CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 17/May/2021

CERTIFICATE NUMBER : 13685220JD01B

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	10/May/2021
Manufacturer:	Speag		
Type/Model Number:	D835V2		
Serial Number:	4d117		
Calibration Date:	11/May/2021		
Calibrated By:	Masood Khan Test Engineer		

Signature:

Monas

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0131609	Data Acquisition Electronics	SPEAG	DAE4	450	07 Oct 2020	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0135218	Dipole	SPEAG	D900V2	1d168	06 Oct 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rohde & Schwarz	NRP8S	102481	22 Mar 2021	12
PRE0151154	Vector Network Analyser	Rohde & Schwarz	ZND	100151	23 Mar 2021	12
PRE0158684	Calibration Kit	Rhode & Schwarz	ZV-Z135	102144	27 May 2020	12
PRE0178154	Signal Generator	Rohde & Schwarz	SMB 100A	175325	25 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

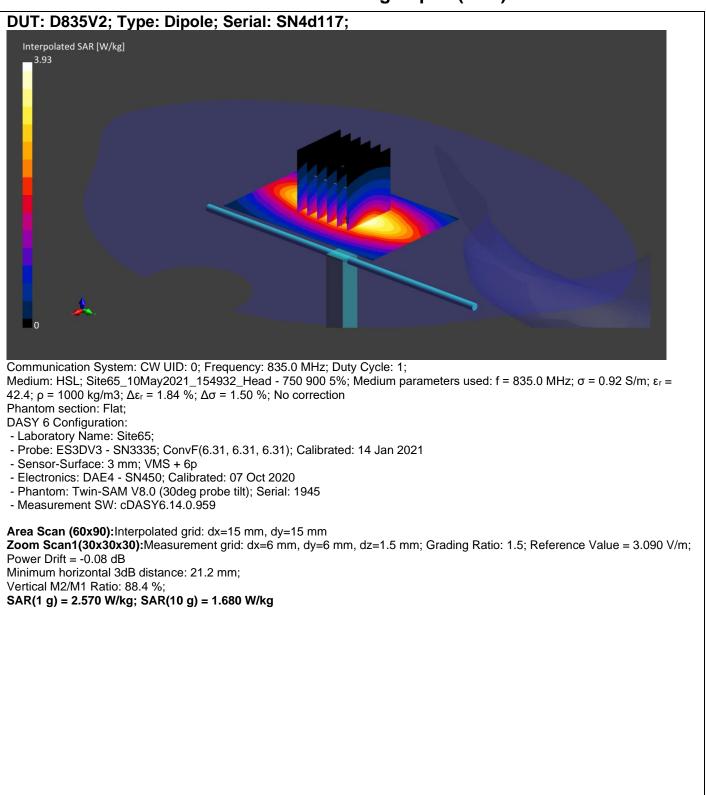
Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	cDASY6.14.0.959
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	15 mm (with spacer)
Frequency:	835 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	835	19.2 °C	19.6 °C	20.6°C	20.7°C	٤r	41.50	42.36	± 5%
neau	000	19.2 C	19.0 C	20.0 C	20.7 C	σ	0.90	0.92	± 5%

SAR Results – Head Simulating Liquid (HSL)

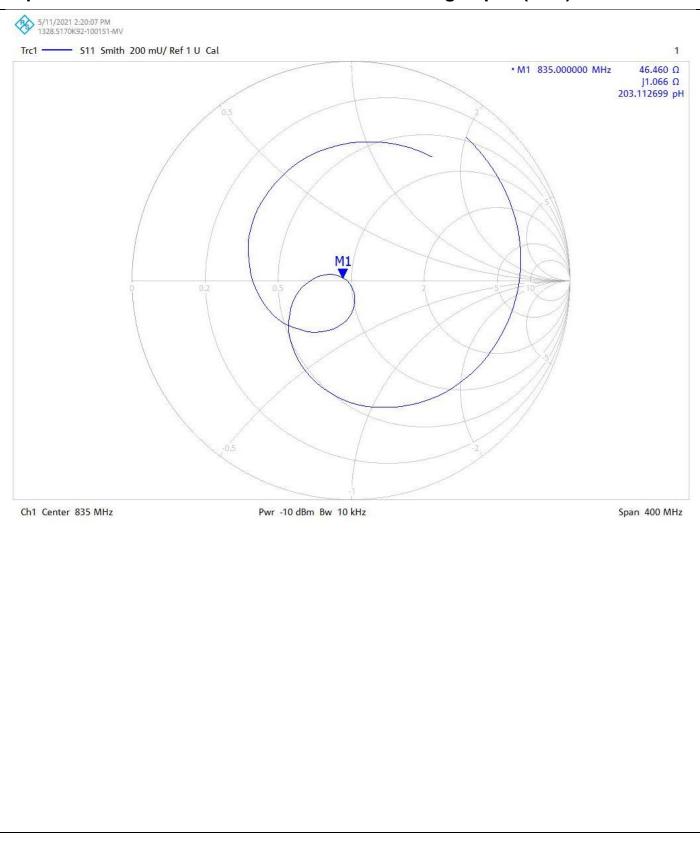
Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.57 W/Kg	10.23 W/Kg	+16.80% / -16.43%
neau	SAR averaged over 10g	1.68 W/Kg	6.69 W/Kg	+16.72% / -16.42%


Antenna Parameters – Head Simulating Liquid (HSL)

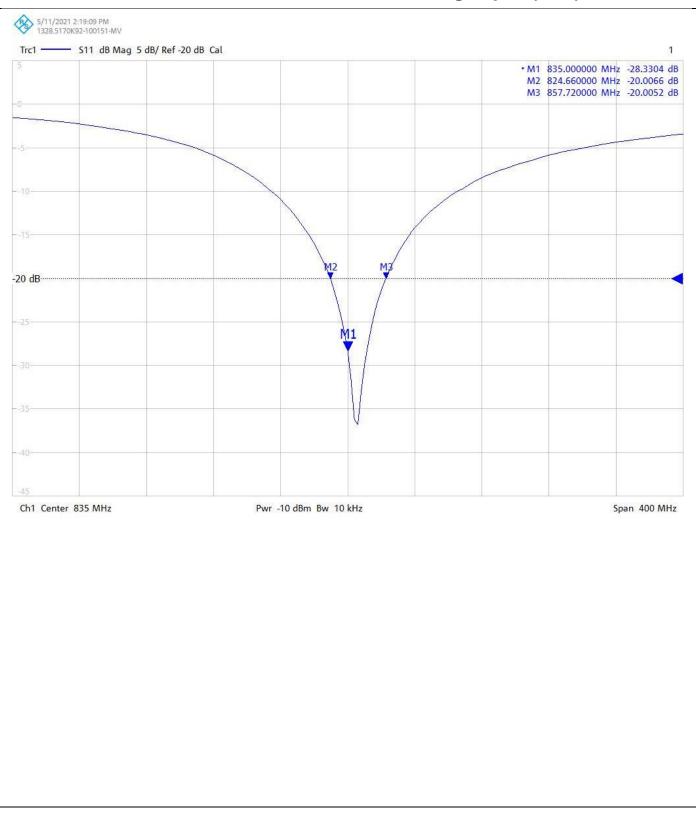
Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.460 Ω + 1.066 jΩ	± 0.28 Ω ± 0.044 jΩ
пеао	Return Loss	28.33	± 2.97 dB

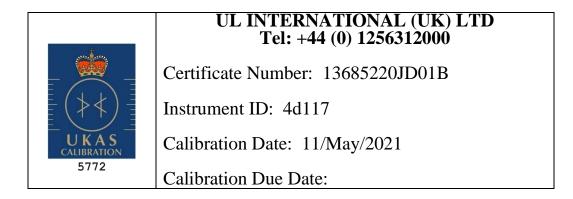
UKAS Accredited Calibration Laboratory No. 5772

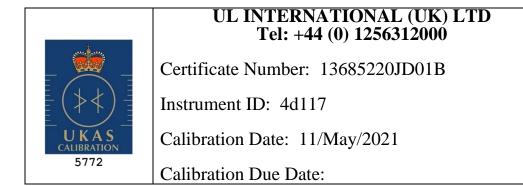
Page 5 of 10


DASY Validation Scan for Head Stimulating Liquid (HSL)

Page 6 of 10


UKAS Accredited Calibration Laboratory No. 5772


Impedance Measurement Plot for Head Stimulating Liquid (HSL)



Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13685220JD01B

Instrument ID: 4d117

Calibration Date: 11/May/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

S

С

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D835V2-4d142_Aug20

bject	D835V2 - SN:4d1	42	
alibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
alibration date:	August 18, 2020		
he measurements and the uncerta	ainties with confidence pr ed in the closed laborator	onal standards, which realize the physical unit robability are given on the following pages and y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
	ID # SN: 104778	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	Scheduled Calibration Apr-21
ower meter NRP			
ower meter NRP ower sensor NRP-Z91	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Apr-21 Apr-21 Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 0AE4 <u>Secondary Standards</u> Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
ower meter NRP ower sensor NRP-Z91 ever sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 0AE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A aff generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.09 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.0 Ω - 4.8 jΩ	
Return Loss	- 26.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
•	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

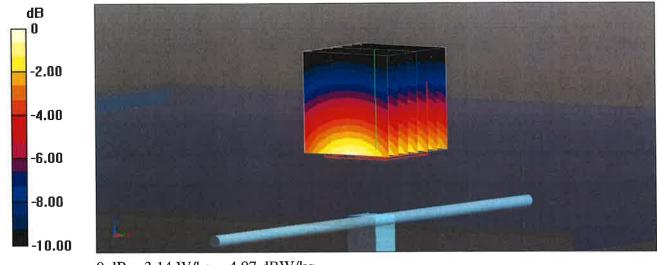
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 18.08.2020

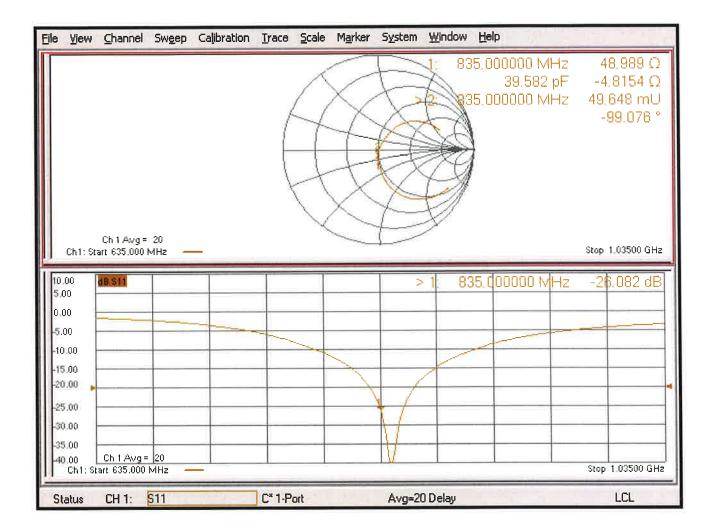
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d142


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.86 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.52 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 67.6%Maximum value of SAR (measured) = 3.14 W/kg

0 dB = 3.14 W/kg = 4.97 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: D2450V2-706_Apr21

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:7	06	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Source	s between 0.7-3 GHz
Calibration date:	April 23, 2021		
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22 Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22 Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22 Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22 Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349 Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(D)
Approved by:	Katja Pokovic	Technical Manager	ally

Issued: April 23, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	9.
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.22 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1 Ω + 5.7 jΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

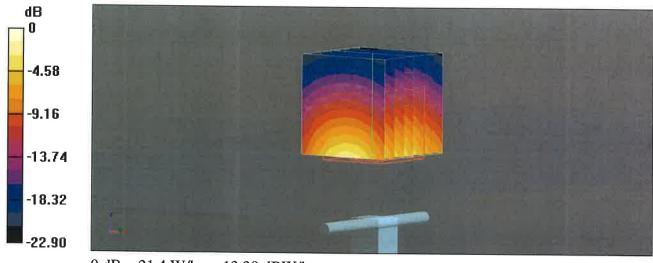
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 23.04.2021

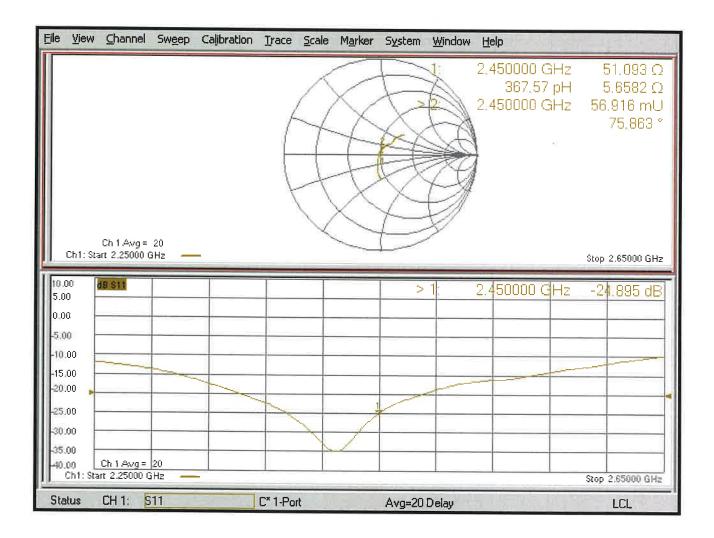
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 S/m; ϵ_r = 38; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 114.2 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 26.7 W/kg **SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Head TSL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	55.7 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 17.5 % (k=2	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
5 (··· 9) •·····	Condition	

SAR result with SAM Head (Ear \cong D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	34.3 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	17.3 W/kg ± 16.9 % (k=2)

¹ Additional assessments outside the current scope of SCS 0108

CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD DATE OF ISSUE: 13/April/2021 CERTIFICATE NUMBER : 13697411JD01E 5772 **UL INTERNATIONAL (UK) LTD** Page 1 of 6 **UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD APPROVED SIGNATORY BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com Harmohan Sahota Customer : **UL VS Inc** 47173 Benicia Street Fremont, CA 94538, USA **Equipment Details:** Description: **Dipole Validation Kit** Date of Receipt: 12/April/2021 Manufacturer: Speag Type/Model Number: D2450V2 Serial Number: 899 Calibration Date: 13/April/2021 Calibrated By: Ravish Foolchund Laboratory Technician Signature:

Llulu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER : 13697411JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0134060	Data Acquisition Electronics	SPEAG	DAE4	432	09 Oct 2020	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0131865	Dipole Antenna	SPEAG	D2450V2	725	07 Oct 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	
PRE0151441	Power Sensor	Rohde & Schwarz	NRP8S	102481	17 Apr 2020	12
PRE0151154	Vector Network Analyser	Rohde & Schwarz	ZND	100151	15 Jun 2020	12
PRE0158684	Calibration Kit	Rhode & Schwarz	ZV-Z135	102144	27 May 2020	12
PRE0178154	Signal Generator	Rohde & Schwarz	SMB 100A	175325	10 Jun 2020	12

CERTIFICATE NUMBER : 13697411JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number: F13/5SC6F1/A/01				
DASY Version: cDASY6.14.0.959				
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	10mm (with spacer)			
Frequency:	2450 MHz			

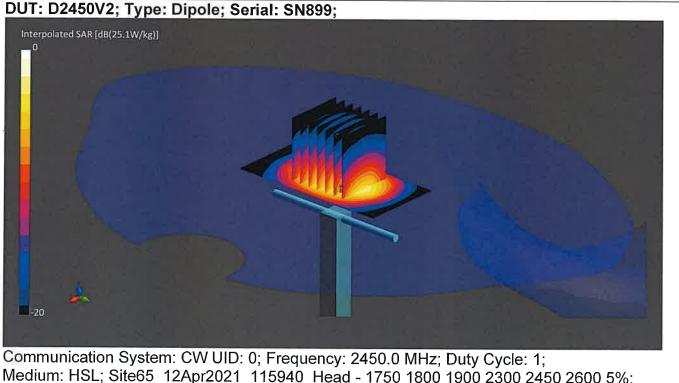
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Barametera	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	2450	20.0 °C	19.8 °C	19.8°C	19.8°C	٤٢	39.20	38.75	± 5%
Liouu	2-700	20.0 0	10.0 C	13.0 C	19.0 C	σ	1.80	1.83	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	12.80 W/Kg	50.96 W/Kg	+16.80% / -16.43%
lieau	SAR averaged over 10g	6.00 W/Kg	23.89 W/Kg	+16.72% / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	44.55 Ω - 0.17 jΩ	± 0.28 Ω ± 0.044 jΩ
Ticau	Return Loss	-24.78 dB	± 2.93 dB

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 13697411JD01E

Page 4 of 6

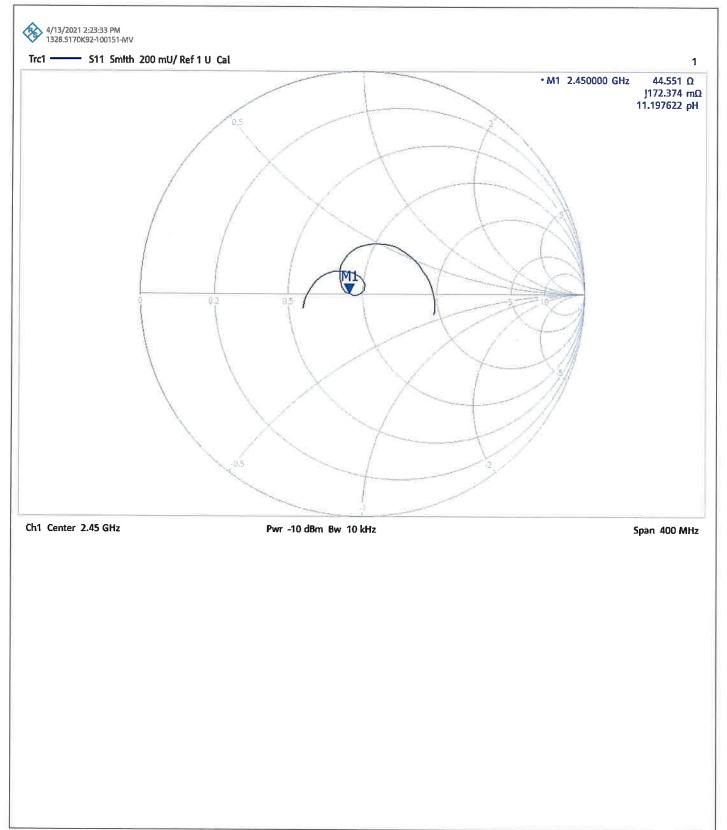
DASY Validation Scan for Head Stimulating Liquid (HSL)

Medium: HSL; Site65_12Apr2021_115940_Head - 1750 1800 1900 2300 2450 2600 5%; Medium parameters used: f = 2450.0 MHz; σ = 1.82 S/m; ϵ_r = 38.7; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = -1.16 %; $\Delta \sigma$ = 1.39 %; No correction

Phantom section: Flat;

DASY 6 Configuration:

- Laboratory Name: Site65;
- Probe: ES3DV3 SN3335; ConvF(4.64, 4.64, 4.64); Calibrated: 14 Jan 2021
- Sensor-Surface: 3 mm; VMS + 6p
- Electronics: DAE4 SN432; Calibrated: 09 Oct 2020
- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945
- Measurement SW: cDASY6.14.0.959

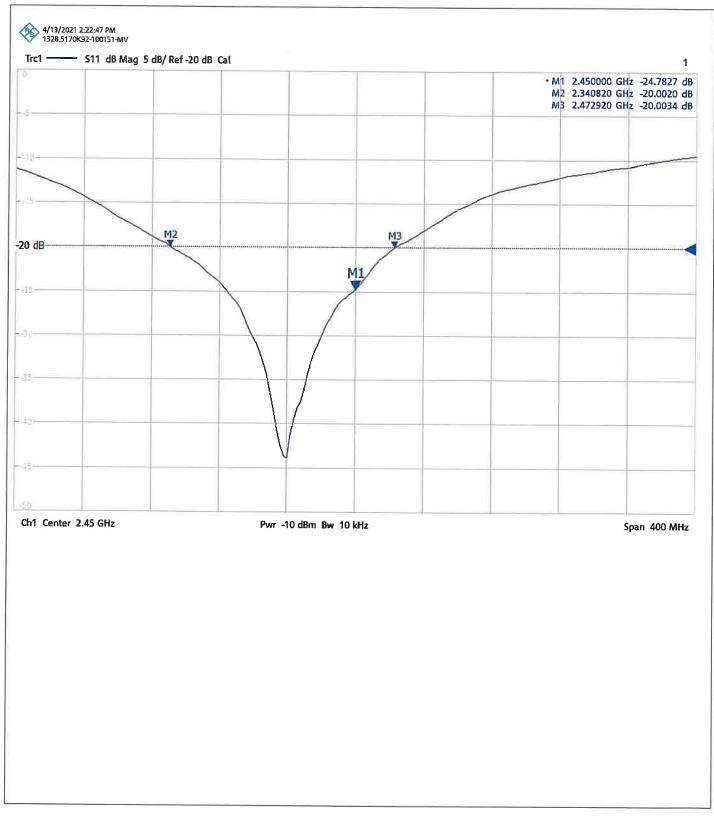

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 17.230 V/m; Power Drift = -0.01 dB Minimum horizontal 3dB distance: 9.0 mm; Vertical M2/M1 Ratio: 82.1 %; SAR(1 g) = 12.800 W/kg; SAR(10 g) = 6.000 W/kg

CERTIFICATE NUMBER : 13697411JD01E

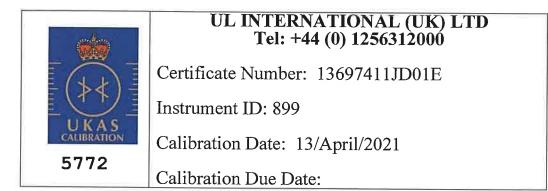
UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 13697411JD01E


UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697411JD01E

Instrument ID: 899

Calibration Date: 13/April/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 29/Oct/2020

CERTIFICATE NUMBER : 13252590JD01E

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Harmohan Sahota

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	15/Oct/2020
Manufacturer:	Speag		
Type/Model Number:	D2600V2		
Serial Number:	1006		
Calibration Date:	20/Oct/2020		
Calibrated By:	Kaan Corbacioglu Laboratory Technician		
Signature:	AMM		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY5/6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	14 Apr 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0135603	Dipole	SPEAG	D2600V2	1109	14 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZNB 8	100151	15 Jun 2020	12
PRE0158684	Calibration Kit	Rhode & Schwarz	ZV-Z135	102144	27 May 2020	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB100A	175325	10 Jun 2020	12

UKAS Accredited Calibration Laboratory No. 5772

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number: F17/5ENYG1/A/01			
DASY Version:	cDASY6.14.0.959		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	ole Centre: 10 mm (with spacer)		
Frequency:	2600 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid Temp		Parameters	Target	Measured	Uncertainty		
	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	2600	19.3°C	19.5°C	19.8°C	20.0°C	٤r	39.01	38.12	± 5%
пеац	2000	19.3 C	19.5 C	19.0 L	20.0 C	σ	1.96	1.93	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	12.90 W/Kg	51.36 W/Kg	± 17.57%
пеао	SAR averaged over 10g	5.88 W/Kg	23.41 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.32 Ω - 7.35j Ω	± 0.28 Ω ± 0.044 jΩ
	Return Loss	22.72	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

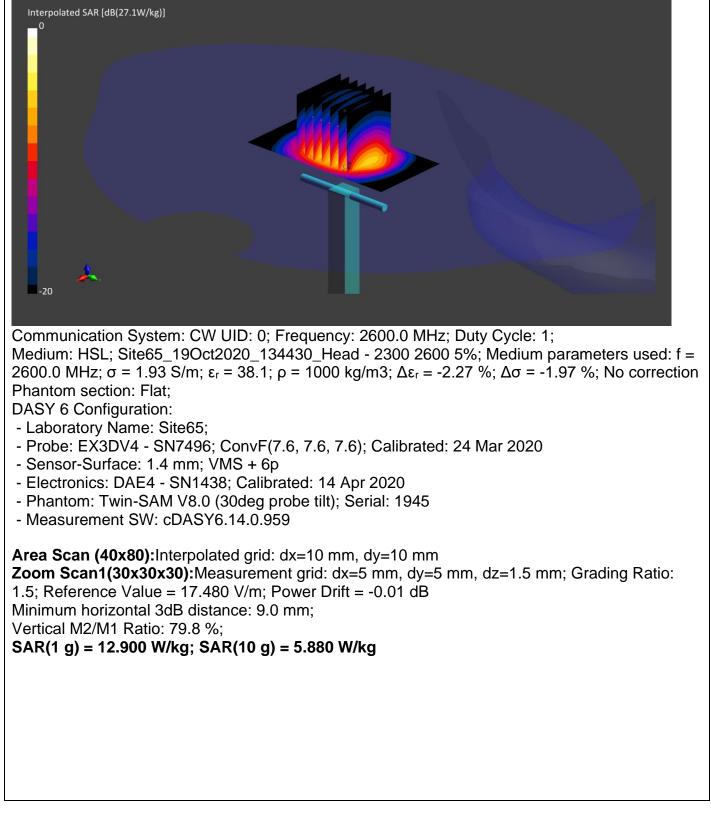
Simulant Liquid	Frequency	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	T arameters	Value	Value	(%)
Body	2600	19.4°C	19.4°C	19.9°C	20.1°C	٤r	52.51	52.41	± 5%
Бойу	2000	19.4 C	19.4 U	19.9 C	20.1 C	σ	2.17	2.22	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	13.30 W/Kg	52.95 W/Kg	± 18.06%
BOUY	SAR averaged over 10g	5.92 W/Kg	23.57 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	46.68 Ω - 5.11j Ω	± 0.28 Ω ± 0.044 jΩ
	Return Loss	24.16	± 2.03 dB

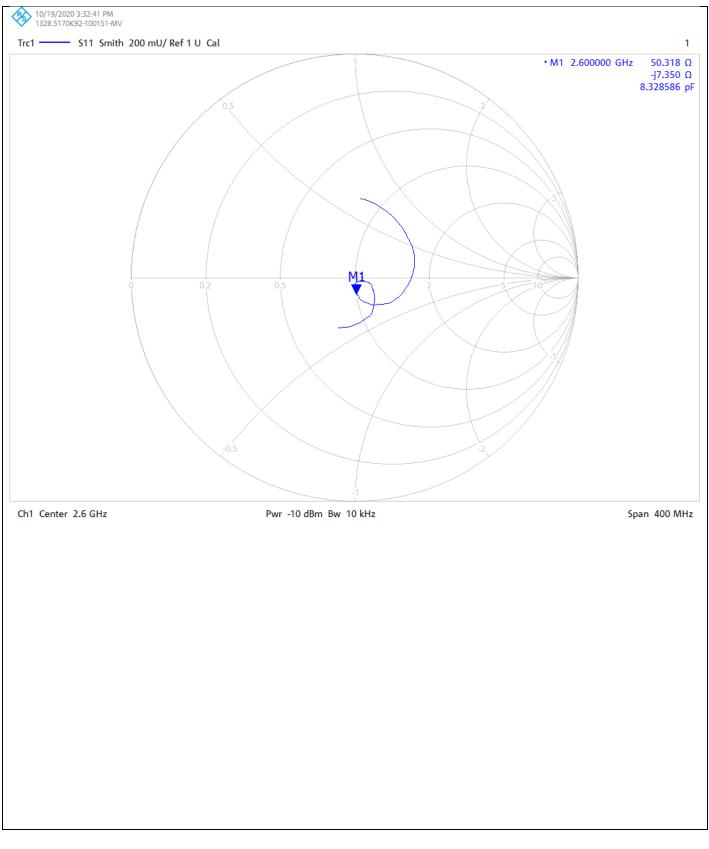

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 13252590JD01E

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2600V2; Type: Dipole; Serial: SN1006;

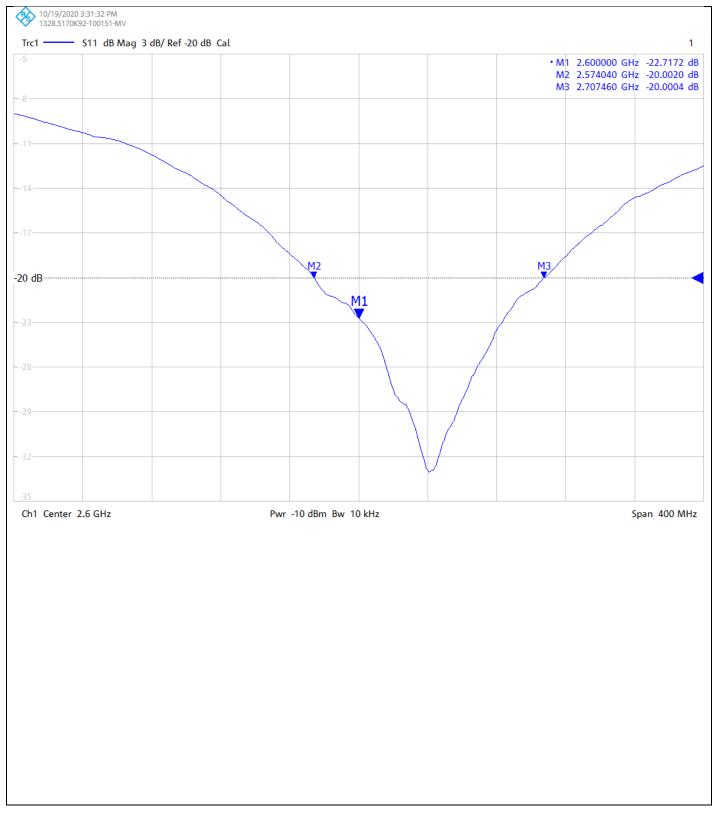


CERTIFICATE NUMBER : 13252590JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

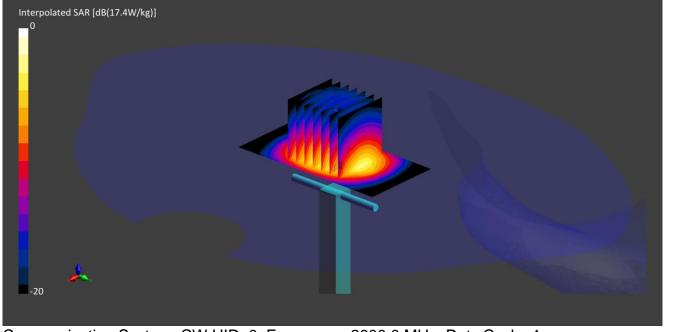


CERTIFICATE NUMBER : 13252590JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


UKAS Accredited Calibration Laboratory No. 5772

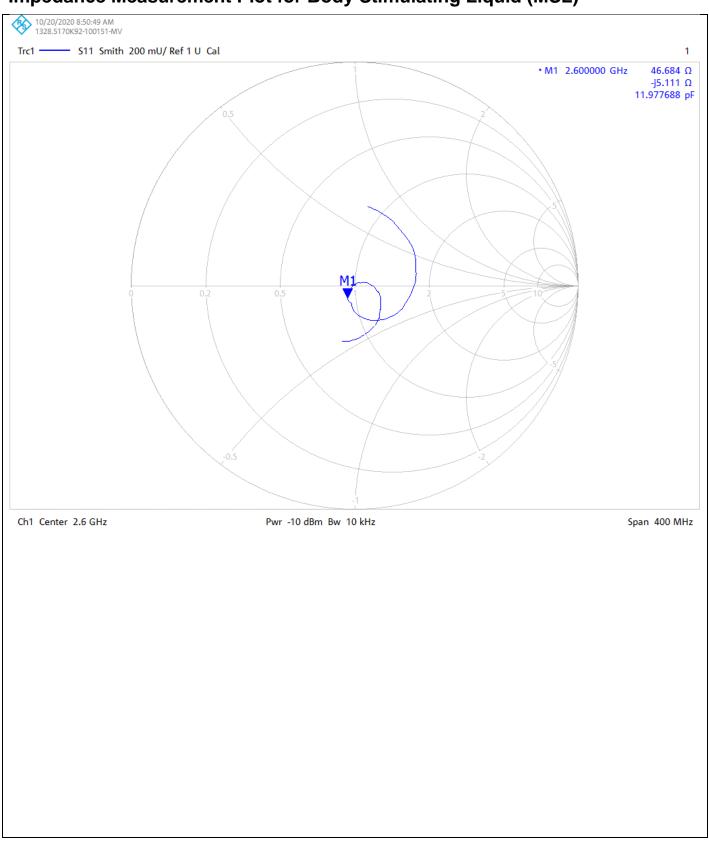
CERTIFICATE NUMBER : 13252590JD01E

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

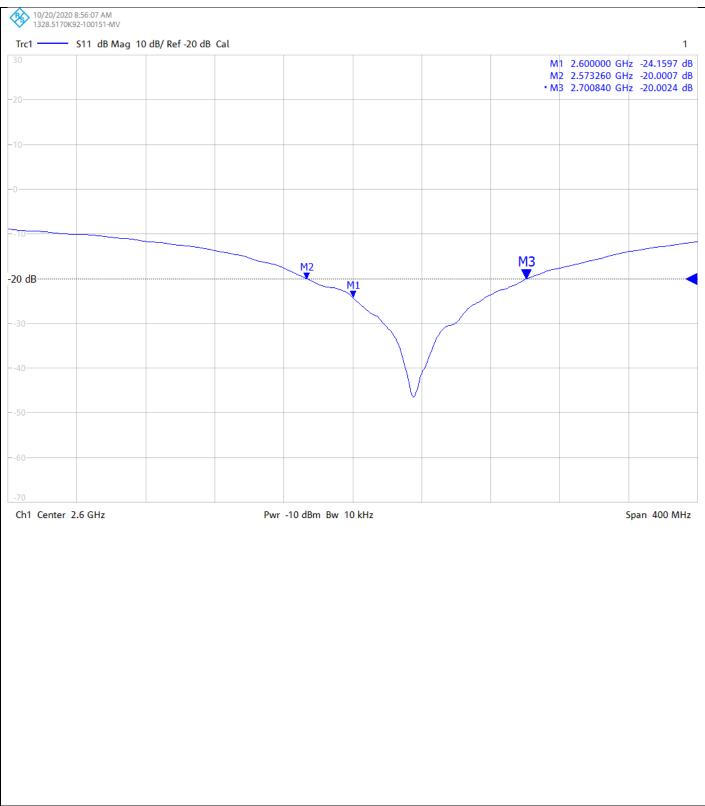
Communication System: CW UID: 0; Frequency: 2600.0 MHz; Duty Cycle: 1; Medium: MSL; Site65_19Oct2020_142913_Body - 2600 5%; Medium parameters used: f = 2600.0 MHz; σ = 2.22 S/m; ϵ_r = 52.4; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = -0.17 %; $\Delta \sigma$ = 2.76 %; No correction Phantom section: Flat;

DASY 6 Configuration:


- Laboratory Name: Site65;
- Probe: EX3DV4 SN7496; ConvF(7.58, 7.58, 7.58); Calibrated: 24 Mar 2020
- Sensor-Surface: 1.4 mm; VMS + 6p
- Electronics: DAE4 SN1438; Calibrated: 14 Apr 2020
- Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818
- Measurement SW: cDASY6.14.0.959

Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio: 1.5; Reference Value = 17.710 V/m; Power Drift = 0.01 dB Minimum horizontal 3dB distance: 8.5 mm; Vertical M2/M1 Ratio: 77.9 %; SAR(1 g) = 13.300 W/kg; SAR(10 g) = 5.920 W/kg

Page 9 of 10


UKAS Accredited Calibration Laboratory No. 5772

Impedance Measurement Plot for Body Stimulating Liquid (MSL)

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01E

Instrument ID: 1006

Calibration Date: 20/Oct/2020

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252590JD01E

Instrument ID: 1006

Calibration Date: 20/Oct/2020

Calibration Due Date:

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **UL USA** Certificate No: D3700V2-1039_Apr21

CALIBRATION CERTIFICATE

Object	D3700V2 - SN:10	039	
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	edure for SAR Validation Source	es between 3-10 GHz
Calibration date:	April 16, 2021		
This calibration certificate documer	nts the traceability to nati	onal standards, which realize the physical u	inits of measurements (SI).
The measurements and the uncerta	ainties with confidence p	robability are given on the following pages a	and are part of the certificate.
All calibrations have been conducte	ad in the closed laborate	e facility anvironment temperature (22 - 2)	°C and humidity - 70%
	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1/2
			and the
Approved by:	Katja Pokovic	Technical Manager	lell
			Issued: April 16, 2021

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

1

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.0 ± 6 %	3.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	/ 12/11	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.9 Ω - 1.6 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

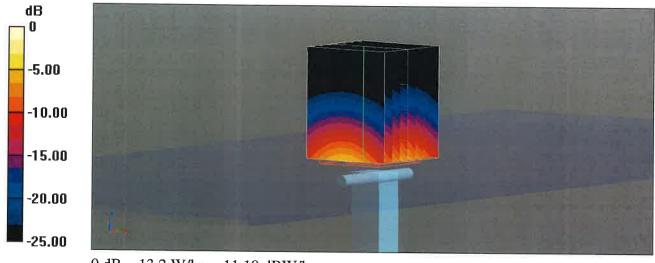
Additional EUT Data

	Manufactured by	SPEAG
--	-----------------	-------

Date: 16.04.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1039


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.09$ S/m; $\epsilon_r = 37.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.87 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.65 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 73.5% Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.19 dBW/kg

Impedance Measurement Plot for Head TSL

File	<u>V</u> iew	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>T</u> race	<u>S</u> cale	M <u>a</u> rker	System	<u>W</u> indow	Help		걸음	0; - I	
					ŀ	4	X	EX			10000 (26,368 10000 (3 pF	-1. 46.0	5,897 Ω 6315 Ω)39 mU 57,34 °
						t	X		Ì					
	Ch1: Sta	Ch 1 Avg = art 3 50000 i		-				5					Stop 3	.90000 GHz
10.0		IB 811						>	1	3.70	10000 C	Hz	-26	738 dB
0.0										-				
-5.0 -10														
-15.			·			_								
-20 -25														
-30.								-						
-35. -40	10000	Ch 1 Avg =	20	-	-						_			
1	Ch1: Sta	nt 3.50000 (GHz —	-		1							Stop 3	.90000 GHz
Sta	atus	CH 1:	611		C* 1-Po	rt		Avg=20	Delay		1.00		1112	LCL

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 27/Nov/2020

CERTIFICATE NUMBER : 13252589JD01F

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 16

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	26/Nov/2020
Manufacturer:	SPEAG		
Type/Model Number:	D5GHzV2		
Serial Number:	1168		
Calibration Date:	27/Nov/2020		
Calibrated By:	Masood Khan Test Engineer		
Signature:	Mount		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

......

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 16

The calibration methods and procedures used were as detailed in:

- 1. IEC 62209-1:2016: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	14 Apr 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0132081	Dipole	SPEAG	D5GHzV2	1016	18 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZNB 8	100151	15 Jun 2020	12
PRE0158684	Calibration Kit	Rhode & Schwarz	ZV-Z135	102144	27 May 2020	12
PRE0178154	Signal Generator	HP	8648C	3537A01598	22 Jan 2020	12

UKAS Accredited Calibration Laboratory No. 5772

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY6.14.0,959	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)	

Frequency: 5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquic	Temp	Paramotora	Target	Measured	Uncertainty
ointalant Eigaid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	5250	5250 20.3 °C 20.3 °C 2	0.3 °C 20.3 °C 21.4°C 2	21.4°C 21.4°C	13	35,93	35.77	± 5%	
Houd	0200	20.0 0	20.0 0	21.40	21.4 C	σ	4.71	4.69	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1,00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.08 W/Kg	80.8 W/Kg	± 18.75%
lieau	SAR averaged over 10g	2.33 W/Kg	23.3 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	59.368 Ω +3.959 jΩ	± 0.28 Ω ± 0.044 jΩ
- Tiedd	Return Loss	20.57	± 2.23 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Paramotore	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	5600	20.3 °C	20.3 °C	21.4°C	21.4°C	٤r	35.53	35.10	± 5%
		20.0 0	20.0 0	21.4 0	21.4 C	σ	5.07	5.07	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.61 W/Kg	86.1 W/Kg	± 18.75%
Tieau	SAR averaged over 10g	2.45 W/Kg	24.5 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head –	Impedance	46.438 Ω +5.066 jΩ	± 0.28 Ω ± 0.044 jΩ
Tiedd	Return Loss	23.78	± 2.23 dB

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Decemetere	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	5750	20.3 °C	20.3 °C	21.4°C	21.4°C	٤r	35.36	34.81	± 5%
	0.00	2010 0	20.0 0	21.4 6	21.4 C	σ	5.22	5,24	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	7.80 W/Kg	78.0 W/Kg	± 18.75%
	SAR averaged over 10g	2 24 W/Kg	22.4 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	58.790 Ω -2.037 jΩ	± 0.28 Ω ± 0.044 jΩ
noud	Return Loss	21.77	± 2.23 dB

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 16

Frequency: 5250 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room Temp		Liquid	Temp	Parameters	Target	Measured	Uncertainty
Omfaidht Eigend	(MHz)	Start	End	Start	End	Farameters	Value	Value	(%)
Body	5250	20.9 °C	20.9 °C	21.0°C	21.0°C	13	48.95	47.85	± 5%
	0200	20,0 0	20.0 C	21.0 C	21.0 C	σ	5.36	5.38	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.26 W/Kg	72.6 W/Kg	± 18,53%
Dody	SAR averaged over 10g	2.04 W/Kg	20.4 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	58.323 Ω +3.270 jΩ	± 0.28 Ω ± 0.044 jΩ
Dody	Return Loss	21.54	± 2.23 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Doromotoro	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Body	5600	20.3 °C	20.3 °C	21.4°C	21.4°C	21	48.47	47.09	± 5%
Douj		20.0 0	20.0 0	41. 4 G	21.4 C	σ	5.77	5.86	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.76 W/Kg	77.6 W/Kg	± 18.53%
Body	SAR averaged over 10g	2.17 W/Kg	21.7 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	45.652 Ω +4.355 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	23.77	± 2.23 dB

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 13252589JD01F

Page 6 of 16

Frequency: 5750 MHz

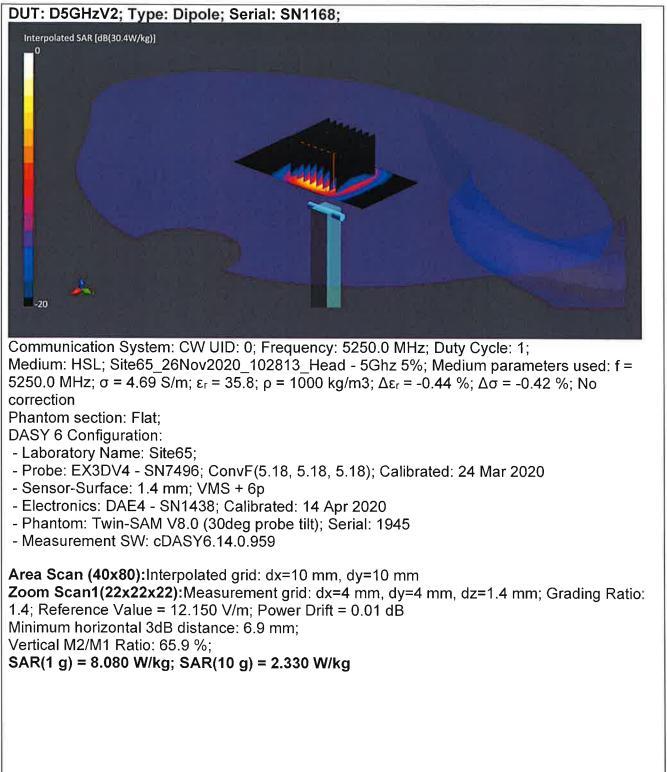
Dielectric Property Measurements – Body Simulating Liquid (MSL)

						V			
Simulant	Frequency	Room	Temp	Liquid	Temp	Deremetere	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Body	5750	20.9 °C	20.9 °C	21.0°C	21.0°C	٤r	48.3	46.78	± 5%
			20.0 0	21.0 0	21.0 C	σ	5.94	6.07	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.14 W/Kg	71.4 W/Kg	± 18.53%
Dody	SAR averaged over 10g	2.01 W/Kg	20.1 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	59.598 Ω -1.316 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	21.19	± 2.23 dB

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 7 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 8 of 16

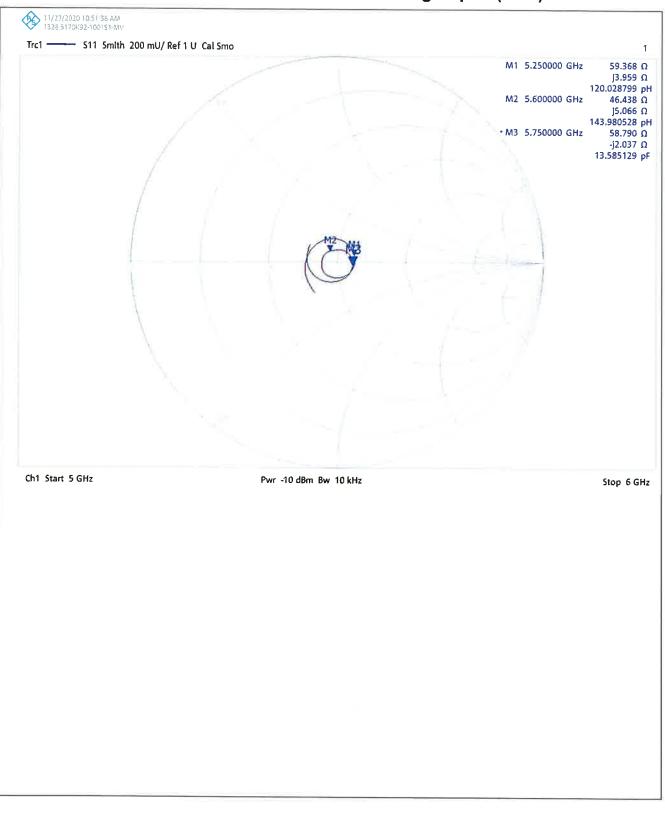
DASY Validation Scan for Head Stimulating Liquid (HSL)


DUT: D5GHzV2; Type: Dipole; Serial: SN1168; Interpolated SAR [dB(34.9W/kg)] .0 -20 Communication System: CW UID: 0; Frequency: 5600.0 MHz; Duty Cycle: 1: Medium: HSL; Site65_26Nov2020_102813 Head - 5Ghz 5%; Medium parameters used: f = 5600.0 MHz; $\sigma = 5.07$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m3; $\Delta \epsilon_r = -1.22$ %; $\Delta \sigma = 0.14$ %; No correction Phantom section: Flat; DASY 6 Configuration: - Laboratory Name: Site65; - Probe: EX3DV4 - SN7496; ConvF(4.65, 4.65, 4.65); Calibrated: 24 Mar 2020 - Sensor-Surface: 1.4 mm; VMS + 6p - Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020 - Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945 - Measurement SW: cDASY6.14.0.959 Area Scan (40x80): Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(22x22x22): Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio: 1.4; Reference Value = 13.300 V/m; Power Drift = 0.02 dB Minimum horizontal 3dB distance: 7.4 mm; Vertical M2/M1 Ratio: 63.3 %; SAR(1 g) = 8.610 W/kg; SAR(10 g) = 2.450 W/kg

CERTIFICATE NUMBER : 13252589JD01F

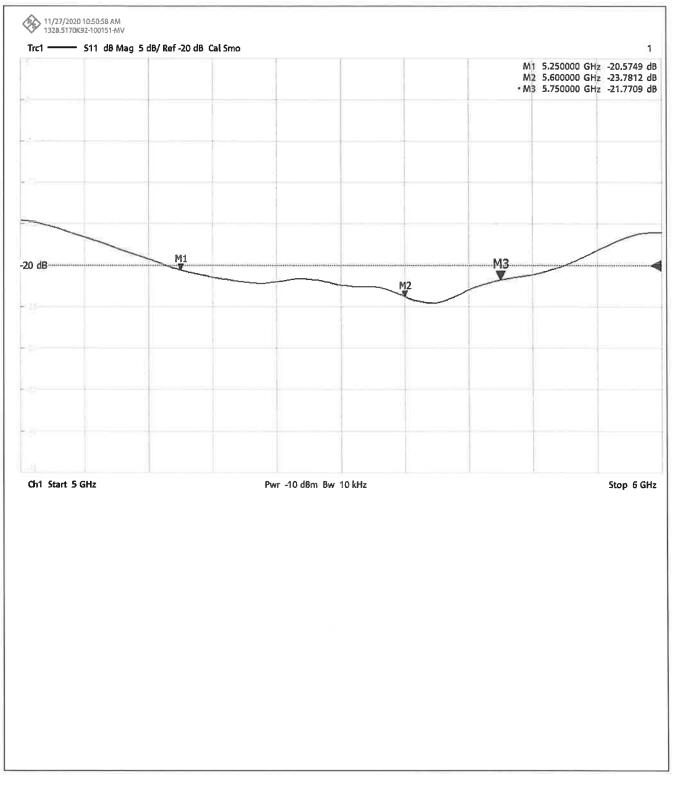
UKAS Accredited Calibration Laboratory No. 5772

Page 9 of 16


DASY Validation Scan for Head Stimulating Liquid (HSL)

UKAS Accredited Calibration Laboratory No. 5772

Page 10 of 16


Impedance Measurement Plot for Head Stimulating Liquid (HSL)

UKAS Accredited Calibration Laboratory No. 5772

Page 11 of 16

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

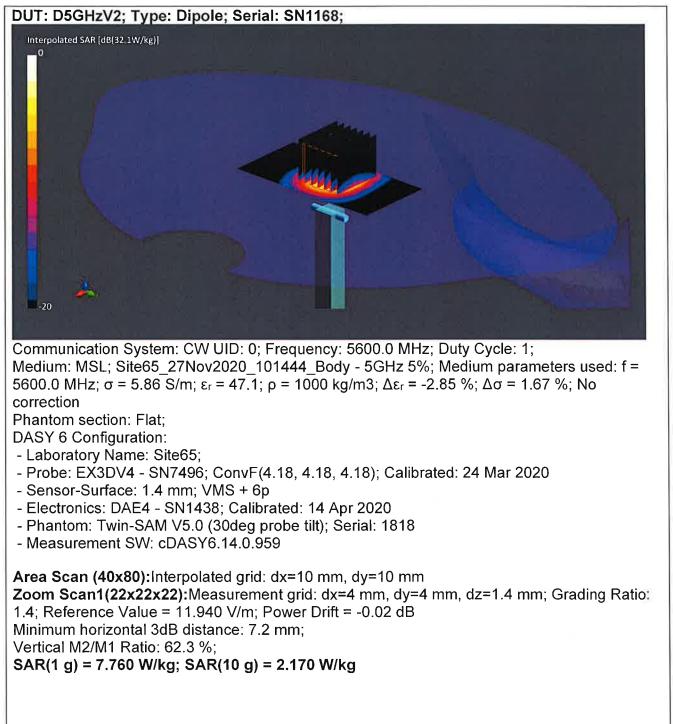
14

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 12 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

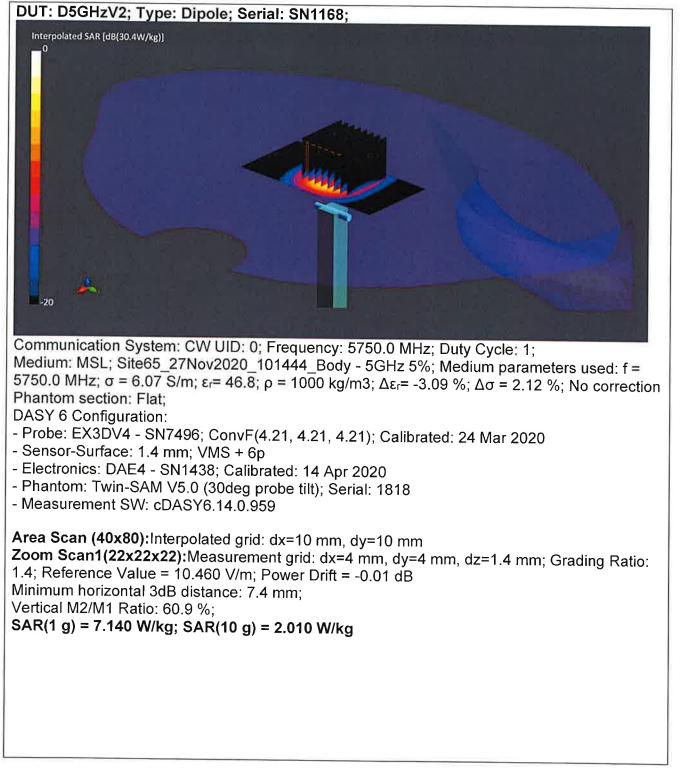

DUT: D5GHzV2; Type: Dipole; Serial: SN1168; Interpolated SAR [dB(27.7W/kg)] -20 Communication System: CW UID: 0; Frequency: 5250.0 MHz; Duty Cycle: 1; Medium: MSL; Site65 27Nov2020 101444 Body - 5GHz 5%; Medium parameters used: f = 5250.0 MHz; σ = 5.38 S/m; ε_r = 47.8; ρ = 1000 kg/m3; Δε_r = -2.24 %; Δσ = 0.51 %; No correction Phantom section: Flat: DASY 6 Configuration: - Laboratory Name: Site65; - Probe: EX3DV4 - SN7496; ConvF(4.75, 4.75, 4.75); Calibrated: 24 Mar 2020 - Sensor-Surface: 1.4 mm; VMS + 6p - Electronics: DAE4 - SN1438; Calibrated: 14 Apr 2020 - Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818 - Measurement SW: cDASY6.14.0.959 Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm Zoom Scan1(22x22x22): Measurement grid: dx=4 mm, dy=4 mm, dz=1.4 mm; Grading Ratio: 1.4; Reference Value = 11.310 V/m; Power Drift = 0.02 dB Minimum horizontal 3dB distance: 7.2 mm; Vertical M2/M1 Ratio: 65.2 %; SAR(1 g) = 7.260 W/kg; SAR(10 g) = 2.040 W/kg

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 13 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

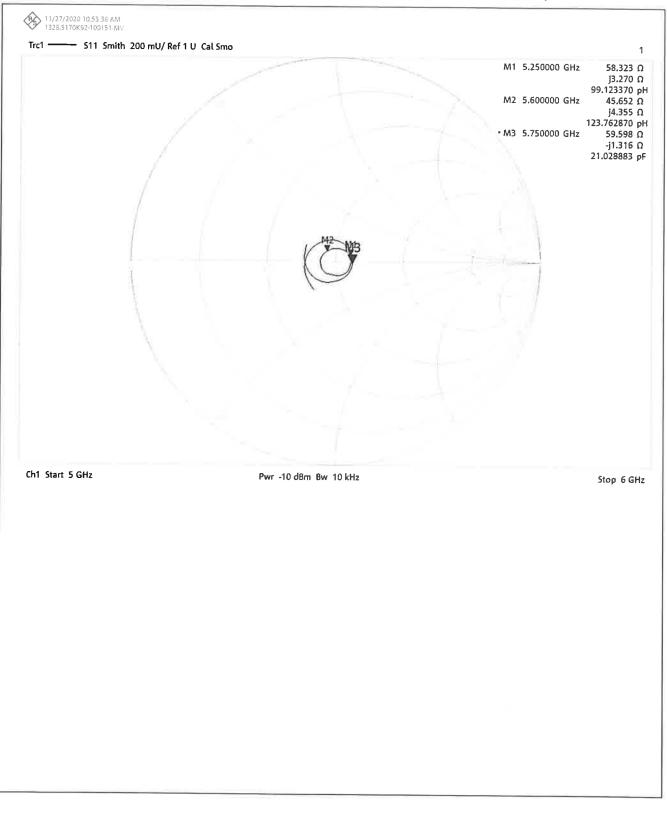


UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER : 13252589JD01F

Page 14 of 16

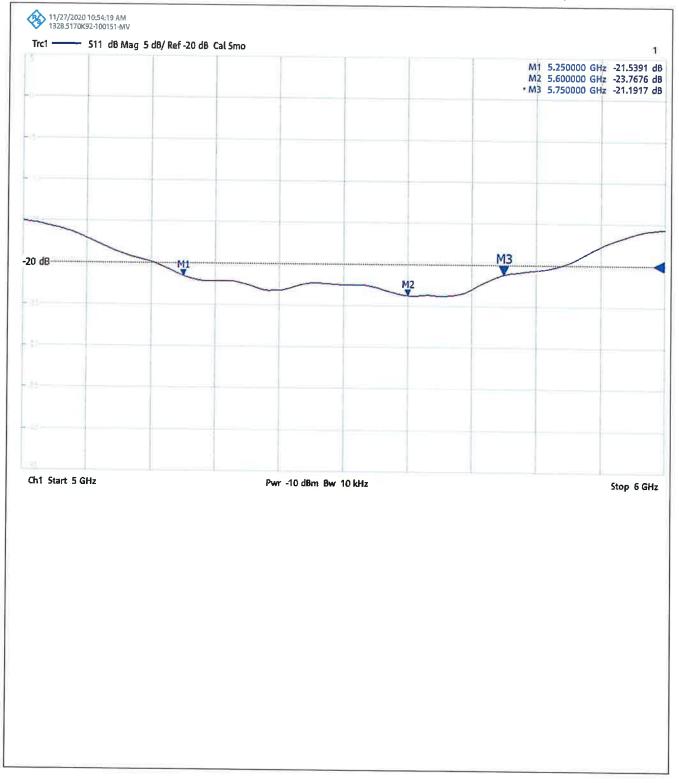
DASY Validation Scan for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Page 15 of 16


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

CERTIFICATE NUMBER : 13252589JD01F

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000
	Certificate Number: 13252589JD01F
	Instrument ID: 1168
UKAS CALIBRATION	Calibration Date: 27/Nov/2020
5772	Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13252589JD01F

Instrument ID: 1168

Calibration Date: 27/Nov/2020

Calibration Due Date: