

# TEST REPORT

# **Report Number :** 14040867-E22V2

- Applicant : APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95104, U.S.A.
  - Model : A2649 (Parent Model, Full Test) A2881, A2882 (Variant Models)
  - Brand : APPLE
  - FCC ID : BCG-E8138A (Parent Model) BCG-E8142A, BCG-E8143A (Variant Models)
    - IC: 579C-E8138A (Parent Model) 579C-E8142A, 579C-E8143A (Variant Models)
- **EUT Description** : SMARTPHONE
- Test Standard(s) : FCC CFR47 Part 25 ISED RSS-170 ISSUE 3 AMENDED

# Date Of Issue:

JULY 14, 2022

### Prepared by:

UL LLC 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888



### **Revision History**

| Rev. | lssue<br>Date | Revisions                                            | Revised By  |
|------|---------------|------------------------------------------------------|-------------|
| V1   | 6/21/2022     | Initial Review                                       | Thu Chan    |
| V2   | 7/14/2022     | Revise TCB questions table of contents and section 6 | Chris Xiong |

Page 2 of 48

# **TABLE OF CONTENTS**

| 1. |    | ATTESTATION OF TEST RESULTS                              | 5  |
|----|----|----------------------------------------------------------|----|
| 2. |    | SUMMARY OF TEST RESULTS                                  | 6  |
| 3. |    | TEST METHODOLOGY                                         | 7  |
| 4. |    | FACILITIES AND ACCREDITATION                             | 7  |
| 5. |    | DECISION RULES AND MEASUREMENT UNCERTAINTY               | 8  |
| ,  | 5. | .1. METROLOGICAL TRACEABILITY                            | 8  |
|    | 5. | .2. DECISION RULES                                       | 8  |
|    | 5. | .3. MEASUREMENT UNCERTAINTY                              | 8  |
|    | 5. | .4. SAMPLE CALCULATION                                   |    |
| 6. |    | EQUIPMENT UNDER TEST                                     | 9  |
|    | 6. | .1. DESCRIPTION OF EUT                                   | 9  |
|    | 6. | .2. MAXIMUM OUTPUT POWER                                 | 9  |
|    | 6. | .3. SOFTWARE AND FIRMWARE                                |    |
|    |    | .4. MAXIMUM ANTENNA GAIN                                 |    |
|    |    | .5. WORST-CASE CONFIGURATION AND MODE                    |    |
|    |    | .6. DESCRIPTION OF TEST SETUP                            |    |
| 7. |    | TEST AND MEASUREMENT EQUIPMENT                           | 14 |
| 8. |    | RF OUTPUT POWER VERIFICATION                             | 15 |
| 9. |    | CONDUCTED TEST RESULTS                                   | 16 |
|    | 9. | .1. OCCUPIED BANDWIDTH                                   | 16 |
|    | 9. | .2. EMISSIONS MASK WITHIN 250% OF AUTHORIZED BANDWIDTH   | 18 |
|    |    | 9.2.1. ANT 1                                             | 19 |
|    | _  | 9.2.2. ANT 4                                             |    |
|    |    | .3. OUT OF BAND EMISSIONS                                |    |
|    |    | 9.3.2. ANT 4                                             |    |
| 10 | -  | RADIATED TEST RESULTS                                    | 26 |
|    | 1( | 0.1. FIELD STRENGTH OF SPURIOUS RADIATION                | 27 |
|    |    | 10.1.1. ANT 1 (Above 1GHz)                               |    |
|    |    | 10.1.2. ANT 4 (Above 1GHz)<br>10.1.3. ANT 1 (Below 1GHz) |    |
|    |    | 10.1.4. ANT 4 (Below 1GHz)                               |    |
|    | 1( | 0.2. ADDITIONAL UNWANTED EMISSION (1559MHz – 1610MHz)    |    |
|    |    | 10.2.1. ANT 1                                            |    |
|    |    |                                                          |    |

Page 3 of 48

| 10.2.2. | ANT 4                                                    | 42 |
|---------|----------------------------------------------------------|----|
| 10.3.   | CARRIER-OFF STATE EMISSIONS (1559MHz – 1610MHz)<br>ANT 1 |    |
|         | ANT 1                                                    |    |
| 10.4.   | FREQUENCY STABILITY                                      | 47 |
| 11. SET | JP PHOTOS                                                | 48 |

Page 4 of 48

# 1. ATTESTATION OF TEST RESULTS

| Applicant Name and Address | APPLE INC.<br>1 APPLE PARK WAY<br>CUPERTINO, CA 95104, U.S.A.           |
|----------------------------|-------------------------------------------------------------------------|
| Model                      | A2649 (Parent Model, Full Test)<br>A2881, A2882 (Variant Models)        |
| Brand                      | APPLE                                                                   |
| FCC ID                     | BCG-E8138A (Parent Model)<br>BCG-E8142A, BCG-E8143A (Variant Models)    |
| IC                         | 579C-E8138A (Parent Model)<br>579C-E8142A, 579C-E8143A (Variant Models) |
| EUT Description            | SMARTPHONE                                                              |
| Serial Number              | C07151200411J183 (Conducted), JPFQYDR6CY (Radiated)                     |
| Sample Receipt Date        | APRIL 05, 2021 , APRIL 19, 2021                                         |
| Date Tested                | APRIL 14, 2021 to MAY 18, 2021                                          |
| Applicable Standards       | FCC CFR47 PART 25<br>ISED RSS-170 ISSUE 3 AMENDED                       |
| Test Results               | COMPLIES                                                                |

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

| Approved & Released By: | Reviewed By:           | Prepared By:  |
|-------------------------|------------------------|---------------|
| " Auf                   | Jose de Jesus R. White | Chris King    |
| Thu Chan                | Jose Martinez          | Chris Xiong   |
| Staff Engineer          | Test Engineer          | Test Engineer |
| UL LLC                  | UL LLC                 | UL LLC        |

Page 5 of 48

# 2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

| Requirement Description                              | Requirement<br>Clause Number<br>(FCC) | Requirement<br>Clause Number<br>(ISED) | Result*                 | Remarks |
|------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------|---------|
| RF Output Power Verification                         | 25.204 (a)                            | RSS-170 §5.3.2                         | Complies                |         |
| Occupied Bandwidth                                   | 2.1049                                | RSS-170<br>RSS-GEN                     | Reporting purposes only |         |
| Emissions Mask - within 250% of Authorized Bandwidth | 25.202 (f)(1)&(2)                     | RSS-170 §5.4.3.1<br>(1)&(2)            | Complies                |         |
| Out of Band Emissions                                | 25.202 (f)(3)                         | RSS-170 §5.4.3.1 (3)                   | Complies                |         |
| Additional Unwanted Emission<br>(1559-1610MHz)       | 25.216 (c)&(g)<br>FCC 03-283          | RSS-170 §5.4.3.2.1 (g)                 | Complies                |         |
| Carrier-Off State Emissions<br>(155901610MHz)        | 25.216 (i)<br>FCC 03-283              | RSS-170 §5.4.4                         | Complies                |         |
| Frequency Stability                                  | 25.202 (d)                            | RSS-170 §5.2                           | Complies                |         |

# 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following:

- ANSI C63.26:2015
- ISED RSS-170 ISSUE 3 AMENDED
- FCC CFR 47 Part 2 and 25
- <u>FCC KDB 971168 D01 v03r01</u>: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r01: Misc Rev Approv License Devices
- <u>FCC KDB 412172 D01 v01r01</u>. Determining ERP and EIRP

# 4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

|             | Address                                                  | ISED<br>CABID | ISED<br>Company<br>Number | FCC<br>Registration |
|-------------|----------------------------------------------------------|---------------|---------------------------|---------------------|
| $\boxtimes$ | Building 1: 47173 Benicia Street, Fremont, CA 94538, USA | US0104        | 2324A                     | 550739              |
| $\boxtimes$ | Building 2: 47266 Benicia Street, Fremont, CA 94538, USA | US0104        | 22541                     | 550739              |
| $\boxtimes$ | Building 4: 47658 Kato Rd, Fremont, CA 94538, USA        | US0104        | 2324B                     | 550739              |

Page 7 of 48

# 5. DECISION RULES AND MEASUREMENT UNCERTAINTY

# 5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

# 5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

# 5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                           | U <sub>Lab</sub> |
|-----------------------------------------------------|------------------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.78 dB          |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.40 dB          |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 2.87 dB          |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 6.01 dB          |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.73 dB          |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.51 dB          |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.29 dB          |
| Occupied Channel Bandwidth                          | ±1.22 %          |
| Temperature                                         | ±0.57 °C         |
| Supply voltages                                     | ±0.57 %          |
| Time                                                | ±3.39 %          |

Uncertainty figures are valid to a confidence level of 95%.

# 5.4. SAMPLE CALCULATION

#### RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 6. EQUIPMENT UNDER TEST

#### 6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, IEEE 802,11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and MSS, All models support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM) in some models. The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

Testing was performed on the parent model and is used to support the application for the parent and variants identified in this report based on the test plan submitted and approved via KDB inquiry by the FCC and by ISED-Canada.

The Model and FCC/IC IDs covered by this report includes:

Parent Model: A2649, FCC ID: BCG-E8138A, IC: 579C-E8138A

Variant Models: A2881, FCC ID: BCG-E8142A, IC: 579C-E8142A A2882; FCC ID: BCG-E8143A, IC: 579C-E8143A

#### 6.2. MAXIMUM OUTPUT POWER

#### **EIRP/ERP TEST PROCEDURE**

ANSI C63.26:2015 KDB 971168 D01 Section 5.6

EIRP = PMeas + GT - LC

where: EIRP = effective isotropic radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm):

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

The transmitter has a maximum average conducted and EIRP output powers as follows:

#### FCC Part 25 & ISED RSS-170 (1610 - 1626.5MHz):

|                 | Conducted          | Antenna Gain | Limit | EIRP  |       | 99% BW | Emission   |  |
|-----------------|--------------------|--------------|-------|-------|-------|--------|------------|--|
| Frequency (MHz) | (Average)<br>(dBm) | (dBi)        | (W)   | (dBm) | (W)   | (kHz)  | Designator |  |
| 1610.17         | 27.80              |              | 10000 | 25.90 | 0.389 | 202.86 | 203KG1D    |  |
| 1618.4          | 27.81              | -1.9         | 10000 | 25.91 | 0.390 | 199.02 | 199KG1D    |  |
| 1626.03         | 27.90              |              | 10000 | 26.00 | 0.398 | 199.20 | 199KG1D    |  |

Page 9 of 48

### 6.3. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was FW Version: 0.15.02.

### 6.4. MAXIMUM ANTENNA GAIN

The antenna(s) gain as provided by the manufacturer are as follow:

| Frequency Range (MHz) | ANT 1<br>Antenna Gain<br>(dBi) | ANT 4<br>Antenna Gain<br>(dBi) |
|-----------------------|--------------------------------|--------------------------------|
| 1610-1626.5           | -1.9                           | -3.8                           |

# 6.5. WORST-CASE CONFIGURATION AND MODE

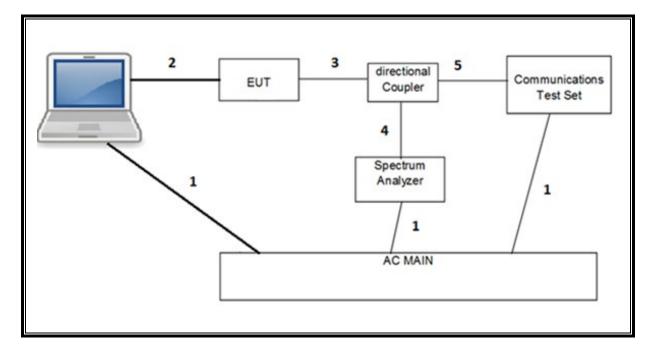
The EUT was investigated in three orthogonal orientations X/Y/Z on both ANT 1 and ANT 4 antennas. It was determined that X (Flatbed) orientation was the worst-case orientation with AC/DC adapter for both ANT 1 and ANT 4.

The emissions mask tests were performed based on declared authorized bandwidths of 200kHz, 230kHz and 280kHz.

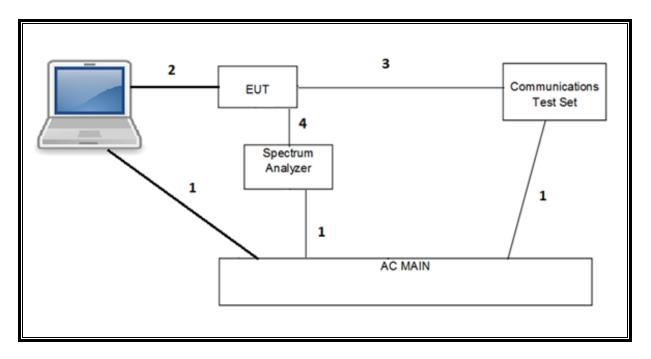
Radiated spurious emissions below 1GHz were performed with the highest output power on both ANT 1 and ANT 4 as worst-case scenario.

Radiated spurious emissions below 30MHz were investigated, there were no emissions found with less than 20dB of margin below the specified emissions limits.

For simultaneous transmission of multiple channels in the 2.4GHz/5GHz WLAN, tests were conducted for various configurations having the highest power, least separation in frequencies and widest operation bandwidths. No noticeable new emission was found.

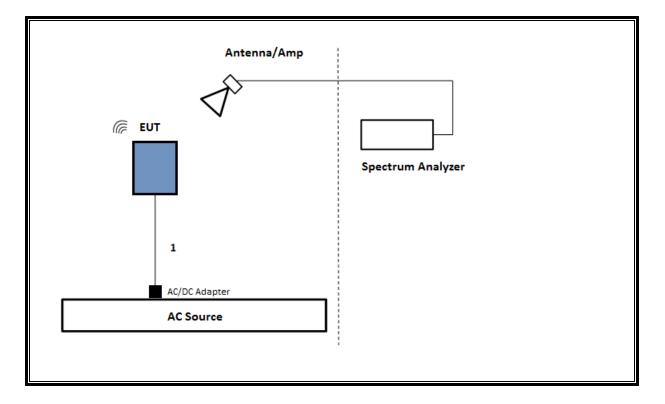

Page 10 of 48

# 6.6. DESCRIPTION OF TEST SETUP


|              | SUPPORT TEST EQUIPMENT |                         |                           |               |                     |             |  |
|--------------|------------------------|-------------------------|---------------------------|---------------|---------------------|-------------|--|
| Description  |                        | Manufacturer            | Model                     | Serial Number |                     | FCC ID/ DoC |  |
| Laptop       | AC/DC adapter          | Apple                   | 61W A1555                 | C069083VXA    | A1JFYFA8            | DoC         |  |
|              | Laptop                 | Apple                   | MacBook Pro               | CO2VT1R       | BHV29               | DoC         |  |
| Laptop       | AC/DC adapter          | Apple                   | 87W A1719                 | C04719306N    | LGW85A9             | DoC         |  |
|              | Laptop                 | Apple                   | MacBook Pro               | C02TK02       | YJ10C               | DoC         |  |
| AC           | /DC adapter            | Apple                   | B820                      | C4H9516002    | 22PF4F4R            | DoC         |  |
|              |                        | I/O                     | CABLES (RF CONDUCTED TEST | Г)            |                     |             |  |
| Cable<br>No. | Port                   | # of Identical<br>Ports | Connector Type            | Cable Type    | Cable<br>Length (m) | Remarks     |  |
| 1            | AC                     | 3                       | US 115V                   | Un-shielded   | 2.0                 | N/A         |  |
| 2            | USB                    | 1                       | DC                        | Un-shielded   | 1.0                 | N/A         |  |
| 3            | RF In/Out              | 1                       | EUT                       | Un-shielded   | 0.6                 | N/A         |  |
| 4            | RF In/Out              | 1                       | Barrel                    | N/A           | N/A                 | N/A         |  |
| 5            | RF In/Out              | 1                       | SMA                       | Un-shielded   | 1.0                 | N/A         |  |
|              |                        | I/C                     | CABLES (RF RADIATED TEST) |               |                     |             |  |
| Cable<br>No. | Port                   | # of Identical<br>Ports | Connector Type            | Cable Type    | Cable<br>Length (m) | Remarks     |  |
| 1            | AC                     | 1                       | Lightning                 | Un-shielded   | 1.0                 | N/A         |  |

Page 11 of 48

#### **CONDUCTED SETUP ANT 1**




#### **CONDUCTED SETUP ANT 4**



Page 12 of 48

#### **RADIATED SETUP**



Page 13 of 48

# 7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                                   |                                   |                   |               |              |  |  |  |
|-------------------------------------------------------|-----------------------------------|-------------------|---------------|--------------|--|--|--|
| Description                                           | Manufacturer                      | Model             | Asset         | Cal Due      |  |  |  |
| Antenna, Horn 1- 18GHz                                | ETS-Lindgren                      | 3117              | T344          | 6/14/2022    |  |  |  |
| RF Preamp, 1 – 18GHz                                  | UL In-House                       | N/A               | PRE0177819    | 6/12/2022    |  |  |  |
| Spectrum Analyzer, PXA, 3Hz – 44GHz                   | Keysight Technologies Inc.        | N9030A            | 85212         | 1/30/2023    |  |  |  |
| Antenna, Horn 1- 18GHz                                | ETS-Lindgren                      | 3117              | 206805        | 2/10/2023    |  |  |  |
| RF Preamp, 1 – 18GHz                                  | UL In-House                       | N/A               | PRE0180997    | 6/22/2022    |  |  |  |
| Antenna, Broadband Hybrid                             | Sunol Sciences Corp.              | JB1               | 85150         | 10/15/2022   |  |  |  |
| RF Preamp 9kHz – 1GHz                                 | Sonoma Instrument Co.             | 310N              | 170648        | 2/10/2023    |  |  |  |
| EMI Test Receiver                                     | Rohde & Schwarz                   | ESW44             | 201497        | 2/18/2023    |  |  |  |
| Chamber, Environmental                                | Cincinnati Sub-Zero Products Inc. | ZPHS-8-3.5-SCT/WC | T1154         | 12/05/2023   |  |  |  |
| Spectrum Analyzer, PXA, 3Hz – 44GHz                   | Keysight Technologies Inc.        | N9030A            | 85214         | 2/02/2023    |  |  |  |
| Wideband Radio Communication Tester                   | Rohde & Schwarz                   | CMW500            | 10763796      | 8/20/2022    |  |  |  |
| Directional Coupler, .5-26.5GHz                       | Krytar                            | 152610            | T1161         | 9/23/2022    |  |  |  |
| Power Meter, P-Series Single Channel                  | Keysight Technologies Inc.        | N1911A            | 90731         | 1/24/2023    |  |  |  |
| Power Sensor, P - Series, 50MHz to 18GHz,<br>Wideband | Keysight Technologies Inc.        | N1921A            | 81319         | 1/24/2023    |  |  |  |
| DC Power Supply                                       | TDK-LAMBDA                        | GENH 60-25        | PRE0074664    | Not Required |  |  |  |
| Antenna, Passive Loop 30Hz – 1MHz                     | Electro-Metrics                   | EM-6871           | PRE0179465    | 7/29/2022    |  |  |  |
| Antenna, Passive Loop 100kHz – 30MHz                  | Electro-Metrics                   | EM-6872           | PRE0179467    | 7/29/2022    |  |  |  |
|                                                       | UL AUTOMATI                       | ON SOFTWARE       |               |              |  |  |  |
| Radiated test software                                | UL                                | UL RF             | Ver 9.5 Febru | ary 2, 2021  |  |  |  |

#### NOTES:

- 1. \* Testing is completed before equipment expiration date.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Page 14 of 48

# 8. RF OUTPUT POWER VERIFICATION

### LIMITS

FCC: §25.204

(a) In bands shared coequally with terrestrial radio communication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station, other than an ESV, operating in frequency bands between 1 and 15 GHz, shall not exceed the following limits except as provided for in paragraph (c) of this section:

- + 40 dBW in any 4 kHz band for  $\theta \leq 0^{\circ}$
- + 40 + 30 dBW in any 4 kHz band for  $0^{\circ} < \theta \le 5^{\circ}$

where  $\theta$  is the angle of elevation of the horizon viewed from the center of radiation of the antenna of the earth station and measured in degrees as positive above the horizontal plane and negative below it.

#### ISED RSS-170:

#### 5.3.2 Mobile Earth Stations (MESs)

The application for MES certification shall state the MES e.i.r.p. that is necessary for satisfactory communication. The maximum permissible e.i.r.p. will be the stated e.i.r.p. plus a 2 dB margin. If a detachable antenna is used, the certification application shall state the recommended antenna type and manufacturer, the antenna gain and the maximum transmitter output power at the antenna terminal.

#### **TEST PROCEDURE**

The transmitter output is connected to a wideband power meter/sensor which is greater than the occupied bandwidth as worst case scenario, also the total power readings still comply with the required limit.

The cable assembly insertion loss of 13.20 dB (ANT 1) / 12.32 dB (ANT 4) (including 10.70 dB coupler and 2.5 dB cable (ANT 1) / 10 dB pad and 2.32 dB cable (ANT 4)) was entered as an offset in the power meter to allow for a gated average reading of power.

#### **RESULTS**

| Test Engineer ID: | 20737 | Test Date: | 4/14/2022 - 4/18/2022 |
|-------------------|-------|------------|-----------------------|
|                   |       |            |                       |

| Test<br>Frequency | Conducted Avera | ige Power (dBm) | Antenna     | Gain (dBi) | EIRP Average Power (dBm) |       |  |  |
|-------------------|-----------------|-----------------|-------------|------------|--------------------------|-------|--|--|
| (MHz)             | ANT 1           | ANT 4           | ANT 1 ANT 4 |            | ANT 1                    | ANT 4 |  |  |
| 1610.17           | 27.80           | 25.12           |             |            | 25.90                    | 21.32 |  |  |
| 1618.4            | 27.81           | 25.59           | -1.9        | -3.8       | 25.91                    | 21.79 |  |  |
| 1626.03           | 27.90           | 25.73           |             |            | 26.00                    | 21.93 |  |  |

Page 15 of 48

# 9. CONDUCTED TEST RESULTS

# 9.1. OCCUPIED BANDWIDTH

#### **RULE PART(S)**

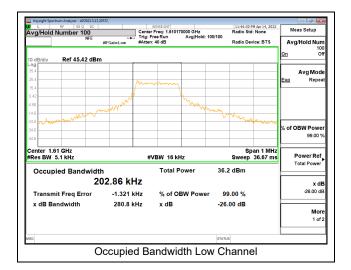
FCC: §2.1049 ISED RSS-170 and RSS-GEN

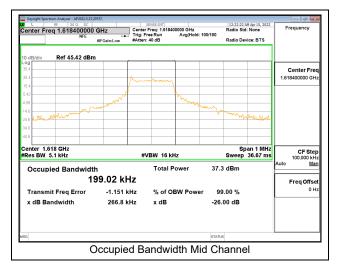
#### LIMITS

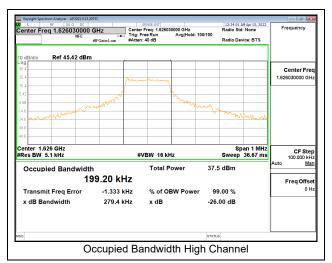
For reporting purposes only.

#### TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set  $\geq$  3 × RBW. The 99% bandwidths were measured and recorded.


#### **RESULTS**


There is no limit required; therefore, only one port of higher power, ANT1, was tested.


| Test Engineer ID: 20737 Test | Date: 4/14/2022 – 4/15/2022 |
|------------------------------|-----------------------------|
|------------------------------|-----------------------------|

| Test Frequency<br>(MHz) | 99% BW<br>(kHz) |
|-------------------------|-----------------|
| 1610.17                 | 202.86          |
| 1618.4                  | 199.02          |
| 1626.03                 | 199.20          |

Page 16 of 48







Page 17 of 48

UL LLC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 This report shall not be reproduced except in full, without the written approval of UL LLC

FORM NO: CCSUP4701i FAX: (510) 661-0888

## 9.2. EMISSIONS MASK WITHIN 250% OF AUTHORIZED BANDWIDTH

#### LIMITS

#### FCC §25.202 and ISED RSS-170: 5.4.3.1

(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

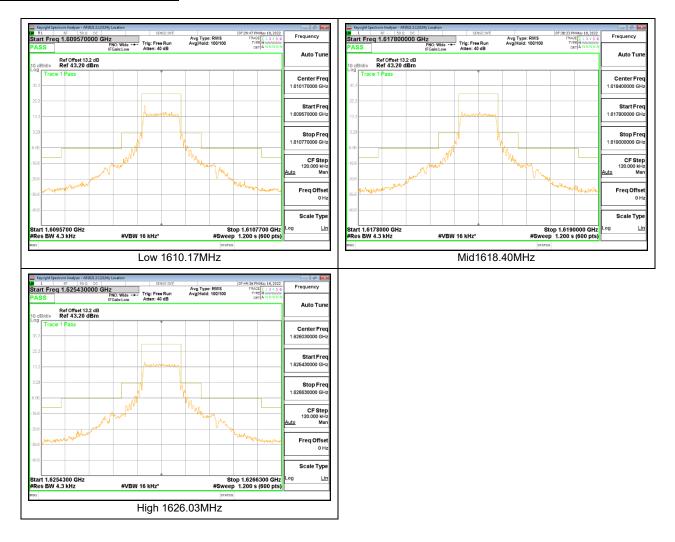
(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

#### **TEST PROCEDURE**

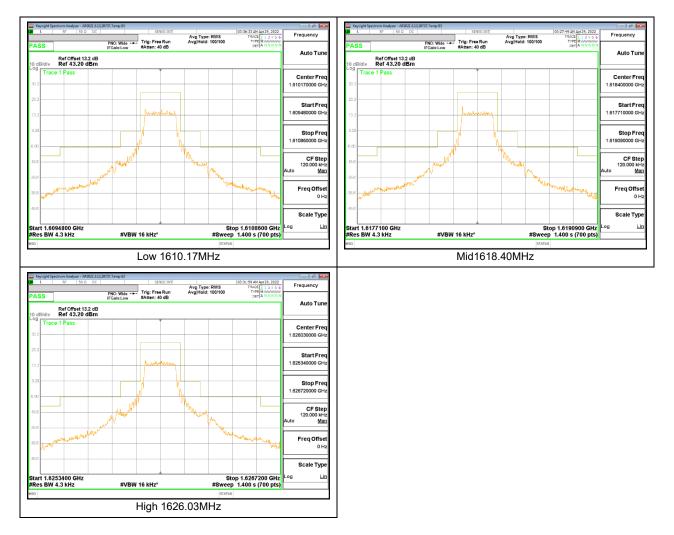
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The channel edge emissions were measured on the low, mid and high channels. The limits within 250% of the authorized bandwidth are relative to the total in-band (channel) power. The measurement bandwidth (RBW) is set to >= 4kHz and VBW set to at least 3 times the RBW. To measure the average value of the emissions the detector is set to rms while observing the minimum required number of points as detailed in ANSI C63.26 for average rms measurements. The sweep time is set to 2ms multiplied by the number of points to obtain the average over 2ms. Multiple sweeps with max hold enabled are made to capture the maximum average value.

#### **RESULTS**


The tests were performed based on declared authorized bandwidths of 200kHz, 230kHz and 280kHz. The ANT 4 were performed only on Mid Channel since it was the same signal to each antenna.

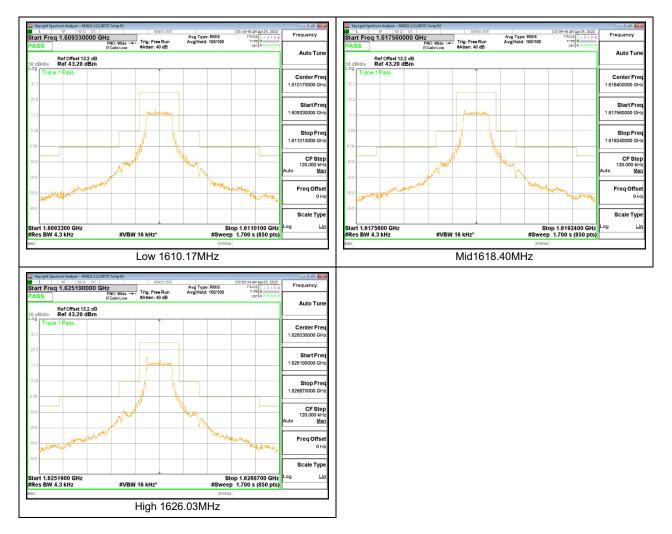
| Test Engineer ID: | 20737 & 25780 | Test Date: | 4/28/2022 - 5/4/2022 |
|-------------------|---------------|------------|----------------------|
|-------------------|---------------|------------|----------------------|

Page 18 of 48


### 9.2.1. ANT 1

200kHz Authorized Bandwidth:



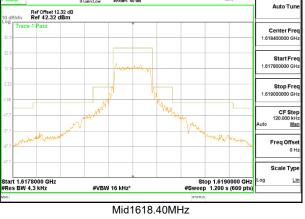

Page 19 of 48

#### 230kHz Authorized Bandwidth:



Page 20 of 48

#### 280kHz Authorized Bandwidth:




Page 21 of 48

### 9.2.2. ANT 4



#### 200kHz Authorized Bandwidth:



#### 230kHz Authorized Bandwidth:



#### 280kHz Authorized Bandwidth:



Page 22 of 48

### 9.3. OUT OF BAND EMISSIONS

#### <u>LIMITS</u>

FCC §25.202 and ISED RSS-170: 5.4.3.1

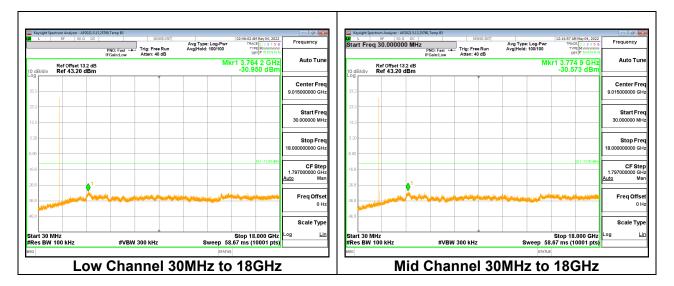
(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

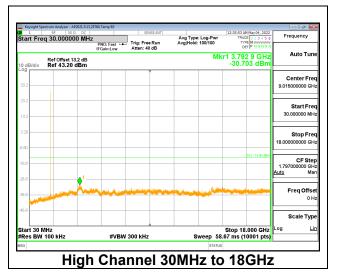
(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts.

#### TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r01

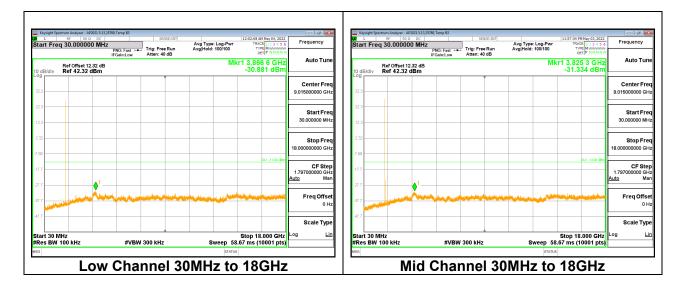
For each out of band emissions measurement:

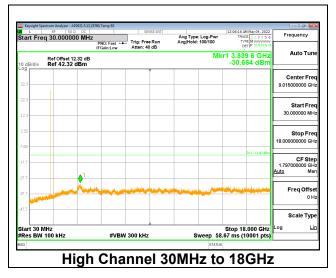

- Set display line at -13 dBm (the limit of 43 + 10Log(P))
- Set RWB >= 4kHz and VBW >= 3 x RBW with peak detector for all measurements. The limit is an average limit so any emissions that exceed the limit using the peak detector are measured using rms detection with an averaging time of 2ms.


#### RESULTS

| Test Engineer ID: 25780 & 20737 Test Date: 5/3/2022 - 5/4/2022 |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

Page 23 of 48


### 9.3.1. ANT 1






Page 24 of 48

### 9.3.2. ANT 4





Page 25 of 48

# 10. RADIATED TEST RESULTS

### Radiated measurement using the Field Strength Method

Using the test configuration shown in Figure 6 below, we measure the radiated emissions directly from the EUT and convert the measured field strength or received power to EIRP, as required, for comparison to the applicable limits. As stated in 5.5.1 of ANSI C63.26-2015, the field strength measurement method using a test site validated to the requirements of ANSI C63.4 is an alternative to the substitution measurement method.

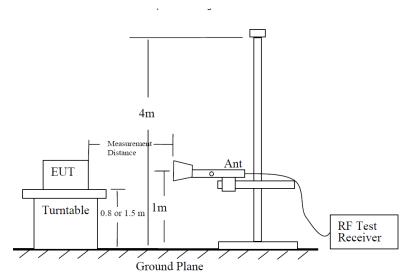



Figure 6—Test site-up for radiated ERP and/or EIRP measurements

#### Radiated Power Measurement Calculation According to ANSI C63.26-2015

a) E ( $dB\mu V/m$ ) = Measured amplitude level ( $dB\mu V$ ) + Cable Loss (dB) + Antenna Factor (dB/m).

- b) E (dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).
- c) E (dB $\mu$ V/m) = EIRP (dBm) 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.
- d) EIRP (dBm) = E (dB $\mu$ V/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m.

So, from d)

The measuring distance is usually at 3m, then 20\*Log(3)=9.5424

Then, EIRP (dBm) = E (dB $\mu$ V/m) + 9.5424 - 104.8 = E (dB $\mu$ V/m) - 95.2576

Page 26 of 48

# 10.1. FIELD STRENGTH OF SPURIOUS RADIATION

#### LIMITS

#### FCC §25.202 and ISED RSS-170: 5.4.3.1 (3)

(f) Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

#### TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r01

For each out of band emissions measurement:

- Set display line at -13 dBm (the limit of 43 + 10Log(P))
- Set RWB >= 4kHz and VBW >= 3 x RBW with peak detector for all measurements. The limit is an average limit so any emissions that exceed the limit using the peak detector are measured using rms detection with an averaging time of 2ms.

#### **RESULTS**

Plots are provided for the Mid Channel. Tabular data for all channels is presented.

Page 27 of 48

### 10.1.1. ANT 1 (Above 1GHz)

| Project #:     | 14040867              |
|----------------|-----------------------|
| Date:          | 4/20/2022 - 4/21/2022 |
| Test Engineer: | 24971 & 44373         |
| Configuration; | EUT + Charger         |
| Mode:          | TX                    |
| Chamber #:     | Chamber I             |

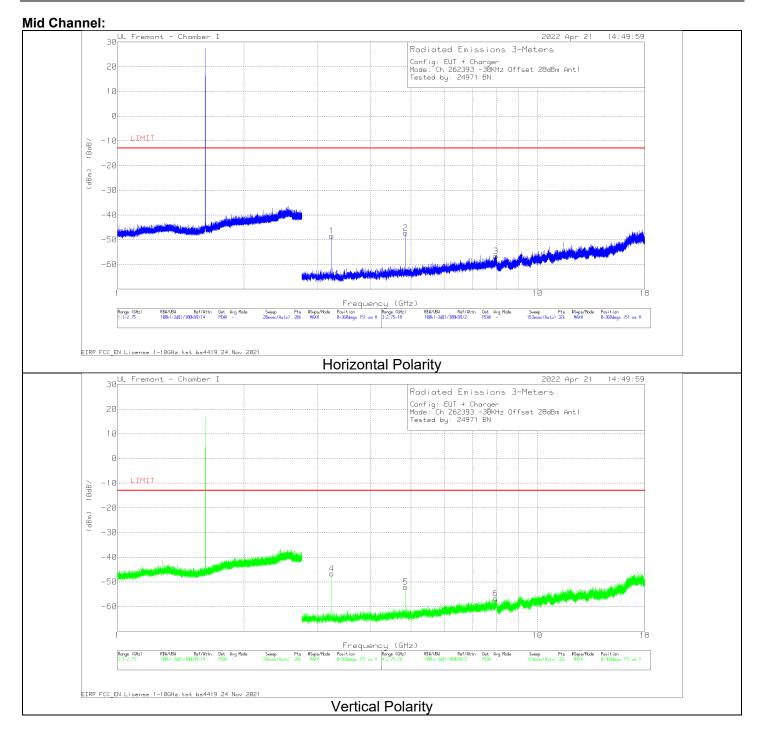
#### Low channel:

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 3.220087           | 32.37                      | Pk  | 32.8             | -27.3                    | -95.2   | -57.33                        | -13   | -44.33         | 71                | 106            | Н        |
| 2      | 4.074899           | 27.73                      | Pk  | 33.4             | -27.1                    | -95.2   | -61.17                        | -13   | -48.17         | 346               | 295            | Н        |
| 3      | 4.830395           | 32.14                      | Pk  | 33.9             | -25.6                    | -95.2   | -54.76                        | -13   | -41.76         | 189               | 292            | Н        |
| 4      | 3.220336           | 45.18                      | Pk  | 32.8             | -27.3                    | -95.2   | -44.52                        | -13   | -31.52         | 26                | 135            | V        |
| 5      | 4.128872           | 28.08                      | Pk  | 33.3             | -27.3                    | -95.2   | -61.12                        | -13   | -48.12         | 335               | 289            | V        |
| 6      | 4.830395           | 32.68                      | Pk  | 33.9             | -25.6                    | -95.2   | -54.22                        | -13   | -41.22         | 359               | 104            | V        |

Pk - Peak detector

#### Mid Channel:

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 3.236771           | 38.97                      | Pk  | 32.7             | -27.7                    | -95.2   | -51.23                        | -13   | -38.23         | 245               | 128            | Н        |
| 2      | 4.855176           | 37.02                      | Pk  | 33.9             | -25.9                    | -95.2   | -50.18                        | -13   | -37.18         | 189               | 116            | Н        |
| 3      | 7.965613           | 24.78                      | Pk  | 35.7             | -21.6                    | -95.2   | -56.32                        | -13   | -43.32         | 153               | 295            | Н        |
| 4      | 3.236767           | 41.42                      | Pk  | 32.7             | -27.7                    | -95.2   | -48.78                        | -13   | -35.78         | 194               | 148            | V        |
| 5      | 4.855173           | 35.05                      | Pk  | 33.9             | -25.9                    | -95.2   | -52.15                        | -13   | -39.15         | 240               | 101            | V        |
| 6      | 7.950385           | 23.64                      | Pk  | 35.7             | -21.7                    | -95.2   | -57.56                        | -13   | -44.56         | 206               | 247            | V        |


Pk - Peak detector

#### **High Channel:**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 3.252059           | 46.83                      | Pk  | 32.7             | -27.6                    | -95.2   | -43.27                        | -13   | -30.27         | 260               | 134            | Н        |
| 2      | 4.878116           | 39.38                      | Pk  | 33.9             | -26                      | -95.2   | -47.92                        | -13   | -34.92         | 284               | 106            | Н        |
| 3      | 6.634766           | 25.05                      | Pk  | 35.4             | -24                      | -95.2   | -58.75                        | -13   | -45.75         | 201               | 147            | Н        |
| 4      | 3.252076           | 50.95                      | Pk  | 32.7             | -27.6                    | -95.2   | -39.15                        | -13   | -26.15         | 117               | 118            | V        |
| 5      | 4.87805            | 38.4                       | Pk  | 33.9             | -26                      | -95.2   | -48.9                         | -13   | -35.9          | 331               | 101            | V        |
| 6      | 7.436137           | 24.1                       | Pk  | 35.6             | -22.6                    | -95.2   | -58.1                         | -13   | -45.1          | 196               | 105            | V        |

Pk - Peak detector

Page 28 of 48



Page 29 of 48

### 10.1.2. ANT 4 (Above 1GHz)

| Project #:     | 14040867              |
|----------------|-----------------------|
| Date:          | 4/20/2022 - 4/21/2022 |
| Test Engineer: | 44373 & 24971         |
| Configuration; | EUT + Charger         |
| Mode:          | TX                    |
| Chamber #:     | Chamber I             |

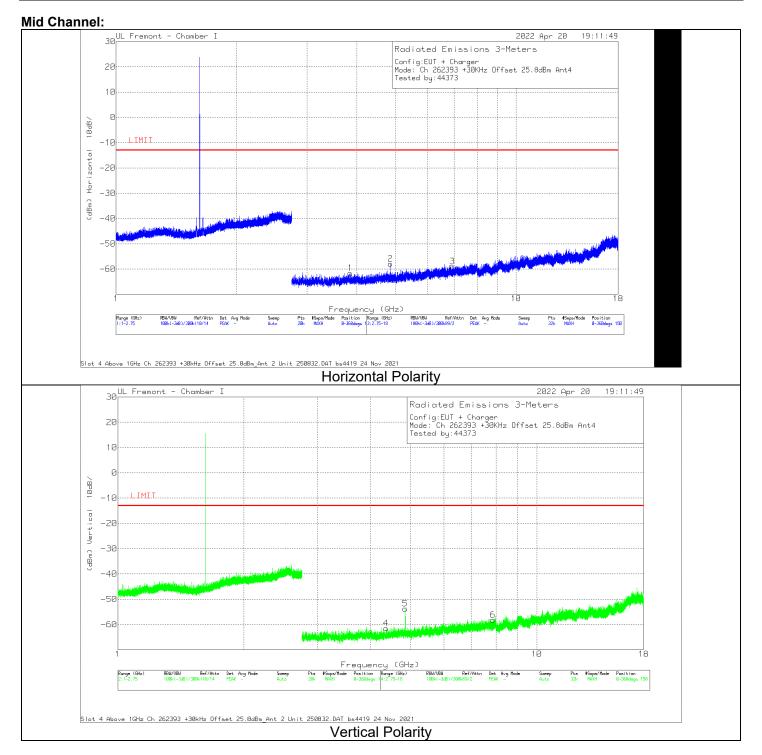
#### Low channel:

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 5      | 6.342394           | 24.81                      | Pk  | 35.2             | -24.2                    | -95.2   | -59.39                        | -13   | -46.39         | 165               | 356            | Н        |
| 3      | 4.619057           | 27.12                      | Pk  | 34.1             | -26.6                    | -95.2   | -60.58                        | -13   | -47.58         | 151               | 310            | Н        |
| 1      | 3.088698           | 28.81                      | Pk  | 32.8             | -28                      | -95.2   | -61.59                        | -13   | -48.59         | 281               | 123            | Н        |
| 6      | 6.35967            | 26.36                      | Pk  | 35.2             | -24.5                    | -95.2   | -58.14                        | -13   | -45.14         | 76                | 282            | V        |
| 2      | 3.106098           | 27.19                      | Pk  | 32.8             | -27.8                    | -95.2   | -63.01                        | -13   | -50.01         | 176               | 118            | V        |
| 4      | 4.629161           | 25.97                      | Pk  | 34.1             | -26.8                    | -95.2   | -61.93                        | -13   | -48.93         | 343               | 221            | V        |

Pk - Peak detector

#### Mid Channel:

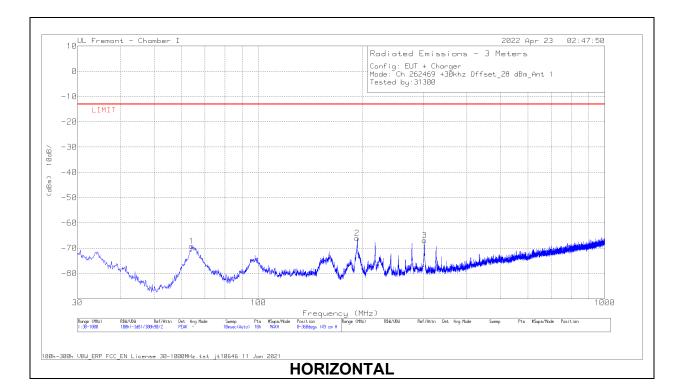
| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 3.849493           | 27.97                      | Pk  | 33.4             | -27.3                    | -95.2   | -61.13                        | -13   | -48.13         | 301               | 158            | Н        |
| 2      | 4.855175           | 28.62                      | Pk  | 33.9             | -25.9                    | -95.2   | -58.58                        | -13   | -45.58         | 318               | 146            | Н        |
| 3      | 6.933859           | 25.01                      | Pk  | 35.4             | -24                      | -95.2   | -58.79                        | -13   | -45.79         | 206               | 132            | Н        |
| 4      | 4.37089            | 26.24                      | Pk  | 33.5             | -26.6                    | -95.2   | -62.06                        | -13   | -49.06         | 198               | 160            | V        |
| 5      | 4.855289           | 34.32                      | Pk  | 33.9             | -25.9                    | -95.2   | -52.88                        | -13   | -39.88         | 147               | 103            | V        |
| 6      | 7.857395           | 24.49                      | Pk  | 35.7             | -22.4                    | -95.2   | -57.41                        | -13   | -44.41         | 178               | 185            | V        |

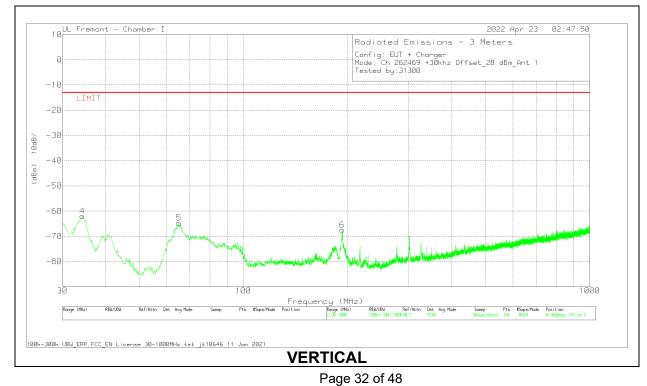

Pk - Peak detector

#### **High Channel:**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF 206805 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|------------------|--------------------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 3.558137           | 27.12                      | Pk  | 32.8             | -27.2                    | -95.2   | -62.48                        | -13   | -49.48         | 302               | 159            | Н        |
| 2      | 4.878226           | 31.37                      | Pk  | 33.9             | -26                      | -95.2   | -55.93                        | -13   | -42.93         | 339               | 310            | Н        |
| 3      | 6.884765           | 24.44                      | Pk  | 35.4             | -23.6                    | -95.2   | -58.96                        | -13   | -45.96         | 146               | 109            | Н        |
| 4      | 4.006759           | 27.63                      | Pk  | 33.5             | -27.2                    | -95.2   | -61.27                        | -13   | -48.27         | 238               | 141            | V        |
| 5      | 4.878151           | 35.51                      | Pk  | 33.9             | -26                      | -95.2   | -51.79                        | -13   | -38.79         | 355               | 105            | V        |
| 6      | 6.153113           | 25.76                      | Pk  | 35.2             | -25.3                    | -95.2   | -59.54                        | -13   | -46.54         | 115               | 138            | V        |

Pk - Peak detector


Page 30 of 48




Page 31 of 48

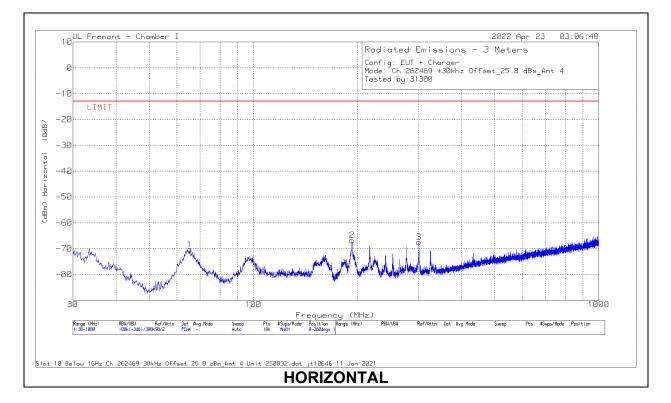
### 10.1.3. ANT 1 (Below 1GHz)

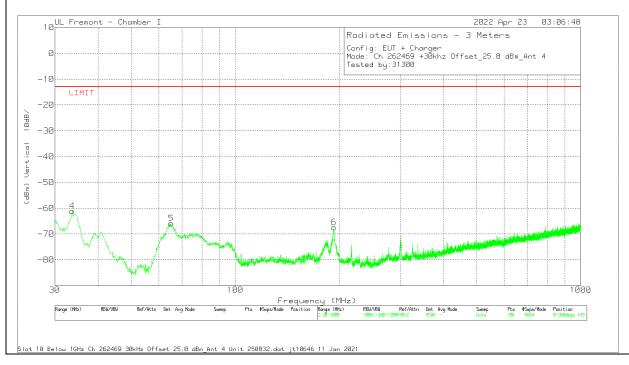
| Project #:     | 14040867              |
|----------------|-----------------------|
| Date:          | 4/23/2022             |
| Test Engineer: | 31300                 |
| Configuration; | EUT + Charger         |
| Mode:          | TX Worst Case Channel |
| Chamber #:     | Chamber I             |





UL LLC FORM NO 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: ( This report shall not be reproduced except in full, without the written approval of UL LLC


| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | 85150 AF (dB/m) | Amp Cbl (dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-----------------|--------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 64.144             | 42.9                       | Pk  | 14.2            | -31.1        | -95.2   | -69.2                         | -13   | -56.2          | 0-360             | 149            | Н        |
| 2      | 192.96             | 41.88                      | Pk  | 17.6            | -30.3        | -95.2   | -66.02                        | -13   | -53.02         | 0-360             | 149            | Н        |
| 3      | 301.794            | 38.67                      | Pk  | 19.4            | -29.8        | -95.2   | -66.93                        | -13   | -53.93         | 0-360             | 149            | Н        |
| 4      | 34.268             | 40.13                      | Pk  | 24.5            | -31.4        | -95.2   | -61.97                        | -13   | -48.97         | 0-360             | 149            | V        |
|        | 34.2121            | 42.12                      | Pk  | 24.6            | -31.4        | -95.2   | -59.88                        | -13   | -46.88         | 334               | 102            | V        |
| 5      | 65.114             | 47.4                       | Pk  | 14.2            | -31.1        | -95.2   | -64.7                         | -13   | -51.7          | 0-360             | 149            | V        |
| 6      | 192.96             | 40.44                      | Pk  | 17.6            | -30.3        | -95.2   | -67.46                        | -13   | -54.46         | 0-360             | 149            | V        |


Pk - Peak detector

Page 33 of 48

### 10.1.4. ANT 4 (Below 1GHz)

| Project #:     | 14040867              |
|----------------|-----------------------|
| Date:          | 4/23/2022             |
| Test Engineer: | 31300                 |
| Configuration; | EUT + Charger         |
| Mode:          | TX Worst Case Channel |
| Chamber #:     | Chamber I             |







UL LLC FORM NO: 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (5 This report shall not be reproduced except in full, without the written approval of UL LLC

# VERTICAL

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | 85150 AF (dB/m) | Amp Cbl (dB) | EIRP CF | Corrected<br>Reading<br>(dBm) | LIMIT | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-----------------|--------------|---------|-------------------------------|-------|----------------|-------------------|----------------|----------|
| 1      | 65.502             | 41.67                      | Pk  | 14.3            | -31.1        | -95.2   | -70.33                        | -13   | -57.33         | 0-360             | 149            | Н        |
| 2      | 192.96             | 41.08                      | Pk  | 17.6            | -30.3        | -95.2   | -66.82                        | -13   | -53.82         | 0-360             | 149            | Н        |
| 3      | 301.6              | 38.01                      | Pk  | 19.4            | -29.8        | -95.2   | -67.59                        | -13   | -54.59         | 0-360             | 149            | Н        |
| 4      | 33.686             | 40.5                       | Pk  | 25              | -31.4        | -95.2   | -61.1                         | -13   | -48.1          | 0-360             | 149            | V        |
|        | 34.2175            | 42                         | Pk  | 24.6            | -31.4        | -95.2   | -60                           | -13   | -47            | 334               | 102            | V        |
| 5      | 65.211             | 46.24                      | Pk  | 14.2            | -31.1        | -95.2   | -65.86                        | -13   | -52.86         | 0-360             | 149            | V        |
| 6      | 192.96             | 40.5                       | Pk  | 17.6            | -30.3        | -95.2   | -67.4                         | -13   | -54.4          | 0-360             | 149            | V        |

Pk - Peak detector

Page 35 of 48

# 10.2. ADDITIONAL UNWANTED EMISSION (1559MHz – 1610MHz)

### LIMITS

FCC §25.216

Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service

(a) The e.i.r.p. density of emissions from mobile earth stations placed in service on or before July 21, 2002 ...

(b) The e.i.r.p. density of emissions from mobile earth stations placed in service on or before July 21, 2002 ...

(c) The e.i.r.p. density of emissions from mobile earth stations placed in service after July 21, 2002 with assigned uplink frequencies between 1610 MHz and 1660.5 MHz shall not exceed -70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559-1605 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed -80 dBW, averaged over any 2 millisecond active transmission interval, in the 1559-1605 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed -80 dBW, averaged over any 2 millisecond active transmission interval, in the 1559-1605 MHz band.

FCC §25.216 and ISED RSS-170: 5.4.3.2.1

(g) Mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies in the 1610-1626.5 MHz band shall suppress the power density of emissions in the 1605-1610 MHz band-segment to an extent determined by linear interpolation from −70 dBW/MHz at 1605 MHz to −10 dBW/MHz at 1610 MHz averaged over any 2 millisecond active transmission interval. The e.i.r.p of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed a level determined by linear interpolation from −80 dBW at 1605 MHz to −20 dBW at 1610 MHz, averaged over any 2 millisecond active transmission interval.

### TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r01

Measure wideband emissions using either:

RBW = 1MHz, VB = 3MHz

RBW < 1MHz, integrate over 1MHz if necessary

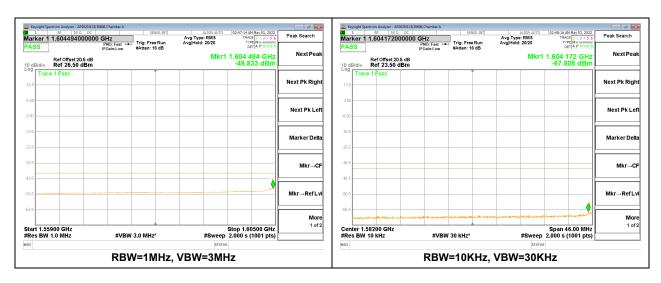
Measure narrowband emissions using:

RBW = 10kHz, VB = 30kHz as worst case setting

Set detector = rms, sweep time ~ number of points x 2ms, and sweep multiple times with max hold enabled. When the detector is set to rms the number of points is set to exceed the minimum number required by ANSI C63.26 for average measurements. A peak detector may be used (e.g. to avoid slow sweep times for the narrowband emissions measurements) in lieu of average rms detection as this will provide a more conservative (higher) measured value than the rms value.

### **RESULTS**

Both horizontal / vertical polarizations and low/ mid/ high channels were investigated on ANT 1 and ANT 4. It was found low channel to be worst case for both antennas.

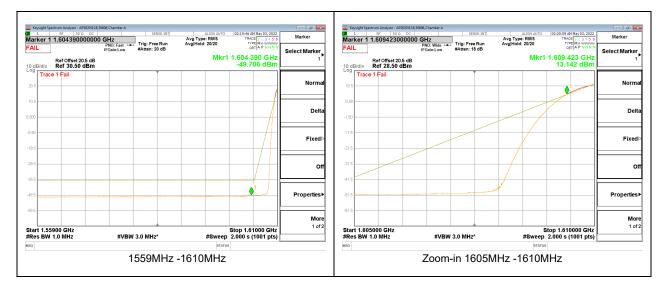

Page 36 of 48

| Project #:     | 14040867                  |
|----------------|---------------------------|
| Date:          | 5/3/2022                  |
| Test Engineer: | 30606                     |
| Configuration: | EUT + Charger             |
| Mode:          | TX Low Channel 1610.17MHz |
| Chamber #:     | Chamber A                 |

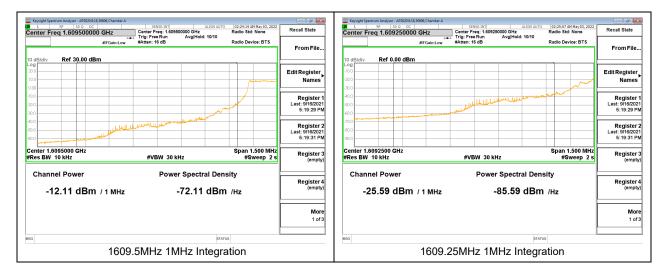
#### Offset Calculation Offset:

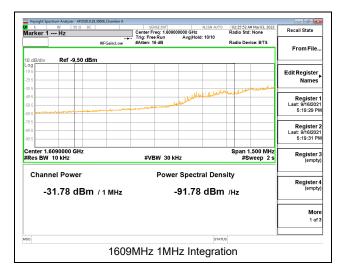
| AF 80402 (dB/m) | Amp/Cbl/Fltr/Pad (dB) | EIRP CF | Offset (dB) |
|-----------------|-----------------------|---------|-------------|
| 28.1            | -19.4                 | 11.8    | 20.5        |

#### Plots for Determining Wide Band or Narrow Band Emissions

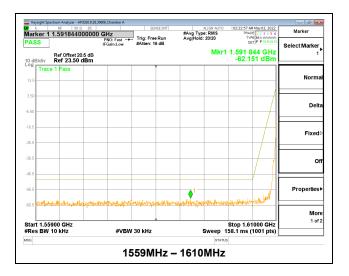



Note: It was found that the marker 1 @ 1604.494 MHz frequency which belonged to wideband emission.

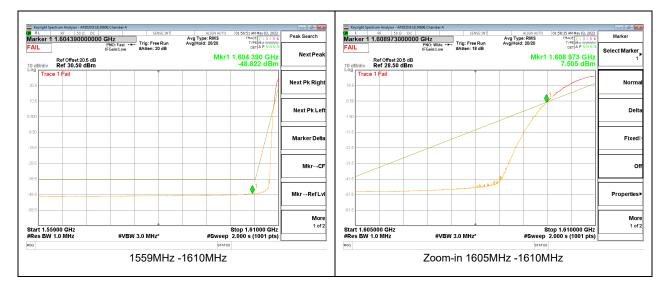

Page 37 of 48


# 10.2.1. ANT 1






# Plots below show passing result using integration method:



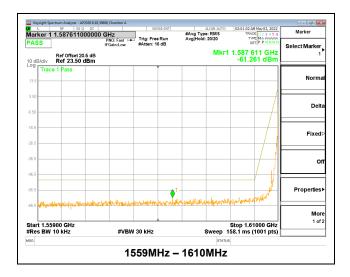



## Narrowband Low Channel 1610.17MHz Vertical:



## Wideband Low Channel 1610.17MHz Horizontal:

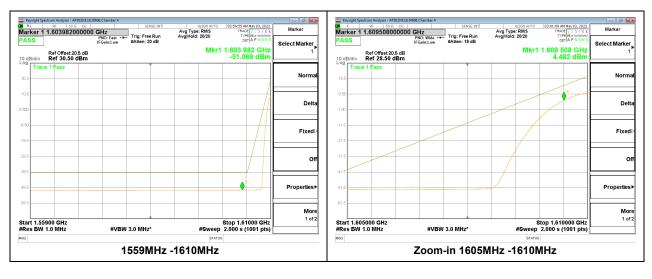



# Plots below show passing result using integration method:

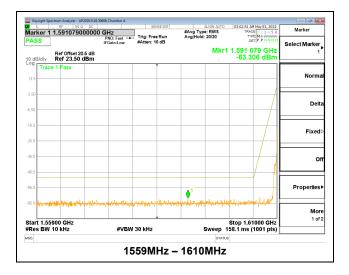


|                          | RF 50 Ω DC                   | <u>CU-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SENSE:INT<br>Center Freg: 1.6090000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALIGN AUTO      | 02:03:38 AM May 03, 2022<br>Radio Std: None | Recall State                  |
|--------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------|-------------------------------|
| Center Free              | 1.609000000 ף                | #IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Avg Hold: 10/10 | Radio Device: BTS                           |                               |
| 10 dB/div                | Ref -9.50 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                             | From File                     |
| -19.6                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                             | Edit Register                 |
| -29.6                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | Hell Hallow Marked                          | Names                         |
| -49.5                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المعسطيل ليجلب والمسا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aland Mallada   |                                             | Register 1                    |
| -59.5                    | - and a state of the section | and the second s | and the second |                 |                                             | Last: 9/16/2021<br>5:19:29 PN |
| -79.6                    |                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | i i                                         | Register 2                    |
| -89.5                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                             | Last: 9/16/2021<br>5:19:31 PM |
| Center 1.60<br>#Res BW 1 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW 30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Span 1.500 MHz<br>#Sweep 2 s                | Register 3<br>(empty)         |
| Channe                   | l Power                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spectral Dens   | sity                                        |                               |
| -27.79 dBm / 1 мнz       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.79 dBm        | /Hz                                         | Register 4<br>(empty)         |
|                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                             | More                          |
|                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                             | 1 of 3                        |
| MSG                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STATU           | s                                           |                               |
|                          |                              | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MHz 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                             |                               |

Page 40 of 48

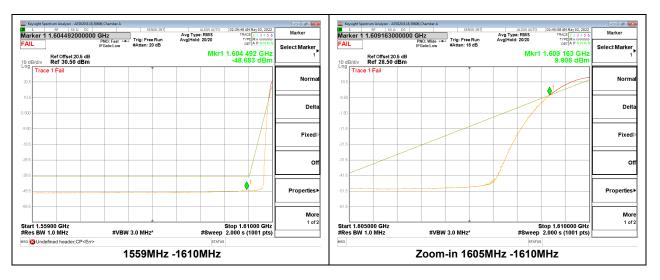

#### Narrowband Low Channel 1610.17MHz Horizontal:



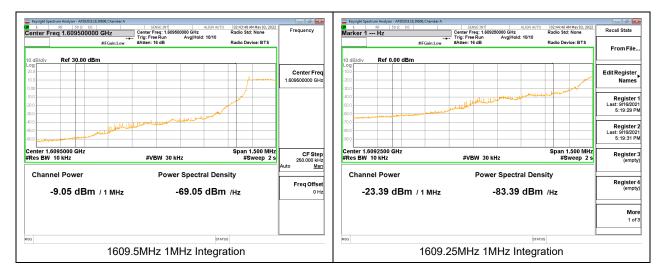

Page 41 of 48

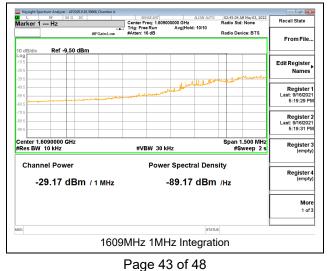
# 10.2.2. ANT 4

#### Wideband Low Channel 1610.17MHz Vertical:

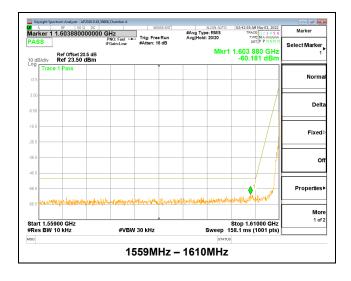



Narrowband Low Channel 1610.17MHz Vertical:





Page 42 of 48

#### Wideband Low Channel 1610.17MHz Horizontal:




#### Plots below show passing result using integration method:





#### Narrowband Low Channel 1610.17MHz Horizontal:



Page 44 of 48

# 10.3. CARRIER-OFF STATE EMISSIONS (1559MHz – 1610MHz)

## LIMITS

FCC §25.216 and ISED RSS-170: 5.4.4

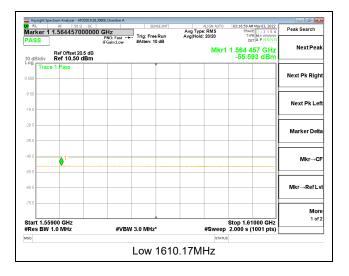
Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service (i) The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies between 1 and 3 GHz shall not exceed -80 dBW/MHz in the 1559-1610 MHz band averaged over any two millisecond interval.

ISED RSS-170: 5.4.4 Carrier-off State Emissions

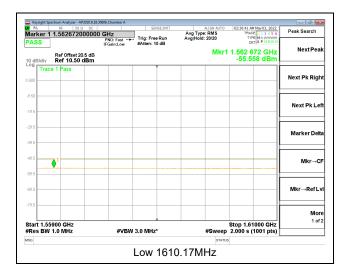
Mobile equipment with transmitting frequencies between 1 GHz and 3 GHz shall have the e.i.r.p. density of carrier-off state emissions in the band 1559-1610 MHz not exceed –80 dBW/MHz.

#### TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r01


Set RBW = 1MHz, VB = 3MHz, detector = rms, sweep time ~ number of points x 2ms, and sweep multiple times with max hold enabled.

#### **RESULTS**


No emissions were found on both horizontal and vertical polarization for ANT 1 and ANT 4.

| Project #:     | 14040867      |
|----------------|---------------|
| Date:          | 5/3/2022      |
| Test Engineer: | 30606         |
| Configuration; | EUT + Charger |
| Mode:          | RX - TX off   |
| Chamber #:     | Chamber A     |

# 10.3.1. ANT 1



# 10.3.2. ANT 4



Page 46 of 48

# 10.4. FREQUENCY STABILITY

## LIMITS

FCC §25.202

(d) Frequency tolerance, Earth stations. The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

#### ISED RSS-170: 5.2

For mobile earth station equipment, the carrier frequency shall not depart from the reference frequency by more than ±10 ppm.

#### TEST PROCEDURE

Use spectrum with Frequency Error measurement capability.

- Temp. = -30°C to +50°C
- Voltage = (85% 115%)

Low voltage, 3.23VDC, Normal, 3.8VDC and High voltage, 4.37VDC. End Voltage, 2.96VDC.

#### Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

#### Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

#### **RESULTS**

| Test Engineer ID: | 20737 | Test Date: | 5/18/2022 |
|-------------------|-------|------------|-----------|
|                   |       |            |           |

| Frequency Reference (MHz) |                      | 1610.16981                            |             | Frequency        | Delta<br>(Hz) | Frequency<br>Stability<br>(ppm) |
|---------------------------|----------------------|---------------------------------------|-------------|------------------|---------------|---------------------------------|
| Condition                 |                      | F low @ F high @<br>-10dB BW -10dB BW |             | Reading<br>(MHz) |               |                                 |
| Temperature               | Voltage              | (MHz) (MHz)                           |             | ()               |               | (PP)                            |
| Normal (20 C)             |                      | 1610.080250                           | 1610.259375 | 1610.16981       |               |                                 |
| Extreme (50C)             |                      | 1610.078188                           | 1610.260500 | 1610.16934       | -468.7        | -0.29                           |
| Extreme (40C)             | Normal               | 1610.078313                           | 1610.259813 | 1610.16906       | -750.0        | -0.47                           |
| Extreme (30C)             |                      | 1610.078875                           | 1610.260938 | 1610.16991       | 93.7          | 0.06                            |
| Extreme (10C)             |                      | 1610.077938                           | 1610.260938 | 1610.16944       | -375.0        | -0.23                           |
| Extreme (0C)              |                      | 1610.079625                           | 1610.259813 | 1610.16972       | -93.8         | -0.06                           |
| Extreme (-10C)            |                      | 1610.078500                           | 1610.261125 | 1610.16981       | 0.0           | 0.00                            |
| Extreme (-20C)            |                      | 1610.078313                           | 1610.261125 | 1610.16972       | -93.8         | -0.06                           |
| Extreme (-30C)            |                      | 1610.078500                           | 1610.261250 | 1610.16988       | 62.5          | 0.04                            |
|                           |                      |                                       |             |                  |               |                                 |
|                           | 15%                  | 1610.079750                           | 1610.259813 | 1610.169781      | -31.2         | -0.02                           |
| 20C                       | -15%                 | 1610.079688                           | 1610.261000 | 1610.170344      | 531.2         | 0.33                            |
| 200                       | End Point<br>Voltage | 1610.078563                           | 1610.261000 | 1610.169781      | -31.2         | -0.02                           |

Page 47 of 48

# 11. SETUP PHOTOS

Please refer to 14040867-EP1V1 for setup photos

# **END OF REPORT**

Page 48 of 48