

C2PC TEST REPORT

Report Number: 14790372-E6V2

- Applicant : APPLE, INC 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
 - Model : A2481 (Parent Model, Full Test) A2626, A2628, A2629, A2630 (Variant Models)
 - Brand : APPLE
 - FCC ID : BCG-E3994A (Parent Model) BCG-E3996A, BCG-E4029A, BCG-E4030A (Variant Models)
- **EUT Description** : SMARTPHONE
- Test Standard(s) : FCC CFR47 PART 2, PART 96

Date Of Issue: JUNE 22, 2023

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	6/21/2023	Initial Review	Mengistu Mekuria
V2	6/22/2023	Addressed All TCB Questions at Section 5.4, 6.3, and 6.8	Mengistu Mekuria

Page 2 of 49

TABLE OF CONTENTS

1. A	ATTESTATION OF TEST RESULTS	5
2. 5	SUMMARY OF TEST RESULTS	6
3. Т	EST METHODOLOGY	7
4. F	ACILITIES AND ACCREDITATION	7
5. C	DECISION RULES AND MEASUREMENT UNCERTAINTY	8
5.1	. METROLOGICAL TRACEABILITY	8
5.2	. DECISION RULES	8
5.3	. MEASUREMENT UNCERTAINTY	8
5.4	. SAMPLE CALCULATION	8
6. E	QUIPMENT UNDER TEST	9
6.1	. DESCRIPTION OF EUT	9
6.2	. INTRODUCTION	9
6.3	. MODEL DIFFERENCES	9
6.4	. MAXIMUM OUTPUT POWER	11
6.5	. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2626	12
6.6	. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2628	12
6.7	. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2629 AND A2630	12
6.8	. REFERENCE DETAIL Brror! Bookmark not defi	ined.
6.9	. SOFTWARE AND FIRMWARE	13
6.1	0. MAXIMUM ANTENNA GAIN	13
6.1	1. WORST-CASE CONFIGURATION AND MODE	14
6.1	2. DESCRIPTION OF TEST SETUP	15
7. T	EST AND MEASUREMENT EQUIPMENT	17
8. F	RF OUTPUT POWER VERIFICATION	18
8.1	. 5G NR n48	20
9. C	CONDUCTED TEST RESULTS	22
9.1	. OCCUPIED BANDWIDTH	22
g	.1.1. 5G NR n48	23
9.2	. EMISSION MASK AND ADJACENT CHANNEL POWER	24
g	.2.1. 5G NR n48 ADJACENT CHANNEL POWER	25
9.3	. OUT OF BAND EMISSIONS	36
g	.3.1. 5G NR n48	37

Page 3 of 49

9.4. FF	REQUENCY STABILITY	.41
9.4.1.	5G NR n48	.41
9.5. PE	EAK-TO-AVERAGE POWER RATIO	.42
9.5.1.	5G NR n48	.42
10. RADIA	TED TEST RESULTS	.43
10.1.	FIELD STRENGTH OF SPURIOUS RADIATION, ANT 4	45
10.2.	FIELD STRENGTH OF SPURIOUS RADIATION, ANT 7	46
10.3.	FIELD STRENGTH OF SPURIOUS RADIATION, ANT 8	47
10.4.	FIELD STRENGTH OF SPURIOUS RADIATION, ANT 9	48
11. SETUR	PHOTOS	.49

Page 4 of 49

1. ATTESTATION OF TEST RESULTS

Applicant Name and Address	APPLE, INC 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
Model	A2481 (Parent Model) A2626, A2628, A2629, A2630 (Variant Models)
Brand	APPLE
FCC ID	BCG-E3994A (Parent Model) BCG-E3996A, BCG-E4029A, BCG-E4030A (Variant Models)
EUT Description	SMARTPHONE
Serial Number	C7H1233003P0MMN5A (Conducted) AND N433JJJ3K0 (Radiated)
Sample Receipt Date	FEBRUARY 14, 2021
Date Tested	MAY 14, 2021 to JULY 24, 2021
Applicable Standards	FCC CFR47 PART 2, PART 96
Test Results	COMPLIES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released By:	Reviewed By:	Prepared By:	
menyiste mekenne.	sph Brompson	A	
Mengistu Mekuria	John Thompson	Sintia Andrean	
Senior Test Engineer	Laboratory Engineer	Laboratory Engineer	
UL Verification Services Inc.	UL Vérification Services Inc.	UL Verification Services Inc.	

Page 5 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B FAX: (510) 661-0888

2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Requirement Description	Band	Requirement Clause Number (FCC)	Result	Remarks
Equivalent Isotropic Radiated	48	96.41 (b)	Complies	

Requirement Description	Requirement Clause Number (FCC)	Result	Remarks
Occupied Bandwidth	2.1049	Complies	
Band Edge and Emission Mask	96.41(e)	Complies	
Out of Band Emissions	96.41(e)	Complies	
Frequency Stability	2.1055	Complies	
Peak-to-Average Ratio	96.41 (g)	Complies	
Field Strength of Spurious Radiation	96.41(e)	Complies	

Page 6 of 49

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following:

- ANSI C63.26:2015
- FCC CFR 47 Part 2, Part 96
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- <u>FCC KDB 971168 D02 v02r01</u>: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01. Determining ERP and EIRP

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	208313
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	22541	208313
	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA	US0104	2324B	208313

Page 7 of 49

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Occupied Channel Bandwidth	±1.22 %
Temperature	±2.26%
Supply voltages	±0.57 %
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 8 of 49

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, CDMA, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS and NFC. All models support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

Testing was performed on the parent model and is used to support the application for the parent and variants identified in this report based on the test plan submitted and approved via KDB inquiry by the FCC.

6.2. INTRODUCTION

This application for certification is leveraging the data reuse procedures from KDB 484596 D01 based on reference FCC ID: BCG-E3994A to cover variant model FCC ID: BCG-E3996A, FCC ID: BCG-E4029A, and FCC ID: BCG-E4030A. The major difference between the parent/reference model and the variant model is the depopulation in the variant model of the mmWave transmitter, and some LTE and 5G NR Bands. All other circuitry and features are identical. The data reuse test plan was approved via manufacturer KDB inquiry.

6.3. MODEL DIFFERENCES

The manufacturer hereby declares the following for models A2481, A2626, A2628, A2629, A2630.

A2481, A2626, A2628, A2629, and A2630 are highly similar, with the only differences being listed on the table below:

Model	FCC ID	Model Changes
A2481	BCG-E3994A	Reference model
A2626	BCG-E3996A	Variant model. Removed FR2 from the reference model
A2628	BCG-E4029A	Variant model. Removed FR2, LTE B11/14/21/29/71, and 5G n71 from the reference model
A2629/A2630	BCG-E4030A	Variant model. Removed FR2, LTE B11/14/21/29/53/71, MSS, and 5G NR n53/n71 from the reference Model.

*Note:

They have the same PCB layout, design, common components, antennas, antenna locations and housing cases.

More specifically, their cellular modem, Wi-Fi, BT, NFC, WPT and UWB transmitters are identical, and removal of cellular bands is done by software and depopulation of band-specific components associated with the removed bands.

Page 9 of 49

Spot check verification has been done on models A2626, A2628, A2629 and A2630 in accordance with the test plan approved via KDB inquiry. Comparison of the models, upper deviation is within 0.5dB range, and all tests are under FCC Technical Limits. The results documented for model A2481 may be applied as representative to models A2626, A2628, A2629 and A2630.

Page 10 of 49

6.4. MAXIMUM OUTPUT POWER

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015 KDB 971168 D01 Section 5.6

ERP/EIRP = PMeas + GT - LC

where: ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted and ERP/EIRP output powers as follows:

Part 96 (Ant 7)			_					
EIRP Limit (V	V)	0.20						
Antenna Gair	n (dBi)	-3.50						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (kHz)	Emission Designator
	BPSK			25.62	22.12	0.163	8566	8M57G7W
10.0	QPSK	3555.0	3695.0	25.70	22.20	0.166	8592	8M59G7W
	16QAM			24.62	21.12	0.129	8570	8M57D7W
	BPSK			25.70	22.20	0.166	17947	17M9G7W
20.0	QPSK	3560.0	3690.0	25.61	22.11	0.163	17838	17M8G7W
	16QAM			24.56	21.06	0.128	17870	17M9D7W
	BPSK			25.70	22.20	0.166	35744	35M7G7W
40.0	QPSK	3570.0	3680.0	25.60	22.10	0.162	35568	35M6G7W
	16QAM			24.81	21.31	0.135	35579	35M6D7W

5G NR n48 (Ant 7)

Page 11 of 49

6.5. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2626

A2626 SPOT CHECK RESULTS									
			Measured	Original Model: A2481	Sub Model: A2626				
Technology	Worst Mode	Worst Mode	Worst Mode	Freque	Frequency (MHz)	FCC ID: BCG-E3994A Power (dBm)	FCC ID: BCG-E3996A Power (dBm)	Delta (dB)	Remarks
5G NR n48	QPSK @ 40 MHz BW	Cond Power	3550-3700	25.70	25.70	0.00	Ant9		

6.6. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2628

A2628 SPOT CHECK RESULTS										
			Measured	Original Model: A2481	Sub Model: A2628					
Technology	Worst Mode	Test Item	Test Item	lest Item	Test item	Test Item	Test item Frequency (MHz) FCC ID: BCG-E3994A Power (dBm) FCC ID: BCG-E4029A Power (dBm)	FCC ID: BCG-E4029A Power (dBm)	Delta (dB)	Remarks
5G NR n48	QPSK @ 40 MHz BW	Cond Power	3550-3700	25.70	25.70	0.00	Ant9			

6.7. SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A2629 AND A2630

	A2629 SPOT CHECK RESULTS								
		-	Measured	Original Model: A2481	Sub Model: A2629/A2630		_		
	Technology	Worst Mode	Test Item	Frequency (MHz)	FCC ID: BCG-E3994A Power (dBm)	FCC ID: BCG-E4030A Power (dBm)	Delta (dB)	Remarks	
_								1	
	5G NR n48	QPSK @ 40 MHz BW	Cond Power	3550-3700	25.70	25.70	0.00	Ant9	

Page 12 of 49

6.8. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was version 0.21.02-1.

6.9. MAXIMUM ANTENNA GAIN

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

LTE Bands	ANT 1	ANT 2	ANT 3	ANT 4	ANT 7	ANT 8	ANT 9
	Antenna						
	Gain (dBi)						
5G NR n48, 3550 – 3700 MHz				-3.2	-3.5	-2.6	-4.8

Page 13 of 49

6.10. WORST-CASE CONFIGURATION AND MODE

The EUT supports the different LTE and 5G NR Bands. However, this report only applied to 5G NR n48.

BPSK modulation applied only for 5G NR frequencies and has the same tune up power as QPSK modulations.

The DFT-s-OFDM and CP-OFDM waveforms were investigated, and DFT-s-OFDM was found to be the worst case.

For 5G NRs, conducted spurious emission tests were conducted on wider bandwidth with inner 1RB since this is the worst bandwidth and the highest output power.

The worst-case scenario for all measurements is based on an engineering evaluation and QPSK was observed as the worst one and set for all conducted and radiated. Output power measurements were measured on QPSK, 16QAM, 64QAM, 256QAM, and BPSK, modulations. For testing purposes emissions on sections 8 and 9 were measured while QPSK was set at or above target power for all bands. Conducted tests were performed on the worst-case antenna because it has the highest conducted power. For bands 48 ANT7 is the worst-case antenna.

The EUT was investigated in three orthogonal orientations X/Y/Z on all ANT4, ANT7, ANT8 and ANT 9 antennas to determine the worst-case orientation. The following table exabit the worst-case orientation for different frequency bands. The full tests of the EUT have made upon the orientations that shown in the table below.

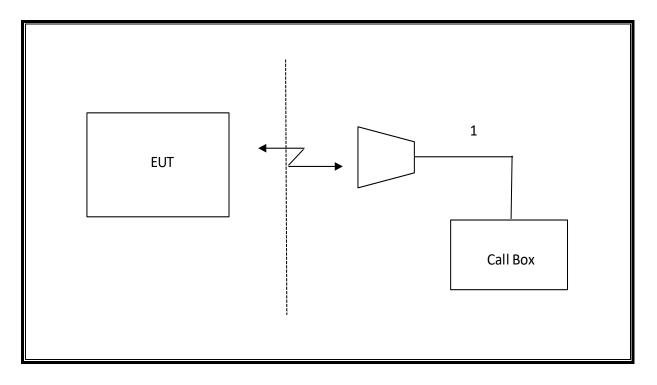
Frequency Bands	ANT1	ANT2	ANT3	ANT4	ANT7	ANT8	ANT9
3300 – 3980 MHz	N/A	N/A	N/A	х	х	х	Y

Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz. There were no emissions found with less than 20dB of margin from 9kHz to 1GHz.

For simultaneous transmission of multiple channels in the 2.4GHz/5GH WLAN, UWB, and Cellular bands, tests were conducted for various configurations having the highest power, least separation in frequencies and widest operation bandwidths. No noticeable new emission was found.

Page 14 of 49

6.11. DESCRIPTION OF TEST SETUP


	SUPPORT TEST EQUIPMENT								
D	escription	Manufacturer	Model	Serial Nu	umber	FCC ID/ DoC			
	Laptop	A1398	C02PM012G3QD	QDS-BRC	M1069	A1398			
AC	/DC adapter	PA-1450-BA1	B123	N/A	١	PA-1450-BA1			
		I/O	CABLES (RF CONDUCTED TEST	Т)					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	3	US 115V	Un-shielded	2.0	N/A			
2	USB	1	DC	Un-shielded	1.0	N/A			
3	RF In/Out	1	EUT	Un-shielded	0.6	N/A			
4	RF In/Out	1	Communication Test Set	Un-shielded	1.2	N/A			
5	RF In/Out	1	Barrel	N/A	N/A	N/A			
		1/0	O CABLES (RF RADIATED TEST)						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	RF In/Out	1	Antenna	Un-shielded	5.0	N/A			

Page 15 of 49

CONDUCTED SETUP

RADIATED SETUP

Page 16 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Due				
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T136	7/21/2022				
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T899	9/14/2021				
RF Amplifier, 1-18GHz	MITEQ	AFS42-00101800-25-S-42	T1165	6/12/2022				
Amplifier, 100KHz to 1GHz, 32dB	Keysight Technologies Inc	8447D	T15	1/14/2022				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	T1450	1/21/2022				
Antenna, Horn 1-18GHz	ETS Lindgren	3117	80403	5/26/2022				
RF Device, Active, Amplifier	AMPLICAL	AMP1G18-35	205885	6/1/2022				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	T907	1/27/2022				
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	PRE0213833	2/16/2022				
RF Device, Active, Amplifier	AMPLICAL	AMP0.1G18-47-20	206055	5/13/2022				
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201500	2/26/2022				
Chamber, Environmental	Cincinnati Sub Zero	ZPHS-8-3.5-SCT/WC	T754	6/21/2022				
Filter, BRF 3400 to 3800MHz	MICRO-TRONICS	BRM50711-02	T1792	6/23/2022				
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	T449	4/22/2022				
Amplifier, 1 to 26.5GHz, 23.5dB Gain minimum	Keysight Technologies Inc	8449B	T404	4/19/2022				
Antenna, Horn 26.5 to 40GHz	A.R.A.	MWH-2640/B	PRE0182201	4/22/2022				
Amplifier, 26 - 40GHz	MITEQ	TTA2640-35-HG	T1864	4/19/2022				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	T1454	1/27/2022				
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	T1271	1/20/2022				
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	T1228	4/13/2022				
Power Meter, P-series single channel	Keysight Technologies Inc	N1912A	T1245	1/21/2022				
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	T1226	2/19/2022				
Antenna, Active Loop 9KHz to 30MHz	EMCO	6502	T35	11/23/2021				
	UL AUTOMATION	SOFTWARE						
CLT Software	UL	UL RF	Ver 3.2	2.5, 4/13/2021				
Power Measurement Software	UL	UL RF	Ver 3.	1.2 5/17/2021				
Radiated test software	UL	UL RF	Ver 9.5, 4/14/2021					

NOTES: * Testing is completed before equipment expiration date.

Page 17 of 49

UL VERIFICATION SERVICES INC. FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8. RF OUTPUT POWER VERIFICATION

CONDUCTED OUTPUT POWER MEASUREMENT PROCEDURE

All LTE bands conducted average power is obtained from the CMW500 telecommunication test set.

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS136.101 specification.

UE Power Class: 3 (23 +/- 2dBm). Band 41 UE Power Class: 2 (26 +/-2 dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS136.101.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (NRB)						
	1.4	1.4 3.0 5 10 15 20						
	MHz	MHz	MHz	MHz	MHz	MHz		
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2	
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3	
256 QAM				≥ 1			≤ 5	

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS138.521-1 specification.

The allowed MPR for SRS, PUCCH formats 0, 1, 3 and 4, and PRACH shall be as specified for QPSK modulated DFTs-

OFDM of equivalent RB allocation. The allowed MPR for PUCCH format 2 shall be as specified for QPSK modulated CP-OFDM of equivalent RB allocation.

Table 6.2.2.3-1: Maximum power reduct	tion (MPR) for power class 3
---------------------------------------	------------------------------

Modu	lation		MPR (dB)				
		Edge RB allocations	Outer RB allocations	Inner RB allocations			
	Pi/2 BPSK	≤ 3.5 ¹	≤ 1.2 ¹	≤ 0.2 ¹			
	FI/2 DESK	≤ ().5 ²	0 ²			
	Pi/2 BPSK	≤ 0	0.5 ²	0 ²			
	w Pi/2						
DFT-s-	BPSK						
OFDM	DMRS						
	QPSK	×	1	0			
	16 QAM	4	≤ 1				
	64 QAM	≤ 2.5 ≤ 4.5					
	256 QAM						
	QPSK	vi Vi	3	≤ 1.5			
CP-OFDM	16 QAM	vi Vi	3	≤ 2			
CP-OFDM	64 QAM	≤ 3.5					
	256 QAM		≤ 6.5				
NOTE 1: A	plicable for UE	e operating in TDD mode v	vith Pi/2 BPSK modulation	and UE indicates			
			2BPSK and if the IE power				
1	and 40 % or les	ss slots in radio frame are	used for UL transmission f	or bands n40, n41, n77,			
n7	'8 and n79. The	e reference power of 0dB I	MPR is 26dBm.				
	NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n						
			d if the IE powerBoostPi2E				
		of slots in radio frame are u	sed for UL transmission fo	or bands n40, n41, n77,			
n7	'8 and n79.						

Page 18 of 49

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Modu	lation	MPR (dB)					
		Edge RB allocations	Outer RB allocations	Inner RB allocations			
	Pi/2 BPSK	≤ 3.5	≤ 0 .5	0			
DFT-s- OFDM	QPSK	≤ 3.5	≤ 1	0			
	16 QAM	≤ 3.5 ≤ 2		≤1			
OFDIVI	64 QAM	≤ 3.5 ≤ 2.5					
	256 QAM	≤ 4.5					
	QPSK	≤ 3.5	≤ 3	≤ 1.5			
CP-OFDM	16 QAM	≤ 3.5	≤ 3	≤ 2			
CP-OFDIVI	64 QAM		≤ 3.5	-			
256 QAM		≤ 6.5					

Table 6.2.2.3-2: Maximum power reduction (MPR) for power class 2

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS136.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36, 66, 70	10	>6	≤ 1
_		35, 30, 60, 70	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.2, 6.6.3.3.19	41	5, 10, 15, 20	Table 6.2.4-4,	Table 6.2.4-4a

The allowed A-MPR values specified below in Table 6.2.3.3.1-1 of 3GPP TS 38.521-1 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.3.3.1-1: Additional maximum power reduction (A-MPR)

Network signalling label	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01		Table 5.2-1	5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 90, 100	Table 5.3.2-1	N/A
NS_03	6.5.2.3.3.3	n2, n25, n66, n70, n86			Clause 6.2.3.3.7
NS_03U	6.5.2.3.3.3, 6.5.2.4.2.3	n2, n25, n66, n86			Clause 6.2.3.3.7
NS_04	6.5.2.3.3.2, 6.5.3.3.3.1	n41	10, 15, 20, 40, 50, 60, 80, 90, 100		Clause 6.2.3.3.2

RESULTS

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted output powers as follows:

Page 19 of 49

8.1. 5G NR n48

Test Engineer ID: 24875 Test Date: 6/23/2021

OUTPUT POWER FOR 5G NR n48 (10.0 MHz)

								Con	ducted A	verage (d	Bm)				
Bandwidth	Modulation	RB	RB		ANT 7			ANT 8			ANT 9			ANT 4	
(MHz)	wouldtion	Allocation	Offset	637000	641666	646333	637000	641666	646333	637000	641666	646333	637000	641666	646333
				3555.0	3625.0	3695.0	3555.0	3625.0	3695.0	3555.0	3625.0	3695.0	3555.0	3625.0	3695.0
		1	0	24.25	24.12	24.92	22.47	22.48	22.10	24.23	25.00	25.30	21.65	21.87	21.45
		1	1	24.81	24.88	25.05	23.04	22.99	22.93	25.32	25.37	25.53	22.42	22.26	21.84
	BPSK	1	22	25.25	25.46	25.62	22.78	23.12	22.61	25.04	25.33	24.61	22.47	22.18	21.80
		1	23	24.86	24.95	25.09	22.19	22.72	22.19	24.73	24.74	25.29	21.54	21.85	21.62
		12	6	24.87	25.05	25.30	22.76	23.00	22.57	25.29	25.32	24.70	22.29	22.23	21.75
		24	0	24.22	24.57	24.83	22.39	22.49	22.06	24.75	25.48	24.38	21.77	21.81	21.54
		1	0	23.44	23.84	24.27	21.98	21.89	21.91	24.48	24.47	24.86	21.47	21.35	21.25
		1	1	24.71	24.76	25.25	22.93	22.80	22.97	25.35	25.50	25.70	22.39	22.70	22.02
QPSK	1	22	25.26	25.29	25.70	22.80	22.96	22.48	25.28	25.23	24.92	22.43	22.45	21.77	
	1	23	23.99	24.58	24.70	21.75	22.01	21.74	24.40	24.34	24.48	21.33	21.45	20.97	
	QPSK	12	6	24.90	24.94	25.21	22.88	23.20	22.72	25.27	25.29	24.83	22.29	22.14	22.08
		24	0	23.84	24.06	24.28	21.84	21.99	21.61	24.27	25.05	23.90	21.30	21.22	20.76
		1	0	22.61	23.04	23.72	20.77	20.80	20.47	23.52	23.74	23.82	20.36	20.19	20.08
		1	1	23.81	23.75	24.15	21.76	21.75	21.58	24.14	24.43	24.82	21.40	21.36	21.16
10.0	16QAM	1	22	24.25	24.62	24.61	21.79	21.84	21.44	24.14	24.58	23.75	21.33	21.39	21.12
		1	23	23.21	23.72	23.94	20.63	21.02	20.34	23.39	23.70	23.61	20.31	20.34	20.14
		12	6	23.73	24.00	24.31	21.74	22.01	21.66	24.31	24.36	23.92	21.23	21.34	21.00
		24	0	22.82	23.10	23.37	20.87	21.15	20.64	23.33	24.14	23.03	20.40	19.88	19.97
		1	0	22.28	22.61	23.30	20.16	20.41	20.01	22.92	23.04	23.27	20.03	19.87	19.54
		1	1	22.32	22.67	22.89	20.23	20.52	20.25	22.87	23.12	23.43	20.06	19.62	19.73
	64QAM	1	22	23.18	22.96	23.21	20.57	20.65	20.01	22.97	23.04	22.56	19.78	19.98	19.60
		1	23	23.06	23.32	23.44	20.27	20.43	19.98	22.95	22.86	23.09	19.58	20.07	19.50
		12	6	22.34	22.49	22.80	20.22	20.47	20.15	22.76	22.85	22.44	19.74	19.74	19.52
		24	0	22.31	22.60	22.88	20.24	20.34	19.91	22.70	23.46	22.41	19.57	19.73	19.37
		1	0	20.10	20.30	20.67	18.31	18.34	18.10	20.57	20.92	21.06	17.72	17.33	17.44
		1	1	20.22	20.43	20.46	18.26	18.37	18.17	20.64	20.76	21.13	17.73	17.76	17.36
	256QAM	1	22	20.72	20.76	21.27	18.23	18.40	17.96	20.61	20.70	20.33	17.79	17.69	17.19
		1	23	20.68	21.07	21.35	17.78	18.51	18.05	20.68	20.78	20.96	17.80	17.59	16.85
		12	6	20.29	20.50	20.90	18.38	18.57	18.19	20.74	20.80	20.43	17.78	17.39	17.18
		24	0	20.27	20.56	20.76	18.38	18.57	18.27	20.79	21.51	20.40	17.58	17.69	17.03

OUTPUT POWER FOR 5G NR n48 (20.0 MHz)

								Con	ducted A	verage (d	Bm)		_		
Bandwidth	Modulation	RB	RB		ANT 7			ANT 8			ANT 9			ANT 4	
(MHz)	wouldtion	Allocation	Offset	637333	641666	646000	637333	641666	646000	637333	641666	646000	637333	641666	646000
				3560.0	3625.0	3690.0	3560.0	3625.0	3690.0	3560.0	3625.0	3690.0	3560.0	3625.0	3690.0
		1	0	22.86	23.17	25.59	22.22	22.67	22.11	25.12	25.10	24.89	22.15	22.09	21.33
		1	1	23.92	23.78	23.97	22.85	23.17	22.93	25.66	25.55	24.83	22.37	22.20	22.05
	BPSK	1	49	25.70	25.33	24.74	23.03	22.94	22.41	25.41	25.36	24.92	22.18	22.55	22.25
	BESK	1	50	25.03	24.88	24.46	22.17	22.46	22.01	24.89	24.98	24.37	21.82	22.09	21.75
		25	12	24.62	24.38	24.26	22.89	23.01	22.61	25.41	25.46	24.63	22.33	22.38	22.02
		50	0	23.72	23.88	23.93	20.89	22.27	22.13	23.18	24.92	22.96	20.61	22.08	21.73
		1	0	22.10	22.62	23.12	21.96	22.19	21.85	24.65	24.60	24.32	21.53	21.65	21.23
		1	1	24.02	22.76	23.96	22.99	23.14	22.76	25.70	25.68	25.00	22.47	22.25	21.92
QPSK	1	49	25.61	25.30	24.89	23.00	23.20	22.57	25.47	25.53	24.76	22.70	22.11	21.66	
	1	50	24.55	23.71	23.88	21.54	22.21	21.64	24.45	24.55	23.63	21.17	21.35	21.21	
	25	12	24.56	23.30	24.37	22.90	23.05	22.62	25.44	25.46	24.64	22.23	22.46	21.97	
		50	0	23.67	23.71	23.69	20.90	21.78	21.61	23.21	24.45	23.17	20.63	20.81	21.34
		1	0	21.70	21.98	22.00	20.76	21.32	20.83	23.49	23.52	23.21	20.73	20.92	20.37
		1	1	23.20	22.33	23.22	22.22	22.07	21.93	24.55	24.58	23.85	21.87	21.75	21.28
20.0	16QAM	1	49	24.56	24.29	24.02	22.05	22.27	21.74	24.52	24.48	24.09	21.82	21.81	21.55
20.0	IUQAIN	1	50	22.99	22.98	23.11	20.64	21.14	20.76	23.45	23.22	22.35	20.84	20.62	20.46
		25	12	23.64	23.14	23.45	21.89	21.99	21.68	24.33	24.52	23.66	21.53	21.51	20.86
		50	0	23.81	22.42	23.43	20.91	20.81	20.65	23.24	23.45	22.63	20.52	20.33	20.15
		1	0	19.90	21.54	21.76	20.21	20.42	20.05	23.08	23.29	22.75	20.17	19.25	19.99
		1	1	21.92	21.42	21.74	20.22	20.39	20.16	23.06	23.04	22.78	20.20	20.44	19.74
	64QAM	1	49	23.11	22.89	22.76	20.24	20.38	19.80	22.75	23.17	22.25	20.29	19.96	19.82
	04QAIVI	1	50	23.38	22.24	22.56	20.07	20.33	19.85	22.93	22.90	22.30	20.22	20.17	19.77
		25	12	22.08	21.80	21.68	20.28	20.31	19.97	22.83	22.85	21.79	19.73	19.81	19.67
		50	0	23.21	21.87	22.89	20.31	20.33	20.05	22.83	22.92	21.92	20.10	19.96	19.77
		1	0	19.57	19.31	19.62	18.36	18.50	18.02	20.94	20.94	20.15	17.91	18.01	17.70
		1	1	19.35	19.27	19.57	18.36	18.47	18.29	20.95	20.58	20.33	17.57	17.85	17.47
	256QAM	1	49	21.11	20.76	20.50	18.18	18.28	17.99	20.83	20.86	19.87	18.02	17.81	17.47
	2000/101	1	50	20.91	20.57	20.39	17.91	18.30	18.11	20.75	21.04	19.92	17.89	17.93	17.21
		25	12	20.07	19.87	19.88	18.33	18.27	18.10	20.88	20.92	20.04	17.62	18.03	17.91
		50	0	20.16	19.91	19.90	18.27	18.45	18.03	20.82	20.89	20.42	17.97	17.86	17.35

Page 20 of 49

UL VERIFICATION SERVICES INC.

47173 BENICIA STREET, FREMONT, CA 94538, USA

TEL: (510) 319-4000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

FORM NO: CCSUP4031B FAX: (510) 661-0888

OUTPUT POWER FOR 5G NR n48 (40.0 MHz)

								Con	ducted A	verage (d	Bm)				
Bandwidth	Modulation	RB	RB		ANT 7			ANT 8			ANT 9			ANT 4	
(MHz)	wouldton	Allocation	Offset	638000	641666	645333	638000	641666	645333	638000	641666	645333	638000	641666	645333
				3570.0	3625.0	3680.0	3570.0	3625.0	3680.0	3570.0	3625.0	3680.0	3570.0	3625.0	3680.0
		1	0	22.94	22.33	23.94	22.72	22.81	22.71	25.05	25.03	24.67	21.80	22.16	21.98
		1	1	23.32	22.97	24.46	23.08	22.99	23.17	25.39	25.70	25.63	22.70	22.56	22.53
	BPSK	1	104	24.68	25.70	24.32	23.20	23.19	23.00	25.29	25.36	25.31	22.43	22.54	22.30
	DI SI	1	105	24.25	25.11	23.67	22.55	22.49	22.43	24.45	24.85	24.42	21.91	22.07	21.69
		50	25	24.71	23.50	23.30	23.03	23.13	22.90	25.50	25.27	25.22	22.20	21.95	22.07
		100	0	21.05	23.35	21.15	18.98	22.65	19.98	20.69	25.05	20.79	18.65	21.76	19.14
		1	0	22.44	22.11	23.45	22.11	22.44	22.10	24.38	24.14	24.66	21.53	21.65	21.51
		1	1	23.53	21.99	24.49	23.19	23.12	23.17	25.60	25.63	25.56	22.50	22.55	22.15
QPSK	1	104	24.72	25.60	24.19	23.18	23.17	22.93	25.64	25.36	25.38	22.44	21.94	22.25	
	QI SIX	1	105	23.83	24.45	23.34	22.19	22.20	21.77	24.44	24.33	24.16	21.41	21.48	21.01
		50	25	24.75	23.46	23.32	22.95	23.13	22.95	25.34	25.54	25.23	22.12	21.85	21.78
		100	0	21.07	22.83	21.12	19.00	22.19	19.99	20.68	24.35	20.58	18.63	21.45	18.86
		1	0	21.55	21.10	22.69	21.33	21.45	21.31	23.62	23.43	23.59	21.00	20.81	20.68
	1	1	22.63	20.93	23.61	22.15	22.19	22.19	24.62	24.37	24.61	21.51	21.91	21.70	
40.0	16QAM	1	104	24.01	24.81	23.47	22.40	22.38	22.05	23.98	24.54	23.98	21.60	21.12	21.45
40.0	TOQAM	1	105	22.80	23.47	22.72	21.22	21.27	20.99	23.24	23.09	23.04	20.21	20.96	20.51
		50	25	23.71	22.57	22.38	22.03	21.20	21.99	24.48	24.33	24.08	21.08	21.11	21.23
		100	0	21.09	21.78	21.14	18.98	21.15	19.94	20.68	23.66	20.71	18.48	20.28	19.20
		1	0	21.11	21.02	22.49	20.44	20.45	20.48	23.07	23.20	23.15	20.21	20.04	20.15
		1	1	21.21	20.83	22.18	20.58	20.53	20.56	22.63	23.16	23.35	20.00	20.13	20.06
	64QAM	1	104	22.33	23.20	21.96	20.27	20.50	20.09	23.13	23.21	22.71	19.94	20.06	19.71
	01001	1	105	22.36	23.29	22.10	20.37	20.50	20.40	22.59	23.17	22.95	19.92	19.87	19.77
		50	25	22.24	21.01	20.82	20.39	20.58	20.35	22.93	22.96	22.47	19.40	19.75	19.53
		100	0	21.02	21.32	20.46	18.97	20.61	20.03	20.73	22.85	20.67	18.66	19.65	18.70
		1	0	18.90	18.70	19.93	18.35	18.95	18.55	20.75	21.19	21.07	18.04	17.99	17.54
		1	1	18.96	18.76	19.64	18.64	18.46	18.40	20.88	20.29	21.83	17.96	17.96	18.01
	256QAM	1	104	20.28	20.74	19.78	18.38	18.64	18.63	20.68	20.92	20.27	17.45	17.41	17.48
	2003/10	1	105	20.08	20.93	20.05	18.59	18.36	18.29	20.22	20.92	20.64	17.71	17.45	17.33
		50	25	20.25	18.98	18.82	18.35	18.53	18.40	20.87	21.01	20.67	17.57	17.32	17.73
		100	0	20.04	19.29	19.08	18.49	18.66	18.50	21.02	21.03	20.53	17.83	17.92	17.64

Page 21 of 49

9. CONDUCTED TEST RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

<u>LIMITS</u>

For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

RESULTS

There is no limit required and power is the same for low, middle and high channel; therefore, only middle channel was tested. Worst-case plots (highest bandwidth) are reported only.

<u>5G NR n48</u>

Band	Mode	RB Allocation/RB Offset	f(MHz)	99% BW (MHz)	-26dB BW (MHz)
	10MHz, BPSK			8.566	9.29
	10MHz, QPSK	24/0		8.592	9.46
	10MHz, 16QAM			8.570	9.24
	20MHz, BPSK			17.947	18.89
5G NR n48	20MHz, QPSK	50/0	3625.0	17.838	19.05
	20MHz, 16QAM			17.870	19.09
	40MHz, BPSK			35.744	37.39
	40MHz, QPSK	100/0		35.568	37.26
	40MHz, 16QAM			35.579	37.36
	40MHz, BPSK	1/0		0.530	0.92

Page 22 of 49

9.1.1. 5G NR n48

Keysight Spectrum Analyzer - AP2021.4.1,19171,Ten L RF 50 Ω DC	mp B2 SENSE:INT Center Freq: 3.625000000 GHz Trig: Free Run AvgiHold: 10	01:26:14 AM May 12, 2021 Radio Std: None	Frequency	Keysight Spectrum Analyzer - AP2021.4.3,19171,T L RF S0 Ω DC NEE	emp B2 SENSE:INT Center Freq: 3.625000000 GHz Trig: Free Run Avg[Hold: 100/	01:28:38 AM May 12, 2021 Radio Std: None	Frequency
Ref Offset 15.7 dB	sin:Low #Atten: 30 dB	Radio Device: BTS			Gain:Low #Atten: 30 dB	Radio Device: BTS	
0 dB/div Ref 30.00 dBm				10 dB/div Ref 30.00 dBm			
20.0	en Amanda Managarana an Amanda	m	Center Freq 3.625000000 GHz	2000 10.0 0.00			Center Fre 3.625000000 GH
		W W		-100 -200 -300 -400 -400		mannen	
Center 3.625 GHz Res BW 110 kHz	#VBW 330 kHz	Span 15 MHz Sweep 1.2 ms	CF Step 1.50000 MHz	600 Center 3.625 GHz #Res BW 220 kHz	#VBW 680 kHz	Span 30 MHz Sweep 1 ms	CF Ste 3.000000 MH
Occupied Bandwidth 8.566	Total Power 61 MHz	33.2 dBm	Auto Man Freq Offset	Occupied Bandwidth 17.9	Total Power 47 MHz	33.7 dBm	Auto Ma Freq Offse
	11.537 kHz % of OBW Power 9.291 MHz x dB	99.00 % -26.00 dB	0 Hz	Transmit Freq Error x dB Bandwidth	-151.60 kHz % of OBW Power 18.89 MHz x dB	99.00 % -26.00 dB	0 H
199		STATUS		MSG		STATUS	
	10MHz BPSK Middle	e Channel RB2	4-0		20MHz BPSK Middle	Channel RB5	0-0
Keysight Spectrum Analyzer - AP2021.4.1,19171,Tem L RF 50 Ω DC NFE #IFGa		01:31:06 AM May 12, 2021 Radio Std: None	4-0 Frequency	Keysight Spectrum Analyzer - AP2021.4.1.19171,T L	-	01:36:10 AM May 12, 2021 Radio Std: None	0-0 Frequency
Voyalt Sectors Adapter AP2021 43,1071 Ter L 66 106 00 NFE #FE #FE #FE 0 450/div Ref Offset 15.7 dB Ref 000 0 00 00 00 00 0 00 00 00 00 00	np 82 Center Freq: 3.62500000 GHz →→→ Trig: Freq Run Avg Hold: 10	01:31:06.4M May 12, 2021 Radio Std: None Radio Device: BTS	- 2 🔀	Registant Addust Add	emp B2 Center Freq: 3.625000000 GHz Trig: Freq Run Avg Hold: 100/	01:36:10 AM May 12, 2021 Radio Std: None 100	Frequency
Verigiti Section Availate: APDII 11 3017, Ten L RF Sico. DC. MFE RFG 0 Goldaly RFG 0 MFE RFG 0	ng 82 Center Free: 355000000 OHs Trig: Free Run AvgiHold: 10 #Atten: 30 dB	Radio Sto: None Radio Sto: None Radio Device: BTS	Frequency Center Freq	Register Advance <	emp B2 Center Freq: 3.625000000 GHz Trig: Freq Run Avg Hold: 100/	1013610.4H May 12, 2021 Radio Std. None Radio Device: BTS	Frequency
Vijugi Sectom Adager - AV2214 1,017, Tm k 66 196.0 00.0 NFE #Ec #Ec #Ec 0 30.00 dBm 00.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>ng 82 Center Free: 355000000 OHs Trig: Free Run AvgiHold: 10 #Atten: 30 dB</td> <td>Radio Std: None Radio Std: None Radio Device: BTS</td> <td>Center Freq 3.62500000 GHz</td> <td>Forsett Section Analyse - AP201 41997, 1 L F S9 0 0C NFE eFF OdEldiv Ref 30.00 dBm Cog 00</td> <td>emp B2 Center Freq: 3.625000000 GHz Trig: Freq Run Avg Hold: 100/</td> <td>01:36:10 AM May 12, 2021 Radio Std: None 100</td> <td>Center Fre 3.62500000 GH</td>	ng 82 Center Free: 355000000 OHs Trig: Free Run AvgiHold: 10 #Atten: 30 dB	Radio Std: None Radio Std: None Radio Device: BTS	Center Freq 3.62500000 GHz	Forsett Section Analyse - AP201 41997, 1 L F S9 0 0C NFE eFF OdEldiv Ref 30.00 dBm Cog 00	emp B2 Center Freq: 3.625000000 GHz Trig: Freq Run Avg Hold: 100/	01:36:10 AM May 12, 2021 Radio Std: None 100	Center Fre 3.62500000 GH
Ref Offset 15 20 Ref Offset 15 20 <thref 15="" 20<="" offset="" th=""> <thref 15="" 20<="" offset="" t<="" td=""><td>ng B2 Contre Free: 36200000 GHz Trig: Free Run AvgHold: 10 #Atten: 30 dB</td><td>Radio Std: None Radio Std: None Radio Device: BTS</td><td>Center Freq 3.62500000 GHz</td><td>Ref Offset 15.7 dB 10 dB/dv Ref 30.00 dBm 10 dB/dv Ref 30.00 dBm<td>And the second s</td><td>101.364.10 M May 12,2021 Radio Std: None Radio Device: BTS</td><td>Center Frequency</td></td></thref></thref>	ng B2 Contre Free: 36200000 GHz Trig: Free Run AvgHold: 10 #Atten: 30 dB	Radio Std: None Radio Std: None Radio Device: BTS	Center Freq 3.62500000 GHz	Ref Offset 15.7 dB 10 dB/dv Ref 30.00 dBm 10 dB/dv Ref 30.00 dBm <td>And the second s</td> <td>101.364.10 M May 12,2021 Radio Std: None Radio Device: BTS</td> <td>Center Frequency</td>	And the second s	101.364.10 M May 12,2021 Radio Std: None Radio Device: BTS	Center Frequency
Topologie Normalized State Normalicit Normalicit No	PUBLIC Conter Free: 3 620000 OHz Conter Free: 3 620000 OHz Trig: Free Run AvgHold: 10 #ditter: 30 dB #VBW 1.3 MHz FvBW 1.3 MHz Total Power 44 MHz .0081 MHz % of OBW Power	Adio Device: BTS Radio Device: BTS Radio Device: BTS Span 60 MHz Sweep 1 ms 34.1 dBm 99.00 %	Center Freq 3.62500000 GHz 6.000000 MHz Auto Man Freq Offset	Known i Second Sec	Control Free, 3 2200000 GHz Trg: Free Run ArgiHold: 100'	101 Set 10 MINUT 201 Radio Std: None Radio Device: BTS Span 60 MIHz Sweep 254.1 ms 33.5 dBm 99.00 %	Center Fre 3.62500000 GF

Page 23 of 49

9.2. EMISSION MASK AND ADJACENT CHANNEL POWER

TEST PROCEDURE (5G NR n48)

(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(ii) When measuring unwanted emissions to demonstrate compliance with the limits, the CBSD and End User Device nominal carrier frequency/channel shall be adjusted as close to the licensee's authorized frequency block edges, both upper and lower, as the design permits.

(iii) Compliance with emission limits shall be demonstrated using either average (RMS)-detected or peakdetected power measurement techniques.

RESULTS

Page 24 of 49

9.2.1. 5G NR n48 ADJACENT CHANNEL POWER

LIMITS

FCC: §96.41

(e) 3.5 GHz Emissions and Interference Limits—

(1) General protection levels

(ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Page 25 of 49

FORM NO: CCSUP4031B

5G NR n48 EMISSION MASK

Page 26 of 49

UL VERIFICATION SERVICES INC.

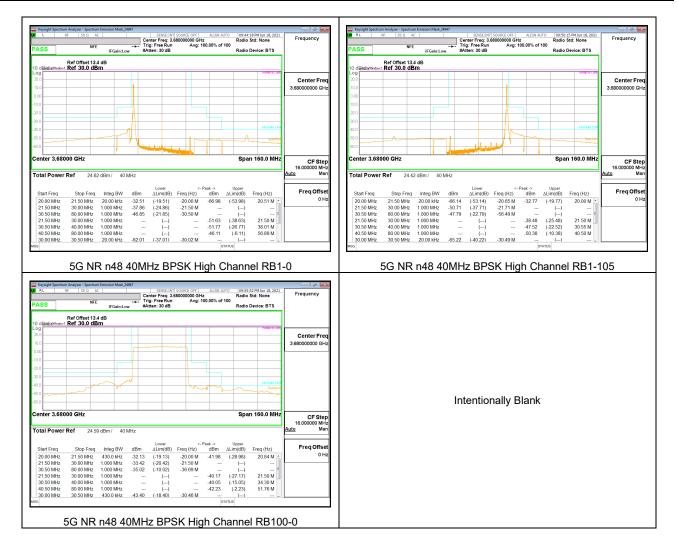
47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

FORM NO: CCSUP4031B

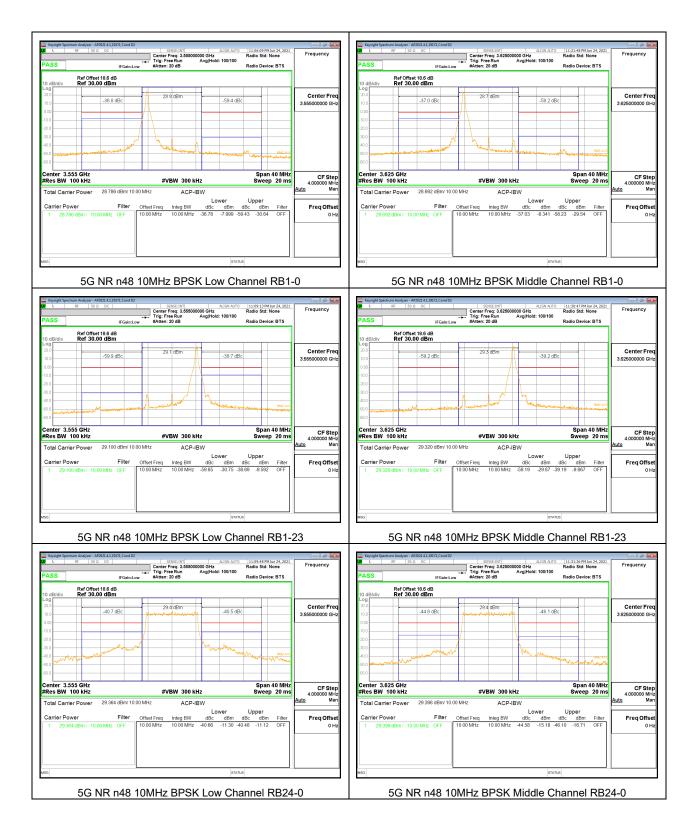
Page 27 of 49


UL VERIFICATION SERVICES INC.

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

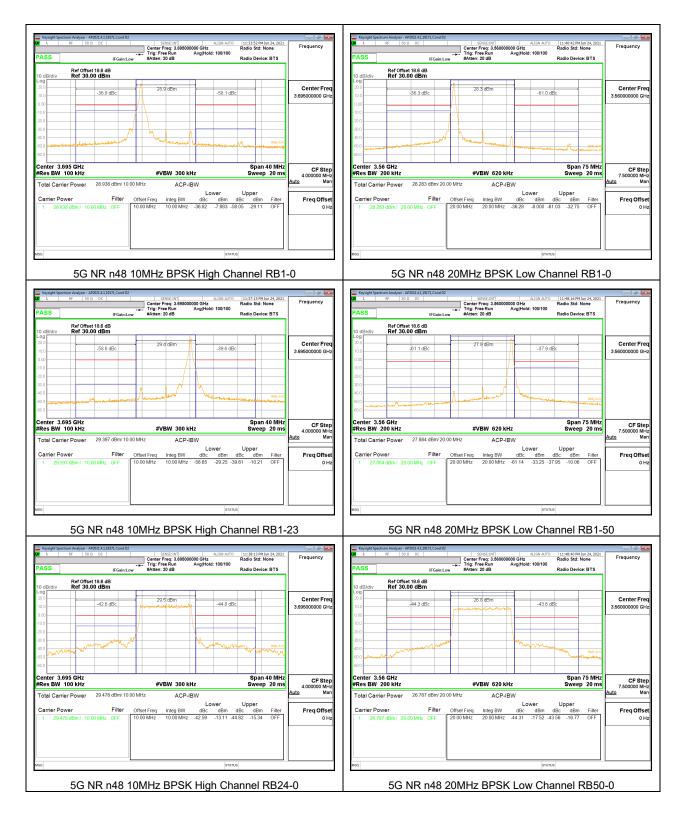

Page 28 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888


Page 29 of 49

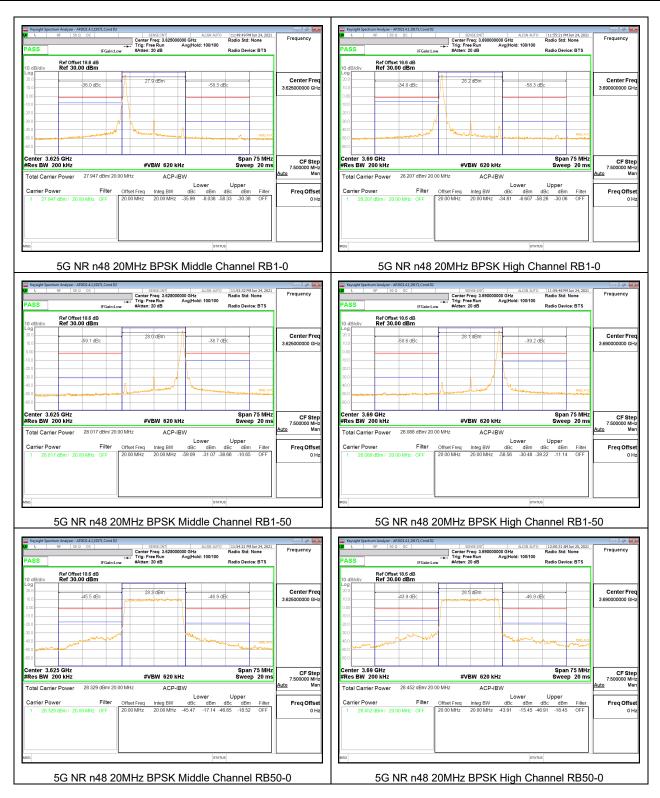
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888

Page 30 of 49


5G NR n48 ADJACENT CHANNEL POWER

Page 31 of 49

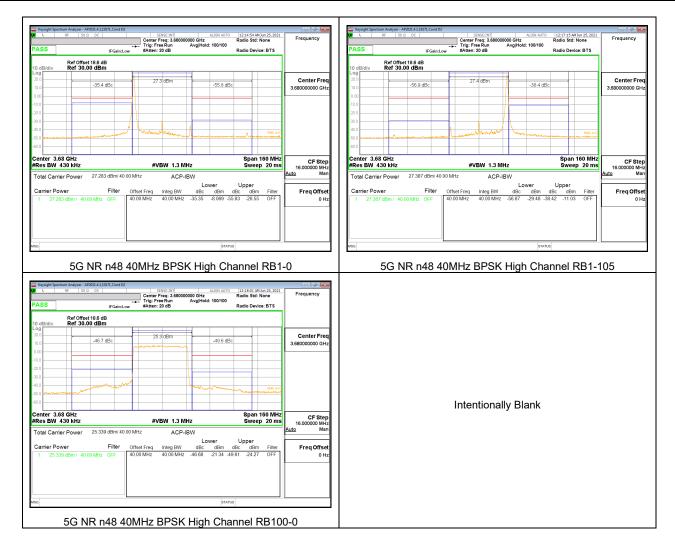
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA


FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 32 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA

FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 33 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888

Page 34 of 49

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031B TEL: (510) 319-4000 FAX: (510) 661-0888

Page 35 of 49

9.3. OUT OF BAND EMISSIONS

TEST PROCEDURE

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

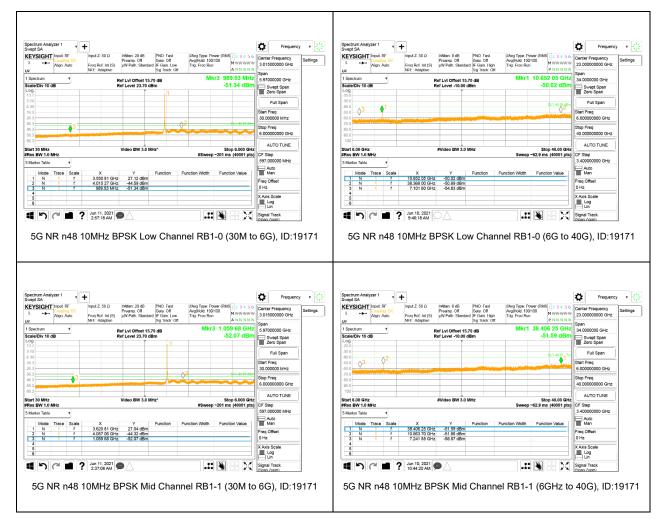
For each out of band emissions measurement:

- Set display line at -40dBm according to the band Limit
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz. (NOTE: Worst case set RBW/VBW to 1MHz/3MHz)

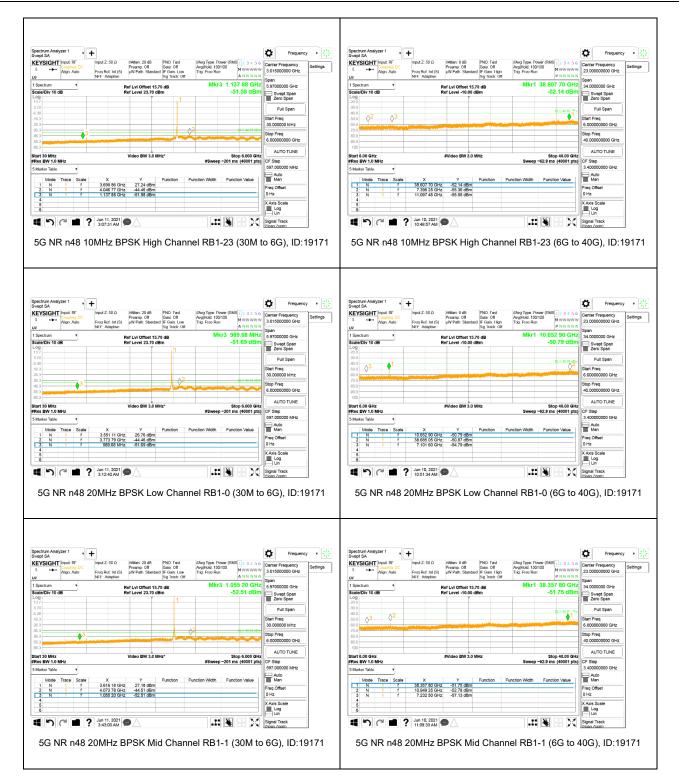
RESULTS

Page 36 of 49

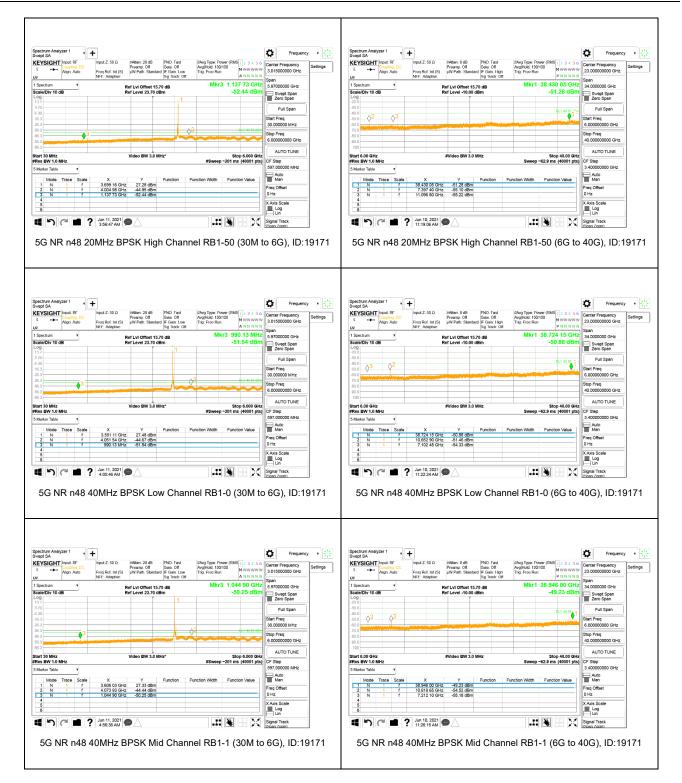
9.3.1. 5G NR n48


<u>LIMITS</u>

FCC: §96.41


(e) 3.5 GHz Emissions and Interference Limits-

(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.


<u>5G NR n48</u>

Page 37 of 49

Page 38 of 49

Page 39 of 49

Г

KEYSIGHT lingut. f67 prod. 250 Ω #Allen: 20 dB PNO. Fast ///wg/Type://www.tMMS/12.91.2.9.5.0 (Carter Frequency) Settings ///// Settings ////////////////////////////////////	PNO: Fast #Avg Type: Power (RMS 1 2 3 4 5 6 Center Frequency
L ++ Align Auto Fron Rot Int(S) µW Path Standor IF Gen Low Trig. Froe Run MWWWWW [3.016000000 GHz // L ++ Align Auto Fron Rot Int(S) µW Path Stand	and IF Gain. High Trig. Free Run P N N N N N
Spectrum Figure 1 Spectrum Spectrum Spectrum Spectrum Spectrum Ref Lvi Offset 15.70 dB Mkr3 1.137 58 GHz Spectrum Spectrum Ref Lvi Offset 15.70 dB	
99	Zero Span
70 30 Full Span 300	0L1-48.00 +2
63 53 54 51 51 51 51 51 51 51 51 51 51	Start Freq 6.00000000 GHz
63 3 63 63 63 60 61 60 61 60 61 61 61 61 61 61 61 61 61 61 61 61 61	Stop Freq 40.00000000 GHz
8/3 AUTO TUNE 100 GHz #Video BW 3.0 MHz' Stop 6.000 GHz Start 6.00 GHz #Video BW 3.0 MHz'	AUTO TUNE
Res BW 1.0 MHz #Sweep -201 ms (40001 pts) CF Step #Res BW 1.0 MHz	Sweep ~62.9 ms (40001 pts) CF Step
Markor Tablo Markor Tablo Mark	Function Function Width Function Value
I N I F 3569 86 OHz 23 19 dBm 2 N I F 4569 46 OHz 450 HBm 2 N I F 4508 41 OHz 450 HBm 3 N I F 11096 40 OHz 4561 dBm 0 Hz N I F 7.397 40 OHz -6561 dBm	
4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X Axis Scale
	Signal Track (Sono Zoom)

Page 40 of 49

FREQUENCY STABILITY 9.4.

TEST PROCEDURE

Use CMW 500 with Frequency Error measurement capability.

- Temp. = -30° C to $+50^{\circ}$ C
- Voltage = (85% 115%) •

Low voltage, 3.23VDC, Normal, 3.8VDC and High voltage, 4.37VDC. End Voltage, 3.2VDC.

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case).

RESULTS

9.4.1. 5G NR n48

Test Engineer ID: 39006	Test Date:	5/23/2021
-------------------------	------------	-----------

5G NR n48 QPSK (40MHz BANDWIDTH)

Limit		3550	3700							
Conditio	on	F low @ -13dBm	F high @ -13dBm	Delta (Hz)	Frequency Stability					
Temperature	Voltage	(MHz)	(MHz)	()	(ppm)					
Normal (20C)		3551.0506	3696.7981							
Extreme (50C)		3551.0506	3696.7980	-26.4	-0.007					
Extreme (40C)		3551.0506	3696.7980	-32.2	-0.009					
Extreme (30C)	me (30C)		3696.7980	-22.3	-0.006					
Extreme (10C)	ne (10C) Normal		3696.7980	-22.6	-0.006					
Extreme (0C)		3551.0506	3696.7980	-26.4	-0.007					
Extreme (-10C)		3551.0506	3696.7980	-32.0	-0.009					
Extreme (-20C)		3551.0506	3696.7980	-27.6	-0.008					
Extreme (-30C)		3551.0506	3696.7980	-44.5	-0.012					
	15%	3551.0506	3696.7980	-28.3	-0.008					
20C	-15%	3551.0506	3696.7980	-28.0	-0.008					
	End Point	3551.0506	3696.7980	-25.9	-0.007					

Page 41 of 49

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

9.5. PEAK-TO-AVERAGE POWER RATIO

<u>LIMIT</u>

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

<u>RESULT</u>

Antenna 1 was used to measure as the worst case; full resource block (FRB) for each bandwidth was used to measure as the worst case. The results from all CCDF measurements are passed with 13dB peak-to-average power ratio criteria.

9.5.1. 5G NR n48

Test Engineer ID: 10646 Test Date: 3/16/2021
--

Band	Bandwidth	Frequency	RB	RB	Modulation	Conducted F	Power (dBm)	Peak-to-Average		
Dana	(MHz)	(MHz)	Allocation	OffSet	Woddiation	Peak Average		Power Ratio (dB)		
	10MHz		24	0	BPSK	30.19	25.59	4.60		
LTE 5G	TOIVINZ		24		16QAM	30.86	24.13	6.73		
	20MHz		50	0	BPSK	30.08	25.56	4.52		
NR n48					16QAM	30.43	23.95	6.48		
	40MHz		100	0	BPSK	30.19	26.23	3.96		
	40MHZ			0	16QAM	30.89	24.7	6.19		
*Duty Cycl	e Correction I	Factor (dB) =	0.00							
Peak-to-Av	Peak-to-Average Power Ratio= Peak Reading - Average Reading - Duty Cycle Correction Factor									

Page 42 of 49

10. RADIATED TEST RESULTS

Radiated measurement using the Field Strength Method

Using the test configuration shown in Figure 6 below, We measure the radiated emissions directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits. As stated in 5.5.1 of ANSI C63.26-2015, the field strength measurement method using a test site validated to the requirements of ANSI C63.4 is an alternative to the substitution measurement method.

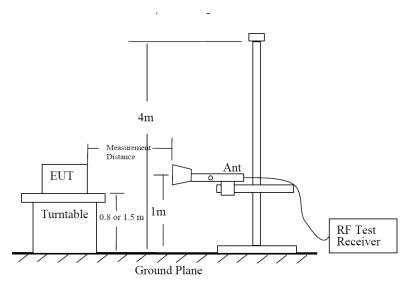


Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Radiated Power Measurement Calculation According to ANSI C63.26-2015

a) E (dB μ V/m) = Measured amplitude level (dB μ V) + Cable Loss (dB) + Antenna Factor (dB/m).

b) E (dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).

c) E (dBµV/m) = EIRP (dBm) – 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.

d) EIRP (dBm) = E (dB μ V/m) + 20log(D) – 104.8; where D is the measurement distance (in the far field region) in m.

So, from d)

The measuring distance is usually at 3m, then 20*Log(3)=9.5424

Then, EIRP (dBm) = E (dB μ V/m) + 9.5424 - 104.8 = E (dB μ V/m) - 95.2576

Note that: we do confidence check to our chambers every day to see if any degradation from expected/normal reading reference data. Also we do ambient check to all our chambers every month.

Page 43 of 49

TEST PROCEDURE

KDB 971168 D01 v03r01/D02 v02/r01

All tests above 1GHz were done with a Resolution Bandwidth of 1MHz, and a Video Bandwidth of 3MHz.

LIMITS

FCC: §96.41

(e) 3.5 GHz Emissions and Interference Limits-

(2) Additional protection levels. Notwithstanding paragraph (d)(1) of this section, the conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

RESULTS

Page 44 of 49

10.1. FIELD STRENGTH OF SPURIOUS RADIATION, ANT 4

BPSK 5G NR n48 (40.0MHZ BANDWIDTH)

Project #:		3573777	7							
Date: Test Engin		5/3/2021 5258								
Configurat		EUT only						-		
Mode			K 40MHz					-		
Chamber #		Chamber								
Frequency (GHz)	Meter Reading (dBuV)	Det	AF T348 (dB/m)	Amp/Cbl (dB)	T1792 3400- 3800MHz BRF	EIRP CF	Corrected Reading (dBm)	Harmonics limit	Margin (dB)	Polarity
					Low Channel,	3600MHz				
7.10184	24	RMS	36.7	-21.2	.5	-95.2	-55.2	-40	-15.2	V
7.10203	24.25	RMS	36.7	-21.2	.5	-95.2	-54.95	-40	-14.95	Н
10.71068	22.07	RMS	39.3	-17.4	.5	-95.2	-50.73	-40	-10.73	V
10.71084	21.22	RMS	39.3	-17.4	.5	-95.2	-51.58	-40	-11.58	Н
14.28081	21.8	RMS	41.2	-18.4	.7	-95.2	-49.9	-40	-9.9	V
14.28083	21.97	RMS	41.2	-18.4	.7	-95.2	-49.73	-40	-9.73	Н
					Mid Channel,	3625MHz				
7.24934	22.83	RMS	37.2	-21.4	.6	-95.2	-55.97	-40	-15.97	V
7.24957	24	RMS	37.2	-21.4	.6	-95.2	-54.8	-40	-14.8	Н
10.87583	21.67	RMS	39.3	-17	.5	-95.2	-50.73	-40	-10.73	V
10.87597	22	RMS	39.3	-17	.5	-95.2	-50.4	-40	-10.4	Н
14.5005	22.35	RMS	41.4	-18.9	.8	-95.2	-49.55	-40	-9.55	Н
14.50072	22.9	RMS	41.4	-18.9	.8	-95.2	-49	-40	-9	V
					High Channel	, 3650MHz			-	
14.71946	21.26	RMS	42	-18.9	.9	-95.2	-49.94	-40	-9.94	Н
7.35871	22.5	RMS	36.9	-21.2	.7	-95.2	-56.3	-40	-16.3	Н
11.04064	21.35	RMS	39.4	-17.2	.6	-95.2	-51.05	-40	-11.05	Н
7.36263	23.44	RMS	37	-21.3	.7	-95.2	-55.36	-40	-15.36	V
11.04087	21.66	RMS	39.4	-17.2	.6	-95.2	-50.74	-40	-10.74	V
14.72014	21.69	RMS	42	-18.9	.9	-95.2	-49.51	-40	-9.51	V

Page 45 of 49

10.2. FIELD STRENGTH OF SPURIOUS RADIATION, ANT 7

BPSK 5G NR n48 (40.0MHZ BANDWIDTH)

Project #:		13571607	7]						
Date: Test Engir		5/3/2021 45258								
Configurat		EUT only								
Mode		n48 BPSI	K 40MHz							
Chamber #		Chamber]		
Frequency (GHz)	Meter Reading (dBuV)	g Det	AF T348 (dB/m)	Amp/Cbl (dB)	T1792 3400- 3800MHz BRF	EIRP CF	Corrected Reading (dBm)	Harmonics limit	Margin (dB)	Polarity
					Low Channel,	3600MHz				
7.13934	22.25	RMS	36.9	-21.3	.6	-95.2	-56.75	-40	-16.75	V
7.13942	22.09	RMS	36.9	-21.3	.6	-95.2	-56.91	-40	-16.91	Н
10.71035	21.25	RMS	39.3	-17.4	.5	-95.2	-51.55	-40	-11.55	Н
10.71042	20.82	RMS	39.3	-17.4	.5	-95.2	-51.98	-40	-11.98	V
14.28009	22.48	RMS	41.2	-18.4	.7	-95.2	-49.22	-40	-9.22	Н
14.28023	22.03	RMS	41.2	-18.4	.7	-95.2	-49.67	-40	-9.67	V
					Mid Channel,	3625MHz				
7.24777	22.55	RMS	37.2	-21.4	.6	-95.2	-56.25	-40	-16.25	н
10.87554	21.31	RMS	39.3	-17	.5	-95.2	-51.09	-40	-11.09	н
14.50063	22.13	RMS	41.4	-18.9	.8	-95.2	-49.77	-40	-9.77	Н
7.24821	22.45	RMS	37.2	-21.4	.6	-95.2	-56.35	-40	-16.35	V
10.87566	22.11	RMS	39.3	-17	.5	-95.2	-50.29	-40	-10.29	V
14.5004	22.08	RMS	41.4	-18.9	.8	-95.2	-49.82	-40	-9.82	V
				•	High Channel	, 3650MHz				
14.71946	21.26	RMS	42	-18.9	.9	-95.2	-49.94	-40	-9.94	Н
7.35871	22.5	RMS	36.9	-21.2	.7	-95.2	-56.3	-40	-16.3	Н
11.04064	21.35	RMS	39.4	-17.2	.6	-95.2	-51.05	-40	-11.05	Н
7.36263	23.44	RMS	37	-21.3	.7	-95.2	-55.36	-40	-15.36	V
11.04087	21.66	RMS	39.4	-17.2	.6	-95.2	-50.74	-40	-10.74	V
14.72014	21.69	RMS	42	-18.9	.9	-95.2	-49.51	-40	-9.51	V

Page 46 of 49

10.3. FIELD STRENGTH OF SPURIOUS RADIATION, ANT 8

BPSK 5G NR n48 (40.0MHZ BANDWIDTH)

Project #:	13571607
Date:	5/3/2021
Test Engineer:	45258
Configuration:	EUT only
Mode	n48 BPSK 40MHz
Chamber #:	Chamber B

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T348 (dB/m)	Amp/Cbl (dB)	T1792 3400- 3800MHz BRF	EIRP CF	Corrected Reading (dBm)	Harmonics limit	Margin (dB)	Polarity		
					Low Channel,	3600MHz						
7.14031	22.56	RMS	36.9	-21.3	.6	-95.2	-56.44	-40	-16.44	V		
7.14038	21.78	RMS	36.9	-21.3	.6	-95.2	-57.22	-40	-17.22	Н		
10.71037	21.25	RMS	39.3	-17.4	.5	-95.2	-51.55	-40	-11.55	V		
10.71045	21.45	RMS	39.3	-17.4	.5	-95.2	-51.35	-40	-11.35	Н		
14.28005	22.1	RMS	41.2	-18.4	.7	-95.2	-49.6	-40	-9.6	Н		
14.28079	21.38	RMS	41.2	-18.4	.7	-95.2	-50.32	-40	-10.32	V		
	Mid Channel, 3625MHz											
7.24734	23.33	RMS	37.2	-21.4	.6	-95.2	-55.47	-40	-15.47	V		
7.24884	23.67	RMS	37.2	-21.4	.6	-95.2	-55.13	-40	-15.13	Н		
10.87504	22.77	RMS	39.3	-17	.5	-95.2	-49.63	-40	-9.63	V		
10.87518	22.07	RMS	39.3	-17	.5	-95.2	-50.33	-40	-10.33	Н		
14.50044	22.74	RMS	41.4	-18.9	.8	-95.2	-49.16	-40	-9.16	Н		
14.50047	22.61	RMS	41.4	-18.9	.8	-95.2	-49.29	-40	-9.29	V		
					High Channel	, 3650MHz						
11.04046	20.76	RMS	39.4	-17.2	.6	-95.2	-51.64	-40	-11.64	Н		
14.72057	21.67	RMS	42	-18.8	.9	-95.2	-49.43	-40	-9.43	Н		
7.36308	23.45	RMS	37	-21.3	.7	-95.2	-55.35	-40	-15.35	V		
11.04015	20.5	RMS	39.4	-17.2	.6	-95.2	-51.9	-40	-11.9	V		
14.72037	21.9	RMS	42	-18.9	.9	-95.2	-49.3	-40	-9.3	V		
7.3623	22.39	RMS	37	-21.3	.7	-95.2	-56.41	-40	-16.41	Н		

Page 47 of 49

10.4. FIELD STRENGTH OF SPURIOUS RADIATION, ANT 9

BPSK 5G NR n48 (40.0MHZ BANDWIDTH)

Project #:	13571607
Date:	5/3/2021
Test Engineer:	45258
Configuration:	EUT only
Mode	n48 BPSK 40MHz
Chamber #:	Chamber B

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T348 (dB/m)	Amp/Cbl (dB)	T1792 3400- 3800MHz BRF	EIRP CF	Corrected Reading (dBm)	Harmonics limit	Margin (dB)	Polarity				
	Low Channel, 3600MHz													
7.14052	22.34	RMS	36.9	-21.3	.6	-95.2	-56.66	-40	-16.66	V				
7.14228	23.06	RMS	36.9	-21.2	.6	-95.2	-55.84	-40	-15.84	Н				
10.71014	22.11	RMS	39.3	-17.4	.5	-95.2	-50.69	-40	-10.69	Н				
10.71028	21.43	RMS	39.3	-17.4	.5	-95.2	-51.37	-40	-11.37	V				
14.28008	22.55	RMS	41.2	-18.4	.7	-95.2	-49.15	-40	-9.15	V				
14.28026	22.37	RMS	41.2	-18.4	.7	-95.2	-49.33	-40	-9.33	Н				
	·				Mid Channe	el, 3625MH	Hz							
7.24839	22.86	RMS	37.2	-21.4	.6	-95.2	-55.94	-40	-15.94	Н				
7.25094	22.67	RMS	37.2	-21.4	.6	-95.2	-56.13	-40	-16.13	V				
10.87402	21.22	RMS	39.3	-17	.5	-95.2	-51.18	-40	-11.18	V				
10.87412	21.12	RMS	39.3	-17	.5	-95.2	-51.28	-40	-11.28	Н				
14.50008	22.29	RMS	41.4	-18.9	.8	-95.2	-49.61	-40	-9.61	V				
14.5002	21.61	RMS	41.4	-18.9	.8	-95.2	-50.29	-40	-10.29	Н				
					High Chann	el, 3650N	lHz							
7.35928	23.84	RMS	37	-21.2	.7	-95.2	-54.86	-40	-14.86	Н				
7.3615	23.39	RMS	37	-21.3	.7	-95.2	-55.41	-40	-15.41	V				
11.03975	20.51	RMS	39.4	-17.2	.6	-95.2	-51.89	-40	-11.89	Н				
11.04006	21.12	RMS	39.4	-17.2	.6	-95.2	-51.28	-40	-11.28	V				
14.72077	21.62	RMS	42	-18.8	.9	-95.2	-49.48	-40	-9.48	V				
14.72106	21.83	RMS	42	-18.8	.9	-95.2	-49.27	-40	-9.27	Н				

Page 48 of 49

11. SETUP PHOTOS

Please refer to 14790372-EP3V1 FCC Setup Photo for setup photos

END OF REPORT

Page 49 of 49