Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-7585_Apr21 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Object **UL USA** **CALIBRATION CERTIFICATE** EX3DV4 - SN:7585 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: April 27, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Michael Weber Laboratory Technician Manager Katja Pokovic Technical Manager Issued: April 28, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7585_Apr21 Page 1 of 22 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7585 Apr21 Page 2 of 22 EX3DV4 – SN:7585 April 27, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7585 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.57 | 0.51 | 0.58 | ± 10.1 % | | DCP (mV) ^B | 99.8 | 94.6 | 101.1 | | **Calibration Results for Modulation Response** | aiu | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |------------------|-----------------------------|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 149.4 | ± 3.3 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 145.3 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 155.7 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 66.00 | 110.00 | 27.00 | 10.00 | 60.0 | ± 4.4 % | ± 9.6 % | | AAA | , | Y | 20.00 | 95.54 | 23.08 | | 60.0 | | | | | | Z | 20.00 | 95.84 | 23.39 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 97.08 | 23.28 | 6.99 | 80.0 | ± 2.5 % | ± 9.6 % | | AAA | , | Y | 20.00 | 97.27 | 23.09 | | 80.0 | | | | | | Z | 20.00 | 100.06 | 24.53 | | 80.0 | | | | 10354- Pulse Way | Pulse Waveform (200Hz, 40%) | X | 20.00 | 98.53 | 22.63 | 3.98 | 95.0 | ± 1.4 % | ± 9.6 % | | | , | Y | 20.00 | 104.48 | 25.43 | | 95.0 | | | | | | Z | 20.00 | 108.37 | 27.18 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 103.45 | 23.73 | 2.22 | 120.0 | ± 1.2 % | ± 9.6 % | | AAA | ` ' | Y | 20.00 | 116.54 | 29.80 | | 120.0 | | | | | | Z | 20.00 | 117.13 | 29.82 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.89 | 65.16 | 14.96 | 1.00 | 150.0 | ± 1.5 % | ± 9.6 % | | AAA | | Υ | 1.96 | 67.44 | 16.35 | | 150.0 | | | | | | Z | 1.93 | 65.93 | 15.41 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.42 | 67.90 | 15.48 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.69 | 70.53 | 17.19 | | 150.0 | | | | | | Z | 2.35 | 67.70 | 15.55 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.01 | 69.23 | 17.97 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Υ | 2.89 | 70.62 | 19.21 | | 150.0 | | | | | | Z | 3.08 | 70.58 | 18.87 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | Х | 3.51 | 66.49 | 15.37 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.67 | 67.64 | 16.25 | | 150.0 | | | | | | Z | 3.61 | 67.02 | 15.72 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | Х | 5.02 | 65.26 | 15.23 | 0.00 | 150.0 | ± 1.6 % | ± 9.6 % | | AAA | | Υ | 5.00 | 65.62 | 15.67 | | 150.0 | | | | | | Z | 5.09 | 65.58 | 15.48 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7585_Apr21 Page 3 of 22 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation
from linear response applying rectangular distribution and is expressed for the square of the field value. April 27, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7585 ## **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | Т3 | T4 | T5 | T6 | |---|------|--------|-----------------|--------------------|--------|------|------|-----------------|------| | | fF | fF | V ⁻¹ | ms.V ⁻² | ms.V⁻¹ | ms | V-2 | V ⁻¹ | | | Х | 71.8 | 530.79 | 34.87 | 18.68 | 0.25 | 5.08 | 0.45 | 0.42 | 1.01 | | Υ | 58.5 | 437.76 | 35.83 | 18.69 | 0.00 | 5.10 | 0.80 | 0.25 | 1.01 | | Z | 67.4 | 503.37 | 35.50 | 15.91 | 0.03 | 5.10 | 1.32 | 0.25 | 1.01 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -155.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7585_Apr21 Page 4 of 22 April 27, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7585 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 11.87 | 11.87 | 11.87 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.52 | 10.52 | 10.52 | 0.40 | 0.94 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.02 | 10.02 | 10.02 | 0.38 | 0.96 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.70 | 8.70 | 8.70 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.46 | 8.46 | 8.46 | 0.29 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.27 | 8.27 | 8.27 | 0.35 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.00 | 8.00 | 8.00 | 0.28 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.85 | 7.85 | 7.85 | 0.29 | 0.93 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.48 | 7.48 | 7.48 | 0.37 | 0.93 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.42 | 7.42 | 7.42 | 0.38 | 0.93 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.94 | 6.94 | 6.94 | 0.30 | 1.25 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.73 | 6.73 | 6.73 | 0.30 | 1.25 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.52 | 5.52 | 5.52 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.19 | 5.19 | 5.19 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.61 | 4.61 | 4.61 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.79 | 4.79 | 4.79 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7585_Apr21 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL USA** Certificate No: EX3-3929_Mar21 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3929 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: March 19, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid sensitivity in free space NORMx,y,z ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ Φ rotation around probe axis Polarization 9 $\boldsymbol{\vartheta}$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle Certificate No: EX3-3929 Mar21 information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no
uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Page 2 of 23 March 19, 2021 EX3DV4 - SN:3929 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.53 | 0.49 | 0.39 | ± 10.1 % | | DCP (mV) ^B | 97.9 | 96.2 | 98.7 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |-----------------------|--|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 149.0 | ± 3.8 % | ± 4.7 % | | U | CVV | Y | 0.00 | 0.00 | 1.00 | | 137.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 140.7 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.17 | 64.69 | 9.28 | 10.00 | 60.0 | ± 4.1 % | ± 9.6 % | | AAA | | Y | 20.00 | 90.43 | 20.02 | | 60.0 | | | | | | Z | 20.00 | 88.06 | 18.45 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.01 | 61.60 | 7.14 | 6.99 | 80.0 | ± 2.9 % | ± 9.6 % | | AAA | 1 4.00 1 4.00 1 1.00 1 | Y | 20.00 | 93.42 | 20.19 | | 80.0 | | | | | | Z | 20.00 | 90.66 | 18.45 | | 80.0 | | | | 10354- Pulse V
AAA | Pulse Waveform (200Hz, 40%) | X | 0.96 | 64.51 | 7.78 | 3.98 | 95.0 | ± 1.6 % | ± 9.6 % | | | , , , , | Y | 20.00 | 100.62 | 22.16 | | 95.0 | | | | | | Z | 20.00 | 99.56 | 21.30 | | 95.0 | | | | 10355- Puls | Pulse Waveform (200Hz, 60%) | X | 20.00 | 87.68 | 14.49 | 2.22 | 120.0 | ± 1.2 % | ± 9.6 % | | AAA | , | Y | 20.00 | 110.02 | 25.21 | | 120.0 | | | | | N. | Z | 20.00 | 116.92 | 27.96 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.85 | 67.24 | 15.91 | 1.00 | 150.0 | ± 1.6 % | ± 9.6 % | | AAA | | Y | 1.66 | 64.90 | 14.54 | | 150.0 | 1 | | | | | Z | 1.74 | 67.05 | 15.62 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.48 | 69.41 | 16.62 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.16 | 66.82 | 15.19 | | 150.0 | | | | | | Z | 2.27 | 68.38 | 16.18 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.81 | 70.02 | 18.71 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Y | 2.89 | 69.90 | 18.47 | | 150.0 | | | | | | Z | 2.63 | 69.94 | 18.70 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.56 | 67.18 | 15.97 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.49 | 66.57 | 15.52 | | 150.0 | | | | | | Z | 3.55 | 67.29 | 15.99 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.89 | 65.51 | 15.57 | 0.00 | 150.0 | ± 1.5 % | ± 9.6 % | | AAA | | Υ | 4.90 | 65.37 | 15.40 | | 150.0 | 1 | | | | | Z | 4.87 | 65.78 | 15.68 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 3 of 23 Certificate No: EX3-3929_Mar21 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. March 19, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929 ## **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | Т3 | T4 | T5 | Т6 | |---|------|--------|-----------------|--------------------|--------|------|-----------------|-----------------|------| | | fF | fF | V ⁻¹ | ms.V ⁻² | ms.V⁻¹ | ms | V ⁻² | V ⁻¹ | | | X | 48.4 | 361.90 | 35.68 | 8.45 | 0.00 | 4.95 | 0.95 | 0.22 | 1.00 | | Υ | 49.7 | 373.13 | 35.87 | 7.04 | 0.10 | 5.02 | 1.76 | 0.15 | 1.01 | | Z | 41.3 | 305.18 | 35.05 | 6.25 | 0.00 | 5.00 | 1.80 | 0.00 | 1.00 | ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 164 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-3929_Mar21 Page 4 of 23 March 19, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F |
ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 10.19 | 10.19 | 10.19 | 0.15 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 8.95 | 8.95 | 8.95 | 0.47 | 0.97 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.67 | 8.67 | 8.67 | 0.42 | 0.98 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.21 | 8.21 | 8.21 | 0.42 | 0.85 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.09 | 8.09 | 8.09 | 0.34 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.96 | 7.96 | 7.96 | 0.42 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.73 | 7.73 | 7.73 | 0.36 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.29 | 7.29 | 7.29 | 0.41 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.08 | 7.08 | 7.08 | 0.40 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.92 | 6.92 | 6.92 | 0.41 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 6.61 | 6.61 | 6.61 | 0.30 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 6.55 | 6.55 | 6.55 | 0.30 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.45 | 6.45 | 6.45 | 0.30 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.39 | 6.39 | 6.39 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.31 | 6.31 | 6.31 | 0.40 | 1.70 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.18 | 6.18 | 6.18 | 0.40 | 1.60 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.00 | 6.00 | 6.00 | 0.40 | 1.60 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 5.89 | 5.89 | 5.89 | 0.40 | 1.80 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 5.78 | 5.78 | 5.78 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.49 | 5.49 | 5.49 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 4.67 | 4.67 | 4.67 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.42 | 4.42 | 4.42 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.36 | 4.36 | 4.36 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm c}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: EX3-3929 Mar21 Page 5 of 23 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. March 19, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3929 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.20 | 5.20 | 5.20 | 0.20 | 2.50 | ± 18.6 % | ^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL USA** Certificate No: EX3-7498 Mar21 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7498 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: March 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP SN: 104778 | | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvE sensitivity in TSL / NORMx,y,z diode compression point CF DCP crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 In the state of i.e., $\vartheta = 0$ is normal to probe axis Connector Angle Certificate No: EX3-7498_Mar21 information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx.v.z*: Assessed for E-field polarization $\theta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx.v.z: DCP are numerical linearization parameters assessed based on the data
of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.v.z; Bx.v.z; Cx.v.z; Dx.v.z; VRx.v.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,v,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 – SN:7498 March 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7498 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.41 | 0.38 | 0.49 | ± 10.1 % | | DCP (mV) ^B | 96.8 | 99.7 | 97.2 | | **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 146.8 | ± 3.5 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 139.3 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 138.5 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.13 | 64.20 | 9.16 | 10.00 | 60.0 | ± 2.8 % | ± 9.6 % | | AAA | | Y | 1.69 | 62.02 | 7.76 | | 60.0 | | | | | | Z | 20.00 | 89.30 | 19.18 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.08 | 62.43 | 7.41 | 6.99 | 80.0 | ± 2.2 % | ± 9.6 % | | AAA | 1 | Y | 0.83 | 60.33 | 5.98 | | 80.0 | | | | | | Z | 20.00 | 92.36 | 19.36 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 0.53 | 62.04 | 6.52 | 3.98 | 95.0 | ± 1.3 % | ± 9.6 % | | AAA | | Y | 0.40 | 60.00 | 5.19 | | 95.0 | | | | | | Z | 20.00 | 100.62 | 21.79 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 1.95 | 73.78 | 10.65 | 2.22 | 120.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 0.95 | 68.70 | 8.92 | | 120.0 | | | | | | Z | 20.00 | 111.95 | 25.65 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.55 | 65.86 | 14.49 | 1.00 | 150.0 | ± 1.9 % | ± 9.6 % | | AAA | | Y | 1.70 | 67.65 | 15.67 | | 150.0 | | | | | | Z | 1.59 | 65.43 | 14.55 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.04 | 66.74 | 15.15 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.17 | 67.97 | 16.02 | | 150.0 | | | | | | Z | 2.09 | 66.77 | 15.22 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.25 | 67.38 | 17.30 | 3.01 | 150.0 | ± 1.4 % | ± 9.6 % | | AAA | | Y | 2.24 | 67.50 | 17.59 | | 150.0 | | | | | | Z | 2.09 | 65.28 | 16.55 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.43 | 66.71 | 15.55 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.50 | 67.15 | 15.93 | | 150.0 | | | | | | Z | 3.45 | 66.57 | 15.54 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.75 | 65.60 | 15.47 | 0.00 | 150.0 | ± 1.4 % | ± 9.6 % | | AAA | | Y | 4.77 | 65.78 | 15.67 | | 150.0 | | | | | | Z | 4.81 | 65.41 | 15.45 | | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7498 ## **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | T3 | T4 | T5 | T6 | |---|------|--------|-----------------|--------|--------|------|-----------------|-----------------|------| | | fF | fF | V ⁻¹ | ms.V⁻² | ms.V⁻¹ | ms | V ⁻² | V ⁻¹ | | | X | 34.8 | 257.63 | 34.98 | 3.08 | 0.00 | 4.94 | 1.40 | 0.00 | 1.00 | | Υ | 34.0 | 250.90 | 34.88 | 3.85 | 0.00 | 4.90 | 1.32 | 0.00 | 1.00 | | Z | 40.7 | 306.80 | 36.03 | 5.56 | 0.00 | 5.02 | 0.00 | 0.23 | 1.00 | #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -175.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7498 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.22 | 10.22 | 10.22 | 0.51 | 0.92 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.00 | 10.00 | 10.00 | 0.38 | 1.00 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.72 | 8.72 | 8.72 | 0.38 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.45 | 8.45 | 8.45 | 0.26 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.21 | 8.21 | 8.21 | 0.35 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 8.03 | 8.03 | 8.03 | 0.33 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.66 | 7.66 | 7.66 | 0.39 | 0.90 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.30 | 5.30 | 5.30 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.66 | 4.66 | 4.66 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **UL USA** Certificate No: EX3-3990 Feb21 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3990 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: February 5, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the
following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP SN: 104778 | | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 9, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ Φ rotation around probe axis Polarization θ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Certificate No: EX3-3990_Feb21 information used in DASY system to align probe sensor X to the robot coordinate system #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Page 2 of 23 EX3DV4 – SN:3990 February 5, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3990 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.58 | 0.62 | 0.58 | ± 10.1 % | | DCP (mV) ^B | 101.5 | 101.9 | 99.2 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |----------------------|------------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 154.1 | ± 1.9 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 159.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 157.7 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 94.50 | 22.56 | 10.00 | 60.0 | ± 3.7 % | ± 9.6 % | | AAA | | Y | 20.00 | 93.96 | 22.14 | | 60.0 | | | | | | Z | 20.00 | 96.87 | 24.00 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 98.31 | 23.45 | 6.99 | 80.0 | ± 2.0 % | ± 9.6 % | | AAA | | Y | 20.00 | 95.45 | 22.02 | | 80.0 | | | | | | Z | 20.00 | 101.32 | 25.25 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 105.30 | 25.47 | 3.98 | 95.0 | ± 1.2 % | ± 9.6 % | | AAA | | Y | 20.00 | 100.82 | 23.48 | | 95.0 | | | | | | Z | 20.00 | 108.30 | 27.24 | | 95.0 | | | | 10355- Pulse Wavefor | Pulse Waveform (200Hz, 60%) | X | 20.00 | 106.87 | 24.93 | 2.22 | 120.0 | ± 1.1 % | ± 9.6 % | | | | Y | 20.00 | 108.82 | 26.07 | | 120.0 | | | | | V-V- | Z | 20.00 | 114.84 | 28.89 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.74 | 65.50 | 14.74 | 1.00 | 150.0 | ± 1.8 % | ± 9.6 % | | AAA | Section to a series and con- | Y | 1.74 | 65.69 | 15.01 | | 150.0 | | | | | | Z | 1.63 | 64.41 | 14.16 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.28 | 67.60 | 15.41 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.27 | 67.68 | 15.64 | | 150.0 | | | | | | Z | 2.10 | 66.23 | 14.78 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.75 | 68.78 | 17.90 | 3.01 | 150.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 3.13 | 71.48 | 19.33 | | 150.0 | | | | | | Z | 2.90 | 69.96 | 18.57 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.44 | 66.40 | 15.33 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | errans an comeany , upon | Y | 3.57 | 67.05 | 15.76 | | 150.0 | | | | | | Z | 3.46 | 66.36 | 15.32 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.86 | 65.27 | 15.26 | 0.00 | 150.0 | ± 1.6 % | ± 9.6 % | | AAA | | Y | 4.95 | 65.64 | 15.52 | | 150.0 | | | | | | Z | 4.88 | 65.30 | 15.29 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Page 3 of 23 A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3990 February 5, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3990 ## **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | T3 | T4 | T5 | Т6 | |---|------|--------|-------|--------------------|--------|------|------|-----------------|------| | | fF | fF | V-1 | ms.V ⁻² | ms.V⁻¹ | ms | V-2 | V ⁻¹ | | | Х | 50.5 | 373.32 | 34.79 | 14.50 | 0.05 | 5.08 | 0.61 | 0.31 | 1.01 | | Υ | 49.4 | 365.79 | 34.94 | 18.28 | 0.00 | 5.07 | 1.81 | 0.14 | 1.01 | | Z | 49.1 | 365.54 | 35.26 | 15.13 | 0.03 | 5.10 | 1.77 | 0.13 | 1.01 | ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 169.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | |
Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job, EX3DV4- SN:3990 February 5, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3990 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6 | 55.5 | 0.75 | 20.10 | 20.10 | 20.10 | 0.00 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.29 | 11.29 | 11.29 | 0.13 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.41 | 10.41 | 10.41 | 0.46 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.93 | 9.93 | 9.93 | 0.44 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.14 | 9.14 | 9.14 | 0.33 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.90 | 8.90 | 8.90 | 0.36 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.84 | 8.84 | 8.84 | 0.39 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.37 | 8.37 | 8.37 | 0.33 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.17 | 8.17 | 8.17 | 0.24 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.87 | 7.87 | 7.87 | 0.27 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.75 | 7.75 | 7.75 | 0.36 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.04 | 7.04 | 7.04 | 0.35 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.00 | 7.00 | 7.00 | 0.35 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.90 | 6.90 | 6.90 | 0.35 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.71 | 6.71 | 6.71 | 0.35 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.35 | 6.35 | 6.35 | 0.40 | 1.70 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.21 | 6.21 | 6.21 | 0.35 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.16 | 6.16 | 6.16 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 6.12 | 6.12 | 6.12 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.90 | 5.90 | 5.90 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.60 | 5.60 | 5.60 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.15 | 5.15 | 5.15 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3990_Feb21 Page 5 of 23 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3990 ## **Calibration Parameter Determined in Head Tissue Simulating Media** | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.75 | 5.75 | 5.75 | 0.20 | 2.00 | ± 18.6 % | ^C Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3990 February 5, 2021 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) February 5, 2021 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ### **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-7587_Apr21 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL USA** CALIBRATION CERTIFICATE Object EX3DV4 - SN:7587 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: April 27, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate, All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 28, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### **Glossary:** TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body
(frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7587_Apr21 Page 2 of 22 EX3DV4 – SN:7587 April 27, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7587 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.53 | 0.59 | 0.56 | ± 10.1 % | | DCP (mV) ^B | 102.4 | 101.5 | 103.6 | | **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |------------------------------|-----------------------------|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 145.2 | ± 3.3 % | ± 4.7 % | | • | | Y | 0.00 | 0.00 | 1.00 | İ | 138.4 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 149.9 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 95.41 | 23.62 | 10.00 | 60.0 | ± 3.8 % | ± 9.6 % | | AAA | | Y | 20.00 | 94.08 | 22.69 | | 60.0 | | | | | | Z | 15.30 | 84.94 | 17.53 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 98.67 | 24.00 | 6.99 | 80.0 | ± 2.2 % | ± 9.6 % | | AAA | , , , , | Y | 20.00 | 94.85 | 22.24 | | 80.0 | | | | | | Z | 20.00 | 89.39 | 17.83 | | 80.0 | | | | 10354- Pulse Waveform
AAA | Pulse Waveform (200Hz, 40%) | X | 20.00 | 107.31 | 26.64 | 3.98 | 95.0 | ± 1.4 % | ± 9.6 % | | | | Y | 20.00 | 99.25 | 23.25 | | 95.0 | | | | | | Z | 20.00 | 93.56 | 18.45 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 121.52 | 31.65 | 2.22 | 120.0 | ± 1.6 % | ± 9.6 % | | AAA | , , , , | Y | 20.00 | 106.00 | 25.25 | | 120.0 | | | | | | Z | 20.00 | 100.46 | 20.47 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.92 | 67.13 | 16.13 | 1.00 | 150.0 | ± 1.7 % | ± 9.6 % | | AAA | | Y | 1.98 | 65.79 | 15.54 | | 150.0 |] | | | | | Z | 1.69 | 65.54 | 14.68 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.64 | 70.35 | 16.98 | 0.00 | 150.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 2.59 | 69.08 | 16.18 | | 150.0 | | | | | | Z | 2.21 | 67.54 | 15.32 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.82 | 70.26 | 18.90 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Y | 3.50 | 72.22 | 19.57 | | 150.0 | | | | | " | Z | 2.54 | 69.47 | 18.44 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | Х | 3.62 | 67.55 | 16.13 | 0.00 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | | Υ | 3.77 | 67.72 | 16.06 | | 150.0 | | | | | | Z | 3.36 | 66.41 | 15.26 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | Х | 4.98 | 65.62 | 15.61 | 0.00 | 150.0 | ± 2.0 % | ± 9.6 % | | AAA | | Y | 5.05 | 65.32 | 15.33 | | 150.0 | | | | | | Z | 4.76 | 65.21 | 15.14 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. April 27, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7587 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|------| | X | 61.2 | 454.74 | 35.37 | 12.33 | 0.39 | 5.10 | 0.67 | 0.26 | 1.01 | | Υ | 77.9 | 574.79 | 34.84 | 23.92 | 0.01 | 5.10 | 1.14 | 0.32 | 1.01 | | Z | 49.5 | 355.83 | 33.16 | 6.49 | 0.00 | 5.02 | 1.21 | 0.04 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -157.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7587 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 12.32 | 12.32 | 12.32 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.54 | 10.54 | 10.54 | 0.42 | 1.00 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.09 | 10.09 | 10.09 | 0.51 | 0.82 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.44 | 9.44 | 9.44 | 0.45 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.64 | 8.64 | 8.64 | 0.35 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.49 | 8.49 | 8.49 | 0.34 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.17 | 8.17 | 8.17 | 0.28 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.83 | 7.83 | 7.83 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.60 | 7.60 | 7.60 | 0.34 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.33 | 7.33 | 7.33 | 0.43 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.99 | 6.99 | 6.99 | 0.30 | 1.25 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.69 | 6.69 | 6.69 | 0.30 | 1.25 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.57 | 5.57 | 5.57 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.19 | 5.19 | 5.19 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.70 | 4.70 | 4.70 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.79 | 4.79 | 4.79 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Page 8 of 22 ### **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Apple USA** Certificate No: EX3-7582_Mar21 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7582 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: March 1, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 6, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7582_Mar21 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx*, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 wavequide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7582 Mar21 Page 2 of 24 EX3DV4 - SN:7582 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7582 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.65 | 0.74 | 0.73 | ± 10.1 % | | DCP (mV) ^B | 103.1 | 102.6 | 104.0 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E | |---------------------|---|---|---------|-----------|-------|---------|----------|-------------|-------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 135.5 | ± 3.3 % | (k=2) | | Ü | | Y | 0.00 | 0.00 | 1.00 | 0.00 | 135.2 | ± 3.5 % | ± 4.7 % | | | | Z | 0.00 | 0.00 | 1.00 | - | 128.6 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 19.01 | 92.90 | 25.02 | 10.00 | 60.0 | ± 1.7 % | ± 9.6 % | | AAA | 1. 4.00 17470101111 (200112, 1070) | Y | 20.00 | 92.52 | 24.48 | 10.00 | 60.0 | 1.7 76 | 2 9.0 /0 | | | | Ż | 20.00 | 94.10 | 24.94 | 1 | 60.0 | • | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 93.46 | 23.60 | 6.99 | 80.0 | ± 1.2 % | ± 9.6 % | | AAA | (2001.12, 2070) | Y | 20.00 | 92.28 | 22.96 | 0.55 | 80.0 | - 1.2 /0 | 1 9.0 /0 | | | T. | Z | 20.00 | 93.97 | 23.46 | | 80.0 | 1 1 | | | 10354- Pulse Wavefo | Pulse Waveform (200Hz, 40%) | X | 20.00 | 94.85 | 22.50 | 3.98 | 95.0 | ± 1.9 % | ± 9.6 % | | | (=====, ==, ==, ==, ==, ==, ==, ==, ==, | Y | 20.00 | 93.77 | 22.07 | 0.00 | 95.0 | 1.0 % | 20.070 | | | | Z | 20.00 | 95.41 | 22.50 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 97.60 | 22.34 | 2.22 | 120.0 | ± 1.9 % | ± 9.6 % | | AAA | , | Y | 20.00 | 96.93 | 22.19 | | 120.0 | 1.0 % | 2 0.0 70 | | | | Z | 20.00 | 98.28 | 22.44 | | 120.0 | i i | | | 10387- | QPSK Waveform, 1 MHz | X | 1.57 | 63.70 | 13.62 | 1.00 | 150.0 | ± 1.8 % | ± 9.6 % | | AAA | | Y | 1.62 | 64.81 | 14.19 | | 150.0 | ,0 | _ 0.0 /0 | | | | Z | 1.63 | 64.60 | 14.03 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 1.99 | 65.48 | 14.18 | 0.00 | 150.0 | ± 1.2 % | ± 9.6 % | | AAA | | Y | 2.09 | 66.51 | 14.83 | | 150.0 | /* | _ 0.0 /0 | | | | Z | 2.11 | 66.46 | 14.66 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.15 | 69.68 | 17.97 | 3.01 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.46 | 72.13 | 19.47 | | 150.0 | | | | | | Z | 3.13 | 70.35 | 18.51 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.36 | 66.04 | 14.97 | 0.00 | 150.0 | ± 0.9 % | ± 9.6 % | | 4AA | | Υ | 3.44 | 66.54 | 15.33 | | 150.0 | | _ 0.0 /0 | | | | Z | 3.29 | 65.78 | 14.88 | | 150.0 | | | | 10414- | WLAN CCDF,
64-QAM, 40MHz | X | 4.82 | 65.16 | 15.05 | 0.00 | 150.0 | ± 2.2 % | ± 9.6 % | | AAA | | Υ | 4.84 | 65.41 | 15.27 | | 150.0 | | | | | | Z | 4.72 | 64.89 | 14.94 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5, 6 and 7). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7582 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Χ | 50.7 | 367.74 | 33.56 | 29.73 | 2.14 | 5.08 | 1.33 | 0.38 | 1.01 | | Υ | 46.1 | 337.37 | 34.10 | 38.29 | 1.72 | 5.10 | 1.69 | 0.28 | 1.01 | | Z | 48.8 | 355.99 | 33.94 | 28.82 | 1.53 | 5.10 | 1.05 | 0.34 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -132.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. EX3DV4- SN:7582 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7582 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 42.7 | 0.88 | 11.03 | 11.03 | 11.03 | 0.10 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.51 | 10.51 | 10.51 | 0.67 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.36 | 10.36 | 10.36 | 0.51 | 0.89 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.15 | 10.15 | 10.15 | 0.54 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.62 | 9.62 | 9.62 | 0.34 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 9.49 | 9.49 | 9.49 | 0.31 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 9.36 | 9.36 | 9.36 | 0.33 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 9.03 | 9.03 | 9.03 | 0.29 | 0.86 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.72 | 8.72 | 8.72 | 0.30 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.53 | 8.53 | 8.53 | 0.33 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 8.21 | 8.21 | 8.21 | 0.39 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.95 | 7.95 | 7.95 | 0.37 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.47 | 7.47 | 7.47 | 0.30 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.40 | 7.40 | 7.40 | 0.30 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.30 | 7.30 | 7.30 | 0.30 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 7.01 | 7.01 | 7.01 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.87 | 6.87 | 6.87 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.83 | 6.83 | 6.83 | 0.40 | 1.60 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.55 | 6.55 | 6.55 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.43 | 6.43 | 6.43 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 6.40 | 6.40 | 6.40 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 6.10 | 6.10 | 6.10 | 0.40 | 1.80 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.74 | 5.74 | 5.74 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.50 | 5.50 | 5.50 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.10 | 5.10 | 5.10 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.89 | 4.89 | 4.89 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 5.05 | 5.05 | 5.05 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:7582 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7582 March 1, 2021 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 56.1 | 0.95 | 11.08 | 11.08 | 11.08 | 0.10 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.67 | 10.67 | 10.67 | 0.40 | 0.87 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.44 | 10.44 | 10.44 | 0.36 | 0.92 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.29 | 10.29 | 10.29 | 0.40 | 0.84 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.17 | 9.17 | 9.17 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 53.7 | 1.42 | 8.98 | 8.98 | 8.98 | 0.42 | 0.86 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.72 | 8.72 | 8.72 | 0.33 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.53 | 8.53 | 8.53 | 0.24 | 0.86 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 8.39 | 8.39 | 8.39 | 0.31 | 0.86 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 8.36 | 8.36 | 8.36 | 0.33 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 8.19 | 8.19 | 8.19 | 0.31 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 8.02 | 8.02 | 8.02 | 0.22 | 0.90 | ± 12.0 % | | 3300 | 51.6 | 3.08 | 7.22 | 7.22 | 7.22 | 0.35 | 1.35 | ± 13.1 % | | 3500 | 51.3 | 3.31 | 7.15 | 7.15 | 7.15 | 0.35 | 1.35 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 7.13 | 7.13 | 7.13 | 0.35 | 1.35 | ± 13.1 % | | 3900 | 50.8 | 3.78 | 6.91 | 6.91 | 6.91 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 50.5 | 4.01 | 6.64 | 6.64 | 6.64 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 50.4 | 4.13 | 6.60 | 6.60 | 6.60 | 0.40 | 1.70 | ± 13.1 % | | 4400 | 50.1 | 4.37 | 6.40 | 6.40 | 6.40 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 49.8 | 4.60 | 6.21 | 6.21 | 6.21 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 49.6 | 4.83 | 6.00 | 6.00 | 6.00 | 0.50 | 1.90 | ± 13.1 % | | 4950 | 49.4 | 5.01 | 5.65 | 5.65 | 5.65 | 0.50 | 1.90 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 5.30 | 5.30 | 5.30 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 5.08 | 5.08 | 5.08 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.56 | 4.56 | 4.56 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.47 | 4.47 | 4.47 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.60 | 4.60 | 4.60 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7582 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.80 | 5.80 | 5.80 | 0.20 | 2.50 | ± 18.6 % | ^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the
indicated frequency band. F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ , ϑ), f = 900 MHz ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL USA Certificate No: EX3-7448 Feb21 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7448 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: February 26, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 1, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7448_Feb21 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulatina liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,v,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx.v.z: Assessed for E-field polarization $\theta = 0$ (f < 900 MHz in TEM-cell: f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.v.z: Bx.v.z: Cx.v.z: Dx.v.z: VRx.v.z: A. B. C. D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, v, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7448 Feb21 EX3DV4 - SN:7448 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7448 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.27 | 0.38 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 94.6 | 101.8 | 98.6 | | **Calibration Results for Modulation Response** | UID | Communication System Name | T | Α | В | С | D | VR | Max | Max | |-------------------|-----------------------------|---|-------|--------|-------|-------|-------|---------|---------------------------| | | | | dB | dB√μV | | dB | mV | dev. | Unc ^E
(k=2) | | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 148.0 | ± 3.3 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 139.7 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 135.6 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 4.94 | 73.13 | 13.97 | 10.00 | 60.0 | ± 2.6 % | ± 9.6 % | | AAA | | Υ | 1.70 | 62.00 | 7.69 | | 60.0 | | | | | | Z | 20.00 | 89.46 | 19.30 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 10.66 | 82.82 | 15.87 | 6.99 | 80.0 | ± 2.2 % | ± 9.6 % | | AAA | | Υ | 0.81 | 60.22 | 5.82 | | 80.0 | | | | | | Z | 20.00 | 92.51 | 19.51 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 90.12 | 16.57 | 3.98 | 95.0 | ± 1.3 % | ± 9.6 % | | AAA | | Υ | 0.39 | 60.00 | 5.00 | | 95.0 | | | | | | Z | 20.00 | 100.08 | 21.67 | | 95.0 | | | | 10355- Pulse Wave | Pulse Waveform (200Hz, 60%) | X | 20.00 | 92.48 | 16.44 | 2.22 | 120.0 | ± 0.8 % | ± 9.6 % | | AAA | | Υ | 0.27 | 61.40 | 5.82 | | 120.0 | | | | | | Z | 20.00 | 109.76 | 24.87 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.78 | 65.51 | 15.05 | 1.00 | 150.0 | ± 1.8 % | ± 9.6 % | | AAA | | Y | 1.62 | 67.05 | 15.19 | | 150.0 | | | | | | Z | 1.60 | 64.80 | 14.32 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.36 | 68.00 | 15.74 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.09 |
67.38 | 15.63 | | 150.0 | | | | | | Z | 2.08 | 66.41 | 14.95 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.62 | 67.95 | 17.57 | 3.01 | 150.0 | ± 1.1 % | ± 9.6 % | | AAA | | Υ | 2.09 | 66.42 | 16.91 | | 150.0 | | | | | | Z | 2.28 | 65.90 | 16.60 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.65 | 67.23 | 15.91 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.45 | 66.92 | 15.75 | | 150.0 | | | | | | Z | 3.45 | 66.45 | 15.42 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 5.12 | 65.85 | 15.75 | 0.00 | 150.0 | ± 1.4 % | ± 9.6 % | | AAA | | Y | 4.74 | 65.72 | 15.60 | | 150.0 | | | | | | Z | 4.84 | 65.32 | 15.34 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7448_Feb21 Page 3 of 23 A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:7448 February 26, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7448 ### **Sensor Model Parameters** | | C1 | C2 | α | T1 | T2 | T3 | T4 | T5 | Т6 | |---|------|--------|-----------------|--------------------|--------|------|------|------|------| | | fF | fF | V ⁻¹ | ms.V ⁻² | ms.V⁻¹ | ms | V-2 | V-1 | | | X | 58.6 | 451.93 | 37.60 | 4.13 | 0.26 | 5.00 | 0.36 | 0.37 | 1.00 | | Υ | 32.6 | 240.95 | 34.87 | 3.33 | 0.00 | 4.90 | 1.14 | 0.00 | 1.00 | | Z | 45.1 | 336.86 | 35.45 | 6.21 | 0.00 | 5.02 | 0.16 | 0.31 | 1.00 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -159.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7448_Feb21 Page 4 of 23 EX3DV4- SN:7448 February 26, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7448 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6 | 55.0 | 0.75 | 20.65 | 20.65 | 20.65 | 0.00 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 10.78 | 10.78 | 10.78 | 0.15 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.19 | 10.19 | 10.19 | 0.36 | 1.06 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.76 | 9.76 | 9.76 | 0.46 | 0.85 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.31 | 9.31 | 9.31 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.78 | 8.78 | 8.78 | 0.23 | 0.85 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.55 | 8.55 | 8.55 | 0.31 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.32 | 8.32 | 8.32 | 0.18 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.90 | 7.90 | 7.90 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.59 | 7.59 | 7.59 | 0.27 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.30 | 7.30 | 7.30 | 0.27 | 0.97 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.92 | 6.92 | 6.92 | 0.35 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.56 | 6.56 | 6.56 | 0.35 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.30 | 6.30 | 6.30 | 0.40 | 1.50 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.23 | 6.23 | 6.23 | 0.40 | 1.50 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.07 | 6.07 | 6.07 | 0.40 | 1.70 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 5.79 | 5.79 | 5.79 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 5.97 | 5.97 | 5.97 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 5.94 | 5.94 | 5.94 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.65 | 5.65 | 5.65 | 0.40 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.05 | 5.05 | 5.05 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.46 | 4.46 | 4.46 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.68 | 4.68 | 4.68 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to Certificate No: EX3-7448_Feb21 ^c At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:7448 February 26, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7448 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|---------------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.40 | 5.40 | 5.40 | 0.20 | 2.50 | ± 18.6 % | $^{^{\}rm C}$ Frequency validity above 6GHz is \pm 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Fat frequencies 6-10 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Gauge Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL USA** Certificate No: EX3-3686_Sep20 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3686 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: September 21, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN:
660 | 27-Dec-19 (No. DAE4-660_Dec19) | Dec-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 28, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3686 Sep20 Page 1 of 22 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **Glossary:** TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3686_Sep20 Page 2 of 22 EX3DV4 - SN:3686 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.33 | 0.39 | 0.40 | ± 10.1 % | | DCP (mV) ^B | 103.8 | 99.2 | 98.0 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |------------------------------------|---|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 149.3 | ± 2.5 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 141.0 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 140.9 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 4.61 | 71.88 | 14.41 | 10.00 | 60.0 | ± 2.9 % | ± 9.6 % | | AAA | | Y | 20.00 | 97.82 | 25.07 | | 60.0 | | | | | | Z | 20.00 | 94.00 | 23.34 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 5.05 | 74.87 | 14.39 | 6.99 | 80.0 | ± 1.4 % | ± 9.6 % | | AAA | | Y | 20.00 | 99.98 | 25.10 | | 80.0 | | | | | | Z | 20.00 | 94.11 | 22.16 | | 80.0 | 80.0 | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 9.73 | 83.40 | 15.98 | 3.98 | 95.0 | ± 1.3 % | ± 9.6 % | | AAA | | Y | 20.00 | 107.01 | 27.14 | | 95.0 | | | | | | Z | 20.00 | 96.25 | 21.74 | | 95.0 | | | | 10355- Pulse Waveform (200)
AAA | Pulse Waveform (200Hz, 60%) | X | 20.00 | 93.36 | 18.24 | 2.22 | 120.0 | ± 1.4 % | ± 9.6 % | | | 1 | Y | 20.00 | 116.67 | 30.27 | | 120.0 | 1 | | | | | Z | 20.00 | 100.35 | 22.41 | | 120.0 | 1 | | | 10387- | QPSK Waveform, 1 MHz | X | 1.69 | 66.50 | 15.15 | 1.00 | 150.0 | ± 1.6 % | ± 9.6 % | | AAA | | Y | 1.77 | 66.05 | 15.33 | | 150.0 | | | | | | Z | 1.66 | 64.50 | 14.31 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.22 | 68.07 | 15.79 | 0.00 | 150.0 | ± 1.1 % | ± 9.6 % | | AAA | | Y | 2.33 | 68.21 | 15.99 | | 150.0 | | | | | | Z | 2.14 | 66.54 | 14.92 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.13 | 72.15 | 19.30 | 3.01 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Y | 3.30 | 72.54 | 19.96 | | 150.0 | | | | | | Z | 2.95 | 69.40 | 18.13 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.37 | 66.66 | 15.51 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 3.59 | 67.24 | 15.92 | | 150.0 | 1 1.0 /0 | /0 | | | | Z | 3.48 | 66.52 | 15.39 | 1 | 150.0 | | | | 10414- WLAN CCDF, 64-QAM, 40 | WLAN CCDF, 64-QAM, 40MHz | X | 4.70 | 65.33 | 15.28 | 0.00 | 150.0 | ± 1.3 % | ± 9.6 % | | AAA | 100000000000000000000000000000000000000 | Y | 4.96 | 65.70 | 15.60 | | 150.0 | 1 / | _ 0.0 /0 | | | | Z | 4.93 | 65.38 | 15.32 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3686 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 41.9 | 300.38 | 33.13 | 12.12 | 0.83 | 4.96 | 1.98 | 0.06 | 1.01 | | Υ | 50.6 | 374.56 | 35.10 | 18.70 | 0.31 | 5.10 | 1.84 | 0.15 | 1.01 | | Z | 53.3 | 395.09 | 35.03 | 19.33 | 0.80 | 5.05 | 1.16 | 0.32 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -115.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z |
Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 9.83 | 9.83 | 9.83 | 0.41 | 0.92 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.30 | 9.30 | 9.30 | 0.39 | 0.93 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.81 | 7.81 | 7.81 | 0.33 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.56 | 7.56 | 7.56 | 0.26 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.30 | 7.30 | 7.30 | 0.35 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.06 | 7.06 | 7.06 | 0.38 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.89 | 6.89 | 6.89 | 0.40 | 0.92 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.20 | 5.20 | 5.20 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.65 | 4.65 | 4.65 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.70 | 4.70 | 4.70 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-7581 Mar21 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Apple USA** ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7581 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date: March 1, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | | |----------------|----------------|-----------------------|-----------|--|--| | Calibrated by: | Jeton Kastrati | Laboratory Technician | Telle | | | | Approved by: | Katja Pokovic | Technical Manager | RICK | | | Issued: March 6, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7581_Mar21 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### **Calibration is Performed According to the Following Standards:** a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7581_Mar21 Page 2 of 24 EX3DV4 - SN:7581 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7581 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.71 | 0.70 | 0.79 | ±
10.1 % | | DCP (mV) ^B | 101.9 | 103.5 | 102.7 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |------------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 136.2 | ± 3.5 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 145.7 | 1 | / | | | | Z | 0.00 | 0.00 | 1.00 | 1 | 138.0 | 1 | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 18.37 | 90.55 | 23.88 | 10.00 | 60.0 | ± 2.0 % | ± 9.6 % | | AAA | | Y | 20.00 | 94.50 | 25.88 | 1 | 60.0 | 1 | | | | <u></u> | Z | 20.00 | 91.22 | 23.93 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 91.48 | 22.67 | 6.99 | 80.0 | ± 1.1 % | ± 9.6 % | | AAA | | Υ | 20.00 | 94.63 | 24.39 | 1 | 80.0 | 1 | | | | | Z | 20.00 | 90.88 | 22.38 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 92.67 | 21.60 | 3.98 | 95.0 | ± 1.6 % | ± 9.6 % | | AAA | | Υ | 20.00 | 96.41 | 23.47 | | 95.0 | | | | | | Z | 20.00 | 91.89 | 21.26 | | 95.0 | | | | 10355- Pul | Pulse Waveform (200Hz, 60%) | X | 20.00 | 95.61 | 21.61 | 2.22 | 120.0 | ± 2.1 % | ± 9.6 % | | AAA | | Υ | 20.00 | 99.79 | 23.59 | | 120.0 | | | | | | Z | 20.00 | 94.45 | 21.11 | | 120.0 | 1 | | | 10387- | QPSK Waveform, 1 MHz | X | 1.69 | 65.40 | 14.66 | 1.00 | 150.0 | ± 1.9 % | ± 9.6 % | | AAA | | Υ | 1.66 | 64.73 | 14.21 | | 150.0 | | | | | | Z | 1.72 | 65.69 | 14.72 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.21 | 67.45 | 15.31 | 0.00 | 150.0 | ± 1.2 % | ± 9.6 % | | AAA | | Υ | 2.13 | 66.56 | 14.80 | | 150.0 | | | | | | Z | 2.26 | 67.74 | 15.40 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.49 | 72.24 | 19.51 | 3.01 | 150.0 | ± 0.7 % | ± 9.6 % | | AAA | | Υ | 3.25 | 70.25 | 18.37 | | 150.0 | | | | | | Z | 4.22 | 75.73 | 21.02 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.52 | 67.01 | 15.60 | 0.00 | 150.0 | ± 0.9 % | ± 9.6 % | | AAA | | Υ | 3.50 | 66.69 | 15.36 | | 150.0 | | | | | | Z | 3.40 | 66.46 | 15.30 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.93 | 65.68 | 15.44 | 0.00 | 150.0 | ± 2.2 % | ± 9.6 % | | AAA | | Υ | 4.73 | 64.89 | 14.97 | | 150.0 | | | | | 1 | Z | 4.80 | 65.26 | 15.19 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5, 6 and 7). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7581 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|------| | X | 50.1 | 367.13 | 34.24 | 41.99 | 1.91 | 5.10 | 1.33 | 0.36 | 1.01 | | Υ | 49.1 | 357.89 | 33.89 | 29.65 | 2.15 | 5.10 | 0.99 | 0.43 | 1.01 | | Z | 48.9 | 356.16 | 33.90 | 45.78 | 1.79 | 5.10 | 1.96 | 0.26 | 1.01 | ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -64.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. EX3DV4- SN:7581 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7581 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 42.7 | 0.88 | 11.03 | 11.03 | 11.03 | 0.10 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.77 | 10.77 | 10.77 | 0.64 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.49 | 10.49 | 10.49 | 0.50 | 0.89 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.16 | 10.16 | 10.16 | 0.57 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.40 | 9.40 | 9.40 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 9.16 | 9.16 | 9.16 | 0.32 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 9.01 | 9.01 | 9.01 | 0.31 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.64 | 8.64 | 8.64 | 0.34 | 0.86 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.53 | 8.53 | 8.53 | 0.25 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.25 | 8.25 | 8.25 | 0.38 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 8.07 | 8.07 | 8.07 | 0.40 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.81 | 7.81 | 7.81 | 0.41 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.55 | 7.55 | 7.55 | 0.30 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.33 | 7.33 | 7.33 | 0.30 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.35 | 7.35 | 7.35 | 0.30 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.94 | 6.94 | 6.94 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 37.2 | 3.53 | 6.84 | 6.84 | 6.84 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.80 | 6.80 | 6.80 | 0.40 | 1.70 | ± 13.1 % | | 4400 | 36.9 | 3.84 | 6.60 | 6.60 | 6.60 | 0.40 | 1.70 | ± 13.1 % | | 4600 | 36.7 | 4.04 | 6.43 | 6.43 | 6.43 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 36.4 | 4.25 | 6.40 | 6.40 | 6.40 | 0.40 | 1.80 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 6.10 | 6.10 | 6.10 | 0.40 | 1.80 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.80 | 5.80 | 5.80 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.57 | 5.57 | 5.57 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.19 | 5.19 | 5.19 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 5.08 | 5.08 | 5.08 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 5.25 | 5.25 | 5.25 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:7581 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7581 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 56.1 | 0.95 | 11.00 | 11.00 | 11.00 | 0.08 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.59 | 10.59 | 10.59 | 0.34 | 1.03 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.19 | 10.19 | 10.19 | 0.45 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.05 | 10.05 | 10.05 | 0.49 | 0.80 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.02 | 9.02 | 9.02 | 0.38 | 0.80 | ± 12.0 % | | 1640 | 53.7 | 1.42 | 8.89 | 8.89 | 8.89 | 0.35 | 0.86 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.65 | 8.65 | 8.65 | 0.46 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.35 | 8.35 | 8.35 | 0.44 | 0.86 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 8.20 | 8.20 | 8.20 | 0.43 | 0.86 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.93 | 7.93 | 7.93 | 0.44 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.84 | 7.84 | 7.84 | 0.42 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.61 | 7.61 | 7.61 | 0.34 | 0.90 | ± 12.0 % | | 3300 | 51.6 | 3.08 | 7.13 | 7.13 | 7.13 | 0.40 | 1.35 | ± 13.1 % | | 3500 | 51.3 | 3.31 | 7.06 | 7.06 | 7.06 | 0.40 | 1.35 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 7.10 | 7.10 | 7.10 | 0.40 | 1.35 | ± 13.1 % | | 3900 | 50.8 | 3.78 | 6.82 | 6.82 | 6.82 | 0.40 | 1.60 | ± 13.1 % | | 4100 | 50.5 | 4.01 | 6.60 | 6.60 | 6.60 | 0.45 | 1.60 | ± 13.1 % | | 4200 | 50.4 | 4.13 | 6.57 | 6.57 | 6.57 | 0.40 | 1.60 | ± 13.1 % | | 4400 | 50.1 | 4.37 | 6.50 | 6.50 | 6.50 | 0.40 | 1.60 | ± 13.1 % | | 4600 | 49.8 | 4.60 | 6.30 | 6.30 | 6.30 | 0.40 | 1.70 | ± 13.1 % | | 4800 | 49.6 | 4.83 | 5.90 | 5.90 | 5.90 | 0.50 | 1.90 | ± 13.1 % | | 4950 | 49.4 | 5.01 | 5.63 | 5.63 | 5.63 | 0.50 | 1.90 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 5.27 | 5.27 | 5.27 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 5.10 | 5.10 | 5.10 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.70 | 4.70 |
4.70 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.57 | 4.57 | 4.57 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.60 | 4.60 | 4.60 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConVF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary EX3DV4-SN:7581 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7581 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.90 | 5.90 | 5.90 | 0.20 | 2.50 | ± 18.6 % | ^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Tot • Z # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ o Tot Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz