Mbps)	33
9.5.5.	LOW POWER BLE (1Mbps)	34
9.5.6.	LOW POWER BLE TXBF (1Mbps)	34
9.5.7.	LOW POWER BLE (2Mbps)	
9.5.8.	LOW POWER BLE TXBF (2Mbps)	35
9.6. P	OWER SPECTRAL DENSITY	
9.6.1.	HIGH POWER BLE (1Mbps)	37
9.6.2.	HIGH POWER BLE TXBF (1Mbps)	38
9.6.3.	HIGH POWER BLE (2Mbps)	39
9.6.4.	HIGH POWER BLE TXBF (2Mbps)	40
9.7. C	CONDUCTED SPURIOUS EMISSIONS	41
9.7.1.	HIGH POWER BLE (1Mbps)	42
9.7.2.	HIGH POWER TXBF BLE (1Mbps)	44
9.7.3.	HIGH POWER BLE (2Mbps)	46
9.7.4.	HIGH POWER TXBF BLE (2Mbps)	48
9.7.5.	LOW POWER BLE (1Mbps)	50
9.7.6.	LOW POWER TXBF BLE (1Mbps)	52
9.7.7.	LOW POWER BLE (2Mbps)	54
9.7.8.	LOW POWER TXBF BLE (2Mbps)	56
10. RADI	ATED TEST RESULTS	58
10.1.	LIMITS AND PROCEDURE	
10.2.	TRANSMITTER ABOVE 1 GHz	60
10.2.1	1. HIGH POWER BLE (1Mbps)	60
10.2.2	2. HIGH POWER BLE TXBF (1Mbps)	68
10.2.3	3. HIGH POWER BLE (2Mbps)	72
10.2.4	4. HIGH POWER BLE TXBF (2Mbps)	80
10.2.5	5. HARMONICS AND SPURIOUS EMISSIONS	84
10.2.6	6. LOW POWER BLE (1Mbps)	90
10.2.7	7. LOW POWER BLE TXBF (1Mbps)	98
10.2.8	3. LOW POWER BLE (2Mbps)	102
10.2.9	LOW POWER BLE TXBF (2Mbps)	110
10.3.	WORST CASE BELOW 1 GHZ	114
10.4.	WORST CASE 18-26 GHz	116
11. AC P	OWER LINE CONDUCTED EMISSIONS	118
11.1.	AC POWER LINE WITH AC/DC ADAPTER	
11.2.	AC POWER LINE WITH LAPTOP	
12. SETU	IP PHOTOS	123

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A		
EUT DESCRIPTION:	SMARTPHONE		
MODEL:	A2649 (Parent Model) A2881, A2882, A2883, A2884 (Vari	ant Models)	
BRAND:	APPLE		
FCC ID:	BCG-E8138A (Parent Model) BCG-E8142A, BCG-E8143A, BCG-E8144A (Variant Models)		
IC:	579C-E8138A (Parent Model) 579C-E8142A, 579C-E8143A, 5790	C-E8144A (Variant Models)	
SERIAL NUMBER:	V2V9KHF5W9		
SAMPLE RECEIPT DATE:	DECEMBER 21, 2021		
DATE TESTED:	DECEMBER 22, 2021 – JULY 05, 2	2022	
	APPLICABLE STANDARDS		
S	TANDARD	TEST RESULTS	
CFR 47	Part 15 Subpart C	Complies	
ISED F	RSS-247 Issue 2	Complies	
ISED RSS-0	SEN Issue 5 + A1 + A2	Complies	

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 123

Approved & Released For UL LLC By:

somine de aver

Francisco de Anda Staff Engineer Consumer Technology Division UL LLC Prepared By:

Tony Li Test Engineer Consumer Technology Division UL LLC

Page 6 of 123

2. TEST SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
Soo Commont		Duty Cyclo	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7		Reporting	ANSI C63.10 Section
-		9978 OBW	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Complies	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Complies	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Complies	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with;

- FCC CFR 47 Part 2
- FCC CFR 47 Part 15
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02
- KDB 414788 D01 Radiated Test Site v01r01
- FCC KDB 662911 D01 v02r01
- RSS-GEN Issue 5 + A1 + A2
- RSS-247 Issue 2

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

Location	Address	ISED CABID	ISED Company	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	22541	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA	US0104	2324B	550739

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

Page 8 of 123

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video),cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and MSS. All models except reference model support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

Testing was performed on the parent model and is used to support the application for the parent and variants identified in this report based on the test plan submitted and approved via KDB inquiry by the FCC and by ISED-Canada.

The Model and FCC/IC IDs covered by this report includes:

Parent Model: A2649, FCC ID: BCG-E8138A, IC: 579C-E8138A

Variant Models: A2881, FCC ID: BCG-E8142A, IC: 579C-E8142A A2882; FCC ID: BCG-E8143A, IC: 579C-E8143A A2883 & A2884, FCC ID: BCG-E8144A, IC: 579C-E8144A

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Configuration	Frequency Range	Mode	Output	Output
		(MHz)		Power	Power
				(dBm)	(mW)
	High Power	2402 2480		20.29	106.91
	Low Power	2402 - 2400		11.32	13.55
ANT 4	High Power	2404 2479	BLE 2M	20.29	106.91
	Low Power	2404 - 2478		11.19	13.15
	High Power	2402 - 2480	BLE 1M	20.23	105.44
	Low Power			11.25	13.34
AINT 5	High Power	0404 0470		20.13	103.04
	Low Power	2404 - 2470		11.17	13.09
	High Power	2402 2490		20.22	105.20
	Low Power	2402 - 2400		14.29	26.85
DF, ANI + ANI S	High Power	0404 0470		20.26	106.17
	Low Power	2404 - 2470		14.30	26.92

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

Frequency Range (GHz)	ANT 4 (dBi)	ANT 3 (dBi)
2.4	-2.0	-0.8

6.4. SOFTWARE AND FIRMWARE

The EUT firmware version installed during testing was 20.1.467.5699.

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on ANT 4, ANT 3 and 2TX beamforming. It was determined that Y (Landscape) orientation was the worst-case orientation for ANT 3, beamforming 2TX and X (Flatbed) for ANT 4.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT was set to transmit at highest power on Low/Middle/High channels.

Baseline investigation on high power TXBF BLE1M and BLE2M harmonic spurious between 1-18GHz to determine the worst case and results showed BLE1M was the worst case. Therefore, High Power Beamforming BLE 1Mbps mode is set to maximum power based on SISO to cover both SISO and MIMO modes to complies with radiated spurious emissions limits in the restricted bands between 1GHz and 18GHz low/mid/high channel (except the band edge).

Radiated emissions below 30MHz, below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario.

There were no emissions found below 30MHz within 20dB of the limit.

For below 1GHz tests were performed with EUT connected to AC power adapter as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BLE and 5GHz bands. No noticeable emission was found.

There are three vendors of the Wi-Fi/Bluetooth radio modules: variant 1, 2 and 3. The WiFi/BT radio modules have the same mechanical outline (e.g., the same package dimension and pinout layout), use the same on-board antenna matching circuit, have an identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances.

Baseline testing was performed on the three variants to determine the worst case on all conducted power and radiated emissions.

Page 10 of 123

6.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT						
D	escription	Manufacturer	Model	Serial Number		FCC ID/ DoC
	Laptop	Apple	Macbook Pro	C02VD7SA	AHV22	BCGA1708
Laptop	AC/DC adapter	Liteon Technology	A1424	NSW25679		DoC
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC
		I/O CAE	BLES (RF CONDUC	TED TEST)		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	Antenna	1	SMA	Un-shielded	0.2	To spectrum Analyzer
2	USB	1	USB	Shielded	1.0	N/A
3	AC	1	AC	Un-shielded	2	N/A
	I/O	CABLES (RF RA	DIATED AND AC LI	NE CONDUCTED T	EST)	
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	1	AC	Un-shielded	2	N/A
2	USB	1	USB	Shielded	1	N/A

TEST SETUP

The EUT setup is shown as below. Test software exercised the radio card.

Page 11 of 123

SETUP DIAGRAM FOR CONDUCTED TESTS

SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz

Page 12 of 123

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v05r02, Section 6.

<u>6 dB BW:</u> ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Measurement using gated average power meter.

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1 & Clause 13

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Subclause -11.13.3.2 & Clause 13:	Integration method -Peak detection

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.3 & Clause 13: Integration method -Trace averaging with continuous transmission at full power

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated emissions non-restricted frequency bands ANSI C63.10 Subclause -11.11 & Clause 13

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4 & 13

NOTE: All conducted antenna port tests for Beamforming applied the same test procedures as BLE 1Mbps and BLE 2Mbps normal modes.

Page 14 of 123

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal	
RF Filter Box 1-18GHz	UL-FR1	NA	PRE0183530	11/17/2022	11/17/2021	
Antenna, Horn 1-18GHz	ETS Lindgren	3117	200786	02/24/2023	02/24/2022	
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	200895	10/13/2022	10/13/2021	
RF Filter 1-18GHz	UL-FR1	SAC 6 port rf box	203957	02/12/2023	02/12/2022	
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	125179	02/01/2023	02/01/2022	
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	204044	01/31/2023	01/31/2022	
Amplifier10KHz to 1GHz 32dB	Sonoma	310N	79145	07/21/2022	07/21/2021	
Antenna, Horn 1-18GHz	ETS Lindgren	3117	80430	07/21/2022	07/21/2021	
RF Filter Box 1-18GHz	UL-FR	NA	169334	04/15/2023	04/15/2022	
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	125179	02/01/2023	02/01/2022	
*Power Sensor	Keysight	N1921A	T1228	06/17/2022	06/17/2021	
Power Sensor	Keysight	N1921A	90392	05/06/2023	05/06/2022	
Power Meter, P-series single channel	Keysight	N1911A	T1272	01/24/2023	01/24/2022	
RF Filter Box	UL-FR1	NA	173233	10/23/2022	10/23/2021	
Antenna, Horn 1-18GHz	ETS Lindgren	3117	200897	02/24/2023	02/24/2022	
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	125188	01/30/2023	01/30/2022	
Antenna, Active Loop 9KHz to 30MHz	ETS-Lindgren	6502	T757	01/28/2023	01/28/2022	
*Antenna Horn, 18 to 26GHz	ARA	SWH-28	81139	05/25/2022	05/25/2021	
*Pre-Amp 18-26GHz	Agilent Technology	8449B	80671	04/19/2022	04/19/2021	
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	90238	01/30/2023	01/30/2022	

AC Line Conducted								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESR	T1436	02/21/2023	02/21/2022			
Power Cable, Line Conducted Emissions	UL	PR1	T861	10/27/2022	10/27/2021			
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN- 50/250-25-2-01- 480V	175765	01/26/2023	01/26/2022			
UL AUTOMATION SOFTWARE								
Radiated Software	Radiated Software UL UL EMC Ver 9.5, Mar 6, 2020				20			
Conducted Software	UL	UL EMC	2020.2.26 AP2021.8.27					
AC Line Conducted Software	UL	UL EMC	Ver	9.5, July 07, 20	20			

*Testing is completed before equipment expiration date.

Page 15 of 123

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE, 1Mbps	0.40	0.40	1.000	100.00%	0.00	0.010
BLE, 2Mbps	0.40	0.40	1.000	100.00%	0.00	0.010
BLE, TXBF, 1Mbps	0.40	0.40	1.000	100.00%	0.00	0.010
BLE, TXBF, 2Mbps	0.40	0.40	1.000	100.00%	0.00	0.010

Page 16 of 123

DUTY CYCLE PLOTS

Agilent Spectrum A	Analyzer - AP2021.8.2	7,26118,						Agilent Spectru	m Analyzer - AP2021.8	.27,26118,					
Center Freq	RF 50 Ω DC 2.402000000	GHz	SENSE	Avg Ty Run	ALIGNAUTO pe: Log-Pwr	10:38:37 AM Apr 28, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWWW	Frequency	Center Fr	RF 50 Ω DC eq 2.40400000	0 GHz	SENSE: Trig: Free Ru	Avg Typ	ALIGNAUTO be: Log-Pwr	10:39:37 AM Apr 28, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWWW	Frequency
10 dB/div Re	ef 21.00 dBm	IFGain:Low	Atten: 32 dE	8		Mkr1 400.0 μs 6.77 dBm	Auto Tune	10 dB/div	Ref 21.00 dBm	IFGain:Low	Atten: 32 dB			Mkr1 400.0 μs 6.58 dBm	Auto Tune
11.0 1.00			<u>,</u> 1	\$2∆1			Center Freq 2.402000000 GHz	11.0 1.00			1	\$2∆1			Center Freq 2.404000000 GHz
-19.0 -29.0 -39.0							Start Freq 2.402000000 GHz	-19.0 -29.0 -39.0							Start Freq 2.404000000 GHz
-49.0 -59.0 -69.0							Stop Freq 2.402000000 GHz	-49.0 -59.0 -69.0							Stop Freq 2.404000000 GHz
Center 2.402 Res BW 8 MH	2000000 GHz Hz	#VBW	50 MHz	FUNCTION	Sweep 1.	Span 0 Hz 000 ms (1001 pts)	CF Step 8.000000 MHz <u>Auto</u> Man	Center 2.4 Res BW 8	04000000 GHz MHz	#VBW	50 MHz	FUNCTION	Sweep 1	Span 0 Hz .000 ms (1001 pts) 	CF Step 8.000000 MHz <u>Auto</u> Man
1 N 1 t 2 Δ1 1 t 3 4 5	t t (Δ)	400.0 μs 199.0 μs (Δ)	6.73 dBm -0.01 dB	n 3		2	Freq Offset 0 Hz	1 Ν 1 2 Δ1 1 3 4 5	t t (Δ)	400.0 μs 199.0 μs (Δ)	6.72 dBm 0.12 dB				Freq Offset 0 Hz
7 8 9 10 11						*		7 8 9 10 11							
MSG					STATUS			MSG					STATUS		<u>[]</u>
BLE 1Mbps						BLE	2Mb	os							

Page 17 of 123

9.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

RESULTS

Only High Power modes result is reported, it covers all Low Power modes. Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 18 of 123

9.2.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.046
Middle	2440	1.045
High	2480	1.043

<u>ANT 3</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.043
Middle	2440	1.044
High	2480	1.044

Page 19 of 123

9.2.2. HIGH POWER BLE TXBF (1Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2402	1.046	1.044
Mid	2440	1.044	1.043
High	2480	1.040	1.043

Note: Test procedures and setting are same as BLE normal mode.

Page 20 of 123

9.2.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2404	1.877
Middle	2440	1.931
High	2078	1.910

<u>ANT 3</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2404	1.875
Middle	2440	1.929
High	2078	1.875

Page 21 of 123

9.2.4. HIGH POWER BLE TXBF (2Mbps)

Channel	Frequency	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)
Low	2404	1.909	1.873
Mid	2440	1.877	1.885
High	2478	1.911	1.874

Note: Test procedures and setting are same as BLE normal mode.

Page 22 of 123

9.3. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>

The 6dB bandwidth was measured for the narrowest bandwidth mode, High Power 1Mbps, to demonstrate compliance with the minimum required bandwidth of 500 kHz. Other modes were not tested as their bandwidth is greater than the High Power 1Mbps mode, as demonstrated by the 99% bandwidth measurements performed on all modes.

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 23 of 123

9.3.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.702	0.5
Middle	2440	0.696	0.5
High	2480	0.684	0.5

<u>ANT 3</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.750	0.5
Middle	2440	0.702	0.5
High	2480	0.723	0.5

Page 24 of 123

9.3.2. HIGH POWER BLE TXBF (1Mbps)

Channel	Frequency (MHz)	6 dB Bandwidth ANT 4 (MHz)	6 dB Bandwidth ANT 3 (MHz)	Minimum Limit (MHz)
Low	2402	0.747	0.729	0.5
Mid	2440	0.684	0.708	0.5
High	2480	0.690	0.714	0.5

Page 25 of 123

9.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter. output power was read directly from the power meter.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2TX:

Tx chains are correlated for power and PSD due to the device supporting Beamforming mode. The directional gains are as follows:

	ANT 4	ANT 3	Correlated Chains
			Directional
Band	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)
2.4	-2.00	-0.80	1.63

DIRECTIONAL GAIN CALCULATION:

ANSI C63.10-2013 section 14.4.3

Uncorrelated directional gain=10*LOG((10^(Ant1/10)+10^(Ant2/10))/2) Correlated directional Gain=10*LOG(((10^(Ant1/20)+10^(Ant2/20))^2)/2)

Sample Calculation:

Ant1=-2.0, Ant2=-0.8

Uncorrelated Antenna gain=10log[(10^(-2.0/10)+10^(-0.8/10))/2]=-1.36

Correlated Antenna gain=10log[(10^(-2.0/20)+10^(-0.8/20))^2)/2]=1.63

RESULTS

Page 26 of 123

9.4.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	19171
Date:	4/19/2022

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.14	30	-9.86
Middle	2440	20.29	30	-9.71
High	2480	20.09	30	-9.91

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	20.23	30	-9.77
Middle	2440	20.15	30	-9.85
High	2480	20.22	30	-9.78

9.4.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power	Peak Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	17.32	16.94	20.14	30	-9.86
Middle	2440	17.14	17.23	20.20	30	-9.80
High	2480	17.27	17.15	20.22	30	-9.78

9.4.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	20.29	30	-9.71
Middle	2440	20.16	30	-9.84
High	2478	20.06	30	-9.94

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	20.13	30	-9.87
Middle	2440	19.91	30	-10.09
High	2478	20.12	30	-9.88

9.4.4. HIGH POWER BLE TXBF (2Mbps)

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power	Peak Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	17.18	17.32	20.26	30	-9.74
Middle	2440	17.19	17.27	20.24	30	-9.76
High	2478	17.15	17.20	20.19	30	-9.81

9.4.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	11.17	30	-18.83
Middle	2440	11.11	30	-18.89
High	2480	11.32	30	-18.68

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.09	30	-18.91
Middle	2440	11.25	30	-18.75
High	2480	11.22	30	-18.78

9.4.6. LOW POWER BLE TXBF (1Mbps)

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power	Peak Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.27	11.28	14.29	30	-15.71
Middle	2440	11.15	11.09	14.13	30	-15.87
High	2480	11.31	11.21	14.27	30	-15.73

9.4.7. LOW POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power Reading (dBm)	Limit	Margin (dB)
		(автт)	(автт)	(ив)
Low	2404	11.16	30	-18.84
Middle	2440	11.12	30	-18.88
High	2478	11.19	30	-18.81

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2404	11.17	30	-18.83
Middle	2440	11.14	30	-18.86
High	2478	11.07	30	-18.93

9.4.8. LOW POWER BLE TXBF (2Mbps)

<u>ANT 4 + ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Peak Power ANT 4	Peak Power ANT 3	Total Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2404	11.05	11.24	14.16	30	-15.84
Middle	2440	11.14	11.19	14.18	30	-15.82
High	2478	11.32	11.26	14.30	30	-15.70

Page 30 of 123

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter. Gated average output power was read directly from power meter.

RESULTS

Page 31 of 123

9.5.1. HIGH POWER BLE (1Mbps)

High

<u>ANT 4</u>

Tested By:	19172		
Date:	4/19/2022		
Channel	Frequency	Average Powe	
	(MHz)	(dBm)	
Low	2402	19.92	
Middle	2440	19.94	

2480

19.80

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	19.89
Middle	2440	19.90
High	2480	19.88

9.5.2. HIGH POWER BLE TXBF (1Mbps)

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	16.93	16.7	19.83
Middle	2440	16.92	16.90	19.92
High	2480	16.9	16.88	19.90

9.5.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Tested By:	19172	
Date:	4/19/2022	

Channel	Frequency	Average power	
	(MHz)	(dBm)	
Low	2404	19.95	
Middle	2440	19.93	
High	2478	19.80	

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average power
	(MHz)	(dBm)
Low	2404	19.89
Middle	2440	19.70
High	2478	19.91

9.5.4. HIGH POWER BLE TXBF (2Mbps)

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	16.87	16.95	19.92
Middle	2440	16.88	16.90	19.90
High	2478	16.85	16.87	19.87

9.5.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average power
	(MHz)	(dBm)
Low	2402	10.90
Middle	2440	10.83
High	2480	10.92

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average power
	(MHz)	(dBm)
Low	2402	10.80
Middle	2440	10.90
High	2480	10.88

9.5.6. LOW POWER BLE TXBF (1Mbps)

<u>ANT 4 + ANT 3</u>

Tested By:	19172	
Date:	4/19/2022	

Channel	Frequency	Average Power ANT 4	Average Power ANT 3	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	10.90	10.90	13.91
Middle	2440	10.80	10.82	13.82
High	2480	10.92	10.88	13.91

Page 34 of 123

9.5.7. LOW POWER BLE (2Mbps)

Middle

High

<u>ANT 4</u>

		-
Tested By:	19172	
Date:	4/19/2022	
Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2404	10.90

2440

2478

10.85

10.93

<u>ANT 3</u>

Tested By:	19172
Date:	4/19/2022

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2404	10.85
Middle	2440	10.82
High	2478	10.79

9.5.8. LOW POWER BLE TXBF (2Mbps)

Tested By:	19172	
Date:	4/19/2022	

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2404	10.80	10.90	13.86
Middle	2440	10.85	10.85	13.86
High	2478	10.94	10.92	13.94

9.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Only High-Power modes result is reported, it covers all Low Power modes

Page 36 of 123

9.6.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	3.503	8	-4.50
Middle	2440	3.332	8	-4.67
High	2480	3.576	8	-4.42

<u>ANT 3</u>

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
Low	2402	3.324	8	-4.68
Middle	2440	3.440	8	-4.56
High	2480	3.385	8	-4.62

Page 37 of 123

9.6.2. HIGH POWER BLE TXBF (1Mbps)

Duty Cycle CF (dB)		0.00	Included in Calculations of Corr'd PSE				
PSD Results							
Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin	
		Meas	Meas	Corr'd			
				PSD			
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/		
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)	
Low	2402	0.851	0.626	3.75	8.0	-4.2	
Mid	2440	0.831	0.763	3.81	8.0	-4.2	
Hjigh	2480	0.821	0.799	3.82	8.0	-4.2	

Note: Test procedures and setting are same as BLE normal mode.

Page 38 of 123

9.6.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Channel	Frequency	PSD	Limit	Margin	
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)	
Low	2404	-2.489	8	-10.49	
Middle	2440	-2.245	8	-10.25	
High	2478	-2.619	8	-10.62	

<u>ANT 3</u>

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)
Low	2404	-2.681	8	-10.68
Middle	2440	-2.917	8	-10.92
High	2478	2.501	8	-5.50

Page 39 of 123

9.6.4. HIGH POWER BLE TXBF (2Mbps)

Duty Cycle CF (dB)		0.00	Included in Calculations of Corr'd PSD				
PSD Results							
Channel	Frequency	ANT 4	ANT 3	Total	Limit	Margin	
		Meas	Meas	Corr'd			
				PSD			
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/		
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)	
Low	2404	-4.449	-4.376	-1.40	8.0	-9.4	
Mid	2440	-4.588	-4.412	-1.49	8.0	-9.5	
Hjigh	2478	-4.470	-4.491	-1.47	8.0	-9.5	

Note: Test procedures and setting are same as BLE normal mode.

Page 40 of 123

9.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dBc.

Note: Test procedures and setting are same as BLE normal mode.

RESULTS

Page 41 of 123

9.7.1. HIGH POWER BLE (1Mbps)

<u>ANT 4</u>

Page 42 of 123

<u>ANT 3</u>

Page 43 of 123

9.7.2. HIGH POWER TXBF BLE (1Mbps)

<u>ANT 4</u>

Page 44 of 123

<u>ANT 3</u>

Page 45 of 123

9.7.3. HIGH POWER BLE (2Mbps)

<u>ANT 4</u>

Page 46 of 123

<u>ANT 3</u>

Page 47 of 123

9.7.4. HIGH POWER TXBF BLE (2Mbps)

<u>ANT 4</u>

Page 48 of 123

<u>ANT 3</u>

Page 49 of 123

9.7.5. LOW POWER BLE (1Mbps)

<u>ANT 4</u>

Page 50 of 123