CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 20/Apr/2020 CERTIFICATE NUMBER: 13252595JD01C

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 14/Apr/2020

Manufacturer: Speag

Type/Model Number: D2450V2

Serial Number: 899

17/Apr/2020 Calibration Date:

Calibrated By: Masood Khan

Test Engineer

Monay

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.
Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178317	Data Acquisition Electronics	SPEAG	DAE4	1542	17 Mar 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0134944	Dipole	SPEAG	D2440V2	701	14 Feb 2020	12
PRE0131118	Power Sensor	Rhode & Schwarz	NRV-Z1	826515/015	27 Jan 2020	12
PRE0134023	Power Sensor	Rhode & Schwarz	NRV-Z1	860462/016	27 Jan 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	23 Jan 2020	12

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.8.8.1258)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2450 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Lload	2450	20.5 °C	21 ∩ °C	20.9°C	21.1°C	εr	39.20	40.15	± 5%
Head	2430	20.5 C	21.0 C	20.9 C	21.1 6	σ	1.80	1.82	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.00 W/Kg	51.75 W/Kg	± 17.57%
пеац	SAR averaged over 10g	6.06 W/Kg	24.12 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Hand	Impedance	43.662 Ω 1.47 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	-23.19	± dB

13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

CERTIFICATE NUMBER :

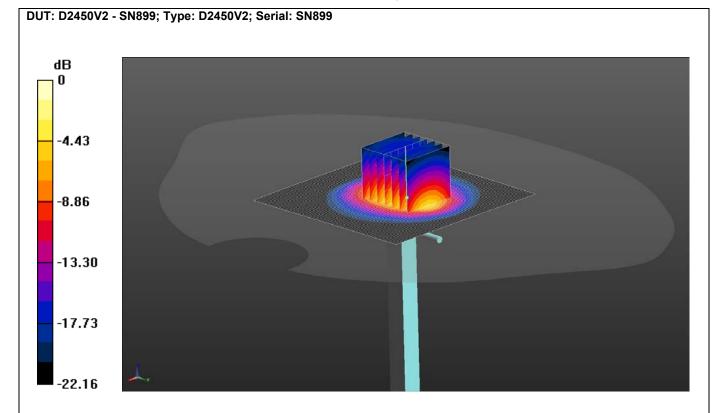
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liquio	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Body	2450	21.5 °C	21 1 %	21.0°C	21.0°C	εr	52.70	52.22	± 5%
Бойу	2430	21.5 C	21.1 C	21.0 C	21.0 C	σ	1.95	1.99	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dody	SAR averaged over 1g	13.00 W/Kg	51.75 W/Kg	± 18.06%
Body	SAR averaged over 10g	6.03 W/Kg	24.00 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	43.82 Ω -0.368 jΩ	± 0.28 Ω ± 0.044 jΩ
Бойу	Return Loss	-23.63	± 2.03 dB

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

0 dB = 21.6 W/kg = 13.34 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1;

Medium: Site65_14Apr2020_180909_Head - 750 2300 2450 2600; Medium parameters used: f = 2450 MHz; σ = 1.818 S/m; $ε_r$ = 40.149; ρ = 1000 kg/m³;

Phantom section: Flat Section;

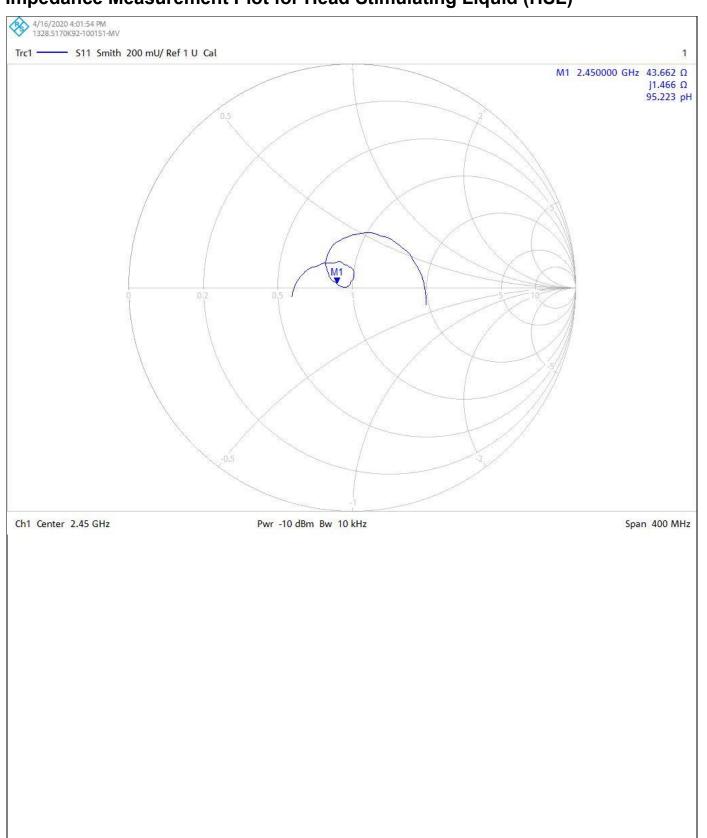
DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.78, 7.78, 7.78); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin-SAM B (Site 65); Type: QD 000 P40 CC; Serial: 1945;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

Configuration/d=10mm, Pin=250mW 2/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 17.7 W/kg

Configuration/d=10mm, Pin=250mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm Reference Value = 89.18 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 26.8 W/kg

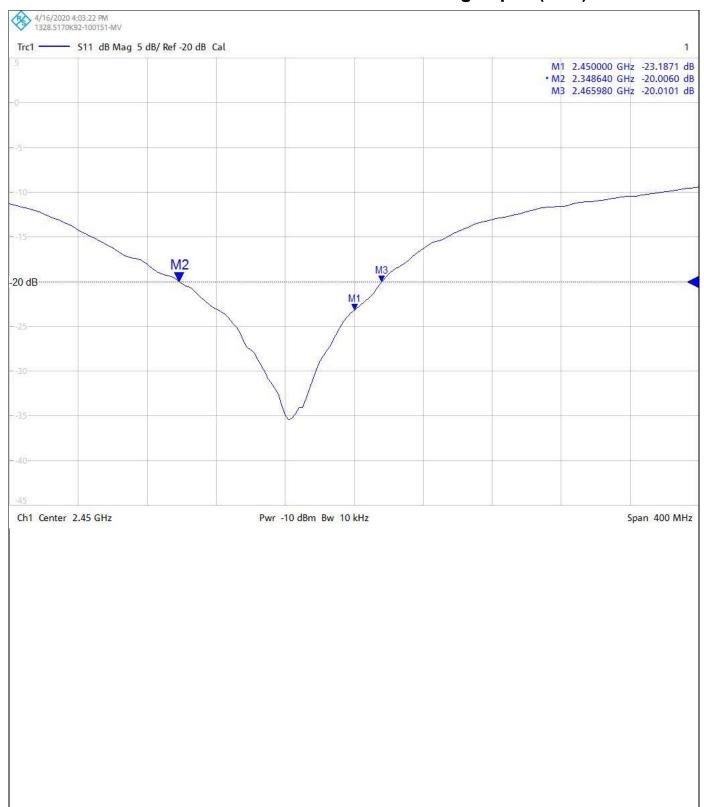

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 21.6 W/kg

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

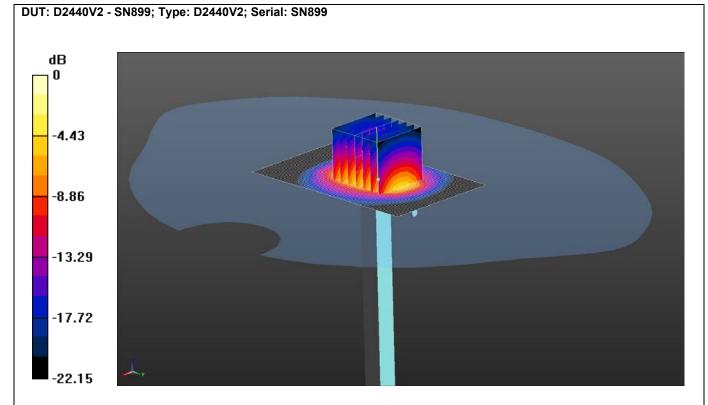


CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

0 dB = 21.5 W/kg = 13.32 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1;

Medium: Site65_15Apr2020_140023_Body - 750 2300 2450 2600 5%; Medium parameters used: f = 2450 MHz; σ = 1.993 S/m; ϵ_r = 52.221; ρ = 1000 kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.75, 7.75, 7.75); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

2450/d=10mm, Pin=250mW/Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

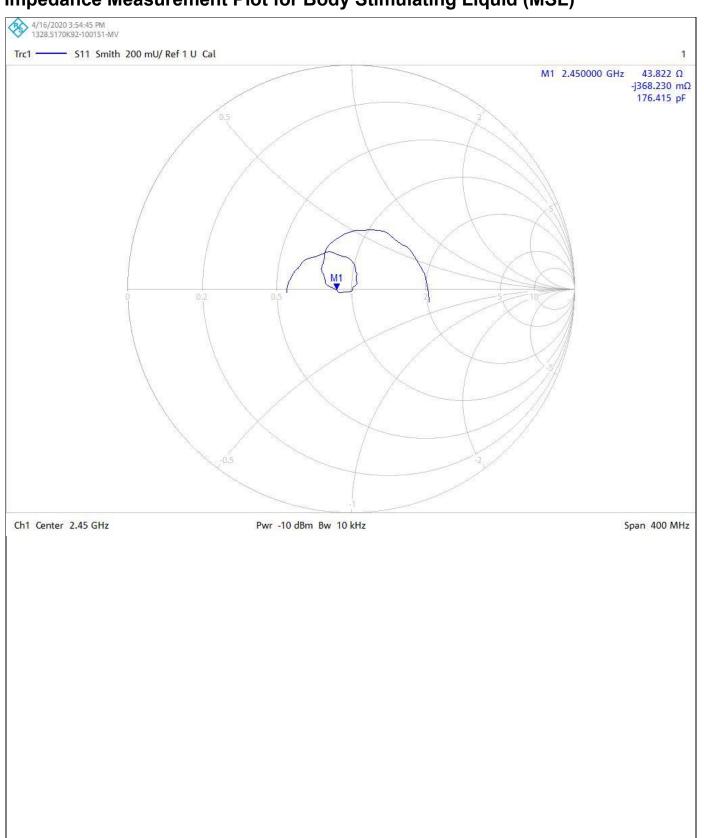
Maximum value of SAR (interpolated) = 18.4 W/kg

2450/d=10mm, Pin=250mW/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 86.25 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

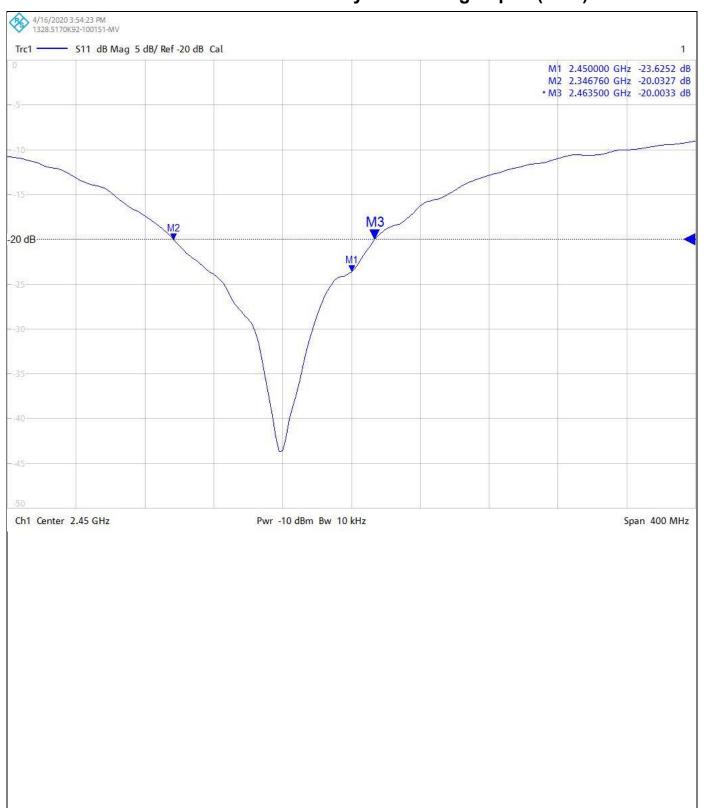

Maximum value of SAR (measured) = 21.5 W/kg

CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252595JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

- . . -

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01C

Instrument ID: 899

Calibration Date: 17/Apr/2020

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 12/Mar/2020 CERTIFICATE NUMBER: 13252596JD01A

5248

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 26/Feb/2020

Manufacturer: Speag

Type/Model Number: D2450V2

Serial Number: 748

Calibration Date: 12/Mar/2020

Calibrated By: Harmohan Sahota

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2547	Data Acquisition Electronics	SPEAG	DAE4	1438	11 Apr 2019	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2019	12
A2202	Dipole	SPEAG	D2440V2	701	14 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2019	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND8	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	30 Apr 2019	12

NUMBER : 13252596JD01A

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.10.0.1446)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2450 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

	Frequency	Room	Temp	Liqui	d Temp		Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Hand	2450	20.6 °C	21.6 ℃	20.4°C	20.6°C	εr	39.20	41.02	± 5%
Head	2450	20.6 °C	21.0 °C	20.4°C	20.6°C	σ	1.80	1.88	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.60 W/Kg	54.14 W/Kg	± 17.57%
пеац	SAR averaged over 10g	6.34 W/Kg	25.24 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Hand	Impedance	54.283 Ω + 7.483 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	-21.66	± 1.27 dB

CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

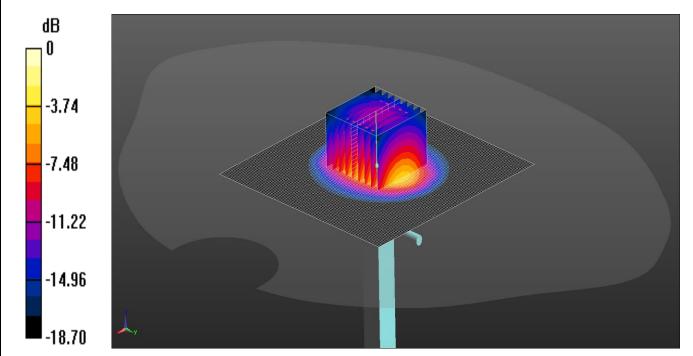
Simulant Liquid	Frequency	Room	Temp	Liquid Temp		Parameters	Target	Measured	Uncertainty
Ollificiant Liquid	(MHz)	Hz) Start End Start End	Value	Value	Value	(%)			
Body	2450	20.5 °C	21.4 °C	20.0°C	20.2°C	εr	52.70	52.37	± 5%
Бойу	2400	20.5 C	21.4 C	20.0 C	20.2 C	σ	1.95	2.02	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	13.80 W/Kg	54.93 W/Kg	± 18.06%
Бойу	SAR averaged over 10g	6.33 W/Kg	25.20 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dody	Impedance	54.61 Ω + 4.96 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	-23.83	± 2.03 dB


CERTIFICATE NUMBER: 13252596JD01A

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2450V2 - SN748; Type: D2450V2; Serial: SN748

0 dB = 20.8 W/kg = 13.18 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL 09 03 20 - 2450 3500 5250 5600 5750 5% Medium parameters used: f = 2450 MHz; σ = 1.885 S/m; $ε_r = 41.017$; ρ = 1.000 km/s⁻³

 $= 1000 \text{ kg/m}^3$

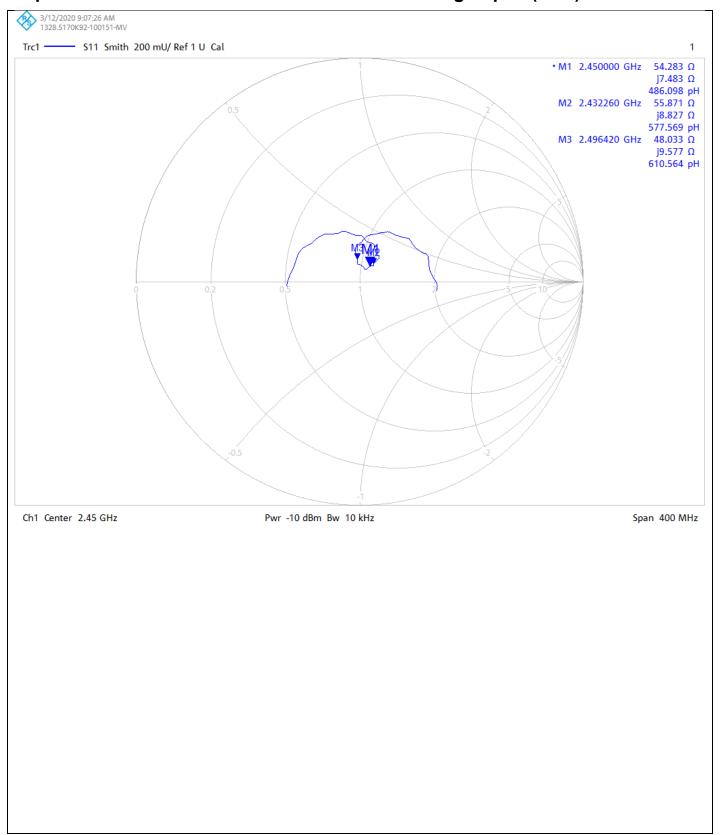
Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(7.79, 7.79, 7.79); Calibrated: 24/04/2019;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 1945
- -; SEMCAD X Version 14.6.10 (7417)

Configuration/d=10mm, Pin=250mW/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.9 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 90.85 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.5 W/kg

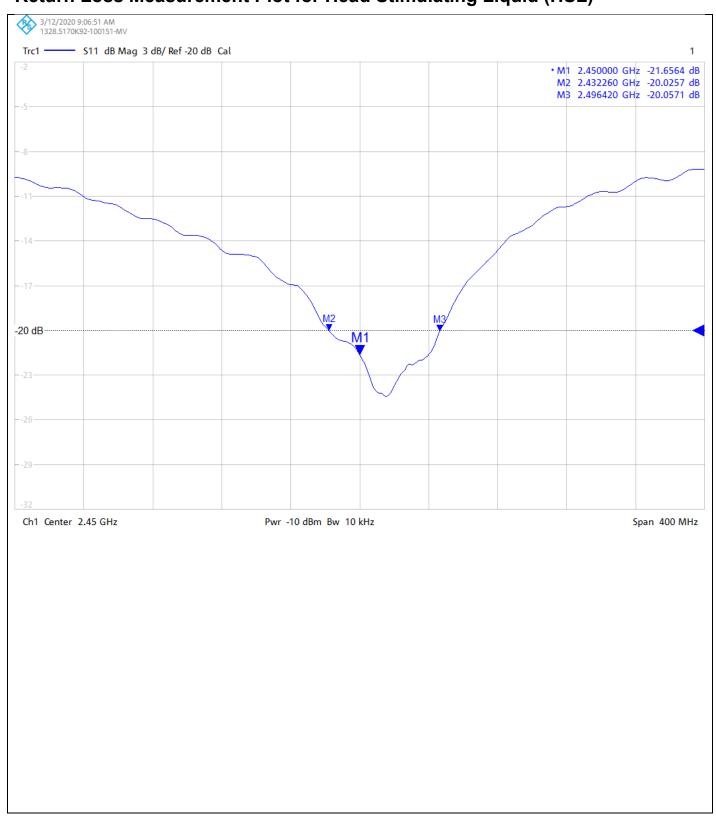

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.34 W/kg Maximum value of SAR (measured) = 20.8 W/kg

CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

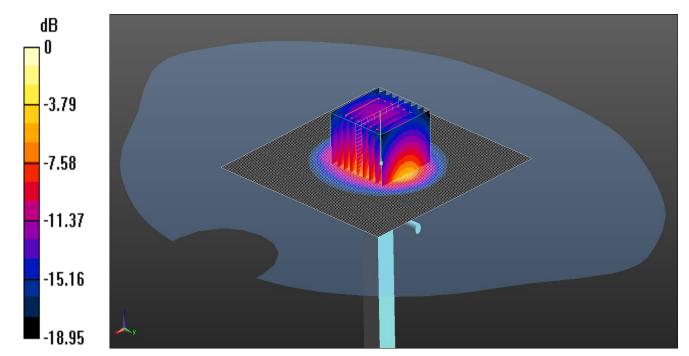


CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D2450V2 - SN748; Type: D2450V2; Serial: SN748

0 dB = 21.2 W/kg = 13.26 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 10 03 20 - 2450 5% MHz Medium parameters used: f = 2450 MHz; σ = 2.026 S/m; $ε_r$ = 52.369; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(7.72, 7.72, 7.72); Calibrated: 24/04/2019;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818
- -; SEMCAD X Version 14.6.10 (7417)

 $\textbf{Configuration/d=10mm, Pin=250mW/Area Scan (101x101x1):} \ \ \textbf{Interpolated grid: } \ \ dx=1.000 \ mm, \ dy=1.000 \ mm$

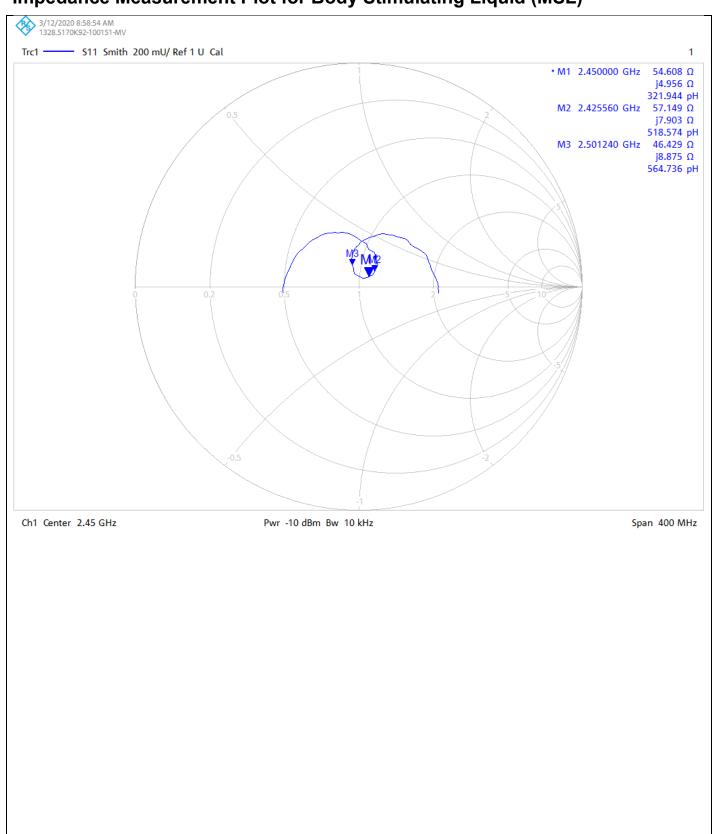
Maximum value of SAR (interpolated) = 16.0 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 88.95 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.33 W/kg

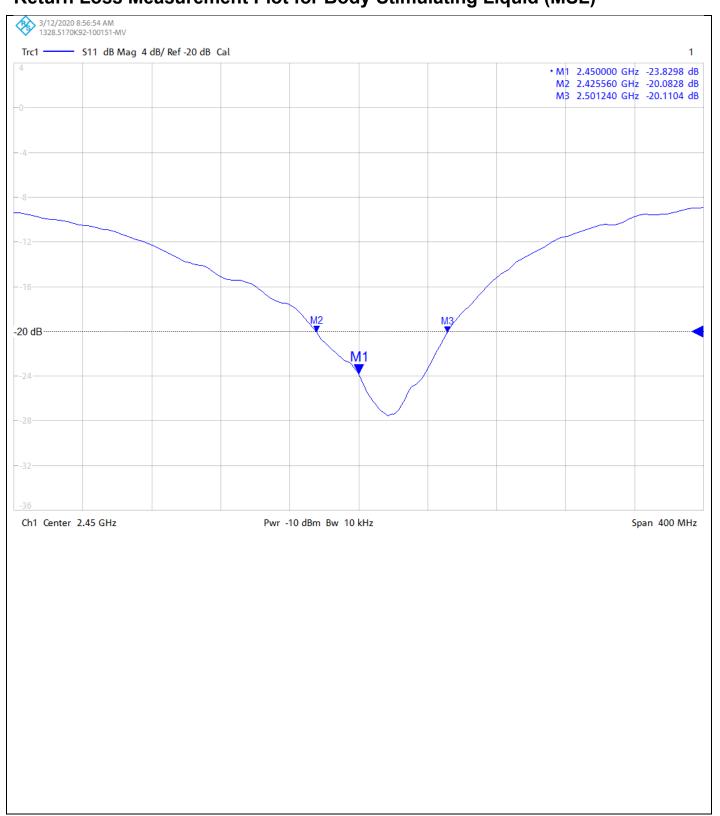

Maximum value of SAR (measured) = 21.2 W/kg

CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252596JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01A

Instrument ID: 748

Calibration Date: 12/Mar/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01A

Instrument ID: 748

Calibration Date: 12/Mar/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01A

Instrument ID: 748

Calibration Date: 12/Mar/2020

Calibration Due Date:

32CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 17/Apr/2020 CERTIFICATE NUMBER: 13252595JD01D

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Marec.

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 14/Apr/2020

Manufacturer: Speag

Type/Model Number: D2600V2

Serial Number: 1036

Calibration Date: 17/Apr/2020

Calibrated By: Masood Khan

Test Engineer

Signature: MDant

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178317	Data Acquisition Electronics	SPEAG	DAE4	1542	17 Mar 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0135603	Dipole	SPEAG	D2600V2	1109	14 Feb 2020	12
PRE0131118	Power Sensor	Rhode & Schwarz	NRV-Z1	826515/015	27 Jan 2020	12
PRE0134023	Power Sensor	Rhode & Schwarz	NRV-Z1	860462/016	27 Jan 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	23 Jan 2020	12

13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

CERTIFICATE NUMBER:

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.10.0.1446)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

							<u> </u>		
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Olificiant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	2600	20.5 °C	21 ∩ ∘∩	20.9°C	21.1°C	εr	39.00	39.88	± 5%
пеац	2000	20.5 C	21.0 C	20.9 C	21.1 6	σ	1.96	1.93	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	14.20 W/Kg	56.53 W/Kg	± 17.57%
пеац	SAR averaged over 10g	6.34 W/Kg	25.23 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	51.234 Ω ± -4.85 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
пеац	Return Loss	- 26.09	± 2.03 dB

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

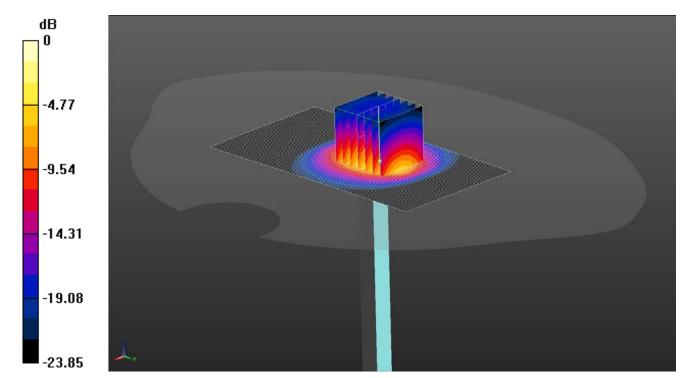
Simulant Liquid	Frequency	Room	Temp	Liquio	d Temp	Parameters	Target	Measured	Uncertainty
Ollificiant Liquid	(MHz)	Start	End	Start	End	Farameters	Value	Value	(%)
Body	2600	21.5 °C	21 ∩ °C	21.0°C	21.1°C	εr	52.50	52.07	± 5%
Бойу	2000	21.5 6	21.0 C	21.0 C	21.1 6	σ	2.16	2.12	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	14.30 W/Kg	56.92 W/Kg	± 18.06%
Бойу	SAR averaged over 10g	6.33 W/Kg	25.20 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dody	Impedance	47.60 Ω ± -4.39 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	-25.81	± 2.03 dB


CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2600V2 - SN1036; Type: D2600V2; Serial: SN1036

0 dB = 24.5 W/kg = 13.89 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1;

Medium: Site65_14Apr2020_180909_Head - 750 2300 2450 2600; Medium parameters used: f = 2600 MHz; σ = 1.935 S/m; $ε_r = 39.884$; ρ = 1000 kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.6, 7.6, 7.6); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin-SAM B (Site 65); Type: QD 000 P40 CC; Serial: 1945;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

2600/d=10mm, Pin=250 mW 2/Area Scan (61x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

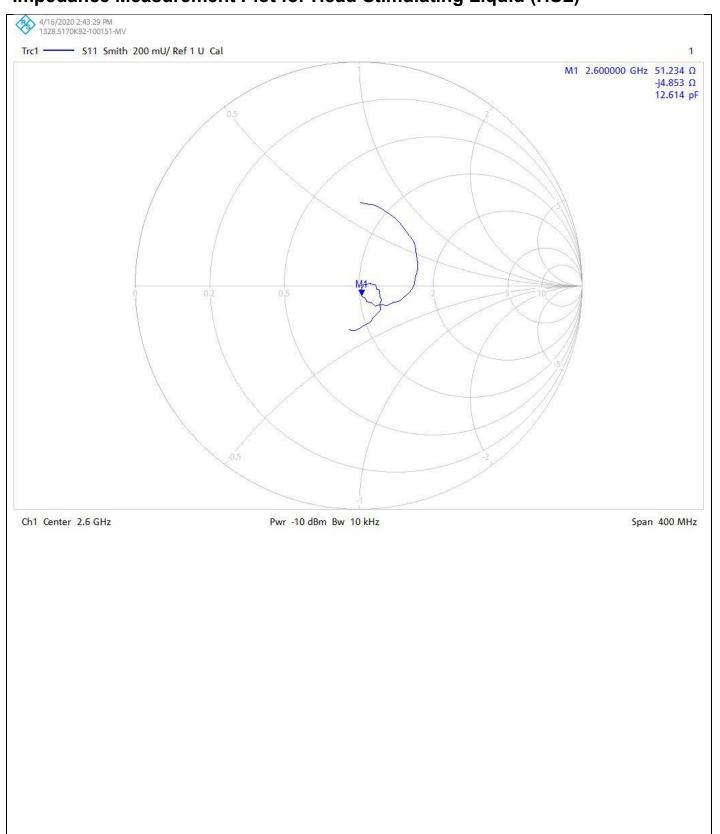
Maximum value of SAR (interpolated) = 19.4 W/kg

2600/d=10mm, Pin=250 mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 87.99 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.34 W/kg


Maximum value of SAR (measured) = 24.5 W/kg

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

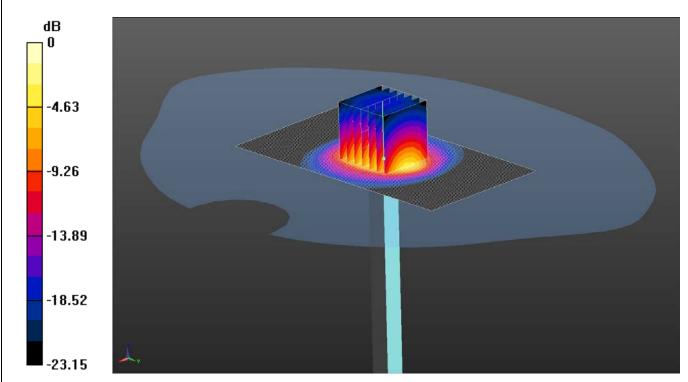


CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D2600V2 - SN1036; Type: D2600V2; Serial: SN1036

0 dB = 24.6 W/kg = 13.91 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1;

Medium: Site65_15Apr2020_140023_Body - 750 2300 2450 2600 5%; Medium parameters used: f = 2600 MHz; σ = 2.125 S/m; ϵ_r = 52.07; ρ = 1000 kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(7.58, 7.58, 7.58); Calibrated: 24/03/2020;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

2600/d=10mm, Pin=250 mW 2/Area Scan (61x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

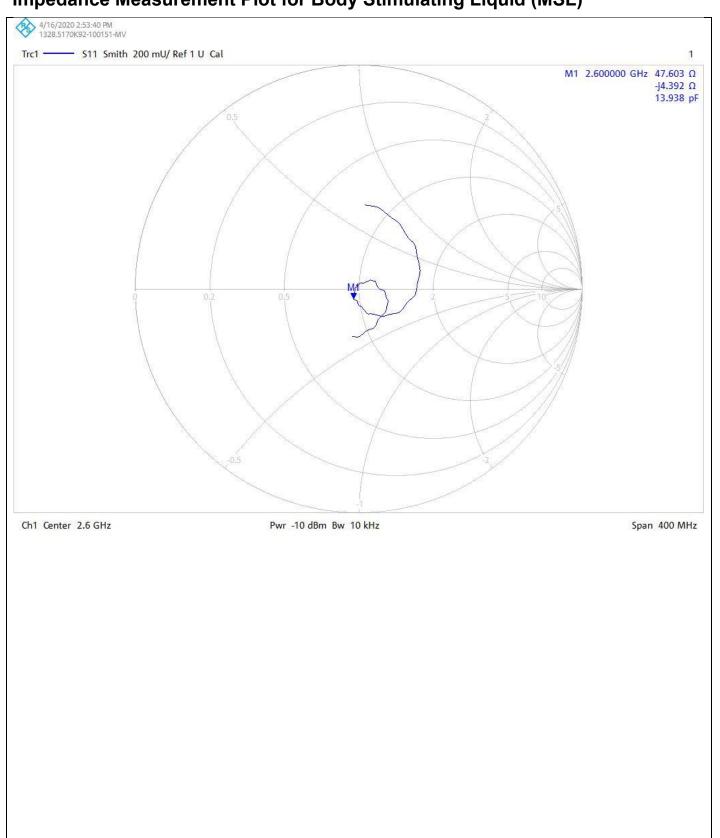
Maximum value of SAR (interpolated) = 26.1 W/kg

2600/d=10mm, Pin=250 mW 2/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 111.4 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.33 W/kg

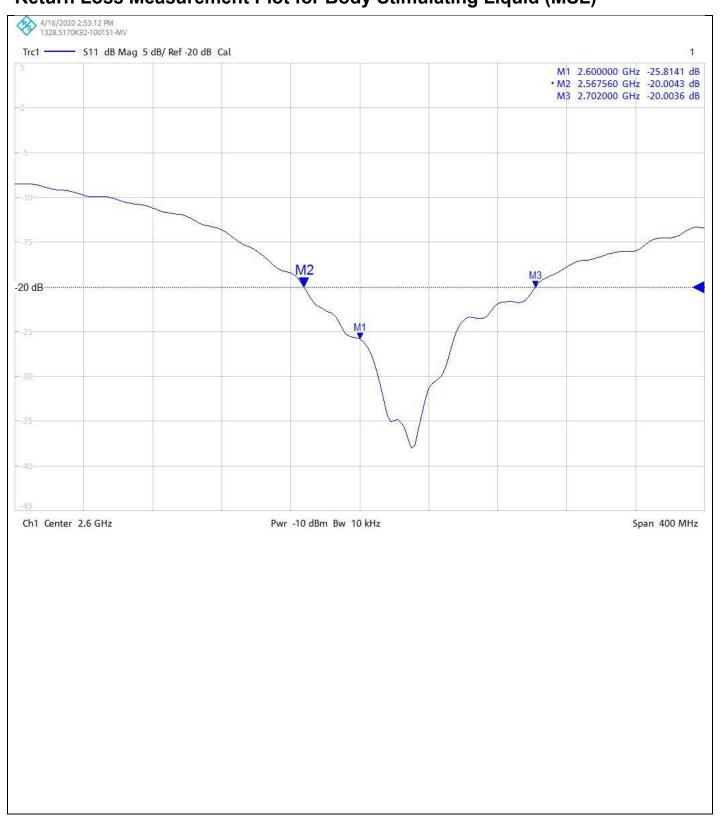

Maximum value of SAR (measured) = 24.6 W/kg

CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252595JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01D

Instrument ID: 1036

Calibration Date: 17/Apr/2020

Calibration Due Date:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Certificate No: D2600V2-1006_Oct19

CALIBRATION CERTIFICATE

Object D2600V2 - SN:1006

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: October 14, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.HeSet
Approved by:	Katja Pokovic	Technical Manager	elles

Issued: October 15, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and excessions were approximately	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	25555	i exec

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The remaining parameter and a second paramete	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	(PAGE	RESERVE

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1006_Oct19 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 4.8 jΩ	
Return Loss	- 26.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 3.7 jΩ	
Return Loss	- 25.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2600V2-1006_Oct19 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.10.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1006

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

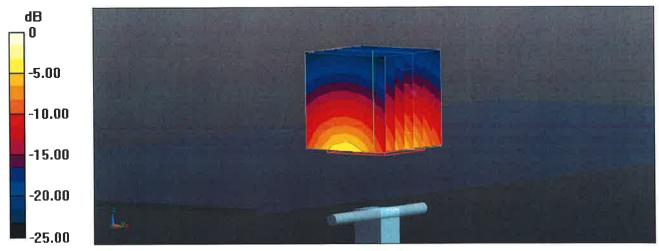
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.6 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.37 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 50.1%

Maximum value of SAR (measured) = 23.8 W/kg

0 dB = 23.8 W/kg = 13.77 dBW/kg

DASY5 Validation Report for Body TSL

Date: 14.10.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1006

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.21 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

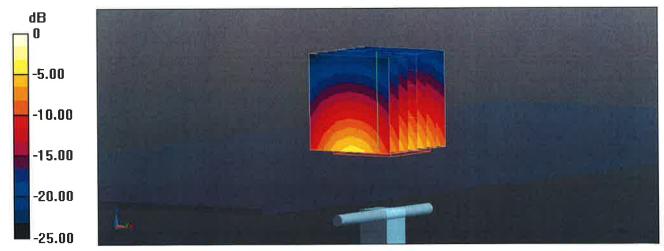
• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.0 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.11 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.8%

Maximum value of SAR (measured) = 22.8 W/kg

0 dB = 22.8 W/kg = 13.58 dBW/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 17/Apr/2020 CERTIFICATE NUMBER: 13252595JD01E

Page 1 of 10

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

APPROVED SIGNATORY

The water

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 14/Apr/2018

Manufacturer: SPEAG

Type/Model Number: D3500V2

Serial Number: 1011

Calibration Date: 17/Apr/2020

Calibrated By: Masood Khan

Test Engineer

Monas

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178317	Data Acquisition Electronics	SPEAG	DAE4	1542	17 Mar 2020	12
PRE0178314	Probe	SPEAG	EX3DV4	7496	24 Mar 2020	12
PRE0135600	Dipole	SPEAG	D3500V2	1044	14 Feb 2020	12
PRE0131118	Power Sensor	Rhode & Schwarz	NRV-Z1	826515/015	27 Jan 2020	12
PRE0134023	Power Sensor	Rhode & Schwarz	NRV-Z1	860462/016	27 Jan 2020	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
G0615	Signal Generator	Rhode & Schwarz	SMBV100A	260473	25 Feb 2020	12

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.10.0.1446)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	3500 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

							<u> </u>	·	
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Omidiant Elquid	(MHz)	Start	End	Start	End	1 diameters	Value	Value	(%)
Head	3500	21.0 °C	21.5 ℃	20.1℃	21.1°C	εr	37.90	37.34	± 5%
пеаи	3300	21.0 C	21.5 C	20.1 C	21.1 6	σ	2.91	2.91	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	17.3 W/Kg	68.87 W/Kg	± 18.75%
пеац	SAR averaged over 10g	6.65 W/Kg	26.47 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Lload	Impedance	54.226 Ω ± -1.98 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	-26.99	± 2.03 dB

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

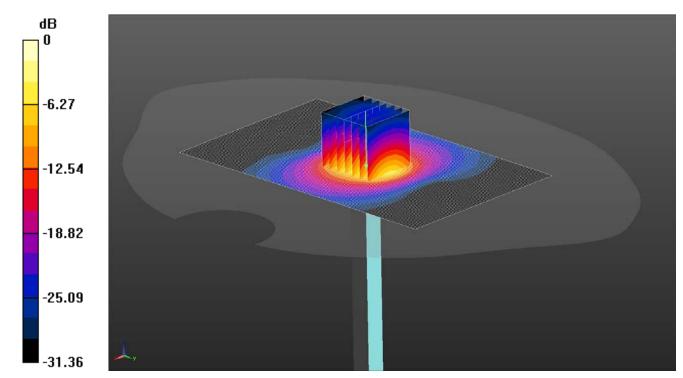
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Ollificiant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Body	3500	21.0 °C	21.5 °C	19.1℃	20.0°C	εr	51.30	50.75	± 5%
Бойу	3300	21.0 C	21.5 C	19.1 C	20.0 C	σ	3.31	3.17	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	16.60 W/Kg	66.08 W/Kg	± 18.53%
Бойу	SAR averaged over 10g	6.30 W/Kg	25.08 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Pody	Impedance	53.40 Ω ± 0.629 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	-29.59	± 2.03 dB


CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D3500V2 - SN1011; Type: D3500V2; Serial: SN1011

0 dB = 33.2 W/kg = 15.21 dBW/kg

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1;

Medium: Site65_14Apr2020_175947_Head - 3500 5%; Medium parameters used: f = 3500 MHz; σ = 2.911 S/m; ϵ_r = 37.345; ρ = 1000 kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

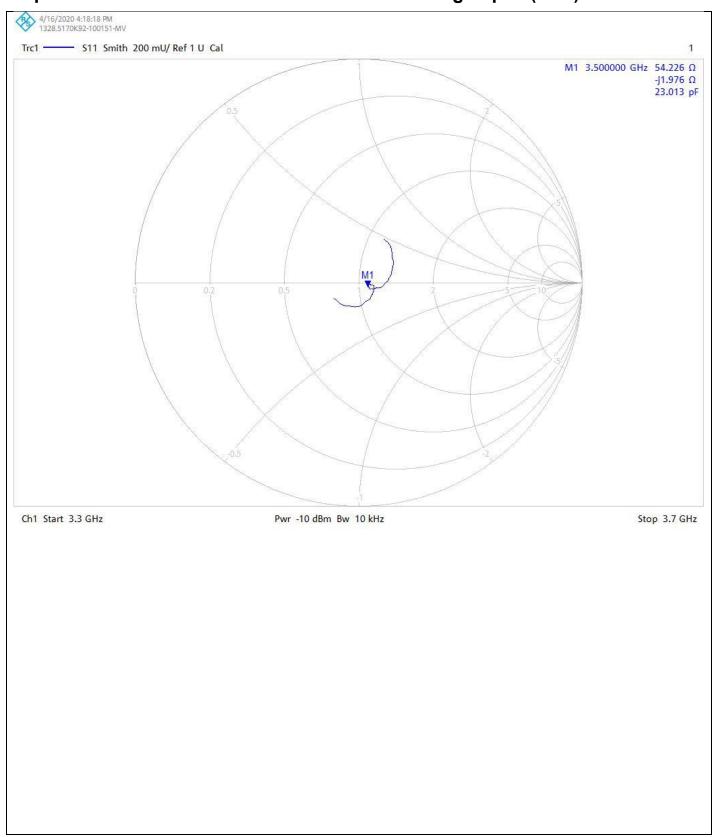
- Probe: EX3DV4 SN7496; ConvF(6.79, 6.79, 6.79); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin-SAM B (Site 65); Type: QD 000 P40 CC; Serial: 1945;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

Configuration/d=10mm, Pin=250mW 2/Area Scan (81x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 25.2 W/kg

Configuration/d=10mm, Pin=250mW 2/Zoom Scan (5x5x7) (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm Reference Value = 91.15 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 45.4 W/kg


SAR(1 g) = 17.3 W/kg; SAR(10 g) = 6.65 W/kg Maximum value of SAR (measured) = 33.2 W/kg

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

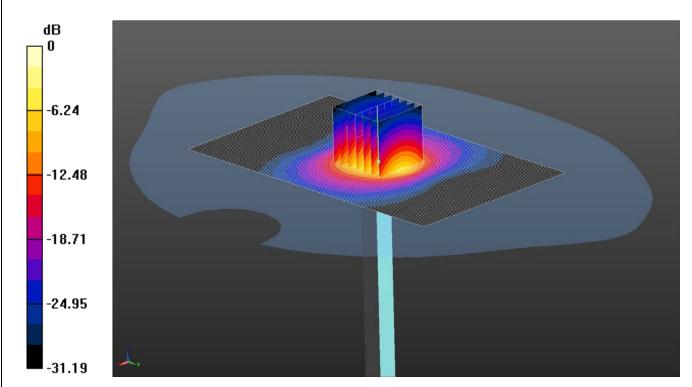
Impedance Measurement Plot for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D3500V2 - SN1011; Type: D3500V2; Serial: SN1011

0 dB = 31.4 W/kg = 14.97 dBW/kg

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1;

Medium: Site65_15Apr2020_170455_Body - 3500 5%; Medium parameters used: f = 3500 MHz; σ = 3.172 S/m; ϵ_r = 50.748; ρ = 1000 kg/m³;

Phantom section: Flat Section;

DASY5 Configuration:

- Probe: EX3DV4 SN7496; ConvF(6.46, 6.46, 6.46); Calibrated: 24/03/2020;
- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection);
- Electronics: DAE4 Sn1542; Calibrated: 17/03/2020;
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818;
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417);

Configuration/d=10mm, Pin=250mW/Area Scan (81x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

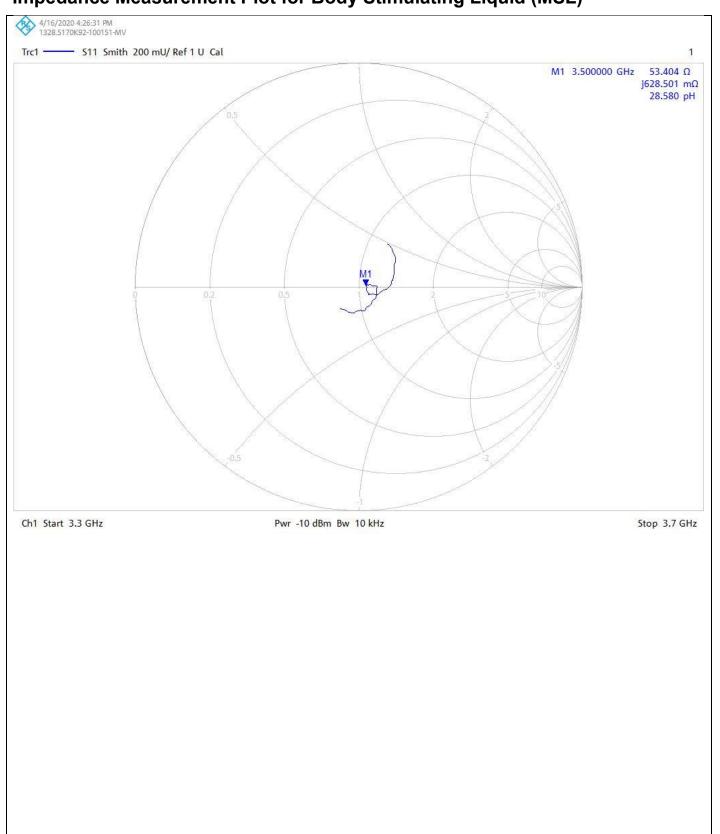
Maximum value of SAR (interpolated) = 25.2 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm

Reference Value = 84.11 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 41.7 W/kg

SAR(1 g) = 16.6 W/kg; SAR(10 g) = 6.3 W/kg

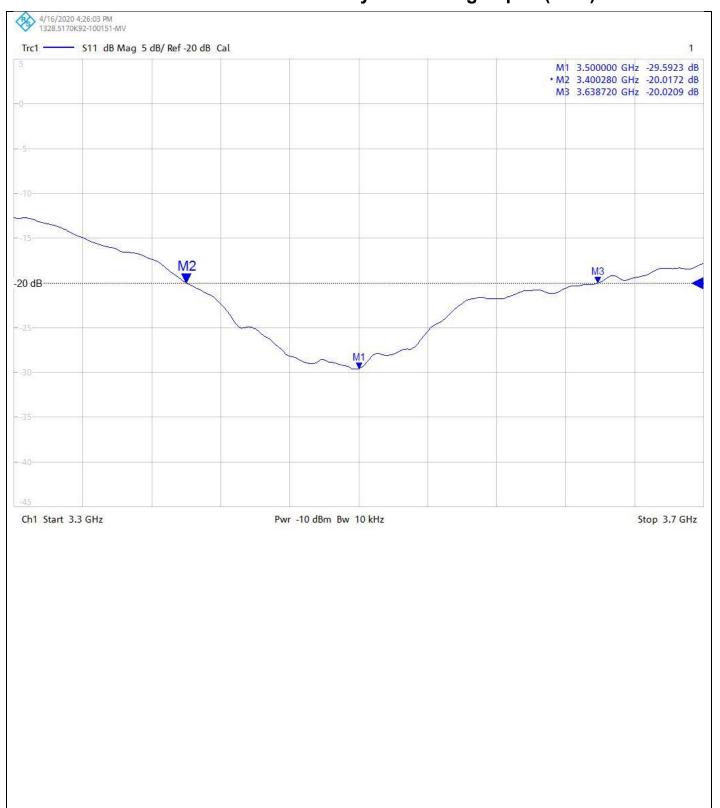

Maximum value of SAR (measured) = 31.4 W/kg

CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252595JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01E

Instrument ID: 1011

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01E

Instrument ID: 1011

Calibration Date: 17/Apr/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252595JD01E

Instrument ID: 1011

Calibration Date: 17/Apr/2020

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 12/Mar/2020 CERTIFICATE NUMBER: 13252596JD01B

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

APPROVED SIGNATORY

Page 1 of 10

Top Lase

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 26/Feb/2020

Manufacturer: Speag

Type/Model Number: D3500V2

Serial Number: 1060

Calibration Date: 12/Mar/2020

Calibrated By: Harmohan Sahota

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2547	Data Acquisition Electronics	SPEAG	DAE4	1438	11 Apr 2019	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2019	12
A2782	Dipole	SPEAG	D3500V2	1044	14 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2019	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND8	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	30 Apr 2019	12

NUMBER : 13252596JD01B

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.10.0.1446)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	3500 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

0:	Frequency	Room	Temp	Liqui	d Temp	D	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Lload	3500	20.6 °C	21.4 °C	20.4°C	20.2°C	εr	37.90	39.12	± 5%
Head	3300	20.0 C	21.4 C	20.4 C	20.2 C	σ	2.91	2.79	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	16.30 W/Kg	64.89 W/Kg	± 18.75%
пеац	SAR averaged over 10g	6.23 W/Kg	24.80 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	54.363 Ω - 3.65 jΩ	± 0.28 Ω ± 0.044 jΩ
пеац	Return Loss	-25.34	± 2.03 dB

NUMBER : 13252596JD01B

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

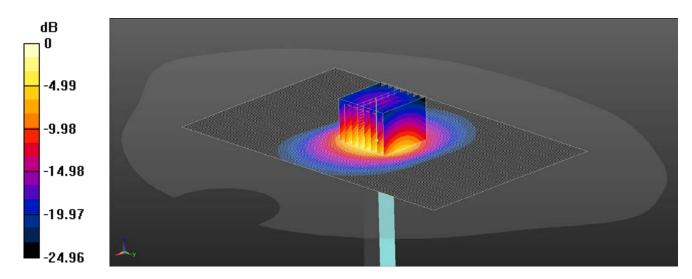
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Olificiant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Body	3500	20.5 °C	20.4 °C	19.5°C	21.0°C	εr	51.30	51.16	± 5%
Body	3300	20.5 C	20.4 C	19.5 C	21.0 C	σ	3.31	3.21	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dody	SAR averaged over 1g	17.00 W/Kg	67.67 W/Kg	± 18.53%
Body	SAR averaged over 10g	6.35 W/Kg	25.27 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	53.97 Ω - 3.45 jΩ	± 0.28 Ω ± 0.044 jΩ
Бойу	Return Loss	-25.94	± 2.03 dB


CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D3500V2 - SN1060; Type: D3500V2; Serial: SN1060

0 dB = 22.9 W/kg = 13.60 dBW/kg

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1

Medium: HSL 09 03 20 - 2450 3500 5250 5600 5750 5% Medium parameters used: f = 3500 MHz; $\sigma = 2.795$ S/m; $\epsilon_r = 39.123$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

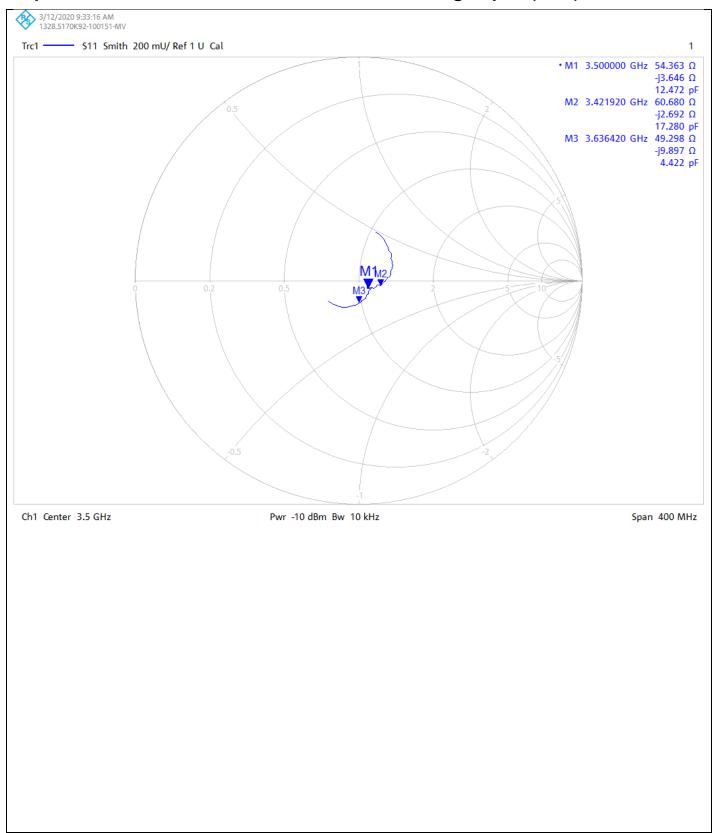
DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(7.09, 7.09, 7.09); Calibrated: 24/04/2019;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 1945
- -; SEMCAD X Version 14.6.10 (7417)

Configuration/d=10mm, Pin=250mW/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 23.4 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (8x8x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 91.12 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 43.0 W/kg


SAR(1 g) = 16.3 W/kg; SAR(10 g) = 6.23 W/kg Maximum value of SAR (measured) = 22.9 W/kg

CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

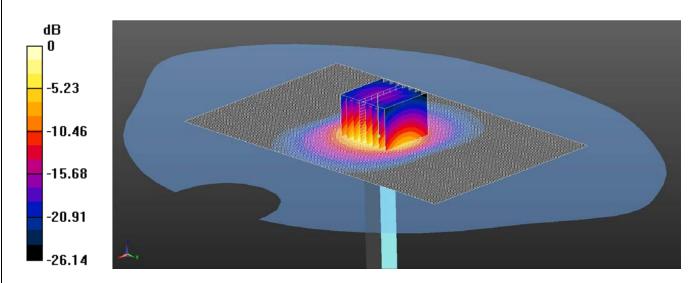


CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D3500V2 - SN1060; Type: D3500V2; Serial: SN1060

0 dB = 24.1 W/kg = 13.82 dBW/kg

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1

Medium: MSL 10 03 20 - 3500 5% Medium parameters used: f = 3500 MHz; $\sigma = 3.21$ S/m; $\epsilon_r = 51.158$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2019;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818
- -; SEMCAD X Version 14.6.10 (7417)

3500/d=10mm, Pin=250mW/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

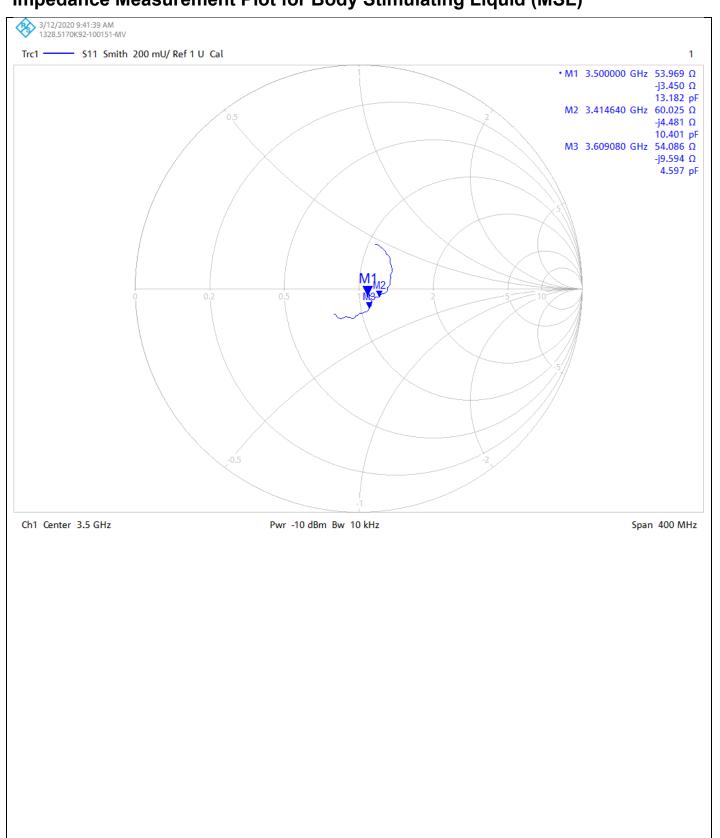
Maximum value of SAR (interpolated) = 24.4 W/kg

3500/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (8x8x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 88.07 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 44.6 W/kg

SAR(1 g) = 17 W/kg; SAR(10 g) = 6.35 W/kg

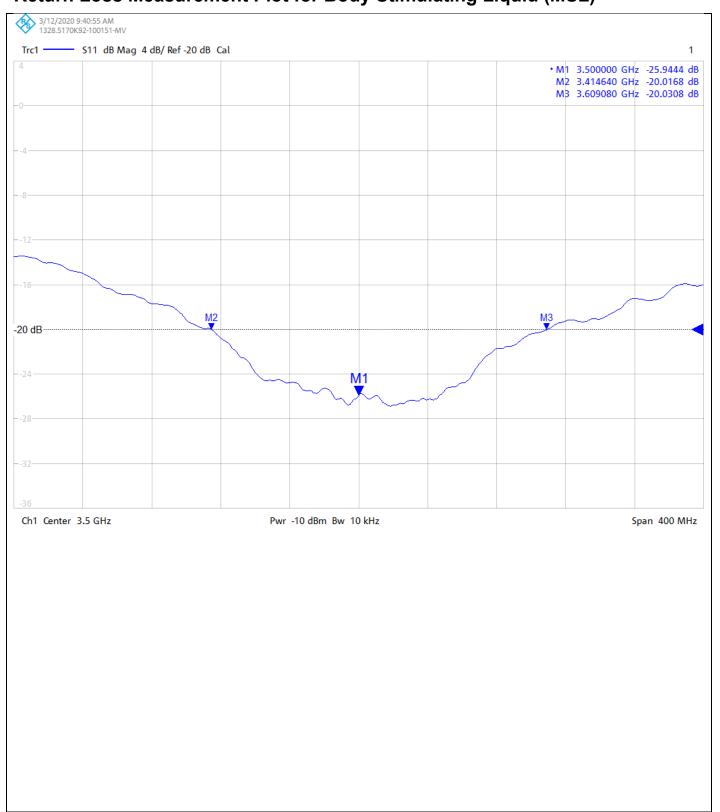

Maximum value of SAR (measured) = 24.1 W/kg

CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 13252596JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01B

Instrument ID: 1060

Calibration Date: 12/Mar/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01B

Instrument ID: 1060

Calibration Date: 12/Mar/2020

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 13252596JD01B

Instrument ID: 1060

Calibration Date: 12/Mar/2020

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D3700V2-1039_May20

CALIBRATION CERTIFICATE

Object D3700V2 - SN:1039

Calibration procedure(s) QA CAL-22.v4

Calibration Procedure for SAR Validation Sources between 3-6 GHz

Calibration date: May 11, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	A. Ketus
Approved by:	Katja Pokovic	Technical Manager	le let
I I			

Issued: May 11, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1039_May20

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

C

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1039_May20 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.5 ± 6 %	3.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	2 444	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

***	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.0	3.55 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.9 ± 6 %	3.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		10000

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	63.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Certificate No: D3700V2-1039_May20 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.3 Ω - 2.0 jΩ
Return Loss	- 27.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.1 Ω + 1.1 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3700V2-1039_May20 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1039

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz; $\sigma = 3.05 \text{ S/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

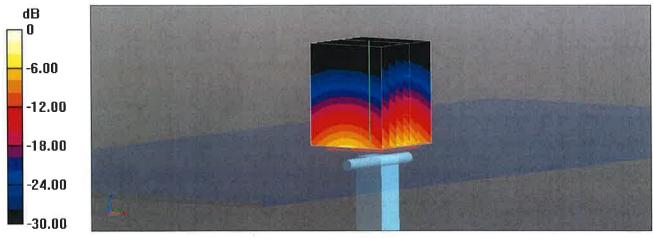
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

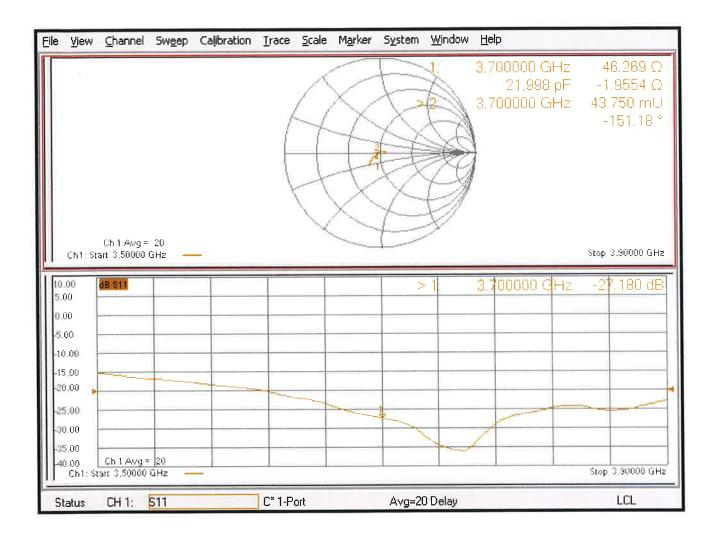
Reference Value = 70.96 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.41 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 72.7%


Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Certificate No: D3700V2-1039_May20

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1039

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz; $\sigma = 3.54 \text{ S/m}$; $\varepsilon_r = 49.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.31, 7.31, 7.31) @ 3700 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

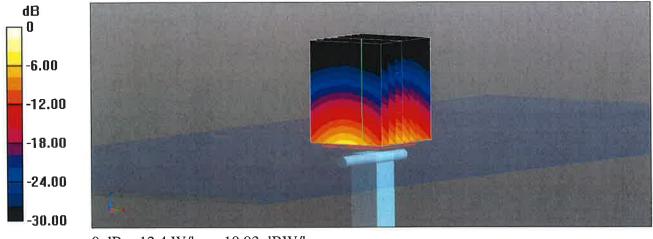
• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

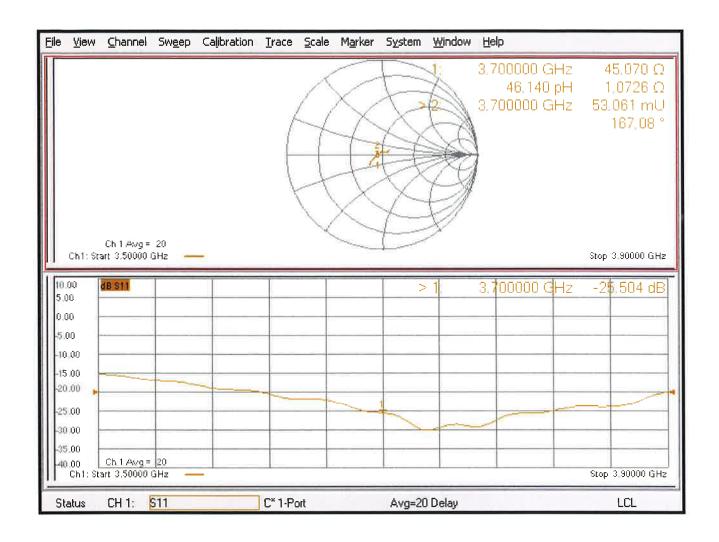
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.85 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 6.34 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm


Ratio of SAR at M2 to SAR at M1 = 74.3%

Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D3900V2-1052_Aug20

CALIBRATION CERTIFICATE

Object D3900V2 - SN:1052

Calibration procedure(s) QA CAL-22.v5

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: August 03, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
	20		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1/1
,			C. Khin
Approved by:	Katja Pokovic	Technical Manager	MIN
1.4			delles-

Issued: August 3, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3900V2-1052_Aug20 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

<u>.</u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.21 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	65044V	14440

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	70.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	50.8	3.78 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.0 ± 6 %	3.77 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	64.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Certificate No: D3900V2-1052_Aug20 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5Ω - $5.9 j\Omega$	
Return Loss	- 24.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω - 2.7 jΩ	
Return Loss	- 29.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.106 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

1	Manufactured by	SPEAG

Certificate No: D3900V2-1052_Aug20

DASY5 Validation Report for Head TSL

Date: 03.08.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1052

Communication System: UID 0 - CW; Frequency: 3900 MHz

Medium parameters used: f = 3900 MHz; $\sigma = 3.21 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

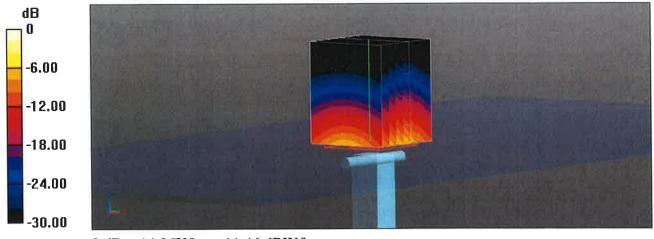
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,

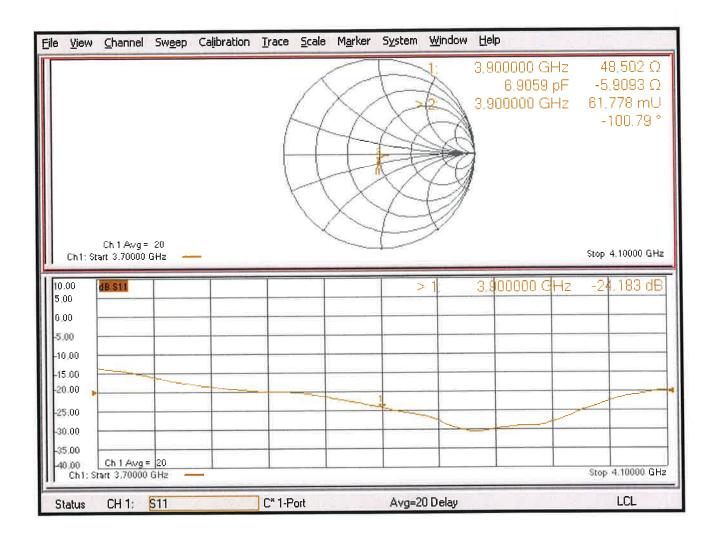
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.87 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 20.2 W/kg

SAR(1 g) = 6.99 W/kg; SAR(10 g) = 2.43 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 73.5%

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.08.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1052

Communication System: UID 0 - CW; Frequency: 3900 MHz

Medium parameters used: f = 3900 MHz; $\sigma = 3.77 \text{ S/m}$; $\varepsilon_r = 50.0$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.18, 7.18, 7.18) @ 3900 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,

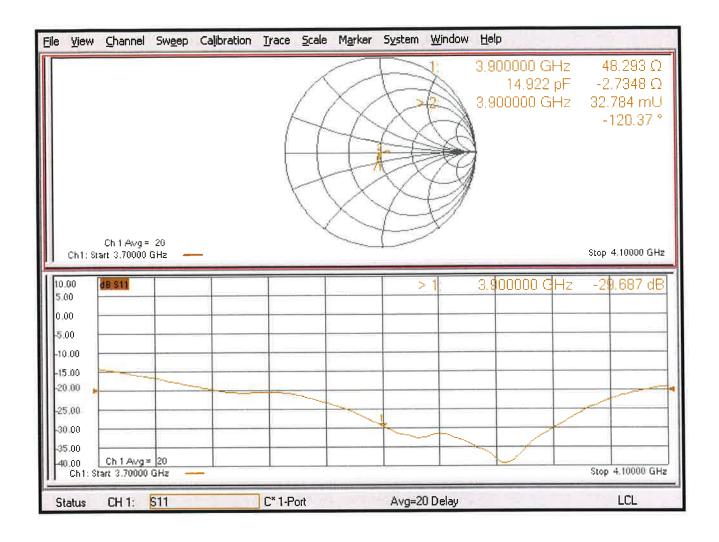
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.81 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 19.5 W/kg

SAR(1 g) = 6.51 W/kg; SAR(10 g) = 2.24 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 72.4%

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Certificate No: D5GHzV2-1168 Nov19

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1168

Calibration procedure(s) QA CAL-22.v4

Calibration Procedure for SAR Validation Sources between 3-6 GHz

Calibration date: November 23, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3503	25-Mar-19 (No. EX3-3503_Mar19)	Mar-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sef My
Approved by:	Katja Pokovic	Technical Manager	Mas

Issued: November 26, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	Tagranton a litera
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
	5200 MHz ± 1 MHz	
Frequency	5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

W. 12. 11. 12. 12.	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.26 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.7 Ω - 9.5 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.7 Ω - 7.3 jΩ	
Return Loss	- 20.6 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω - 8.3 jΩ	
Return Loss	- 21.2 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.5 Ω - 12.3 jΩ
Return Loss	- 18.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.6 Ω - 7.3 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.8 Ω - 6.9 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.206 ns
Lieutical Delay (one all collen)	1.200 1.0

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

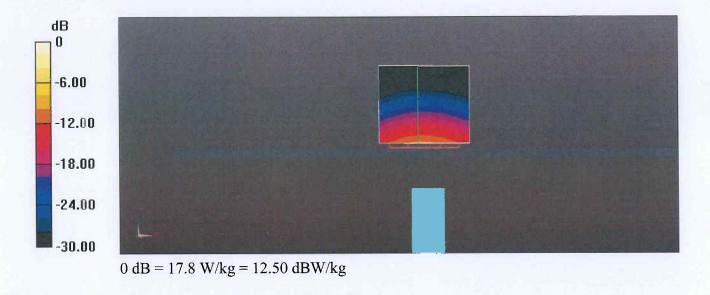
Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1168_Nov19 Page 7 of 13

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.24 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

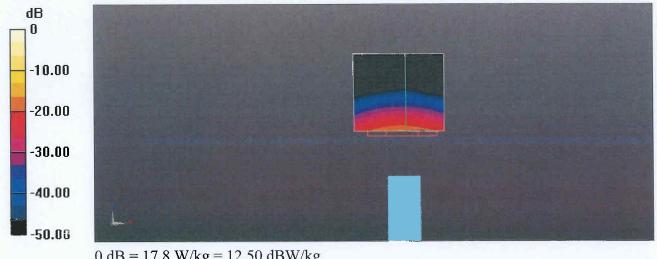
Ratio of SAR at M2 to SAR at M1 = 65.2%

Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.34 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.09 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 62.8%

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1138_Aug20

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1138

Calibration procedure(s) QA CAL-22.v5

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: August 17, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	LID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1. Lota
			0 7
Approved by:	Katja Pokovic	Technical Manager	alle

Issued: August 17, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: D5GHzV2-1138_Aug20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 10.0 mm, dz = 10.0 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

The following parameters and schodiations were appropriate	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.48 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

ne following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(9999)	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1138_Aug20 Page 3 of 8

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

The following parameters and saleurations were appro-	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.03 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C	sector.		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1138_Aug20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.0 Ω - 6.1 jΩ	
Return Loss	- 24.3 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.9 Ω - 2.4 jΩ	
Return Loss	- 23.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

54.9 Ω - 1.9 jΩ	
- 26.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1138_Aug20

DASY5 Validation Report for Head TSL

Date: 17.08.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5250 MHz; σ = 4.48 S/m; ϵ_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.83 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.03 S/m; ϵ_r = 33.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.68 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 69.9%

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.08 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.38 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 67.6%

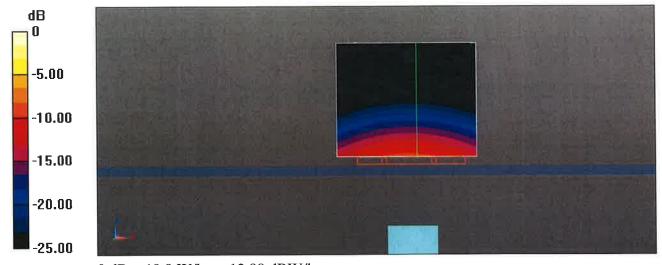
Maximum value of SAR (measured) = 19.9 W/kg

Page 6 of 8

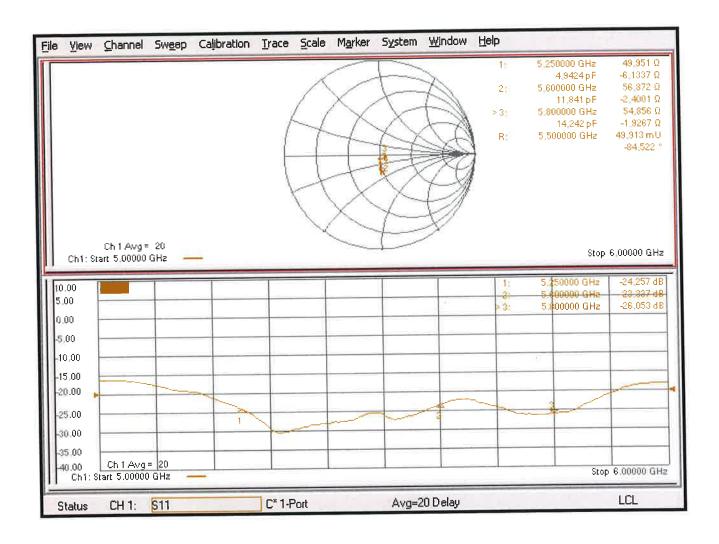
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.94 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.30 W/kg


Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 19.7 W/kg

Impedance Measurement Plot for Head TSL

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 12/Mar/2020 CERTIFICATE NUMBER: 13252596JD01C

5248

UL VS LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 16

APPROVED SIGNATORY

.....

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 26/Feb/2020

Manufacturer: SPEAG

Type/Model Number: D5GHzV2

Serial Number: 1003

Calibration Date: 12/Mar/2020

Calibrated By: Harmohan Sahota

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 16

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2547	Data Acquisition Electronics	SPEAG	DAE4	1438	11 Apr 2019	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2019	12
A1377	Dipole	SPEAG	D5GHzv2	1016	18 Feb 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	27 Mar 2019	12
PRE0151154	Vector Network Analyser	Rhode & Schwarz	ZND8	100151	30 Jan 2020	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947	17 Oct 2019	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	30 Apr 2019	12

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 16

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01
DASY Version:	DASY 52 (v52.10.0.1446)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)

Frequency: 5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

-		<u> </u>						<u> </u>		
	Simulant Liquid	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
	Official Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
	Head	5250	20.6 °C	21.6 ℃	20.4°C	20.6°C	εr	35.9	36.151	± 5%
	пеац	3230	20.0 C	21.0 C	20.4 C	20.0 C	σ	4.71	4.652	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.01 W/Kg	80.1 W/Kg	± 18.75%
пеац	SAR averaged over 10g	2.29 W/Kg	22.9 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	58.014 Ω + 5.272 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
пеаи	Return Loss	-21.04	± 2.23 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	i didilieters	Value	Value	(%)
Head	5600	20.6 °C	21.6 °C	20.4°C	20.6°C	εr	35.5	35.524	± 5%
пеац	3000	20.0 C	21.0 C	20.4 C	20.0 C	σ	5.07	5.047	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lload	SAR averaged over 1g	7.98 W/Kg	79.8 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.25 W/Kg	22.5 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Lload	Impedance	45.328 Ω + 2.547 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	-25.05	± 2.23 dB

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	5750	20.6 °C	21.6 °C	20.4°C	20.6°C	εr	35.4	35.25	± 5%
Heau	3730	20.0 C	21.0 C	20.4 C	20.0 C	σ	5.22	5.217	± 5%

SAR Results – Head Simulating Liquid (HSL)

		<u> </u>		
Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	7.37 W/Kg	73.7 W/Kg	± 18.75%
пеац	SAR averaged over 10g	2.10 W/Kg	21.0 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Lload	Impedance	59.08 Ω + 1.306 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	-21.52	± 2.23 dB

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 16

Frequency: 5250 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Parameters	Target	Measured	Uncertainty
Oliffularit Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Pody	5250	21 0 ℃	21.2 ℃	20.7°C	20.8°C	εr	48.9	48.462	± 5%
Body	3230	21.0 C	21.2 C	20.7 C	20.6 C	σ	5.36	5.402	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.96 W/Kg	79.6 W/Kg	± 18.53%
Бойу	SAR averaged over 10g	2.23 W/Kg	22.3 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dody	Impedance	58.686 Ω + 5.831 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	-20.33	± 2.23 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

							, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Simulant Liquid	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Dody	5600	21 ∩ °C	24.2.90	20.7°C	20.8°C	εr	48.5	47.929	± 5%
Body	2000	21.0°C	21.2°C	20.7°C	20.0°C	σ	5 77	5 93	+ 5%

SAR Results – Body Simulating Liquid (MSL)

		<u> </u>	,	
Simulant Liquid	SAR Measured	50 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	3.86 W/Kg	77.01 W/Kg	± 18.53%
Бойу	SAR averaged over 10g	1.07 W/Kg	21.34 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

	7 the fina i aramotoro Body offinalating Elquia (moz)							
	Simulant Liquid	Parameter	Measured Level	Uncertainty (%)				
	Body	Impedance	45.54 Ω + 2.691 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$				
	body	Return Loss	-25.30	± 2.23 dB				

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

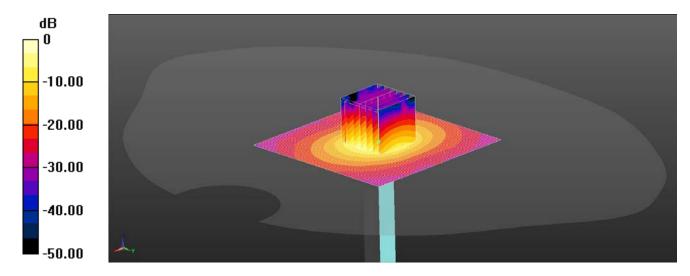
							<u> </u>		
Simulant Liquid	(1.1.1.)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
Oliffularit Elquiu		Start	End	Start	End	1 diameters	Value	Value	(%)
Pody	5750	21.0 °C 21.2 °	21.2 ℃	1.2 °C 20.7°C	20.8°C	εr	48.3	47.506	± 5%
Body			21.2 6			σ	5.94	6.12	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	7.48 W/Kg	74.8 W/Kg	± 18.53%
Боау	SAR averaged over 10g	2.09 W/Kg	20.9 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dody	Impedance	58.526 Ω + 4.072 jΩ	\pm 0.28 Ω \pm 0.044 jΩ
Body	Return Loss	-21.24	± 2.23 dB


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D5GHzV2 - SN1003; Type: D5GHzV2; Serial: SN1003

0 dB = 20.2 W/kg = 13.05 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: HSL 09 03 20 - 2450 3500 5250 5600 5750 5% Medium parameters used: f = 5250 MHz; σ = 4.659 S/m; ϵ_r = 36.152; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.34, 5.34, 5.34); Calibrated: 24/04/2019;

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019

- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 1945

-; SEMCAD X Version 14.6.10 (7417)

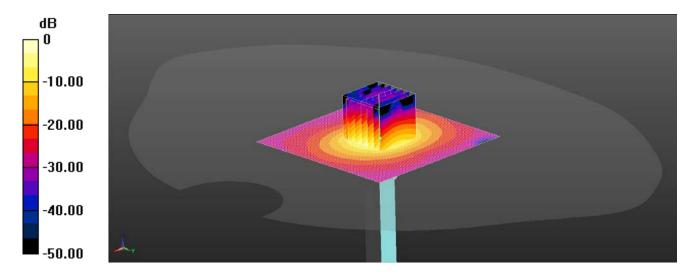
5250/PMK d=10mm, Pin=100mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.9 W/kg

5250/PMK d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.94 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 20.2 W/kg


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D5GHzV2 - SN1003; Type: D5GHzV2; Serial: SN1003

0 dB = 20.9 W/kg = 13.20 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

 $\label{eq:medium:hsl} \text{Medium: HSL 09 03 20 - 2450 3500 5250 5600 5750 5\% \ Medium parameters used: } f = 5600 \ \text{MHz}; \\ \sigma = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \rho = 5.054 \ \text{S/m}; \\ \epsilon_r = 35.525; \\ \epsilon_r = 35.525;$

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.05, 5.05, 5.05); Calibrated: 24/04/2019;

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019

- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 1945

-; SEMCAD X Version 14.6.10 (7417)

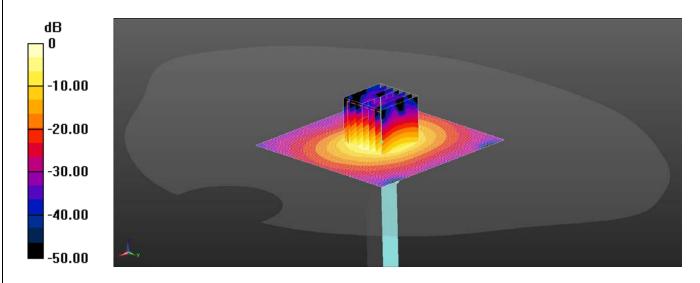
5600/PMK d=10mm, Pin=100mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.5 W/kg

5600/PMK d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.02 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 20.9 W/kg


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D5GHzV2 - SN1003; Type: D5GHzV2; Serial: SN1003

0 dB = 19.4 W/kg = 12.88 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: HSL 09 03 20 - 2450 3500 5250 5600 5750 5% Medium parameters used: f = 5750 MHz; σ = 5.225 S/m; $ε_r$ = 35.25; ρ =

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.15, 5.15, 5.15); Calibrated: 24/04/2019;

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin-SAM V8.0 (20deg probe tilt); Type: QD 000 P41 Ax; Serial: 1945
- -; SEMCAD X Version 14.6.10 (7417)

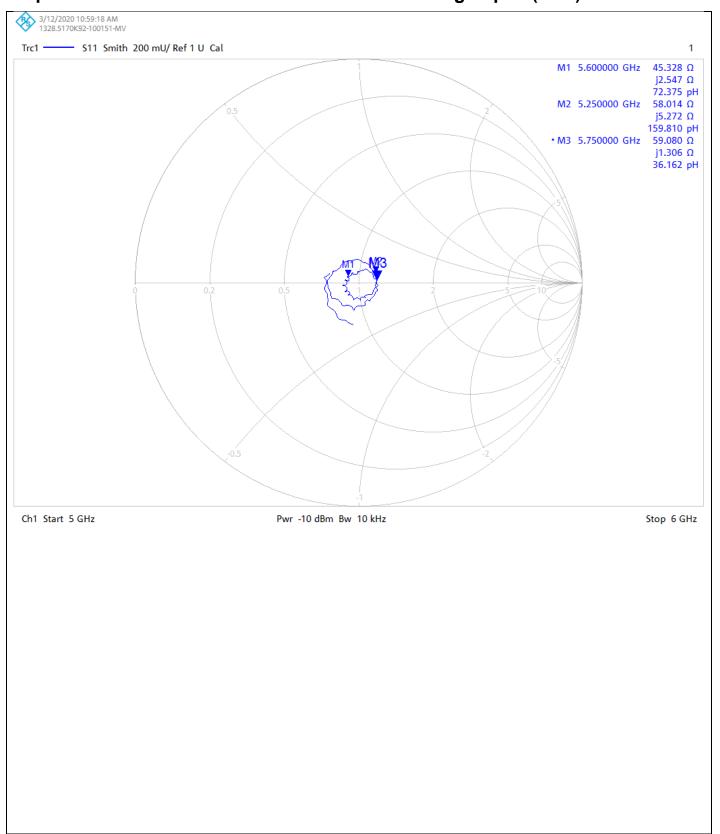
5750/PMK d=10mm, Pin=100mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 19.1 W/kg

5750/PMK d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.19 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.9 W/kg

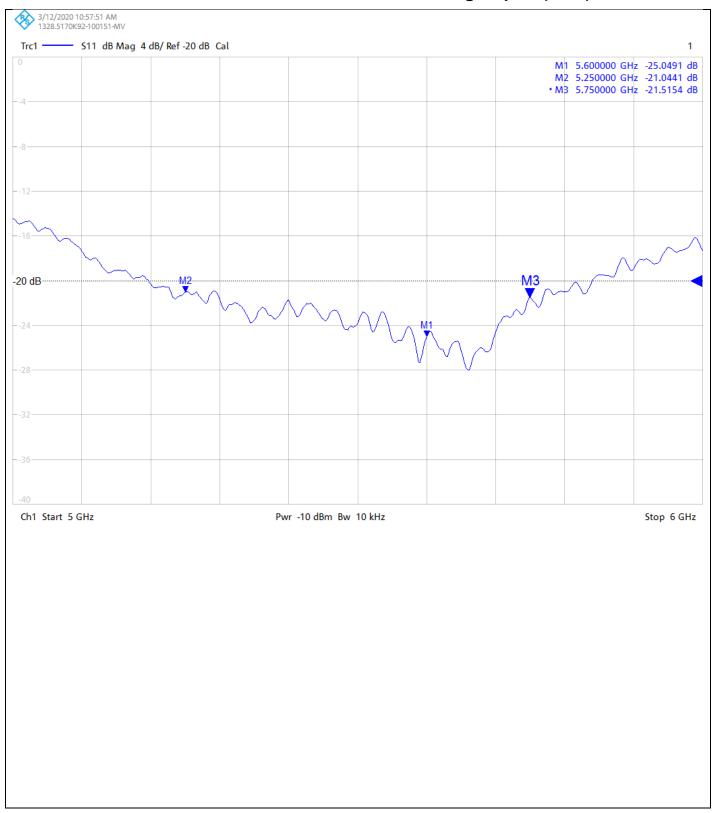

SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 19.4 W/kg

CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 16

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

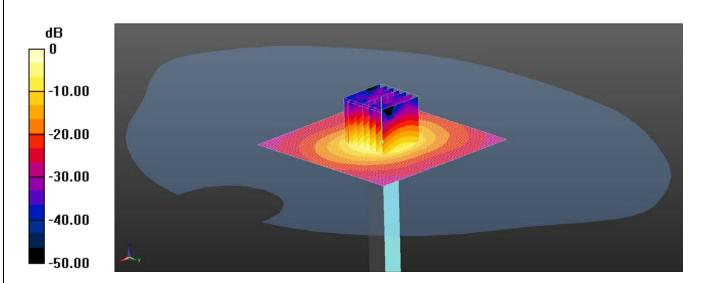


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 11 of 16

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 12 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

0 dB = 20.4 W/kg = 13.10 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL 10 03 20 - 5250, 5600, 5750 5% Medium parameters used: f = 5250 MHz; σ = 5.41 S/m; $ε_r$ = 48.463; ρ = 1000

kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(4.78, 4.78, 4.78); Calibrated: 24/04/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818
- -; SEMCAD X Version 14.6.10 (7417)

5250/d=10mm, Pin=100mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 20.5 W/kg

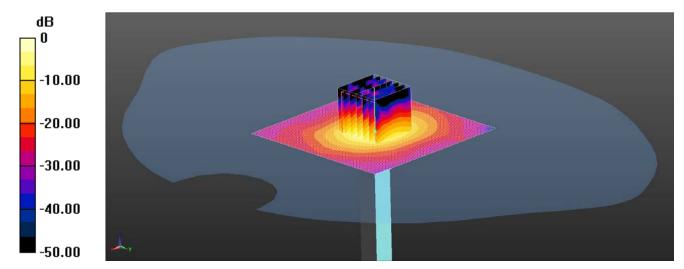
5250/d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.27 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 20.4 W/kg


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 13 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D5GHzV2 - SN1003; Type: D5GHzV2; Serial: SN1003

0 dB = 10.3 W/kg = 10.13 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL 10 03 20 - 5250, 5600, 5750 5% Medium parameters used: f = 5600 MHz; $\sigma = 5.939$ S/m; $\epsilon_r = 47.929$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

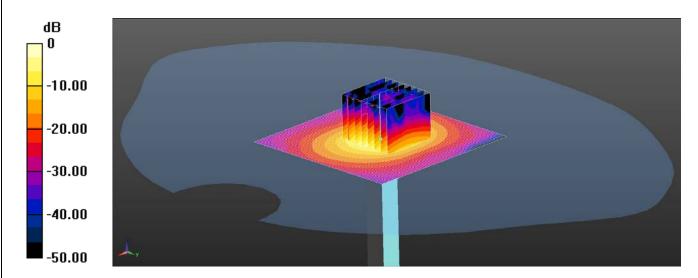
- Probe: EX3DV4 SN3995; ConvF(4.32, 4.32, 4.32); Calibrated: 24/04/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818
- -; SEMCAD X Version 14.6.10 (7417)

5600/Power Source d=10mm, Pin=50mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.3 W/kg

5600/Power Source d=10mm, Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 47.80 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 3.86 W/kg; SAR(10 g) = 1.07 W/kg Maximum value of SAR (measured) = 10.3 W/kg


CERTIFICATE NUMBER: 13252596JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 14 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: D5GHzV2 - SN1003; Type: D5GHzV2; Serial: SN1003

0 dB = 20.0 W/kg = 13.01 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL 10 03 20 - 5250, 5600, 5750 5% Medium parameters used: f = 5750 MHz; σ = 6.129 S/m; ϵ_r = 47.506; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(4.5, 4.5, 4.5); Calibrated: 24/04/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 11/04/2019
- Phantom: Twin SAM A (Site 65); Type: SAM 5.0; Serial: SN1818
- -; SEMCAD X Version 14.6.10 (7417)

5750/PMK d=10mm, Pin=100mW/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 20.1 W/kg

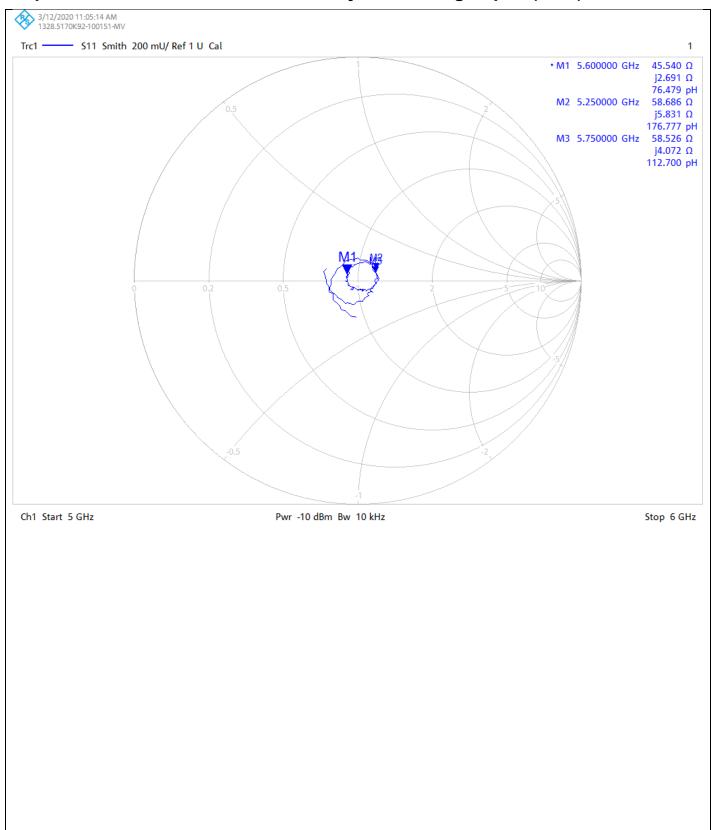
5750/PMK d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.55 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

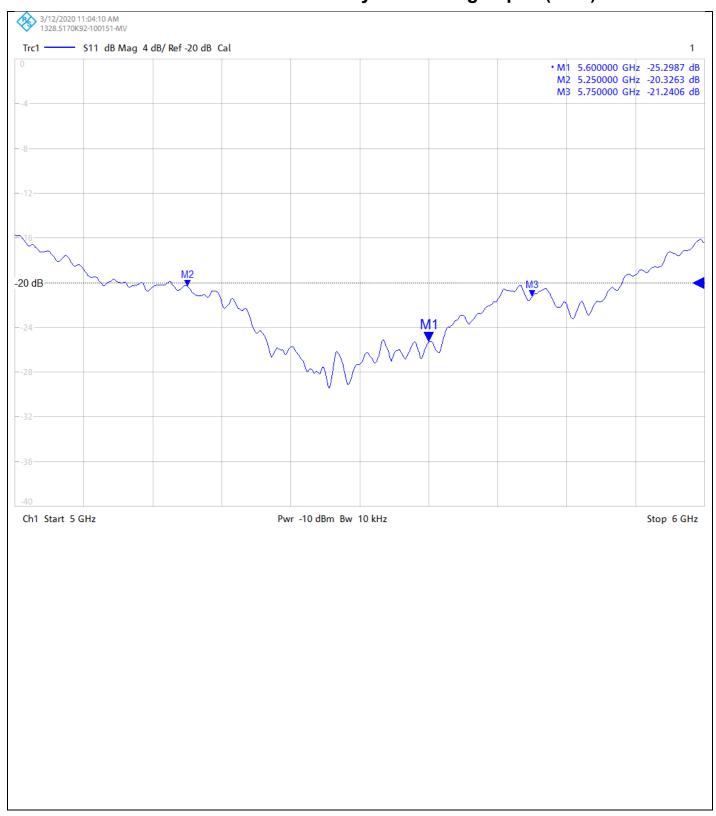

NUMBER : 13252596JD01C

CERTIFICATE

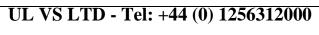
UKAS Accredited Calibration Laboratory No. 5248

Page 15 of 16

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



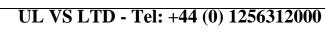
CERTIFICATE NUMBER: 13252596JD01C


UKAS Accredited Calibration Laboratory No. 5248

Page 16 of 16

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

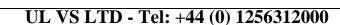


Certificate Number: 13252596JD01C

Instrument ID: 1003

Calibration Date: 12/Mar/2020

Calibration Due Date:



Instrument ID: 1003

Calibration Date: 12/Mar/2020

Certificate Number: 13252596JD01C

Calibration Due Date:

Certificate Number: 13252596JD01C

Instrument ID: 1003

Calibration Date: 12/Mar/2020

Calibration Due Date:

5248

