

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For SMARTPHONE

FCC ID: BCG E4034A, BCG-E4002A, BCG-E4033A Model Name: A2640, A2639, A2636, A2638

> Report Number: 13584004-S1V3 Issue Date: 9/13/2021

Prepared for APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014-2084

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	-		
Rev.	Date	Revisions	Revised By
V1	8/12/2021	Initial Issue	-
V2	8/17/2021	Section 1 – Updated text	Dave Weaver
V3	'39/13/2021Section 1, 6.1, 6.2, 8.2 and 8.3 – Updated data.Appendixes B and C – Updated data.		Art Thammanavarat

Table of Contents

1.	Attestation of Test Results	4
2.	Test Specification, Methods and Procedures	5
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	7
4.1	SAR Measurement System	7
4.2	SAR Scan Procedures	8
4.3	Test Equipment	0
5.	Measurement Uncertainty1	2
6.	Dielectric Property Measurements & System Check 1	3
6.1	Dielectric Property Measurements 1	3
6.2	System Check 1	5
7.	Test Rationale1	6
7.1	Purpose 1	6
7.2	Data Reuse Approach1	6
8.	Measured and Reported (Scaled) SAR Results1	6
8.1	A2640, A2639 Spot Check Results1	6
8.2	A2636 Spot Check Results 1	7
8.3	A2638 Spot Check Results 1	7
Арре	ndixes1	8
App	pendix A: SAR Setup Photos	8
Арр	pendix B: SAR System Check Plots 1	8
Арр	pendix C: SAR Highest Test Plots	8
Арр	pendix D: SAR Tissue Ingredients	8
Арр	endix E: SAR Probe Certificates 1	8
Арр	endix F: SAR Dipole Certificates 1	8

1. Attestation of Test Results

Applicant Name	APPLE, INC.					
FCC ID	BCG E4034A, BCG-E4002A, BCG-E4033A					
Model Name	A2640, A2639	9, A2636, A263	8			
Applicable Standards	FCC 47 CFR § 2.1093, Published RF exposure KDB procedures, IEEE Std 1528-2013					
	SAR Limits (W/Kg)					
Exposure Category	Peak spatial-average(1g of tissue) Extremities (hands, wrists, ankles, etc. (10g of tissue)			kles, etc.)		
General population / Uncontrolled exposure	1.6 4					
RF Exposure Conditions	Equipment Class - Highest Reported SAR (W/kg)					
	TNE	PCE	CBE	DTS	NII	DSS
Worst Case from BCG-E4000A	0.959 0.959 0.956		0.956	<mark>1.198</mark>	1.186	<mark>1.194</mark>
Variant Models		Wo	orst-Case SAR	for Variant Mod	dels	
BCG-E4034A (A2640, A2639)	0.898 0.930 0.914 1.151 1.183 1.095					1.095
BCG-E4002A (A2636)	0.875	0.875 0.893 0.929			1.066	<mark>1.056</mark>
BCG-E4033A (A2638)	0.865 0.933 0.938 1.200 1.050			1.050	1.088	
Date Tested	7/13/2021 to 8/4/2021					
Test Results	Pass					

This application for certification is leveraging the data reuse procedure from TCB workshop April 2021; RF Exposure Procedures (Remarks on Test Reductions via Data Referencing for Closely Related Products) based on reference FCC ID: **BCG-E4000A** (UL report# 13571601-S1) to cover variant FCC ID: **BCG-E4034A**, **BCG-E4002A**, **BCG-E4033A**. The major difference between the parent/reference model and the variant model is the depopulation in the variant model of the mmWave transmitter. All other circuitry and features are identical. The data reuse test plan was approved via manufacturer KDB inquiry.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released By:	Prepared By:		
JenCurg	Deeph With		
Devin Chang	Joseph Wiebe		
Senior Test Engineer	Laboratory Engineer		
UL Verification Services Inc.	UL Verification Services Inc.		

Page 4 of 18

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- 941225 D06 Hotspot Mode v02r01

In addition to the above, the following information was used:

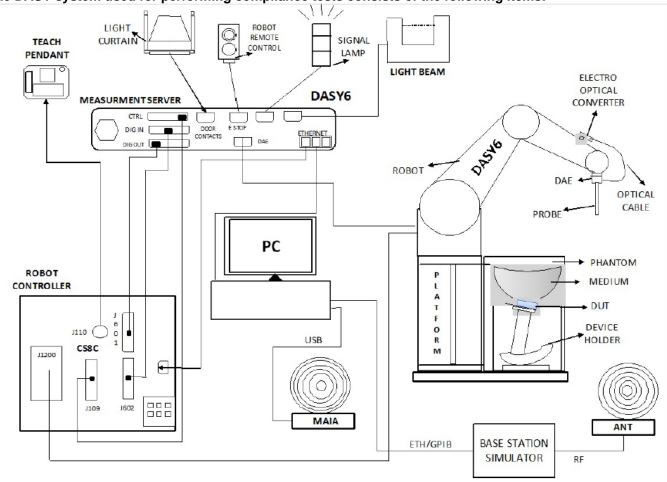
- o <u>TCB workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- o <u>TCB workshop</u> April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- o <u>TCB workshop</u> October 2015; RF Exposure Procedures (KDB 941225 D05A)
- <u>TCB workshop</u> April 2016; RF Exposure Procedures (LTE Carrier Aggregation for DL)
- o TCB workshop October 2016; RF Exposure Procedures (LTE Carrier Aggregation for UL)
- o <u>TCB workshop</u> October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o TCB workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- <u>TCB workshop</u> May 2017; RF Exposure Procedures (LTE Band 41 Power Class 2)
- <u>TCB workshop</u> November 2017; RF Exposure Procedures (LTE UL/DL Carrier Aggregation SAR)
- <u>TCB workshop</u> April 2018; RF Exposure Procedures (LTE DL CA SAR Test Exclusion)
- <u>TCB workshop</u> October 2018; RF Exposure Procedures (LTE Inter-Band Uplink Carrier Aggregation Interim Procedures)
- <u>TCB workshop</u> April 2019; RF Exposure Procedures (802.11ax SAR Testing)
- <u>TCB workshop</u> November 2019; RF Exposure Policy Updates (5G NR FR1 NSA EN-DCUE SAR Evaluations)
- <u>TCB workshop</u> April 2021; RF Exposure Procedures (Remarks on Test Reductions via Data Referencing for Closely Related Products)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	SAR Lab 6
SAR Lab G	SAR Lab 8
SAR Lab H	SAR Lab 9
	SAR Lab 10
	SAR Lab 11
	SAR Lab 12
	SAR Lab 13
	SAR Lab 14
	SAR Lab 15
	SAR Lab 16

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05


The Test Lab Conformity Assessment Body Identifier (CABID)

Location	CABID	Company Number
47173 Benicia Street, Fremont, CA, 94538 UNITED STATES	US0104	2324A
47266 Benicia Street, Fremont, CA, 94538 UNITED STATES	050104	22541

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7, Win10 and the DASY52¹ and DASY6² software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

UL Verification Services Inc.

¹ DASY52 software used: DASY52.10.4 & S 14.6.14 and older generations.

² DASY6 software used: DASY6.14 & S 14.6.14 and older generations.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Me	leasurement 100 MHz to 6 GHz
---	------------------------------

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
	uniform grid: $\Delta z_{Zoom}(n)$		$ \begin{array}{c} 3 - 4 \ \mathrm{GHz} : \leq 4 \ \mathrm{m} \\ 4 - 5 \ \mathrm{GHz} : \leq 3 \ \mathrm{m} \\ 5 - 6 \ \mathrm{GHz} : \leq 2 \ \mathrm{m} \end{array} $			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
	grid	∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	Zoom(n-1)		
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm			
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE						

P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Netw ork Analyzer	Rohde & Schwarz	ZNLE6	101273	2/26/2022
Dielectric Probe kit	SPEAG	DAK-3.5	1087	11/12/2021
Shorting block	SPEAG	DAK-3.5 Short	SM DAK200BA	11/12/2021
Thermometer	Fischer Scientific	4242	150378159	8/5/2021
Netw ork Analyzer	Rohde & Schwarz	ZNLE6	101274	2/26/2022
Dielectric Probe kit	SPEAG	DAK-3.5	1082	9/9/2021
Shorting block	SPEAG	DAK-3.5 Short	SM DAK200DA	9/9/2021
Thermometer	Control Company	15-078-179	170064398	7/30/2021 *

Note(s):

*Equipment not used past calibration due date.

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Signal Generator	Keysight Technologies	N5181A-506	MY50140610	1/21/2022
Power Meter	Keysight Technologies	N1912A	MY50001018	1/21/2022
Power Sensor	Keysight Technologies	N1921A	MY53020038	1/28/2022
DC Power Supply	Ametek	XT15-4	1802A01877	N/A
Amplifier	Miteq	AMF-4D-00400600-50-30P	1795092	N/A
Signal Generator	Rohde & Schwarz	SMB100A03	180969	2/16/2022
3-Path Diode Power Sensor	Rohde & Schwarz	NRP18A	100992	2/16/2022
Signal Generator	Rohde & Schwarz	SMB100A03	180970	2/16/2022
Power Meter	Keysight Technologies	437B	3125U11347	1/26/2022
3-Path Diode Power Sensor	Rohde & Schwarz	NRP18A	100995	2/26/2022
Bi-Directional Coupler	Werlatone	C8060-102	4063	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe (SAR Lab B)	SPEAG	EX3DV4	3773	2/25/2022
E-Field Probe (SAR Lab E)	SPEAG	EX3DV4	7500	3/18/2022
E-Field Probe (SAR Lab F)	SPEAG	EX3DV4	7356	3/19/2022
E-Field Probe (SAR Lab G)	SPEAG	EX3DV4	3902	3/18/2022
E-Field Probe (SAR Lab 4)	SPEAG	EX3DV4	3929	3/19/2022
E-Field Probe (SAR Lab 6)	SPEAG	EX3DV4	3990	2/5/2022
E-Field Probe (SAR Lab 10)	SPEAG	EX3DV4	7448	2/26/2022
E-Field Probe (SAR Lab 13)	SPEAG	EX3DV4	7581	3/1/2022
Data Acquisition Electronics (SAR Lab B)	SPEAG	DAE4	1357	1/28/2022
Data Acquisition Electronics (SAR Lab E)	SPEAG	DAE4	1540	1/27/2022
Data Acquisition Electronics (SAR Lab F)	SPEAG	DAE4	1433	2/24/2022
Data Acquisition Electronics (SAR Lab G)	SPEAG	DAE4	1258	3/18/2022
Data Acquisition Electronics (SAR Lab 4)	SPEAG	DAE4	1439	7/16/2021 *
Data Acquisition Electronics (SAR Lab 6)	SPEAG	DAE4	1259	7/16/2021 *
Data Acquisition Electronics (SAR Lab 10)	SPEAG	DAE4	1545	2/22/2022
Data Acquisition Electronics (SAR Lab 13)	SPEAG	DAE4	1261	2/24/2022

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date								
System Validation Dipole	SPEAG	D835V2	4d117	5/11/2022								
System Validation Dipole	SPEAG	D1750V2	1077	10/16/2021								
System Validation Dipole	SPEAG	D2450V2	899	4/13/2022								
System Validation Dipole	SPEAG	D3700V2	1039	4/16/2022								
System Validation Dipole	SPEAG	D5GHzV2	1168	11/27/2021								
Page 10 of 18												

OTHER

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	959	137873-WG	2/19/2022

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Dielectric Property Measurements & System Check

6.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Torget Frequency (MHz)	He	ead	Body						
Target Frequency (MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)					
150	52.3	0.76	61.9	0.80					
300	45.3	0.87	58.2	0.92					
450	43.5	0.87	56.7	0.94					
835	41.5	0.90	55.2	0.97					
900	41.5	0.97	55.0	1.05					
915	41.5	0.98	55.0	1.06					
1450	40.5	1.20	54.0	1.30					
1610	40.3	1.29	53.8	1.40					
1800 – 2000	40.0	1.40	53.3	1.52					
2450	39.2	1.80	52.7	1.95					
3000	38.5	2.40	52.0	2.73					
5000	36.2	4.45	49.3	5.07					
5100	36.1	4.55	49.1	5.18					
5200	36.0	4.66	49.0	5.30					
5300	35.9	4.76	48.9	5.42					
5400	35.8	4.86	48.7	5.53					
5500	35.6	4.96	48.6	5.65					
5600	35.5	5.07	48.5	5.77					
5700	35.4	5.17	48.3	5.88					
5800	35.3	5.27	48.2	6.00					

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

IEC 62209-1

Refer to Table A.3 within the IEC 62209-1

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relat	ive Permittivi	ty (ɛr)	Conductivity (σ)				
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)		
				1750	39.23	40.08	-2.13	1.36	1.37	-1.02		
В	7/14/2021	1750	Head	1710	39.35	40.15	-1.98	1.33	1.35	-1.37		
				1755	39.26	40.08	-2.04	1.36	1.37	-0.93		
				1750	41.08	40.08	2.48	1.42	1.37	3.36		
В	7/19/2021	1750	Head	1710	41.01	40.15	2.15	1.40	1.35	3.76		
				1755	41.11	40.08	2.58	1.42	1.37	3.22		
				2450	37.71	39.20	-3.80	1.86	1.80	3.06		
E	7/14/2021	2450	Head	2400	38.05	39.30	-3.17	1.80	1.75	2.59		
				2480	37.47	39.16	-4.32	1.90	1.83	3.69		
				2450	39.24	39.20	0.10	1.81	1.80	0.67		
E	7/26/2021	2450	Head	2400	39.44	39.30	0.36	1.77	1.75	1.05		
				2480	39.09	39.16	-0.18	1.83	1.83	-0.02		
				2450	37.84	39.20	-3.47	1.84	1.80	2.17		
E	8/3/2021	2450	Head	2400	38.03	39.30	-3.22	1.78	1.75	1.73		
				2480	37.73	39.16	-3.66	1.88	1.83	2.43		
				5250	34.39	35.93	-4.29	4.82	4.70	2.55		
F	7/30/2021	5250	Head	5150	34.66	36.05	-3.85	4.70	4.60	2.07		
				5350	34.47	35.82	-3.77	4.89	4.80	1.72		
				5250	36.33	35.93	1.10	4.64	4.70	-1.39		
G	7/17/2021	5250	Head	5150	36.52	36.05	1.31	4.52	4.60	-1.65		
				5350	36.14	35.82	0.90	4.75	4.80	-1.09		
				5250	34.90	35.93	-2.88	4.67	4.70	-0.77		
G	7/30/2021	5250	Head	5150	35.41	36.05	-1.77	4.46	4.60	-3.04		
				5350	34.80	35.82	-2.85	4.73	4.80	-1.57		
				3700	37.64	37.70	-0.16	3.07	3.12	-1.48		
4	7/13/2021	3700	Head	3500	37.87	37.93	-0.16	2.86	2.91	-1.74		
				3600	37.70	37.82	-0.31	2.96	3.01	-1.92		
				3700	37.95	37.70	0.66	3.07	3.12	-1.42		
6	7/13/2021	3700	Head	3500	38.24	37.93	0.82	2.88	2.91	-1.02		
				3600	38.05	37.82	0.62	2.98	3.01	-1.12		
				835	39.93	41.50	-3.78	0.92	0.90	2.22		
10	7/26/2021	835	Head	805	39.77	41.68	-4.58	0.91	0.90	1.53		
				850	40.04	41.50	-3.52	0.92	0.92	0.55		
				835	40.85	41.50	-1.57	0.93	0.90	2.91		
13	7/19/2021	835	Head	805	40.80	41.68	-2.11	0.92	0.90	2.01		
				850	40.86	41.50	-1.54	0.93	0.92	1.64		
				835	40.21	41.50	-3.11	0.94	0.90	4.88		
13	7/22/2021	835	Head	805	40.54	41.68	-2.73	0.94	0.90	4.86		
				850	40.15	41.50	-3.25	0.95	0.92	3.46		

6.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within \pm 10% of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

SAR		Tissue	Dipole Type	Dipole	Me	easured Resul	ts for 1g SAR		Me	asured Result	s for 10g SAR		Plot
Lab	Date	Туре	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
В	7/14/2021	Head	D1750V2 SN:1077	10/16/2021	3.690	36.90	35.15	4.98	1.970	19.70	18.71	5.29	1,2
В	7/19/2021	Head	D1750V2 SN:1077	10/16/2021	3.560	35.60	35.15	1.28	1.910	19.10	18.71	2.08	
E	7/14/2021	Head	D2450V2 SN:899	4/13/2022 5.150 51.50 50		50.96	1.06	2.320	23.20	23.89	-2.89		
E	7/26/2021	Head	D2450V2 SN:899	4/13/2022	5.570	55.70	50.96	9.30	2.510	25.10	23.89	5.06	3,4
E	8/3/2021	Head	D2450V2 SN:899	4/13/2022	5.390	53.90	50.96	5.77	2.420	24.20	23.89	1.30	
F	7/30/2021	Head	D5GHzV2 SN:1168 (5.25 GHz)	11/27/2021	7.720	77.20	80.80	-4.46	2.180	21.80	23.30	-6.44	5,6
G	7/17/2021	Head	D5GHzV2 SN:1168 (5.25 GHz)	11/27/2021	7.880	78.80	80.80	-2.48	2.270	22.70	23.30	-2.58	
G	7/30/2021	Head	D5GHzV2 SN:1168 (5.25 GHz)	11/27/2021	8.740	87.40	80.80	8.17	2.540	25.40	23.30	9.01	7,8
4	7/13/2021	Head	D3700V2 SN:1039	4/16/2022	6.720	67.20	66.40	1.20	2.540	25.40	24.00	5.83	9,10
6	7/13/2021	Head	D3700V2 SN:1039	4/16/2022	6.920	69.20	66.40	4.22	2.560	25.60	24.00	6.67	11,12
10	7/26/2021	head	D835V2 SN:4d117	5/11/2022	1.100	11.00	10.23	7.53	0.711	7.11	6.69	6.28	13,14
13	7/19/2021	Head	D835V2 SN:4d117	5/11/2022	0.973	9.73	10.23	-4.89	0.633	6.33	6.69	-5.38	15,16
13	7/22/2021	Head	D835V2 SN:4d117	5/11/2022	1.060	10.60	10.23	3.62	0.686	6.86	6.69	2.54	

Page 15 of 18

7. Test Rationale

7.1. Purpose

This application for certification is leveraging the data reuse procedure from TCB workshop April 2021; RF Exposure Procedures (Remarks on Test Reductions via Data Referencing for Closely Related Products) based on reference FCC ID: BCG-E4000A to cover variant FCC ID: BCG-E4034A, BCG-E4002A, BCG-E4033A. The major difference between the parent/reference model and the variant model is the depopulation in the variant model of the mmWave transmitter. All other circuitry and features are identical. The data reuse test plan was approved via manufacturer KDB inquiry.

7.2. Data Reuse Approach

Full RF exposure testing was performed on the parent model. The configurations with the highest SAR values for each equipment class were identified. These configurations were tested on the variant models.

The variation in SAR values was well within the uncertainty budget of the SAR test equipment. The variant SAR results and worst case parent SAR values are summarized in section 1.

8. Measured and Reported (Scaled) SAR Results

8.1. A2640, A2639 Spot Check Results

Wireless		RF Exp	osure		Р	bw er	Dist.	Т	est			Frea.		RB	RB	Po	ow er (d	Bm)	1-g \$	SAR (W	//kg)	10-g S	AR (W/kg)	Plot
Technoligies	Antenna	Condi		Mode		Node	(mm)		sition	Ch	n #.	(MHz)		cation	offset	Tune- Limi		Meas.	Meas.	s	Scaled	Meas.	Scaled	No.
CDMA BC10	ANT2	Hea	ad	1xEv-D Rel. 0	- M	ode A	0	Left	Touch	56	60	820.0	N	VA 🛛	N⁄A	24.7	D	24.20	0.800	(0.898	0.525	0.589	1
Wireless		RF Exp	osure		P	bw er	Dist.	т	est		n #.	Freq.	F	RB	RB	_	ow er (d	Bm)	1-g \$	SAR (W	//kg)	10-g S	AR (W/kg)	Plot
Technoligies	Antenna	Condi	itions	Mode	P	Node	(mm)	Pos	sition		1#.	(MHz)	Alloo	cation	offset	Tune- Limi		Meas.	Meas.	s	Scaled	Meas.	Scaled	No.
W-CDMA BIV	ANT1	Hots	pot	Rel 99 R 12.2kbp	- M	ode B	5	Ed	ge 3	15	13	1752.6	6 N	VA	N/A	17.8	D	16.75	0.730	(0.930	0.346	0.441	2
Wireless		DEE					Dist	-								P	ow er (d	Bm)	1-g \$	SAR (W	//kg)	10-g S	AR (W/kg)	Plot
Technoligies	Antenna	RF Exp Condi		Mode		ow er Node	Dist. (mm)		est sition	Ch	n #.	Freq. (MHz)		RB cation	RB offset	Tune- Limi		Meas.	Meas.	s	Scaled	Meas.	Scaled	No.
LTE B48	ANT8	Bod Hots	·	QPSK	м	ode B	5	R	ear	566	640	3690.0)	1	49	23.0	D	22.20	0.760	(0.914	0.265	0.319	3
Wireless		WWAN	RF Exp			De	ver	Dist.				-	eq.	Area S	Scan ,	Duty	Pow e	er (dBm)	1-	g SAR	(W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Power	Condi		Mode			(mm)	Tes Positi		Ch #.		eq. Hz)	Max. S (W/k	SAR		une-up Limit	Mea	s. Mea	as.	Scaled	Meas.	Scaled	No.
WiFi 2.4 GHz	ANT4	Cell Off	Hea	ad	802.11t	Moo	le A	0	Left To	buch	6	24	137	1.38	30 10	0.0%	20.00	19.0	0 0.9	14	1.151	0.439	0.553	4
Wireless		WWAN		RF Exp	osure		Pov	ver	Dist.	Test			Freq.		rea Scan	Duty	Pt	ower (dBi	n)	1-g SA	R (W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Pow er	Band	Condit	ions	Mode	Ma		(mm)	Positio	on ^{Ot}	n #.	(MHz)	. IN	/ax.SAR (W/kg)	Cycle	Tune- Lim		Neas. N	<i>l</i> eas.	Scaled	I Meas	Scaled	No.
WiFi 5 GHz	ANT6	Cell OFF	U-NII-1	Body Hots		802.11n HT40	Mod	de B	5	Rear	• 4	16	5230		1.510	97.9%	20.5	D 1	8.85 0	0.792	1.183	0.204	0.305	5
Wireless		RF E	xposure	е		Pow e	r Di	ist.	Tes	t			Freq.	D	Duty	Pow	er (dBm)	1-g SA	.R (W/k	(g)	10-g SA	.R (W/kg)	Plot
Technoligies	Antenn		nditions	Mo	de	Mode		nm)	Positio		Ch #.		MHz)			Tune-up Limit	M	eas.	Meas.	Sc	aled	Meas.	Scaled	No.
Bluetooth	ANT4 Pstandalo	H	otspot	GF	SK	Mode	в	5	Edge	2	0	:	2402	100	0.0%	20.00	18	3.63	0.799	1.	095	0.338	0.463	6

8.2. A2636 Spot Check Results

Wireless		RF Exposu	e	Pow er	Dist.	Т	est		Freq.	R	в	RB	Po	ow er (dB	m)	1-g S	SAR (W	/kg)	10-g S	Plot	
Technoligies	Antenna	Conditions		Mode	(mm)		sition	Ch #.	(MHz)			offset	Tune- Limi		Meas.	Meas.	S	caled	Meas.	Scaled	No.
CDMA BC10	ANT2	Head	1xEv-Do Rel. 0	Mode A	0	Left	Touch	560	820.0	N	/Α	N/A	24.7	D :	24.20	0.780	0	0.875	0.523	0.587	7
Wireless		RF Exposu	е	Pow er	Dist.	Т	est		Frea.	R	B	RB	Po	ow er (dB	m)	1-g S	SAR (W	/kg)	10-g S	AR (W/kg)	Plot
Technoligies	Antenna	Conditions		Mode	(mm)	Pos	sition	Ch #.	(MHz)	Alloc		offset	Tune- Limi		Meas.	Meas.	S	icaled	Meas.	Scaled	No.
W-CDMA BIV	ANT1	Hotspot	Rel 99 RMC 12.2kbps	Mode B	5	Edg	ge 3	1513	1752.6	6 N	/A	N/A	17.8	о ·	16.75	0.701	0).893	0.324	0.413	8
Wireless		RF Exposu		Pow er	Dist.	т	est		Freq.		RB	RB	Pa	ow er (dB	m)	1-g S	SAR (W	/kg)	10-g S	AR (W/kg)	Plot
Technoligies	Antenna	Conditions		Mode	(mm)		sition	Ch #.	(MHz)			offset	Tune- Limi		Meas.	Meas.	S	icaled	Meas.	Scaled	No.
LTE B48	ANT8	Body & Hotspot	QPSK	Mode B	5	R	ear	56640	3690.0	0 1	1	49	23.0	o :	22.20	0.773	C).929	0.267	0.321	9
Wireless		WWAN RF	Exposure		ower	Dist.	Test			req.	Area S	can	uty	Pow er	(dBm)	1-	g SAR (W/kg)	10-g \$	SAR (W/kg)	Plot
Technoligies	Antenna		nditions	/ode		(mm)	Position	n ^{Ch ‡}		eq. 1Hz)	Max.S (W/kę	SAR		une-up Limit	Meas.	Mea	as.	Scaled	Meas.	Scaled	No.
WiFi 2.4 GHz	ANT4	Cell Off	Head 80	2.11b Mo	ide A	0	Left Tou	ch 6	24	437	1.67	0 10	0.0%	20.00	19.00	0.9	23	1.162	0.433	0.545	10
Wireless		WWAN _	. RF Exposi	ure	Por	wer	Dist.	Test		Freq.		ea Scan	Duty	-	ver (dBm)		1-g SAF	R (W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Power Ba	Condition			ode	(mm) i	Position	Ch #.	(MHz)		ax. SAR (W/kg)	Cycle	Tune-u Limit	p Mea	as. N	Meas.	Scaled	Meas	Scaled	No.
WiFi 5 GHz	ANT6	Cell OFF U-N	II-1 Body & Hotspot	802.11 HT40	Moo	de B	5	Rear	46	5230		1.380	97.9%	20.50	18.	85 0	.714	1.066	0.189	0.282	11
Wireless		RF Expo		Pow	ar D	ist.	Test			Freq.	Du	ity	Powe	er (dBm)		1-g SA	R (W/kg	I)	10-g SA	R (W/kg)	Plot
Technoligies	Antenn	a Conditio		Mod		nm)	Position	h Ch		(MHz)	Cy		Fune-up Limit	Mea	as.	Meas.	Sca	aled	Meas.	Scaled	No.
Bluetooth	ANT4 Pstandalo	Hotspo	ot GFSł	K Mode	в	5	Edge 2	0		2402	100	.0%	20.00	18.6	63	0.770	1.0)56	0.317	0.435	12

8.3. A2638 Spot Check Results

Wireless		RF Exposure		Pow er	Dist.	Te	est		Freq.	RB	RB		Pow er	r(dBm)		1-g SAF	R (W/kg)	10-g SAR (W/kg)		Plot
Technoligies	Antenna	Conditions	Mode	Mode	(mm)	Pos	ition	Ch #.	(MHz)	Allocati	on offse	et T	Fune-up Limit	Meas	i. N	Neas.	Scaled	Meas	Scale	No.
CDMA BC10	ANT2	Head	1xEv-Do Rel. 0	Mode A	0	Left 7	Touch	560	820.0	N/A	N/A		24.70	24.20) (0.771	0.865	0.510	0.572	13
Wireless		RF Exposure		Pow er	Dist.	Te	est	_	Freq.	RB	RB		Pow er	r (dBm)		1-g SAF	R (W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Conditions	Mode	Mode	(mm)	Pos	ition	Ch #.	(MHz)	Allocati	on Offse	et T	Tune-up Limit	Meas	. N	Neas.	Scaled	Meas	Scale	No.
W-CDMA BIV	ANT1	Hotspot	Rel 99 RMC 12.2kbps	Mode B	5	Edg	ge 3	1513	1752.6	N/A	N/A		17.80	16.75	5 0	0.733	0.933	0.342	0.436	14
Wireless		RF Exposure		Power	Dist.	Т	est		Freq.	RB	RB		Pow e	r (dBm)		1-g SAF	R (W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Conditions	Mode	Mode	(mm)		ition	Ch #.	(MHz)	Allocati			Fune-up Limit	Meas	i. N	Neas.	Scaled	Meas	Scale	
LTE B48	ANT8	Body & Hotspot	QPSK	Mode B	5	Re	ear	56640	3690.0	1	49		23.00	22.20) (0.780	0.938	0.258	0.310	15
				_			_		_	Are	a Scan	_	Pr	ow er (dBr	n)	1-a S	AR (W/kg)	10	g SAR (W/kg)	_
Wireless Technoligies	Antenna		posure ditions	do i		Dist. (mm)	Test Position	Ch #	· (MH	Ma:	x. SAR //kg)	Duty Cycle	Tune- Limi	· N	/ leas.	Meas.	Scale			d Plot
WiFi 2.4 GHz	ANT4	Cell Off He	ad 802.	.11b Moo	de A	0	Left Touc	sh 6	243	7 1	.400	100.0%	6 20.0	0 1	9.00	0.953	1.200	0.4	6 0.574	16
Wireless		WWAN	RF Exposure	в	Pov	wer	Dist.	Test		Freq.	Area Sca		Duty	Pow er (e	dBm)	1-g	g SAR (W/kg) 10	-g SAR (W/kg	Plot
Technoligies 4	Antenna	Pow er Band	Conditions	Mode	Ma	ode ((mm) F	Position	Ch #.	(MHz)	Max. SA (W/kg)		ycle Tu	une-up Limit	Meas.	Meas	s. Scal	ed Me	as. Scale	d No.
WiFi 5 GHz	ANT6 0	Cell OFF U-NII-1	Body & Hotspot	802.11n HT40	Mod	de B	5	Rear	46	5230	1.300	97	7.9% 2	20.50	18.85	0.70	3 1.05	50 O. ²	83 0.27	3 17
Wireless		RF Exposu		Powe	r Di	int	Test		5	eq.	Duty		Power (dl	Bm)	1	g SAR (\	W/kg)	10-g	SAR (W/kg)	Plot
Technoligies	Antenna	Conditions		Mode			Position	Ch		eq. Hz)	Cycle	Tune Lim		Meas.	Mea	is.	Scaled	Meas.	Scaled	No.
Bluetooth	ANT4 Pstandalor	Hotspot	GFSK	Mode	в	5	Edge 2	0	24	02	100.0%	20.0	.00	18.63	0.7	94	1.088	0.327	0.448	18

Appendixes

Refer to separated files for the following appendixes.

- Appendix A: SAR Setup Photos
- Appendix B: SAR System Check Plots
- **Appendix C: SAR Highest Test Plots**
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

END OF REPORT