

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: EX3-7463_Jul19

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7463	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
Calibration date:	July 18, 2019	
	cuments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	y- Uh
Approved by:	Katja Pokovic	Technical Manager	delle
			Issued: July 18, 2019
This calibration certificate s	hall not be reproduced except in fu	Il without written approval of the laborator	у.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	10.03	10.03	10.03	0.12	1.20	± 13.3 %
750	41.9	0.89	9.81	9.81	9.81	0.46	0.83	± 12.0 %
900	41.5	0.97	9.43	9.43	9.43	0.50	0.80	± 12.0 %
1450	40.5	1.20	8.34	8.34	8.34	0.40	0.85	± 12.0 %
1750	40.1	1.37	8.37	8.37	8.37	0.37	0.87	± 12.0 %
1900	40.0	1.40	8.00	8.00	8.00	0.25	0.99	± 12.0 %
2300	39.5	1.67	7.49	7.49	7.49	0.28	0.90	± 12.0 %
2450	39.2	1.80	7.19	7.19	7.19	0.27	0.90	± 12.0 %
2600	39.0	1.96	7.04	7.04	7.04	0.39	0.90	± 12.0 %
3500	37.9	2.91	6.82	6.82	6.82	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.66	6.66	6.66	0.30	1.30	± 13.1 %
4950	36.3	4.40	5.65	5.65	5.65	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.11	5.11	5.11	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.82	4.82	4.82	0.40	1.80	± 13.1 %

Calibration Paramete	Determined in Head T	issue Simulating Media
-----------------------------	----------------------	------------------------

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.38	10.38	10.38	0.07	1.20	± 13.3 %
750	55.5	0.96	9.67	9.67	9.67	0.38	0.85	± 12.0 %
900	55.0	1.05	9.36	9.36	9.36	0.42	0.80	± 12.0 %
1450	54.0	1.30	8.11	8.11	8.11	0.23	0.80	± 12.0 %
1750	53.4	1.49	7.94	7.94	7.94	0.36	0.84	± 12.0 %
1900	53.3	1.52	7.51	7.51	7.51	0.29	0.92	± 12.0 %
2300	52.9	1.81	7.43	7.43	7.43	0.36	0.90	± 12.0 %
2450	52.7	1.95	7.17	7.17	7.17	0.37	0.90	± 12.0 %
2600	52.5	2.16	7.11	7.11	7.11	0.37	0.90	± 12.0 %
3500	51.3	3.31	6.38	6.38	6.38	0.30	1.30	± 13.1 %
3700	51.0	3.55	6.26	6.26	6.26	0.30	1.30	± 13.1 %
4950	49.4	5.01	4.79	4.79	4.79	0.50	1.90	± 13.1 %
5250	48.9	5.36	4.64	4.64	4.64	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.96	3.96	3.96	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.17	4.17	4.17	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-3929_Apr20

S

С

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3929
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 23, 2020
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(rid)
Approved by:	Katja Pokovic	Technical Manager	felles.
			Issued: April 25, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax*,*y*,*z*; *Bx*,*y*,*z*; *Cx*,*y*,*z*; *Dx*,*y*,*z*; *VRx*,*y*,*z*: *A*, *B*, *C*, *D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.53	0.49	0.38	± 10.1 %
DCP (mV) ^B	96.8	100.0	99.4	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	149.0	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		158.7		
		Z	0.00	0.00	1.00		162.0		
10352-	Pulse Waveform (200Hz, 10%)	X	4.15	71.16	12.91	10.00	60.0	± 2.9 %	± 9.6 %
AAA		Y	20.00	90.38	20.03		60.0		
		Z	2.11	63.57	9.99		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	6.01	76.54	13.50	6.99	80.0	± 1.9 %	± 9.6 %
AAA		Y	20.00	92.85	19.97		80.0		
		Z	1.66	64.55	9.04		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	83.81	13.39	3.98	95.0	± 1.4 %	± 9.6 %
AAA		Y	20.00	97.91	20.89		95.0		
		Z	0.54	60.37	5.47		95.0		
10355- Pulse Waveform (200	Pulse Waveform (200Hz, 60%)	X	0.26	60.00	4.32	2.22	120.0	± 1.5 %	± 9.6 %
AAA		Y	20.00	105.06	22.76		120.0		
		Z	0.29	60.00	3.65		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.61	66.66	14.99	1.00	150.0	± 3.7 %	± 9.6 %
AAA		Y	1.79	67.70	15.85		150.0		
		Z	1.52	67.61	15.00		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.20	68.37	15.90	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.42	69.59	16.61		150.0		
		Z	2.04	68.26	15.91		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.71	68.75	17.95	3.01	150.0	± 1.4 %	± 9.6 %
AAA		Y	2.80	69.51	18.26		150.0		
		Z	2.41	68.40	18.14		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.50	67.26	15.92	0.00	150.0	± 2.1 %	± 9.6 %
AAA		Y	3.52	67.26	15.97	1	150.0		
		Z	3.34	66.95	15.81		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.85	65.77	15.72	0.00	150.0	± 4.3 %	± 9.6 %
AAA		Y	4.83	65.60	15.61		150.0		
		Z	4.77	66.08	15.92		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V ⁻²	ms.V⁻¹	ms	V-2	V ⁻¹	
Х	42.6	328.84	37.77	5.88	0.24	5.05	0.00	0.52	1.01
Y	44.6	335.53	36.14	8.52	0.18	5.06	0.39	0.40	1.00
Z	34.8	269.73	38.05	4.95	0.65	5.02	0.00	0.40	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-16.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	10.28	10.28	10.28	0.13	1.30	± 13.3 %
750	41.9	0.89	9.15	9.15	9.15	0.71	0.80	± 12.0 %
900	41.5	0.97	8.72	8.72	8.72	0.48	0.98	± 12.0 %
1450	40.5	1.20	8.30	8.30	8.30	0.39	0.80	± 12.0 %
1750	40.1	1.37	8.18	8.18	8.18	0.28	0.88	± 12.0 %
1900	40.0	1.40	7.95	7.95	7.95	0.37	0.88	± 12.0 %
2300	39.5	1.67	7.48	7.48	7.48	0.32	0.90	± 12.0 %
2450	39.2	1.80	7.22	7.22	7.22	0.35	0.90	± 12.0 %
2600	39.0	1.96	6.99	6.99	6.99	0.38	0.90	± 12.0 %
3500	37.9	2.91	6.55	6.55	6.55	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.48	6.48	6.48	0.30	1.30	± 13.1 %
4950	36.3	4.40	5.30	5.30	5.30	0.40	1.80	± 13.1 %
5250	35.9	4.71	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.41	4.41	4.41	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.71	10.71	10.71	0.07	1.30	± 13.3 %
750	55.5	0.96	9.23	9.23	9.23	0.52	0.80	± 12.0 %
900	55.0	1.05	8.88	8.88	8.88	0.46	0.86	± 12.0 %
1450	54.0	1.30	7.98	7.98	7.98	0.39	0.80	± 12.0 %
1750	53.4	1.49	7.76	7.76	7.76	0.36	0.88	± 12.0 %
1900	53.3	1.52	7.50	7.50	7.50	0.42	0.88	± 12.0 %
2300	52.9	1.81	7.36	7.36	7.36	0.37	0.90	± 12.0 %
2450	52.7	1.95	7.28	7.28	7.28	0.36	0.90	± 12.0 %
2600	52.5	2.16	7.16	7.16	7.16	0.39	0.90	± 12.0 %
3500	51.3	3.31	6.34	6.34	6.34	0.35	1.35	± 13.1 %
3700	51.0	3.55	6.18	6.18	6.18	0.35	1.35	± 13.1 %
4950	49.4	5.01	4.90	4.90	4.90	0.50	1.90	± 13.1 %
5250	48.9	5.36	4.37	4.37	4.37	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.00	4.00	4.00	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Apple USA Client

Certificate No: EX3-3794_Feb20

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3794
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 14, 2020
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.
	ad in the closed laboratory facility, environment temperature (22 + 3)°C and humidity < 70%

All calibrations have been conducted in the closed laboratory facility: environment temperature (2

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Арг-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	de ll
Approved by:	Katja Pokovic	Technical Manager	ARS
	1	and the second	Issued: February 15, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.57	0.45	± 10.1 %
DCP (mV) ^B	102.5	100.2	101.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	183.6	± 3.0 %	± 4.7 %
U U		Y	0.00	0.00	1.00		178.0		
		Z	0.00	0.00	1.00		175.7		
10352-	Pulse Waveform (200Hz, 10%)	X	8.30	78.44	16.44	10.00	60.0	± 3.4 %	± 9.6 %
AAA		Y	15.00	89.97	21.33		60.0		
		Z	15.00	85.40	18.42		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	85.45	17.24	6.99	80.0	± 2.5 %	± 9.6 %
AAA	(,,,,	Y	15.00	92.58	21.52		80.0		
	1	Z	15.00	86.80	17.62		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	84.55	15.10	3.98	95.0	± 1.4 %	±9.6 %
AAA		Y	15.00	98.31	22.88		95.0		
		Z	15.00	86.68	15.79		95.0		
10355- Pulse Wa	Pulse Waveform (200Hz, 60%)	X	0.82	64.72	7.35	2.22	120.0	± 1.3 %	± 9.6 %
AAA	(, , , ,	Y	15.00	107.57	25.76		120.0		
		Z	1.27	67.87	8.17		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.49	60.00	6.48	0.00	150.0	± 3.4 %	± 9.6 %
AAA		Y	0.66	61.99	8.77		150.0		
		Z	0.47	60.00	5.98		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.13	68.36	15.74	0.00	150.0	± 1.2 %	± 9.6 %
AAA	,	Y	2.43	70.22	17.04		150.0		
		Z	2.03	67.59	15.39		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.78	69.36	18.12	3.01	150.0	± 0.6 %	± 9.6 %
AAA		Y	2.96	70.63	19.08		150.0		
		Z	2.57	68.47	17.89		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.44	67.33	15.83	0.00	150.0	± 2.3 %	± 9.6 %
AAA		Y	3.62	68.01	16.40		150.0		
		Z	3.38	66.94	15.66		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.78	65.92	15.68	0.00	150.0	± 4.3 %	± 9.6 %
AAA		Y	4.91	66.18	15.97		150.0		
		Z	4.70	65.61	15.56		150.0		0

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V ^{−2}	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	38.8	292.05	36.00	10.99	0.73	5.05	0.00	0.52	1.01
Y	40.5	304.84	36.20	15.11	0.38	5.10	0.35	0.44	1.01
Z	36.1	276.20	37.09	7.70	0.47	5.07	0.00	0.45	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-45.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	42.7	0.88	9.88	9.88	9.88	0.10	1.20	± 13.3 %
750	41.9	0.89	9.59	9.59	9.59	0.59	0.80	± 12.0 %
835	41.5	0.90	9.37	9.37	9.37	0.51	0.85	± 12.0 %
900	41.5	0.97	9.17	9.17	9.17	0.49	0.80	± 12.0 %
1450	40.5	1.20	8.53	8.53	8.53	0.40	0.80	± 12.0 %
1750	40.1	1.37	8.33	8.33	8.33	0.28	0.95	± 12.0 %
1900	40.0	1.40	7.97	7.97	7.97	0.32	0.80	± 12.0 %
1950	40.0	1.40	7.96	7.96	7.96	0.30	0.80	± 12.0 %
2000	40.0	1.40	7.95	7.95	7.95	0.29	0.80	± 12.0 %
2300	39.5	1.67	7.80	7.80	7.80	0.37	0.82	± 12.0 %
2450	39.2	1.80	7.58	7.58	7.58	0.30	0.80	± 12.0 %
2600	39.0	1.96	7.28	7.28	7.28	0.30	0.80	± 12.0 %
3300	38.2	2.71	6.81	6.81	6.81	0.30	1.30	± 13.1 %
3500	37.9	2.91	6.75	6.75	6.75	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.45	6.45	6.45	0.30	1.30	± 13.1 %
3900	37.5	3.32	6.20	6.20	6.20	0.40	1.50	± 13.1 %
4100	37.2	3.53	6.06	6.06	6.06	0.40	1.50	± 13.1 %
4200	37.1	3.63	6.02	6.02	6.02	0.40	1.50	± 13.1 %
4400	36.9	3.84	5.97	5.97	5.97	0.40	1.60	± 13.1 %
4600	36.7	4.04	5.72	5.72	5.72	0.40	1.60	± 13.1 %
4800	36.4	4.25	5.67	5.67	5.67	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.41	5.41	5.41	0.40	1.80	± 13.1 %
5200	36.0	4.66	4.95	4.95	4.95	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.63	4.63	4.63	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	56.1	0.95	9.99	9.99	9.99	0.08	1.15	± 13.3 %
750	55.5	0.96	9.36	9.36	9.36	0.46	0.84	± 12.0 %
835	55.2	0.97	9.23	9.23	9.23	0.41	0.84	± 12.0 %
900	55.0	1.05	9.20	9.20	9.20	0.39	0.80	± 12.0 %
1450	54.0	1.30	8.04	8.04	8.04	0.30	0.80	± 12.0 %
1750	53.4	1.49	7.86	7.86	7.86	0.33	0.80	± 12.0 %
1900	53.3	1.52	7.53	7.53	7.53	0.33	0.87	± 12.0 %
1950	53.3	1.52	7.51	7.51	7.51	0.37	0.80	± 12.0 %
2000	53.3	1.52	7.45	7.45	7.45	0.27	1.01	± 12.0 %
2300	52.9	1.81	7.42	7.42	7.42	0.38	0.87	± 12.0 %
2450	52.7	1.95	7.34	7.34	7.34	0.29	0.90	± 12.0 %
2600	52.5	2.16	7.18	7.18	7.18	0.25	0.90	± 12.0 %
3300	51.6	3.08	6.37	6.37	6.37	0.40	1.35	± 13.1 %
3500	51.3	3.31	6.27	6.27	6.27	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.25	6.25	6.25	0.40	1.35	± 13.1 %
3900	51.2	3.78	6.09	6.09	6.09	0.40	1.60	± 13.1 %
4100	50.5	4.01	5.96	5.96	5.96	0.40	1.60	± 13.1 %
4200	50.4	4.13	5.62	5.62	5.62	0.40	1.60	± 13.1 %
4400	50.1	4.37	5.60	5.60	5.60	0.40	1.70	± 13.1 %
4600	49.8	4.60	5.51	5.51	5.51	0.40	1.70	± 13.1 %
4800	49.6	4.83	5.10	5.10	5.10	0.50	1.90	± 13.1 %
4950	49.4	5.01	4.96	4.96	4.96	0.50	1.90	± 13.1 %
5200	49.0	5.30	4.55	4.55	4.55	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.36	4.36	4.36	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.00	4.00	4.00	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.50	1.90	± 13.1 9
5800	48.2	6.00	4.11	4.11	4.11	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

⁶ MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ⁶ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL USA Client

Certificate No: EX3-7356_Apr20

S

ALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7356
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 23, 2020
	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(A)
Approved by:	Katja Pokovic	Technical Manager	filly
			Issued: April 25, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Accreditation No.: SCS 0108

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal • characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom . exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no . uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.36	0.53	0.56	± 10.1 %
DCP (mV) ^B	106.5	98.0	102.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	159.7	± 3.3 %	±4.7 %
		Y	0.00	0.00	1.00		170.4	1	
		Z	0.00	0.00	1.00		176.7		
10352-	Pulse Waveform (200Hz, 10%)	X	2.90	66.40	11.04	10.00	60.0	± 3.3 %	± 9.6 %
AAA		Y	20.00	88.24	18.92		60.0		
		Z	20.00	92.72	21.39		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.83	65.37	9.57	6.99	80.0	± 2.1 %	± 9.6 %
AAA		Y	20.00	89.27	17.99		80.0		
		Z	20.00	96.70	22.25		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	1.64	67.97	9.52	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	20.00	89.43	16.40		95.0		
		Z	20.00	105.27	24.91		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	86.19	13.80	2.22	120.0	± 1.4 %	± 9.6 %
AAA		Y	20.00	83.05	12.15		120.0		
		Z	20.00	119.82	29.99		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.95	70.57	17.16	1.00	150.0	± 2.7 %	± 9.6 %
AAA		Y	1.64	66.90	15.22		150.0		
		Z	1.89	68.33	16.44		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.52	71.20	17.54	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.25	68.76	16.12		150.0		
		Z	2.59	70.76	17.25		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.00	72.33	19.54	3.01	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.72	68.87	18.03		150.0		
		Z	3.10	71.59	19.43		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.55	68.00	16.38	0.00	150.0	± 1.8 %	± 9.6 %
AAA		Y	3.53	67.40	16.02		150.0		
		Z	3.59	67.68	16.25		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.76	65.99	15.80	0.00	150.0	± 3.5 %	± 9.6 %
AAA		Y	4.87	65.83	15.77		150.0		
		Z	4.88	65.67	15.70		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V~1	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	37.3	271.66	34.15	6.67	0.55	4.95	1.42	0.13	1.00
Y	43.7	337.60	37.73	7.14	0.34	5.07	0.00	0.52	1.01
Z	49.0	368.80	36.16	11.76	0.11	5.10	0.73	0.36	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-4.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.86	11.86	11.86	0.13	1.30	± 13.3 %
750	41.9	0.89	10.74	10.74	10.74	0.55	0.80	± 12.0 %
900	41.5	0.97	10.11	10.11	10.11	0.39	0.99	± 12.0 %
1450	40.5	1.20	9.52	9.52	9.52	0.50	0.80	± 12.0 %
1750	40.1	1.37	9.31	9.31	9.31	0.28	0.88	± 12.0 %
1900	40.0	1.40	8.84	8.84	8.84	0.39	0.88	± 12.0 %
2300	39.5	1.67	8.57	8.57	8.57	0.25	0.90	± 12.0 %
2450	39.2	1.80	8.22	8.22	8.22	0.30	0.90	± 12.0 %
2600	39.0	1.96	8.01	8.01	8.01	0.30	0.90	± 12.0 %
3500	37.9	2.91	7.41	7.41	7.41	0.28	1.30	± 13.1 %
3700	37.7	3.12	7.24	7.24	7.24	0.30	1.30	± 13.1 %
4950	36.3	4.40	6.14	6.14	6.14	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.59	5.59	5.59	0.40	1.80	± 13.1 %
5600	35.5	5.07	5.01	5.01	5.01	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.24	5.24	5.24	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.99	11.99	11.99	0.08	1.20	± 13.3 %
750	55.5	0.96	10.81	10.81	10.81	0.47	0.80	± 12.0 %
900	55.0	1.05	10.57	10.57	10.57	0.29	1.09	± 12.0 %
1450	54.0	1.30	9.16	9.16	9.16	0.35	0.80	± 12.0 %
1750	53.4	1.49	8.75	8.75	8.75	0.33	0.88	± 12.0 %
1900	53.3	1.52	8.52	8.52	8.52	0.29	0.88	± 12.0 %
2300	52.9	1.81	8.19	8.19	8.19	0.49	0.90	± 12.0 %
2450	52.7	1.95	8.11	8.11	8.11	0.29	0.90	± 12.0 %
2600	52.5	2.16	7.92	7.92	7.92	0.37	0.90	± 12.0 %
3500	51.3	3.31	7.03	7.03	7.03	0.30	1.35	± 13.1 %
3700	51.0	3.55	7.01	7.01	7.01	0.30	1.35	± 13.1 %
4950	49.4	5.01	5.45	5.45	5.45	0.50	1.90	± 13.1 %
5250	48.9	5.36	5.04	5.04	5.04	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.40	4.40	4.40	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.51	4.51	4.51	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-7463_Jul20

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7463
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	July 24, 2020
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	1D	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	\$ignature
Calibrated by:	Claudio Leubler	Laboratory Technician	YZ
Approved by:	Katja Pokovic	Technical Manager	flelly
			Issued: July 24, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
A 11 A 111	information used in DACV sustain to align probe concervy to the rebet coordinate sustain

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax*,*y*,*z*; *Bx*,*y*,*z*; *Cx*,*y*,*z*; *Dx*,*y*,*z*; *VRx*,*y*,*z*: *A*, *B*, *C*, *D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.38	0.44	0.38	± 10.1 %
DCP (mV) ^B	101.2	99.6	99.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	156.9	± 3.5 %	± 4.7 %
		Y	0.00	0.00	1.00		169.3		
		Z	0.00	0.00	1.00		159.4		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	91.95	21.43	10.00	60.0	± 3.6 %	± 9.6 %
AAA		Y	20.00	96.05	23.51		60.0		
		Z	20.00	91.63	21.19		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	97.91	23.06	6.99	80.0	± 2.1 %	± 9.6 %
AAA		Y	20.00	102.08	25.51		80.0		
		Z	20.00	97.09	22.57		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	130.46	36.91	3.98	95.0	± 2.5 %	± 9.6 %
AAA		Y	20.00	127.78	36.61		95.0		
		Z	20.00	125.69	34.54		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	1.92	160.00	65.34	2.22	120.0	± 3.1 %	± 9.6 %
AAA		Y	6.17	160.00	57.11]	120.0]	
		Z	2.95	160.00	60.50	1	120.0		
10387-	QPSK Waveform, 1 MHz	X	3.56	81.32	23.26	1.00	150.0	± 3.4 %	± 9.6 %
AAA		Y	2.82	75.48	21.19]	150.0		
		Z	3.01	77.71	21.68	1	150.0		
10388-	QPSK Waveform, 10 MHz	X	4.94	83.39	23.54	0.00	150.0	± 3.7 %	± 9.6 %
AAA		Y	5.07	82.96	23.25		150.0		
		Z	4.36	80.77	22.36		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.98	79.30	24.40	3.01	150.0	± 3.1 %	± 9.6 %
AAA		Y	6.69	88.80	28.04		150.0		
		Z	4.29	80.56	24.72		150.0	l	
10399-	64-QAM Waveform, 40 MHz	X	4.36	71.63	18.80	0.00	150.0	± 3.2 %	± 9.6 %
AAA		Y	4.37	71.33	18.64		150.0		
		Z	4.24	71.02	18.41		150.0	·	
10414-	WLAN CCDF, 64-QAM, 40MHz	X	5.25	67.29	17.00	0.00	150.0	± 3.3 %	± 9.6 %
AAA		Y	5.30	66.88	16.78		150.0		
		Z	5.22	67.07	16.81		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V ^{~₂}	ms.V⁻¹	ms	V-2	V ⁻¹	
Х	47.9	362.08	37.07	8.01	0.52	5.03	0.74	0.24	1.01
Y	62.7	478.52	37.63	13.92	0.19	5.10	1.73	0.20	1.02
Z	49.7	374.89	36.77	8.00	0.47	5.03	1.17	0.19	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	162.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

f (MHz) ^C	Relative Permittivity ^{,F}	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	9.91	9.91	9.91	0.12	1.30	± 13.3 %
750	41.9	0.89	9.79	9.79	9.79	0.37	0.92	± 12.0 %
900	41.5	0.97	9.31	9.31	9.31	0.35	0.90	± 12.0 %
1450	40.5	1.20	8.42	8.42	8.42	0.34	0.80	± 12.0 %
1750	40.1	1.37	8.32	8.32	8.32	0.25	0.87	± 12.0 %
1900	40.0	1.40	8.00	8.00	8.00	0.31	0.87	± 12.0 %
2300	39.5	1.67	7.48	7.48	7.48	0.26	0.90	± 12.0 %
2450	39.2	1.80	7.16	7.16	7.16	0.26	0.96	± 12.0 %
2600	39.0	1.96	6.95	6.95	6.95	0.34	0.92	± 12.0 %
3500	51.3	3.31	6.60	6.60	6.60	0.30	1.30	± 13.1 %
3700	51.0	3.55	6.59	6.59	6.59	0.30	1.30	± 13.1 %
3900	51.2	3.78	6.39	6.39	6.39	0.40	1.60	± 13.1 %
4100	50.5	4.01	6.18	6.18	6.18	0.40	1.60	± 13.1 %
4200	50.4	4.13	6.15	6.15	6.15	0.40	1.70	± 13.1 %
4400	50.1	4.37	5.99	5.99	5.99	0.40	1.70	± 13.1 %
4600	49.8	4.60	5.77	5.77	5.77	0.40	1.70	± 13.1 %
4800	49.6	4.83	5.78	5.78	5.78	0.40	1.80	± 13.1 %
4950	49.4	5.01	5.51	5.51	5.51	0.40	1.80	± 13.1 %
5250	48.9	5.36	5.15	5.15	5.15	0.40	1.80	± 13.1 %
5600	48.5	5.77	4.58	4.58	4.58	0.40	1.80	± 13.1 %
5750	48.3	5.94	4.80	4.80	4.80	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SPEAG Client

Certificate No: EX3-7569_May20

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7569
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	May 07, 2020
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-10-
Approved by:	Katja Pokovic	Technical Manager	dellet
			Issued: May 11, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d)

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal • characteristics
- Ax, v, z; Bx, v, z; Cx, v, z; Dx, v, z; VRx, v, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom . exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.63	0.63	0.63	± 10.1 %
DCP (mV) ^B	101.6	96.9	98.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	144.6	± 3.5 %	± 4.7 %
•		Y	0.00	0.00	1.00		138.5		
		Z	0.00	0.00	1.00		145.7		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.49	22.15	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	20.00	92.81	22.05		60.0		
		Z	20.00	92.32	21.99		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	92.38	21.06	6.99	80.0	± 1.6 %	± 9.6 %
AAA		Y	20.00	93.37	21.13		80.0		
		Z	20.00	92.72	21.18		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	96.83	21.95	3.98	95.0	± 0.9 %	± 9.6 %
AAA		Y	20.00	93.98	19.90		95.0		
		Z	20.00	95.03	20.96		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	103.18	23.60	2.22	120.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	95.95	19.38		120.0		
		Z	20.00	98.68	21.35		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.82	67.73	16.07	1.00	150.0	± 2.6 %	± 9.6 %
AAA		Y	1.48	64.16	13.63		150.0		
		Z	1.73	66.80	15.41		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.48	70.10	16.86	0.00	150.0	± 1.2 %	± 9.6 %
AAA		Y	1.97	65.94	14.44		150.0		
		Z	2.34	68.91	16.18		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.61	74.33	20.55	3.01	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.55	67.47	17.35		150.0		
		Z	3.23	72.08	19.58		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.63	67.93	16.27	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.33	66.14	15.14		150.0	4	
		Z	3.58	67.55	16.02		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.95	66.04	15.80	0.00	150.0	± 4.1 %	± 9.6 %
AAA		Y	4.74	65.09	15.18		150.0	1	
		Z	4.94	65.92	15.72		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	48.7	358.89	34.90	23.28	0.45	5.10	1.63	0.24	1.01
Y	46.3	351.65	36.49	16.07	0.48	5.10	0.00	0.47	1.01
Z	47.7	356.49	35.69	23.21	0.44	5.10	1.13	0.32	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	92.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.53	11.53	11.53	0.14	1.30	± 13.3 %
750	41.9	0.89	10.36	10.36	10.36	0.48	0.80	± 12.0 %
900	41.5	0.97	9.84	9.84	9.84	0.46	0.84	± 12.0 %
1450	40.5	1.20	8.88	8.88	8.88	0.42	0.80	± 12.0 %
1640	40.2	1.31	8.34	8.34	8.34	0.31	0.86	± 12.0 %
1750	40.1	1.37	8.10	8.10	8.10	0.43	0.86	± 12.0 %
1900	40.0	1.40	7.88	7.88	7.88	0.41	0.86	± 12.0 %
2300	39.5	1.67	7.81	7.81	7.81	0.31	0.90	± 12.0 %
2450	39.2	1.80	7.56	7.56	7.56	0.40	0.90	± 12.0 %
2600	39.0	1.96	7.37	7.37	7.37	0.28	1.00	± 12.0 %
3500	37.9	2.91	6.99	6.99	6.99	0.25	1.30	± 13.1 %
3700	37.7	3.12	6.63	6.63	6.63	0.25	1.30	± 13.1 %
4950	36.3	4.40	5.72	5.72	5.72	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.19	5.19	5.19	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.60	4.60	4.60	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.75	4.75	4.75	0.40	1.80	± 13.1 %

Calibration Parameter	Determined in Head	Tissue Simulating Media
------------------------------	--------------------	-------------------------

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively, Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.54	11.54	11.54	0.09	1.30	± 13.3 %
750	55.5	0.96	10.45	10.45	10.45	0.46	0.88	± 12.0 %
900	55.0	1.05	10.05	10.05	10.05	0.49	0.80	± 12.0 %
1450	54.0	1.30	8.44	8.44	8.44	0.33	0.80	± 12.0 %
1640	53.7	1.42	8.15	8.15	8.15	0.39	0.86	± 12.0 %
1750	53.4	1.49	7.90	7.90	7.90	0.38	0.86	± 12.0 %
1900	53.3	1.52	7.65	7.65	7.65	0.40	0.86	± 12.0 %
2300	52.9	1.81	7.52	7.52	7.52	0.42	0.90	± 12.0 %
2450	52.7	1.95	7.44	7.44	7.44	0.34	0.95	± 12.0 %
2600	52.5	2.16	7.09	7.09	7.09	0.33	0.95	± 12.0 %
3500	51.3	3.31	6.36	6.36	6.36	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.33	6.33	6.33	0.40	1.35	± 13.1 %
4950	49.4	5.01	5.19	5.19	5.19	0.50	1.90	± 13.1 %
5250	48.9	5.36	4.77	4.77	4.77	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.28	4.28	4.28	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Certificate No: EX3-3773_Mar20

S

С

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3773
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	March 20, 2020
This calibration certificate documer The measurements and the uncert	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(Jiz)
Approved by:	Katja Pokovic	Technical Manager	flag
		it and a supraval of the laboratory	Issued: March 21, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A. B. C. D	modulation dependent linearization parameters
Polarization ϕ	ω rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
FOIAIIZACION	i = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handb) held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Marrie

1

.....

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3773

Basic Calibration Parameters

Sensor X			
0.56	0.55	0.51	± 10.1 %
	97.6	104.7	
	0.56 99.7	0.00	0.00 0.00 104.7

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	195.8	± 3.0 %	±4.7 %
0		Y	0.00	0.00	1.00		174.9		
		Ż	0.00	0.00	1.00		192.7		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	93.15	22.15	10.00	60.0	± 3.0 %	± 9.6 %
AAA		Y	20.00	91.72	21.42		60.0		
		Z	20.00	93.75	22.75		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	94.16	21.51	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	20.00	92.02	20.26		80.0		
7000		Z	20.00	94.52	21.99		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	99.45	22.63	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	20.00	92.77	19.02		95.0		
		Z	20.00	99.93	23.18		95.0		
10355- Pulse W AAA	Pulse Waveform (200Hz, 60%)	X	20.00	104.19	23.33	2.22	120.0	± 1.2 %	± 9.6 %
		Y	20.00	90.02	16.25		120.0		
		Z	20.00	105.40	24.27		120.0		
10387- QPSK W	QPSK Waveform, 1 MHz	X	1.62	66.43	14.95	1.00	150.0	± 3.1 %	± 9.6 %
		Y	1.49	65.18	13.95		150.0	1	
/ / / / /		Z	1.64	66.33	14.99	İ	150.0		
10388- QPSK W AAA	QPSK Waveform, 10 MHz	X	2.18	68.03	15.74	0.00	150.0	± 1.3 %	± 9.6 %
		Y	2.03	66.91	14.93		150.0	1	
		Z	2.19	68.07	15.75		150.0		
10396- AAA 64-QAI	64-QAM Waveform, 100 kHz	X	2.88	69.98	18.48	3.01	150.0	± 0.8 %	± 9.6 %
		Y	2.78	68.83	17.95		150.0		
		Z	3.24	72.12	19.41		150.0		
10399- 64 AAA	64-QAM Waveform, 40 MHz	X	3.48	67.14	15.79	0.00	150.0	± 2.0 %	± 9.6 %
		Y	3.40	66.71	15.47		150.0		
		Z	3.48	67.14	15.77	i	150.0		0.0.01
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.82	65.70	15.59	0.00	150.0	± 4.1 %	± 9.6 %
AAA		Y	4.80	65.56	15.48		150.0	-	
		Z	4.82	65.69	15.54		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

```
<sup>B</sup> Numerical linearization parameter: uncertainty not required.
```

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fE	C2 fE	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ^{−1}	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	41.9	314.35	35.81	15.72	0.39	5.10	0.83	0.36	1.01
Y	42.1	323.36	37.18	14.07	0.57	5.10	0.00	0.55	1.01
Z	43.6	322.75	34.98	17.71	0.49	5.10	1.56	0.25	1.01

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	-20.7		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	1.4 mm		

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
	rennativity	(0,,			0.05		0.00	120.0/
750	41.9	0.89	9.35	9.35	9.35	0.63	0.80	± 12.0 %
900	41.5	0.97	8.89	8.89	8.89	0.58	0.82	± 12.0 %
1750	40.1	1.37	7.89	7.89	7.89	0.46	0.86	± 12.0 %
1900	40.0	1.40	7.71	7.71	7.71	0.38	0.86	± 12.0 %
2300	39.5	1.67	7.30	7.30	7.30	0.38	0.90	± 12.0 %
2450	39.2	1.80	7.00	7.00	7.00	0.40	0.90	± 12.0 %
2600	39.0	1.96	6.76	6.76	6.76	0.40	0.90	± 12.0 %
5250	35.9	4.71	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.37	4.37	4.37	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.51	4.51	4.51	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the constrainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.05	9.05	9.05	0.47	0.83	± 12.0 %
900	55.0	1.05	8.87	8.87	8.87	0.44	0.80	± 12.0 %
1750	53.4	1.49	7.44	7.44	7.44	0.38	0.86	± 12.0 %
1900	53.3	1.52	7.21	7.21	7.21	0.42	0.86	± 12.0 %
2300	52.9	1.81	6.85	6.85	6.85	0.46	0.90	± 12.0 %
2450	52.7	1.95	6.80	6.80	6.80	0.33	0.96	± 12.0 %
2600	52.5	2.16	6.64	6.64	6.64	0.28	0.98	± 12.0 %
5250	48.9	5.36	4.23	4.23	4.23	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.70	3.70	3.70	0.50	1.90	± 13.1 %
5750	48.3	5.94	3.86	3.86	3.86	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the coefficient of the coefficie

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

UL USA

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3989 Jan20

S

CALIBRATION CERTIFICATE

Object

Client

EX3DV4 - SN:3989

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

January 23, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.Neber
Approved by:	Katja Pokovic	Technical Manager	flag
			Issued: January 23, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
	the standard standard to the standard standard standards and standards

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.51	0.47	± 10.1 %
DCP (mV) ^B	97.8	95.9	102.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	144.4	± 3.8 %	±4.7 %
1.1.1.1		Y	0.00	0.00	1.00		144.5	1	
		Z	0.00	0.00	1.00		134.9		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	92.94	21.94	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	20.00	92.00	21.58		60.0		e. e. e.
		Z	20.00	91.85	21.33		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	94.90	21.80	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	20.00	93.10	20.77		80.0		
		Z	20.00	94.25	21.34		80.0	$\begin{array}{c} \pm 3.1 \% \\ \pm 3.1 \% \\ \pm 1.8 \% \\ \pm 1.3 \% \\ \pm 1.3 \% \\ 0 \\ \pm 1.2 \% \\ 0 \\ 0 \\ \pm 2.5 \% \\ 0 \\ 0 \\ 0 \\ 0 \\ \pm 1.1 \% \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	105.33	25.44	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	20.00	96.02	20.51		95.0		
	the state of the s	Z	20.00	99.48	22.38		95.0		1.1.1
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	120.69	30.93	2.22	120.0	± 1.2 %	±9.6 %
AAA		Y	20.00	94.87	18.39		120.0]	
		Z	20.00	108.51	25.11		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.01	66.35	12.05	0.00	150.0	± 2.5 %	± 9.6 %
AAA		Y	0.68	61.27	8.91		150.0		
		Z	0.88	64.70	10.96		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.59	71.07	17.43	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.19	67.75	15.49	1	150.0	1	
		Z	2.52	70.57	17.11		150.0]	
10396-	64-QAM Waveform, 100 kHz	X	3.59	74.36	20.56	3.01	150.0	± 0.7 %	±9.6 %
AAA		Y	2.98	69.55	18.37		150.0	1	
		Z	3.32	73.07	19.98		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.67	68.26	16.51	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.48	66.94	15.69		150.0		
	and the second sec	Z	3.54	67.68	16.17		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.96	66.17	15.92	0.00	150.0	± 4.1 %	± 9.6 %
AAA		Y	4.90	65.58	15.57		150.0		
		Z	4.82	65.75	15.65		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V⁻²	T5 V ⁻¹	Т6
X	47.1	347.56	34.98	14.55	0.32	5.10	1.59	0.25	1.01
Y	50.1	386.16	37.59	12.14	0.56	5.10	0.00	0.61	1.01
Z	45.5	334.33	34.75	12.70	0.38	5.08	1.17	0.28	1.01

Other Probe Parameters

Triangular
81.7
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.54	10.54	10.54	0.60	0.82	± 12.0 %
900	41.5	0.97	9.81	9.81	9.81	0.59	0.87	± 12.0 %
1750	40.1	1.37	8.73	8.73	8.73	0.43	0.86	± 12.0 %
1900	40.0	1.40	8.50	8.50	8.50	0.36	0.86	± 12.0 %
2300	39.5	1.67	8.43	8.43	8.43	0.34	0.86	± 12.0 %
2450	39.2	1.80	7.90	7.90	7.90	0.42	0.86	± 12.0 %
2600	39.0	1.96	7.75	7.75	7.75	0.42	0.90	± 12.0 %
5250	35.9	4.71	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.94	4.94	4.94	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.10	5.10	5.10	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.47	10.47	10.47	0.36	0.99	± 12.0 %
900	55.0	1.05	10.12	10.12	10.12	0.44	0.84	± 12.0 %
1750	53.4	1.49	8.64	8.64	8.64	0.32	0.86	± 12.0 %
1900	53.3	1.52	8.40	8.40	8.40	0.33	0.86	± 12.0 %
2300	52.9	1.81	7.96	7.96	7.96	0.43	0.86	± 12.0 %
2450	52.7	1.95	7.85	7.85	7.85	0.42	0.88	± 12.0 %
2600	52.5	2.16	7.55	7.55	7.55	0.24	1.05	± 12.0 %
5250	48.9	5.36	4.85	4.85	4.85	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.32	4.32	4.32	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.37	4.37	4.37	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **Apple USA** Certificate No: EX3-7578_Feb20

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7578
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 10, 2020
	its the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Weber
Approved by:	Katja Pokovic	Technical Manager	Selly
	5 5 W		Issued: February 11, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Classer

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c)
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d)

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW • signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom ٠ exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.52	0.61	± 10.1 %
DCP (mV) ^B	103.2	100.6	101.4	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	176.1	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		171.5		
		Z	0.00	0.00	1.00		157.1		
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	86.99	18.71	10.00	60.0	± 3.2 %	± 9.6 %
AAA		Y	6.25	75.40	14.59		60.0		
		Z	12.07	82.72	16.70		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	90.30	19.24	6.99	80.0	± 2.1 %	± 9.6 %
AAA		Y	15.00	84.99	16.25		80.0		
		Z	15.00	86.17	16.77		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	97.73	21.49	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	15.00	84.74	14.52		95.0		
		Z	15.00	89.35	16.99	l	95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	110.20	25.85	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	1.24	67.94	8.03]	120.0		
		Z	15.00	93.90	17.94		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.65	61.80	8.71	0.00	150.0	± 3.0 %	± 9.6 %
AAA		Y	0.47	60.00	6.11		150.0		
		Z	0.59	60.95	7.71		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.34	69.48	16.58	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.02	67.53	15.41		150.0		
		Z	2.31	69.30	16.49	l	150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.06	72.04	19.54	3.01	150.0	± 0.8 %	± 9.6 %
AAA		Y	2.62	69.35	18.18]	150.0]	
		Z	2.61	69.68	18.64		150.0	1	
10399-	64-QAM Waveform, 40 MHz	X	3.58	67.80	16.20	0.00	150.0	± 1.9 %	± 9.6 %
AAA		Y	3.37	66.91	15.64		150.0		
		Z	3.43	67.09	15.87	l	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.70	65.46	15.50	0.00	150.0	± 3.5 %	± 9.6 %
AAA		Y	4.68	65.65	15.54		150.0		
		Z	4.71	65.56	15.57		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6)

^B Numerical linearization parameter: uncertainty not required,

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	40.1	297.03	35.10	9.89	0.00	5.07	1.36	0.19	1.01
Y	34.8	261.58	36.02	6.60	0.25	5.05	0.88	0.27	1.01
Z	37.3	278.72	35.71	8.80	0.00	5.04	0.72	0.22	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-0.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	42.7	0.88	10.35	10.35	10.35	0.09	1.20	± 13.3 %
750	41.9	0.89	9.72	9.72	9.72	0.64	0.80	± 12.0 %
835	41.5	0.90	9.48	9.48	9.48	0.65	0.83	± 12.0 %
900	41.5	0.97	9.39	9.39	9.39	0.59	0.80	± 12.0 %
1450	40.5	1.20	8.99	8.99	8.99	0.48	0.80	± 12.0 %
1750	40.1	1.37	8.71	8.71	8.71	0.51	0.86	± 12.0 %
1900	40.0	1.40	8.43	8.43	8.43	0.46	0.86	± 12.0 %
1950	40.0	1.40	8.27	8.27	8.27	0.35	0.86	± 12.0 %
2000	40.0	1.40	8.19	8.19	8.19	0.46	0.80	± 12.0 %
2300	39.5	1.67	8.00	8.00	8.00	0.40	0.80	± 12.0 %
2450	39.2	1.80	7.67	7.67	7.67	0.41	0.80	± 12.0 %
2600	39.0	1.96	7.48	7.48	7.48	0.35	0.92	± 12.0 %
3300	38.2	2.71	7.00	7.00	7.00	0.30	1.35	± 13.1 %
3500	37.9	2.91	6.83	6.83	6.83	0.30	1.35	± 13.1 %
3700	37.7	3.12	6.73	6.73	6.73	0.30	1.35	± 13.1 %
3900	37.5	3.32	6.62	6.62	6.62	0.40	1.60	± 13.1 %
4100	37.2	3.53	6.42	6.42	6.42	0.40	1.60	± 13.1 %
4200	37.1	3.63	6.37	6.37	6.37	0.40	1.70	± 13.1 %
4400	36.9	3.84	6.26	6.26	6.26	0.40	1.70	± 13.1 %
4600	36.7	4.04	5.94	5.94	5.94	0.40	1.70	± 13.1 %
4800	36.4	4.25	5.91	5.91	5.91	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.72	5.72	5.72	0.40	1.80	± 13.1 %
5200	36.0	4.66	5.46	5.46	5.46	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.25	5.25	5.25	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.95	4.95	4.95	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.85	4.85	4.85	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
600	56.1	0.95	10.50	10.50	10.50	0.10	1.20	± 13.3 %
750	55.5	0.96	10.00	10.00	10.00	0.51	0.80	± 12.0 %
835	55.2	0.97	9.79	9.79	9.79	0.47	0.80	± 12.0 %
900	55.0	1.05	9.73	9.73	9.73	0.46	0.80	± 12.0 %
1450	54.0	1.30	8.53	8.53	8.53	0.36	0.80	± 12.0 %
1750	53.4	1.49	8.26	8.26	8.26	0.43	0.86	± 12.0 %
1900	53.3	1.52	8.02	8.02	8.02	0.40	0.86	± 12.0 %
1950	53.3	1.52	7.93	7.93	7.93	0.49	0.86	± 12.0 %
2000	53.3	1.52	7.84	7.84	7.84	0.32	0.93	± 12.0 %
2300	52.9	1.81	7.64	7.64	7.64	0.42	0.88	± 12.0 %
2450	52.7	1.95	7.52	7.52	7.52	0.46	0.90	± 12.0 %
2600	52.5	2.16	7.37	7.37	7.37	0.39	0.90	± 12.0 %
3300	51.6	3.08	6.65	6.65	6.65	0.40	1.30	± 13.1 %
3500	51.3	3.31	6.63	6.63	6.63	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.58	6.58	6.58	0.40	1.35	± 13.1 %
3900	51.2	3.78	6.40	6.40	6.40	0.40	1.60	± 13.1 %
4100	50.5	4.01	6.11	6.11	6.11	0.40	1.60	± 13.1 %
4200	50.4	4.13	5.99	5.99	5.99	0.50	1.60	± 13.1 %
4400	50.1	4.37	5.92	5.92	5.92	0.50	1.60	± 13.1 %
4600	49.8	4.60	5.61	5.61	5.61	0.50	1.80	± 13.1 %
4800	49.6	4.83	5.46	5.46	5.46	0.50	1.90	± 13.1 %
4950	49.4	5.01	5.35	5.35	5.35	0.50	1.90	± 13.1 %
5200	49.0	5.30	4.97	4.97	4.97	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.87	4.87	4.87	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.49	4.49	4.49	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.42	4.42	4.42	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.41	4.41	4.41	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz, Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: EX3-7482_Jul19

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7482
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	July 18, 2019
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Арг-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	teck
Approved by:	Katja Pokovic	Technical Manager	Selles
			Issued: July 18, 2019

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.42	9.42	9.42	0.59	0.90	± 12.0 %
900	41.5	0.97	9.00	9.00	9.00	0.63	0.80	± 12.0 %
1750	40.1	1.37	8.26	8.26	8.26	0.37	0.86	± 12.0 %
1900	40.0	1.40	7.93	7.93	7.93	0.37	0.86	± 12.0 %
2300	39.5	1.67	7.54	7.54	7.54	0.40	0.90	± 12.0 %
2450	39.2	1.80	7.13	7.13	7.13	0.41	0.90	± 12.0 %
2600	39.0	1.96	7.03	7.03	7.03	0.36	0.90	± 12.0 %
5250	35.9	4.71	5.33	5.33	5.33	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.58	4.58	4.58	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.89	4.89	4.89	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.52	9.52	9.52	0.49	0.80	± 12.0 %
900	55.0	1.05	9.23	9.23	9.23	0.41	0.93	± 12.0 %
1750	53.4	1.49	7.77	7.77	7.77	0.42	0.86	± 12.0 %
1900	53.3	1.52	7.45	7.45	7.45	0.39	0.86	± 12.0 %
2300	52.9	1.81	7.31	7.31	7.31	0.43	0.90	± 12.0 %
2450	52.7	1.95	7.27	7.27	7.27	0.32	0.90	± 12.0 %
2600	52.5	2.16	7.17	7.17	7.17	0.30	0.90	± 12.0 %
5250	48.9	5.36	4.45	4.45	4.45	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.10	4.10	4.10	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL USA Client

Certificate No: EX3-3902_May20

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3902						
Calibration procedure(s)		A CAL-14.v5, QA CAL-23.v5, QA lure for dosimetric E-field probes	CAL-25.v7				
Calibration date:	May 15, 2020						
The measurements and the uno	certainties with confidence pro ucted in the closed laboratory	nal standards, which realize the physical units bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	are part of the certificate.				
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21				
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21				
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21				
Reference 20 dB Attenuator							
	SN: CC2552 (20x) SN: 660	31-Mar-20 (No. 217-03106) 27-Dec-19 (No. DAE4-660 Dec19)	Apr-21 Dec-20				
Reference Probe ES3DV2			Apr-21				
	SN: 660	27-Dec-19 (No. DAE4-660_Dec19) 31-Dec-19 (No. ES3-3013_Dec19)	Apr-21 Dec-20 Dec-20				
Reference Probe ES3DV2 Secondary Standards Power meter E4419B	SN: 660 SN: 3013	27-Dec-19 (No. DAE4-660_Dec19)	Apr-21 Dec-20				

RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-18) In house check: Jun-20 Network Analyzer E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager**

06-Apr-16 (in house check Jun-18)

Issued: May 16, 2020

In house check: Jun-20

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

SN: 000110210

Power sensor E4412A

Calibration Laboratory of

Classon

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.45	0.44	0.44	± 10.1 %
DCP (mV) ^B	103.8	99.0	101.5	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	151.1	± 2.5 %	± 4.7 %
		Y	0.00	0.00	1.00		155.2	1	
		Z	0.00	0.00	1.00		154.4		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	96.10	23.55	10.00	60.0	± 3.6 %	± 9.6 %
AAA		Y	20.00	92.03	21.32	1	60.0	1	
		Z	20.00	97.02	24.17		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	104.73	26.91	6.99	80.0	± 2.4 %	± 9.6 %
AAA		Y	20.00	94.66	21.42	1	80.0	1	
		Z	20.00	99.44	24.45	l	80.0	I	
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	111.50	28.78	3.98	95.0	± 1.5 %	± 9.6 %
AAA		Y	20.00	101.11	23.09		95.0	1	
_		Z	20.00	101.80	24.29	l	95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	127.44	34.77	2.22	120.0	± 1.5 %	± 9.6 %
AAA		Y	20.00	105.15	23.74	1	120.0	1	
		Z	20.00	109.39	26.62	<u> </u>	120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.87	68.34	16.36	1.00	150.0	± 1.5 %	± 9.6 %
AAA		Y	1.76	66.09	15.14		150.0	1	
		Z	1.83	66.55	15.50	·	150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.47	69.97	16.95	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.32	68.16	15.82		150.0	1	
		Z	2.43	68.84	16.19		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.79	70.45	18.91	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.82	69.62	18.41		150.0]	
		Z	2.85	69.56	18.37		150.0	1	
10399-	64-QAM Waveform, 40 MHz	X	3.54	67.50	16.11	0.00	150.0	± 0.8 %	± 9.6 %
AAA		Y	3.46	66.66	15.56		150.0		
		Z	3.53	67.00	15.76		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.82	65.72	15.62	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	4.84	65.34	15.36		150.0		
		Z	4.91	65.51	15.47		150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V⁻¹	Т6
Х	42.6	309.04	33.87	13.84	0.03	5.10	1.08	0.17	1.00
Y	48.8	360.41	34.86	11.20	0.29	5.04	0.84	0.26	1.01
Z	51.2	378.37	34.87	18.94	0.09	5.10	0.59	0.33	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	3.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.29	10.29	10.29	0.34	0.96	± 12.0 %
900	41.5	0.97	9.69	9.69	9.69	0.40	0.86	± 12.0 %
1750	40.1	1.37	8.56	8.56	8.56	0.38	0.86	± 12.0 %
1900	40.0	1.40	8.24	8.24	8.24	0.24	0.86	± 12.0 %
2300	39.5	1.67	7.98	7.98	7.98	0.34	0.88	± 12.0 %
2450	39.2	1.80	7.79	7.79	7.79	0.26	0.90	± 12.0 %
2600	39.0	1.96	7.49	7.49	7.49	0.37	0.92	± 12.0 %
5250	35.9	4.71	5.24	5.24	5.24	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.78	4.78	4.78	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.03	5.03	5.03	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.23	10.23	10.23	0.30	1.00	± 12.0 %
900	55.0	1.05	10.06	10.06	10.06	0.42	0.80	± 12.0 %
1750	53.4	1.49	8.34	8.34	8.34	0.28	0.86	± 12.0 %
1900	53.3	1.52	8.12	8.12	8.12	0.40	0.86	± 12.0 %
2300	52.9	1.81	8.02	8.02	8.02	0.30	0.88	± 12.0 %
2450	52.7	1.95	7.80	7.80	7.80	0.40	0.90	± 12.0 %
2600	52.5	2.16	7.62	7.62	7.62	0.36	0.92	± 12.0 %
5250	48.9	5.36	4.46	4.46	4.46	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

³ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL USA Client

Object

Certificate No: EX3-7498_Apr20

S

С

CALIBR	ATION (CERTIF	ICATE

Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 24, 2020

EX3DV4 - SN:7498

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	fille
			Issued: April 25, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization & 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis **Connector Angle** information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- C) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, v.z. Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z. DCP are numerical linearization parameters assessed based on the data of power sweep with CW ٠ signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom • exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.41	0.38	0.49	± 10.1 %
DCP (mV) ^B	102.9	102.3	100.7	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	170.9	± 2.5 %	± 4.7 %
		Y	0.00	0.00	1.00	1	163.5		
		Z	0.00	0.00	1.00	1	160.0		
10352-	Pulse Waveform (200Hz, 10%)	X	2.36	65.19	9.60	10.00	60.0	± 2.7 %	± 9.6 %
AAA		Y	1.30	60.00	7.39		60.0		
		Z	20.00	89.59	19.31	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.23	63.38	7.85	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	0.95	61.06	6.49	1	80.0	1	
		Z	20.00	92.78	19.61	1	80.0	1	
10354-	Pulse Waveform (200Hz, 40%)	X	0.55	62.16	6.46	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	0.41	60.00	4.42	1	95.0	1	
		Z	20.00	99.41	21.27	1	95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	82.05	11.37	2.22	120.0	± 1.6 %	± 9.6 %
AAA		Y	4.26	151.07	16.45		120.0		
		Z	20.00	126.77	31.78	1	120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.64	69.02	15.83	1.00	150.0	± 3.9 %	± 9.6 %
AAA		Y	1.30	66.31	13.84		150.0		
		Z	1.62	67.71	15.41		150.0	l	
10388-	QPSK Waveform, 10 MHz	X	2.07	68.29	16.07	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	1.81	66.58	14.95	1	150.0	1	
		Z	2.10	68.02	15.93		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.02	65.49	16.36	3.01	150.0	± 1.5 %	± 9.6 %
AAA		Y	2.04	66.00	16.84	1	150.0	1	
		Z	2.17	66.12	16.77		150.0	1	
10399-	64-QAM Waveform, 40 MHz	X	3.39	67.21	15.91	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.19	66.31	15.38		150.0		
		Z	3.41	67.02	15.84		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.62	65.82	15.66	0.00	150.0	±4.2 %	±9.6 %
AAA		Y	4.63	65.94	15.73		150.0		
		Z	4.67	65.57	15.59		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	28.9	213.26	34.92	4.08	0.00	4.98	0.07	0.24	1.00
Y	28.0	215.76	37.41	2.99	0.20	5.02	0.00	0.28	1.01
Z	33.9	255.01	36.08	7.04	0.00	5.07	0.00	0.32	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	12.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.23	10.23	10.23	0.62	0.80	± 12.0 %
900	41.5	0.97	9.84	9.84	9.84	0.37	1.06	± 12.0 %
1750	40.1	1.37	8.76	8.76	8.76	0.41	0.87	± 12.0 %
1900	40.0	1.40	8.27	8.27	8.27	0.37	0.87	± 12.0 %
2300	39.5	1.67	8.15	8.15	8.15	0.30	0.95	± 12.0 %
2450	39.2	1.80	7.86	7.86	7.86	0.36	0.90	± 12.0 %
2600	39.0	1.96	7.60	7.60	7.60	0.35	0.90	± 12.0 %
5250	35.9	4.71	5.36	5.36	5.36	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.93	4.93	4.93	0.40	1.80	± 13.1 %

Calibration Paramete	Determined in Head	Tissue Simulating Media
-----------------------------	--------------------	-------------------------

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.41	10.41	10.41	0.48	0.86	± 12.0 %
900	55.0	1.05	10.07	10.07	10.07	0.36	0.91	± 12.0 %
1750	53.4	1.49	8.50	8.50	8.50	0.37	0.87	± 12.0 %
1900	53.3	1.52	8.10	8.10	8.10	0.31	0.87	± 12.0 %
2300	52.9	1.81	7.97	7.97	7.97	0.41	0.90	± 12.0 %
2450	52.7	1.95	7.82	7.82	7.82	0.34	0.90	± 12.0 %
2600	52.5	2.16	7.63	7.63	7.63	0.25	0.90	± 12.0 %
5250	48.9	5.36	4.85	4.85	4.85	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.23	4.23	4.23	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.36	4.36	4.36	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

E

Certificate No: EX3-7500_Apr20

S

С

CALIBRATION	CERTIFICATE	
Object	EX3DV4 - SN:7500	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
Calibration date:	April 24, 2020	
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been con	ducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.	

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	flekt
			Issued: April 25, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell: f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.50	0.46	0.42	± 10.1 %
DCP (mV) ^B	100.4	99.4	97.1	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	169.9	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		157.9		
		Z	0.00	0.00	1.00	· · · · · · ·	171.2	1	
10352-	Pulse Waveform (200Hz, 10%)	X	2.26	64.76	9.91	10.00	60.0	± 2.5 %	± 9.6 %
AAA		Y	4.69	72.43	12.91		60.0	1	
		Z	2.05	63.97	9.73	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.41	64.02	8.46	6.99	80.0	± 1.9 %	± 9.6 %
AAA		Y	20.00	86.46	15.93		80.0		
		Z	1.57	65.00	8.85		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.43	60.10	5.47	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	88.42	15.35		95.0		
		Z	0.40	60.00	5.05		95.0		
10355- Pulse W AAA	Pulse Waveform (200Hz, 60%)	X	11.78	102.90	1.32	2.22	120.0	± 2.1 %	± 9.6 %
		Y	20.00	86.09	13.09		120.0		
		Z	0.30	60.00	3.14		120.0		
10387- QPS	QPSK Waveform, 1 MHz	X	1.42	65.58	13.99	1.00	150.0	± 4.1 %	± 9.6 %
AAA		Y	2.73	78.97	19.92		150.0		
		Z	1.57	70.74	15.77		150.0		
10388-	QPSK Waveform, 10 MHz	X	1.94	66.70	14.94	0.00	150.0	± 1.2 %	± 9.6 %
AAA		Y	2.37	71.80	18.05		150.0	1	
		Z	1.93	68.44	16.08		150.0	/	
10396-	64-QAM Waveform, 100 kHz	X	2.68	69.58	18.17	3.01	150.0	± 3.0 %	± 9.6 %
AAA		Y	2.14	67.40	17.74		150.0	1	
		Z	1.88	66.75	18.28		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.32	66.55	15.40	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.51	68.31	16.73		150.0		
		Z	3.26	67.02	15.90		150.0	· · · · · · · · · · · · · · · · · · ·	
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.64	65.40	15.37	0.00	150.0	± 4.2 %	± 9.6 %
AAA		Y	4.67	66.54	16.27		150.0		
		Z	4.62	66.43	16.09		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	35.2	264.48	35.91	4.75	0.20	5.01	1.34	0.20	1.01
Y	24.8	188.52	36.98	5.18	0.00	5.04	0.07	0.24	1.00
Z	23.6	182.32	37.94	3.10	0.29	5.04	0.00	0.10	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	78.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.01	10.01	10.01	0.58	0.80	± 12.0 %
900	41.5	0.97	9.42	9.42	9.42	0.41	1.00	± 12.0 %
1750	40.1	1.37	8.51	8.51	8.51	0.35	0.86	± 12.0 %
1900	40.0	1.40	8.21	8.21	8.21	0.34	0.86	± 12.0 %
2300	39.5	1.67	7.93	7.93	7.93	0.36	0.90	± 12.0 %
2450	39.2	1.80	7.66	7.66	7.66	0.34	0.90	± 12.0 %
2600	39.0	1.96	7.40	7.40	7.40	0.41	0.90	± 12.0 %
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.74	4.74	4.74	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.86	9.86	9.86	0.46	0.80	± 12.0 %
900	55.0	1.05	9.48	9.48	9.48	0.45	0.83	± 12.0 %
1750	53.4	1.49	8.24	8.24	8.24	0.40	0.86	± 12.0 %
1900	53.3	1.52	7.83	7.83	7.83	0.42	0.86	± 12.0 %
2300	52.9	1.81	7.77	7.77	7.77	0.45	0.90	± 12.0 %
2450	52.7	1.95	7.67	7.67	7.67	0.32	0.90	± 12.0 %
2600	52.5	2.16	7.47	7.47	7.47	0.28	0.90	± 12.0 %
5250	48.9	5.36	4.85	4.85	4.85	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.28	4.28	4.28	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^r At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.