

CERTIFICATION TEST REPORT

Report Number.: 12696946-E1V3

Applicant : APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

Model: A2111, A2222 AND A2223

FCC ID : BCG-E3309A

IC: 579C-E3309A

EUT Description: SMARTPHONE

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue:

August 01, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	7/18/2019	Initial Issue	Chris Xiong
V2	7/24/2019	Address TCB's	Chin Pang
V3	8/1/2019	Address TCB's on Section 5.6	Chin Pang

DATE: 8/1/2019 IC: 579C-E3309A

TABLE OF CONTENTS

RE	POR	RT REVISION HISTORY	2
TA	BLE	OF CONTENTS	3
1.	ΑT	TESTATION OF TEST RESULTS	6
2.	TE	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	8
4	4.2.	SAMPLE CALCULATION	8
4	4.3.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	EUT DESCRIPTION	9
	5.2.	DIFFERENCE IN MODEL NUMBER	9
	5.3.	MAXIMUM OUTPUT POWER	9
	5. <i>4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	10
	5.5.	SOFTWARE AND FIRMWARE	10
	5.6.	WORST-CASE CONFIGURATION AND MODE	10
	5.7.	DESCRIPTION OF TEST SETUP	11
6.	TE	ST AND MEASUREMENT EQUIPMENT	16
7.	ME	ASUREMENT METHODS	17
8.	AN	TENNA PORT TEST RESULTS	18
ð	8.1.	ON TIME AND DUTY CYCLE	18
ð	B.2.	20 dB AND 99% BANDWIDTH	
	8.2		
	8.2	2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	23 25
		.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION	
8	3.3.	HOPPING FREQUENCY SEPARATION	29
	8.3	.1. HIGH POWER BASIC DATA RATE GFSK MODULATION	30
	8.3		
	8.3 8.3		
č	8. <i>4.</i> 8.4	NUMBER OF HOPPING CHANNELS	34
	_	.2. HIGH POWER BASIC DATA RATE GFSK MODULATION	
		.3. LOW POWER BASIC DATA RATE GFSK MODULATION	
		.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION	

FCC ID: BCG-E3309A AVERAGE TIME OF OCCUPANCY......43 8.5. 8.5.1. HIGH POWER BASIC DATA RATE GFSK MODULATION......44 HIGH POWER ENHANCED DATA RATE 8PSK MODULATION48 8.5.2. LOW POWER BASIC DATA RATE GFSK MODULATION.......52 8.5.3. LOW POWER ENHANCED DATA RATE 8PSK MODULATION......56 8.5.4. 8.6. 8.6.1. HIGH POWER BASIC DATA RATE GFSK MODULATION......61 HIGH POWER ENHANCED DATA RATE QPSK MODULATION62 8.6.2. 8.6.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION63 8.6.4. LOW POWER BASIC DATA RATE GFSK MODULATION......64 8.6.5. 8.6.6. AVERAGE POWER.......67 8.7. 8.7.1. HIGH POWER BASIC DATA RATE GFSK MODULATION.......68 8.7.2. HIGH POWER ENHANCED DATA RATE QPSK MODULATION69 HIGH POWER ENHANCED DATA RATE 8PSK MODULATION70 8.7.3. LOW POWER BASIC DATA RATE GFSK MODULATION......71 8.7.4. LOW POWER ENHANCED DATA RATE QPSK MODULATION72 8.7.5. LOW POWER ENHANCED DATA RATE 8PSK MODULATION......73 8.7.6. 8.8. CONDUCTED SPURIOUS EMISSIONS......74 8.8.1. HIGH POWER BASIC DATA RATE GFSK MODULATION.......75 HIGH POWER ENHANCED DATA RATE 8PSK MODULATION79 8.8.2. 8.8.3. LOW POWER BASIC DATA RATE GFSK MODULATION......83 8.8.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION87 8.9. BEAMFORMING. 99% BANDWIDTH91 8.9.1. HIGH POWER BASIC DATA RATE GFSK MODULATION......91 8.9.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION93 8.9.3. LOW POWER BASIC DATA RATE GFSK MODULATION......95 8.9.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION97 BEAMFORMING, 20dB BANDWIDTH......99 8.10. HIGH POWER BASIC DATA RATE GFSK MODULATION99 8.10.1. 8.10.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION......101 8.10.3. LOW POWER BASIC DATA RATE GFSK MODULATION103 8.10.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION105 8.11. BEAMFORMING. HOPPING FREQUENCY SEPARATION......107 8.11.1. HIGH POWER BASIC DATA RATE GFSK MODULATION108 HIGH POWER ENHANCED DATA RATE 8PSK MODULATION......110 8.11.2. LOW POWER BASIC DATA RATE GFSK MODULATION112 8.11.3. LOW POWER ENHANCED DATA RATE 8PSK MODULATION114 8.11.4. BEAMFORMING. NUMBER OF HOPPING CHANNELS......116 8.12. HIGH POWER BASIC DATA RATE GFSK MODULATION117 8.12.1. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION......121 8.12.2. 8.12.3. LOW POWER BASIC DATA RATE GFSK MODULATION125 8.12.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION129 BEAMFORMING, AVERAGE TIME OF OCCUPANCY133 8.13. HIGH POWER BASIC DATA RATE GFSK MODULATION134 8.13.1. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION......138 8.13.2. 8.13.3. LOW POWER BASIC DATA RATE GFSK MODULATION142 LOW POWER ENHANCED DATA RATE 8PSK MODULATION146 8.13.4.

Page 4 of 294

1 CC ID. BCG-E3303A	10. 31 30-L3303A
8.14. BEAMFORMING OUTPUT POWER	150
8.14.1. HIGH POWER BASIC DATA RATE GFSK MODULATION	
8.14.2. HIGH POWER ENHANCED DATA RATE QPSK MODULAT	
8.14.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULAT	
8.14.4. LOW POWER BASIC DATA RATE GFSK MODULATION	
8.14.5. LOW POWER ENHANCED DATA RATE QPSK MODULAT	
8.14.6. LOW POWER ENHANCED DATA RATE 8PSK MODULAT	ION151
8.15. BEAMFORMING AVERAGE POWER	152
8.15.1. HIGH POWER BASIC DATA RATE GFSK MODULATION	152
8.15.2. HIGH POWER ENHANCED DATA RATE QPSK MODULAT	
8.15.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULAT	ION152
8.15.4. LOW POWER BASIC DATA RATE GFSK MODULATION	153
8.15.5. LOW POWER ENHANCED DATA RATE QPSK MODULAT	ION153
8.15.6. LOW POWER ENHANCED DATA RATE 8PSK MODULAT	ION153
8.16. BEAMFORMING, CONDUCTED SPURIOUS	154
8.16.1. HIGH POWER BASIC DATA RATE GFSK MODULATION	
8.16.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULAT	
8.16.3. LOW POWER BASIC DATA RATE GFSK MODULATION	158
8.16.4. LOW POWER ENHANCED DATA RATE 8PSK MODULAT	
9. RADIATED TEST RESULTS	
9.1. TRANSMITTER ABOVE 1 GHz	
9.1.1. ANTENNA 2, HIGH POWER BASIC DATA RATE GFSK MOD	
9.1.2. ANTENNA 5, HIGH POWER BASIC DATA RATE GFSK MOD	
9.1.3. ANTENNA 2, HIGH POWER ENHANCED DATA RATE 8PSK	
9.1.4. ANTENNA 5, HIGH POWER ENHANCED DATA RATE 8PSK	
9.1.5. ANTENNA 2, LOW POWER BASIC DATA RATE GFSK MOD	
9.1.6. ANTENNA 5, LOW POWER BASIC DATA RATE GFSK MOD	
9.1.7. ANTENNA 2, LOW POWER ENHANCED DATA RATE 8PSK.	
9.1.8. ANTENNA 5, LOW POWER ENHANCED DATA RATE 8PSK.	
9.1.9. Beamforming HIGH POWER BASIC DATA RATE GFSK MOD	
9.1.10. Beamforming HIGH POWER BASIC DATA RATE 8PSK MC	
9.1.11. Beamforming LOW POWER BASIC DATA RATE GFSK MC	
9.1.12. Beamforming LOW POWER BASIC DATA RATE 8PSK MO	DULATION274
9.2. WORST CASE BELOW 30MHZ	284
9.3. WORST CASE BELOW 1 GHZ	285
9.4. WORST CASE 18-26 GHZ	
10. AC POWER LINE CONDUCTED EMISSIONS	289
10.1. AC Power Line Host	
10.1. AC Power Line Host	290

SETUP PHOTOS294

11.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

EUT DESCRIPTION: SMARTPHONE

MODEL: A2111, A2222 AND A2223

SERIAL NUMBER: C7CYQ004MT74, C7CYP0L2MT5Q

DATE TESTED: FEBRUARY 21, 2019 – JULY 6, 2019

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Complies
ISED RSS-247 Issue 2 Complies
ISED RSS-GEN Issue 5 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For

UL Verification Services Inc. By:

Chin Pany

Prepared By:

Chin Pang Senior Engineer

Consumer Technology Division UL Verification Services Inc.

Hung Thai Test Engineer

Consumer Technology Division UL Verification Services Inc.

Page 6 of 294

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 5, KDB 558074 D01v05r02 and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd	
Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	Chamber I (ISED:2324A-5)	
Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED:2324A-6)	
Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	Chamber K (ISED:2324A-1)	
	Chamber G (ISED:22541-4)	Chamber L (ISED:2324A-3)	
	Chamber H (ISED:22541-5)		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, TD-SCDMA, CDMA, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wide band, GPS and NFC. All models support at least one UICC based SIM. The second SIM, if present, is either UICC based pSIM (physical SIM) or e-SIM (electronic SIM). The device has a built-in inductive charging receiver. The rechargeable battery is also not user accessible.

5.2. DIFFERENCE IN MODEL NUMBER

Model A2111, A2222 and A2223 is electrically identical to Model A2111. Three model numbers are allocated for marketing and logistic purposes only. A2111 was used to perform all final tests.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Config	Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
		2402 - 2480	Basic GFSK	18.87	77.09
	High Power	2402 - 2480	DQPSK	18.27	67.14
Ant 2		2402 - 2480	Enhanced 8PSK	18.30	67.61
Ant 2		2402 - 2480	Basic GFSK	12.65	18.41
	Low Power	2402 - 2480	DQPSK	11.05	12.74
		2402 - 2480	Enhanced 8PSK	11.14	13.00
	High Power	2402 - 2480	Basic GFSK	19.91	97.95
		2402 - 2480	DQPSK	18.29	67.45
A t. E		2402 - 2480	Enhanced 8PSK	18.31	67.76
Ant 5	Low Power	2402 - 2480	Basic GFSK	12.55	17.99
		2402 - 2480	DQPSK	11.08	12.82
		2402 - 2480	Enhanced 8PSK	11.13	12.97
		2402 - 2480	Basic GFSK TxBF	20.08	101.86
	High Power	2402 - 2480	DQPSK TxBF	20.42	110.15
A		2402 - 2480	Enhanced 8PSK TxBF	20.54	113.24
Ant 2 + Ant 5		2402 - 2480	Basic GFSK TxBF	14.94	31.19
	Low Power	2402 - 2480	DQPSK TxBF	13.89	24.49
		2402 - 2480	Enhanced 8PSK TxBF	14.10	25.70

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Range	Ant. 2	Ant. 5
(GHz)	(dBi)	(dBi)
2.4	-4.5	-2.6

5.5. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was BT FW Version: 17.1.140.1283.

5.6. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on Antenna 2 (Core 0) and Antenna 5 (Core 1). It was determined that Y (Landscape) orientation was the worst-case orientation for both Ant 2 and Ant 5, and X (Flatbed) orientation for Beamforming

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT set to transmit at highest power on Low/Middle/High channels.

Radiated emissions below 30MHz, below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmitting at the channel with the highest output power as worst-case scenario.

For below 1GHz tests, EUT was connected to AC power adapter as the worst case; and for above 1GHz tests, the worst-case configuration reported was with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BT and 5GHz bands, no noticeable new emission was found.

GFSK, DQPSK, 8PSK average power are all investigated. The GFSK & 8PSK power are the worst case. For average power data, please refer to section 8.7.

Worst-case data rates as provided by the client were:

GFSK mode: DH5 8PSK mode: 3-DH5

BFTX, DH5 BFTX, 3-DH5

There are two vendors of the WiFi/Bluetooth radio modules: variant 1 and variant 2. The WiFi/Bluetooth radio modules have the same mechanical outline (e.g., the same package dimension and pin-out layout), use the same on-board antenna matching circuit, have an identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances.

Baseline testing was performed on the two variants to determine the worst case on all conducted power and radiated emissions.

Page 10 of 294

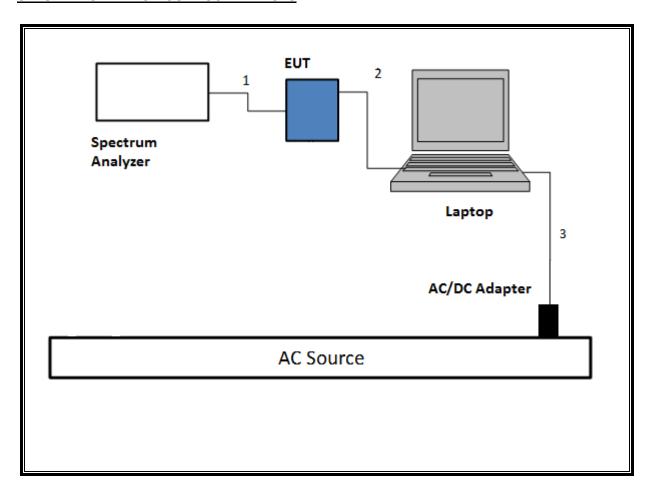
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

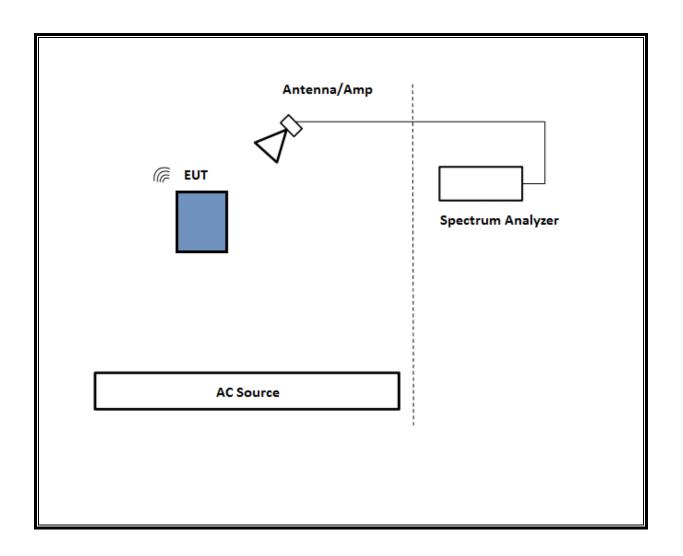
Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
laptop	Apple	A1502	HRP003436	QDS-BRCM1080				
Laptop AC/DC adapter	Liteon Technology	PA-1450-BA1	B123	NA				
EUT AC Adapter	Apple	A1385	D29325SM03XDHLHC9	NA				

I/O CABLES

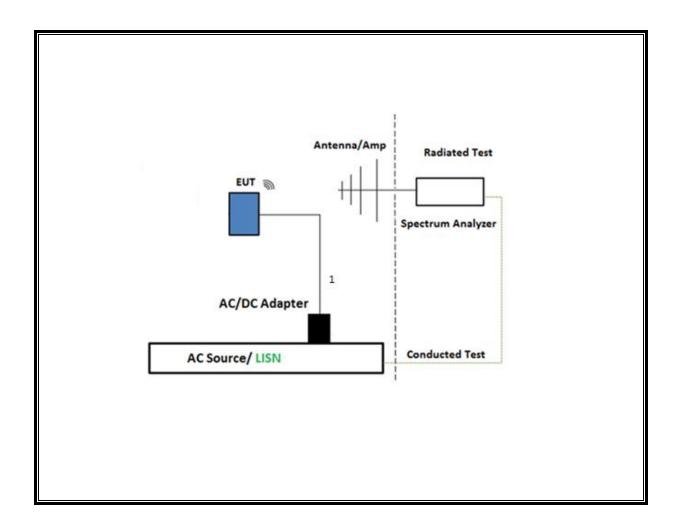
	I/O Cable List								
Cable No	Port	Cable Length (m)	Remarks						
140		ports	Type		Length (III)				
1	Antenna	1	SMA	Un-Shielded	0.2	To spectrum Analyzer			
2	USB	1	USB	Shielded	1	N/A			
3	AC	1	AC	Un-shielded	2	N/A			

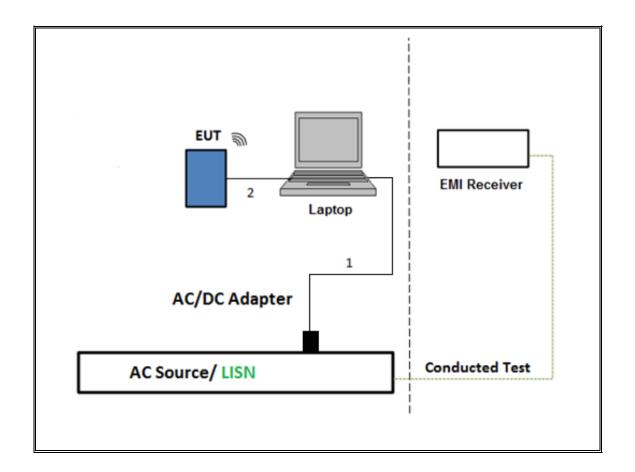

I/O CABLES (BELOW 1GHZ AND AC POWER LINE TEST WITH ADAPTER AND LAPTOP)

	I/O Cable List								
Cable No	Port	# of identical	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Un-shielded	2	N/A			
2	USB	1	USB	Un-shielded	1	N/A			


TEST SETUP

The EUT is connected to a test laptop during the tests. Test software exercised the radio card.


SETUP DIAGRAM FOR CONDUCTED TESTS


SETUP DIAGRAM FOR RADIATED TESTS Above 1GHz

SETUP DIAGRAM FOR BELOW 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T908	01/23/2020	01/23/2019			
*Horn Antenna 1-18GHz	ETS-Lindgren	3117	T136	07/02/2019	07/02/2018			
Horn Antenna 1-18GHz	ETS-Lindgren	3117	T345	04/20/2020	04/25/2019			
Amplifier, 10KHz to 1GHz, 32dB	Sonoma Instrument Co.	310N	T15	10/20/2019	10/20/2018			
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T712	02/26/2020	02/26/2019			
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800- 25-S-42	138301	09/15/2019	09/15/2018			
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T120	07/02/2019	07/02/2018			
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800- 25-S-42	T491	05/30/2020	05/30/2019			
Antenna, Active Loop 9KHz to 30MHz	ETS-Lindgren	6502	T1616	10/18/2019	10/18/2018			
Hybrid Antenna, 30-3Ghz	SunAR rf Motion	JB3	PRE0181574	08/01/2019	08/01/2018			
*Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	T447	06/16/2019	06/16/2018			
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800- 25-S-42	T1165	02/02/2020	02/02/2019			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T340	01/22/2020	01/22/2019			
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800- 25-S-42	T1567	01/26/2020	01/26/2019			
*Pre-Amp 18-26GHz	Agilent Technology	8449B	T404	03/23/2020	03/23/2019			
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T227	10/29/2019	10/29/2018			
Filter, HPF 3GHz	Micro-Tronics	HPM17543	T1014	01/26/2020	01/26/2019			
Power Sensor	Power Sensor	Keysight	T1226	02/06/2020	02/06/2019			
	AC	Line Conducted						
EMI Test Receiver 9Khz- 7GHz	Rohde & Schwarz	ESCI7	T1436	02/14/2020	02/14/2019			
Power Cable, Line Conducted Emissions	UL	PG1	T861	08/31/2019	08/31/2018			
*LISN for Conducted Emissions CISPR-16	Fischer	50/250-25-2-01	T1310	06/19/2019	06/19/2018			
	UL AUTO	MATION SOFTWAR	RE					
Radiated Software	UL	UL EMC	Ve	r 9.5, April 26, 20	016			
Conducted Software	UL	UL EMC	Ver :	5.4, October 13,	2016			
AC Line Conducted Software	UL	UL EMC	Ver 9.5, May 26, 2015					

^{*}Testing is completed before equipment expiration date.

7. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Carrier Frequency Separation: ANSI C63.10-2013 Section 7.8.2

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3 and 6.5

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3 and 6.6

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

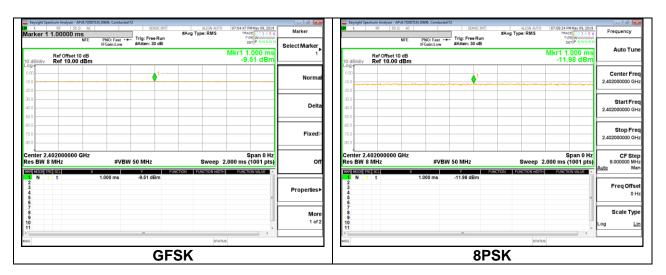
8. ANTENNA PORT TEST RESULTS

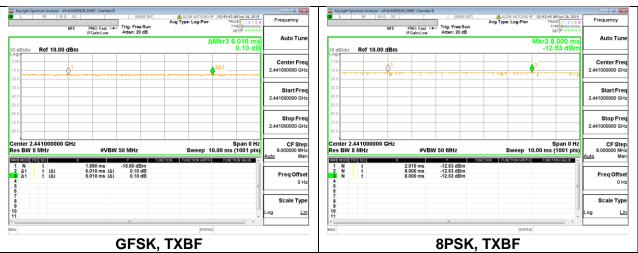
8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE


ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.


ON TIME AND DUTY CYCLE WITH HIGH POWER RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	1.00	1.00	1.000	100.0%	0.00	0.010
Bluetooth 8PSK	1.00	1.00	1.000	100.0%	0.00	0.010
Bluetooth GFSK TXBF	1.00	1.00	1.000	100.0%	0.00	0.010
Bluetooth 8PSK TXBF	1.00	1.00	1.000	100.0%	0.00	0.010

Note: Low power duty cycle is same as high power

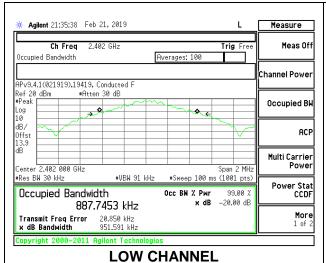
DUTY CYCLE PLOTS

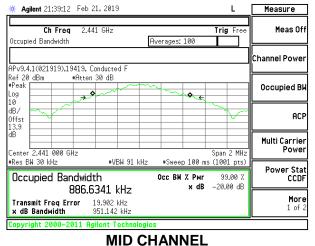
8.2. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

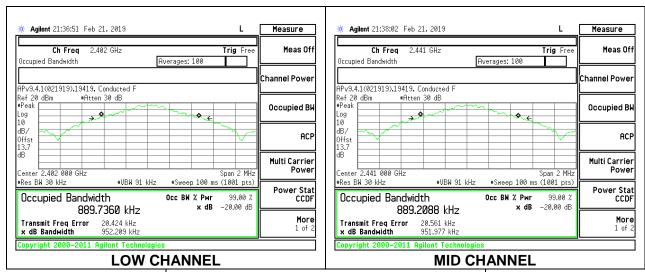
TEST PROCEDURE

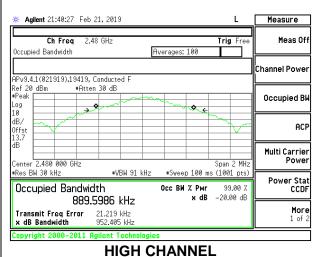

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

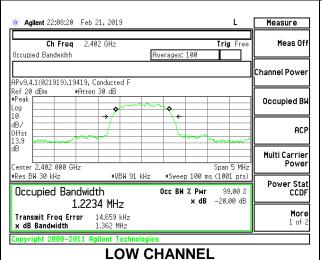
8.2.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

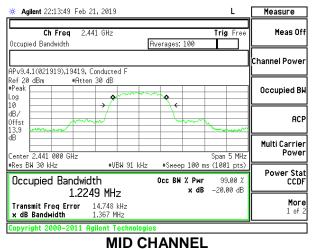
Antenna 2

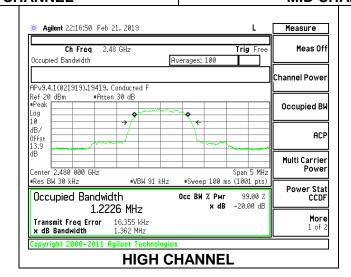

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.952	0.888
Mid	2441	0.951	0.887
High	2480	0.952	0.886



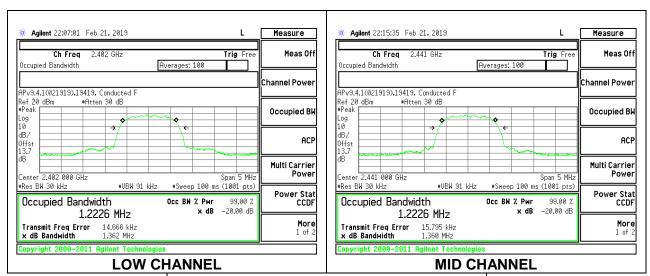
Agilent 21:42:28 Feb 21, 2019 Measure Meas Off Ch Freq 2.48 GHz **Trig** Fre Averages: 100 Channel Power APv9.4.1(021919),19419, Conducted Ref 20 dBm •Peak #Atten 30 dB Occupied Bk ***** dB/ Offst 13.9 ACF Multi Carrier 2.480 000 GHz #Sweep 100 ms (1001 pts) ≢VBW 91 kHz Res BW 30 kHz Power Stat 99.00 % -20.00 dB Occupied Bandwidth Occ BW % Pwr x dB 886.3714 kHz Transmit Freq Error 21.418 kHz 1 of x dB Bandwidth Copyright 2000-2011 Agilent Technologies **HIGH CHANNEL**

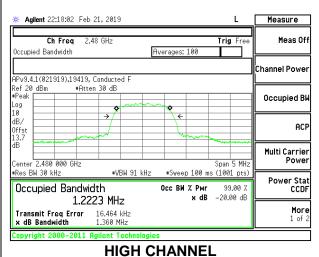

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.952	0.890
Mid	2441	0.952	0.889
High	2480	0.952	0.890

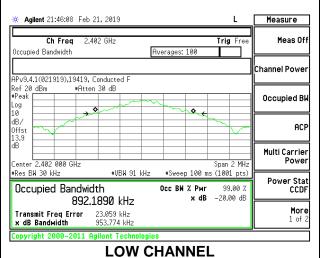


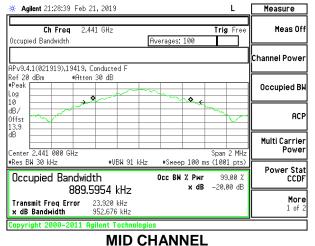


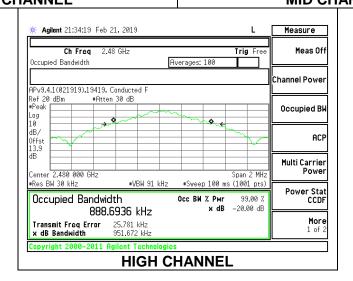
8.2.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION


Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.362	1.223
Mid	2441	1.367	1.225
High	2480	1.362	1.223

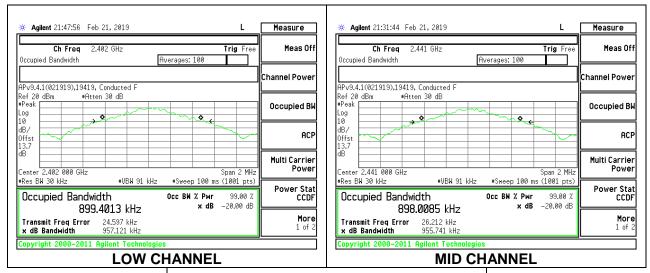


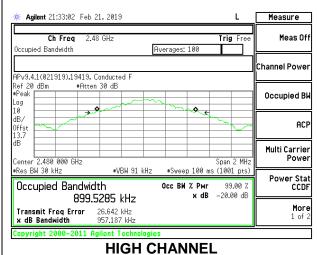

Chamal	Гио от голо от	20 d D. Do to di ; di la	000/ Davadovialth
Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.362	1.223
Mid	2441	1.360	1.223
High	2480	1.360	1.222

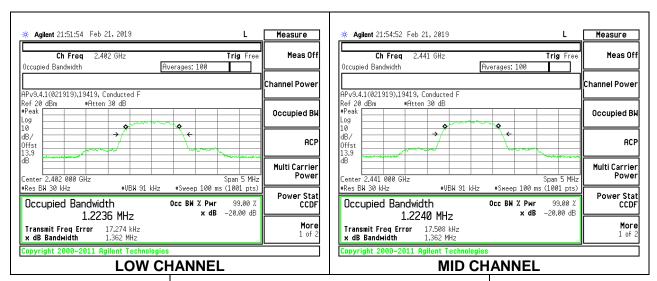


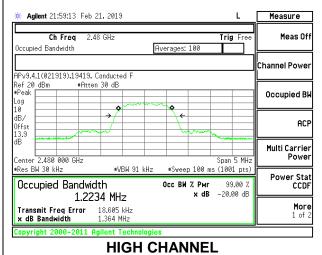


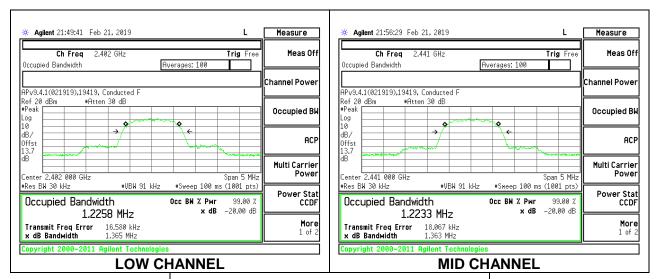
8.2.3. LOW POWER BASIC DATA RATE GFSK MODULATION

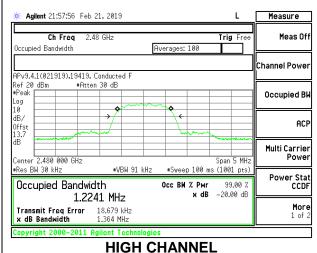

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.954	0.892
Mid	2441	0.953	0.890
High	2480	0.952	0.889




Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.957	0.899
Mid	2441	0.956	0.898
High	2480	0.957	0.899




8.2.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION


Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.362	1.224
Mid	2441	1.362	1.224
High	2480	1.364	1.223

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.365	1.226
Mid	2441	1.363	1.223
High	2480	1.364	1.224

8.3. HOPPING FREQUENCY SEPARATION

LIMITS

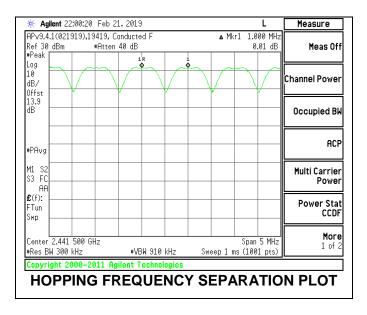
FCC §15.247 (a) (1)

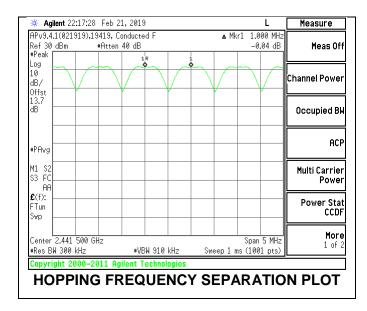
RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

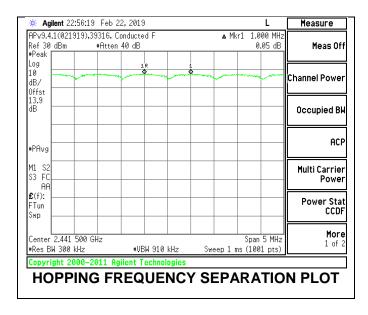
TEST PROCEDURE

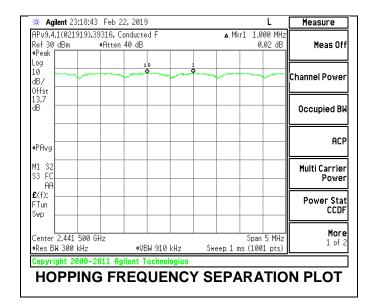

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 3xRBW. The sweep time is coupled.


RESULTS

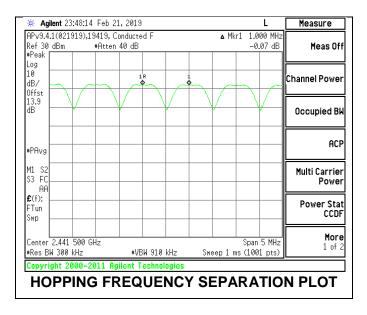
Page 29 of 294

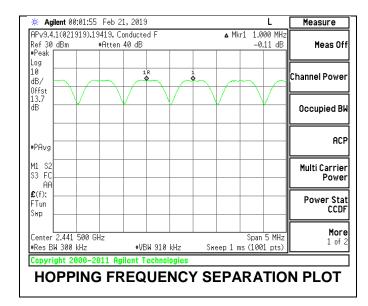
8.3.1. HIGH POWER BASIC DATA RATE GFSK MODULATION


Antenna 2

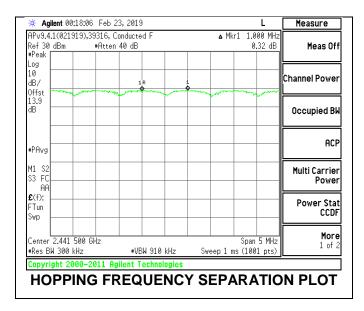


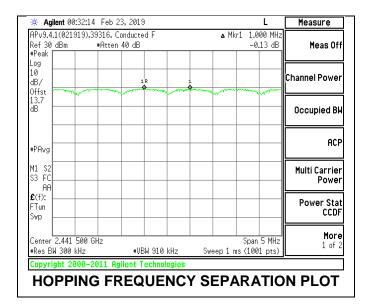
8.3.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION


Antenna 2



8.3.3. LOW POWER BASIC DATA RATE GFSK MODULATION


Antenna 2



8.3.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

8.4. NUMBER OF HOPPING CHANNELS

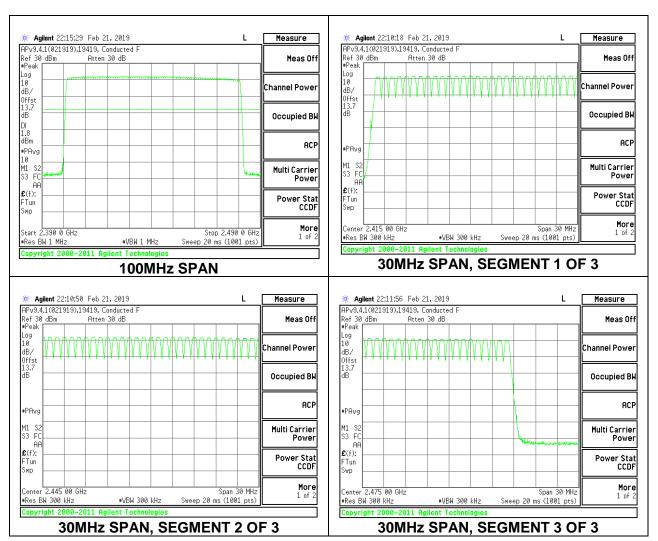
LIMITS

FCC §15.247 (a) (1) (iii)

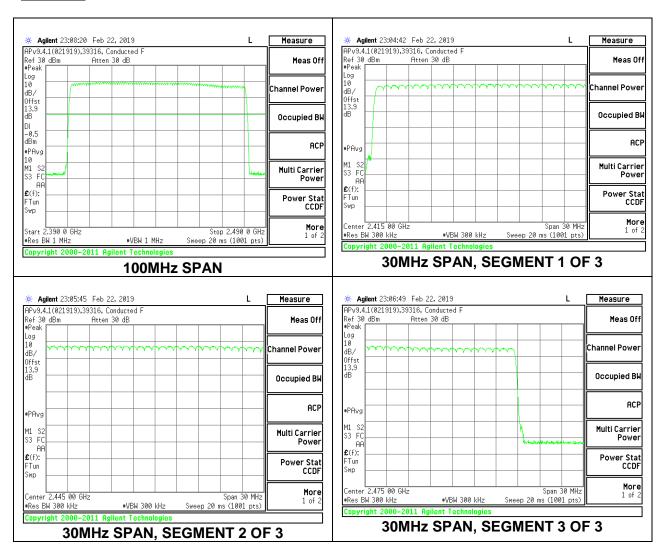
RSS-247 (5.1) (d)

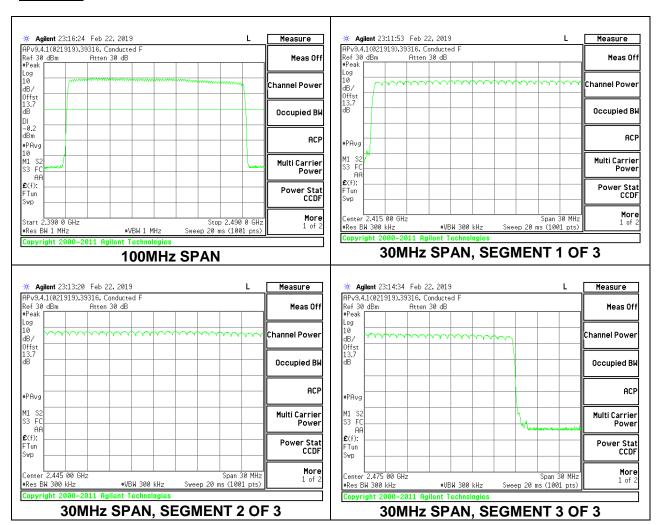
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

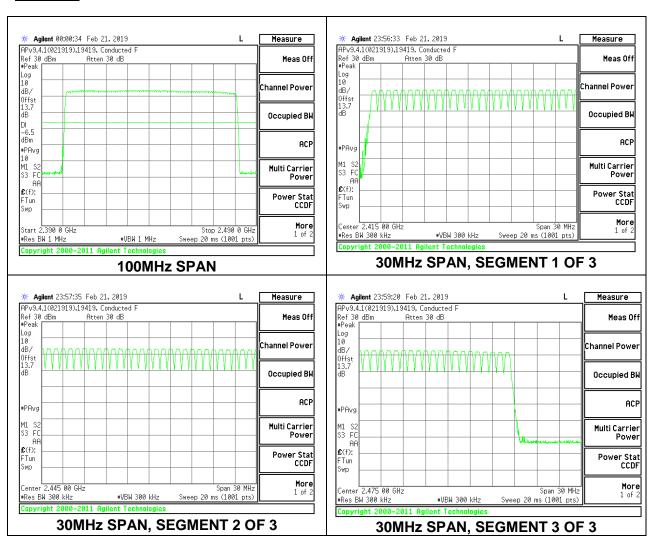
TEST PROCEDURE

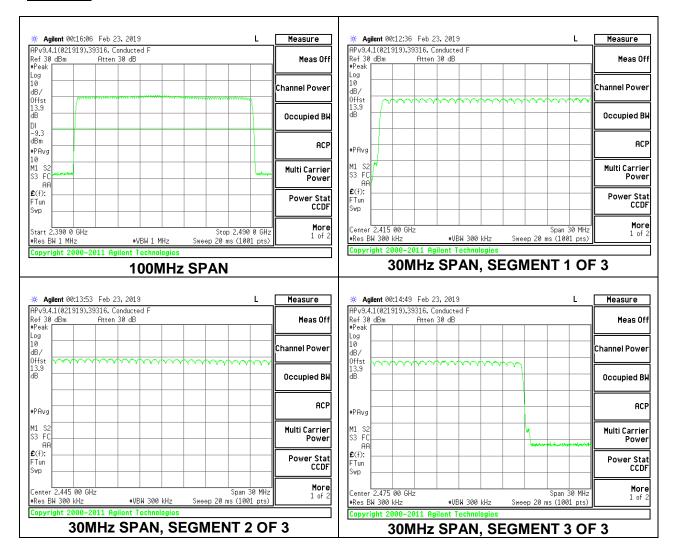

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

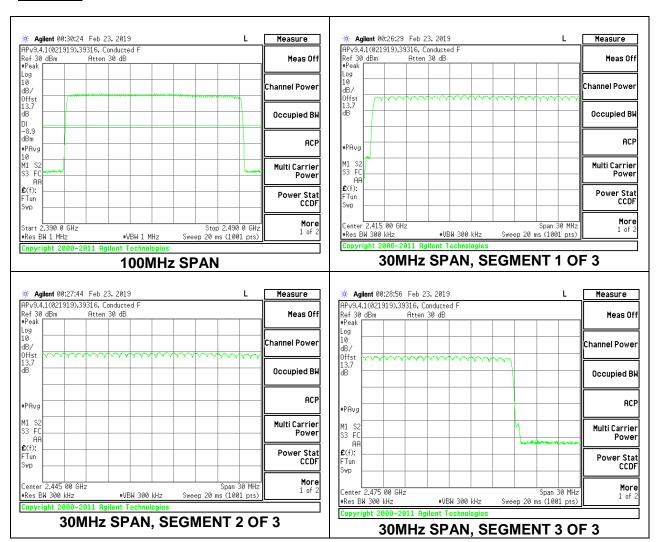
RESULTS


Normal Mode: 79 Channels Observed


8.4.1. HIGH POWER BASIC DATA RATE GFSK MODULATION


8.4.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION




8.4.3. LOW POWER BASIC DATA RATE GFSK MODULATION

8.4.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

8.5. AVERAGE TIME OF OCCUPANCY

LIMITS

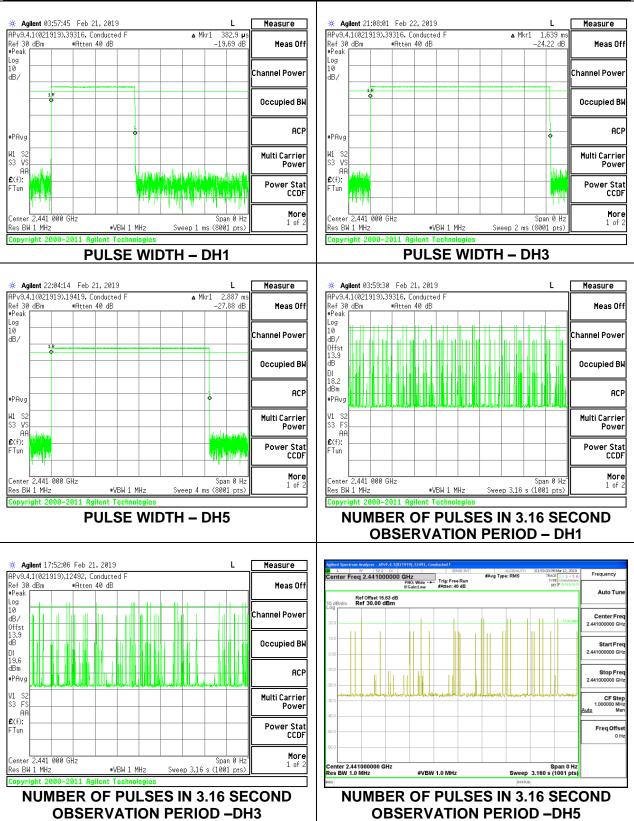
FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

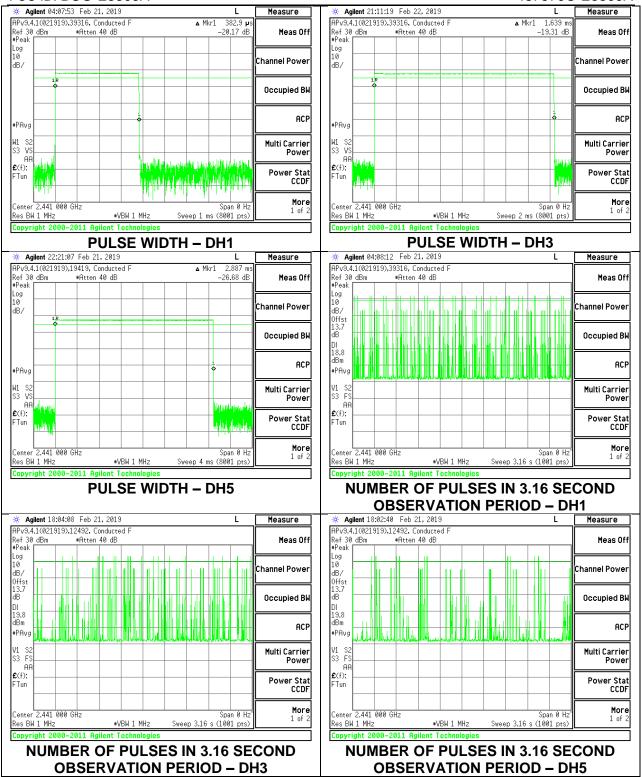
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

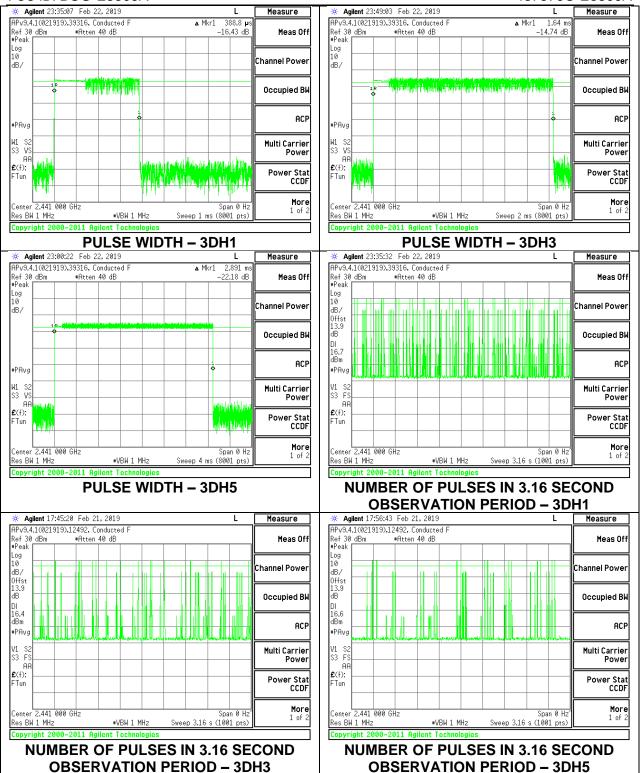
For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.


RESULTS

8.5.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	l Mode					
DH1	0.3829	32	0.1225	0.4	-0.2775	
DH3	1.639	17	0.2786	0.4	-0.1214	
DH5	2.887	11	0.3176	0.4	-0.0824	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH Mode						
DH1	0.3829	8	0.03063	0.4	-0.3694	
DH3	1.639	4.25	0.06966	0.4	-0.3303	
DH5	2.887	2.75	0.07939	0.4	-0.3206	

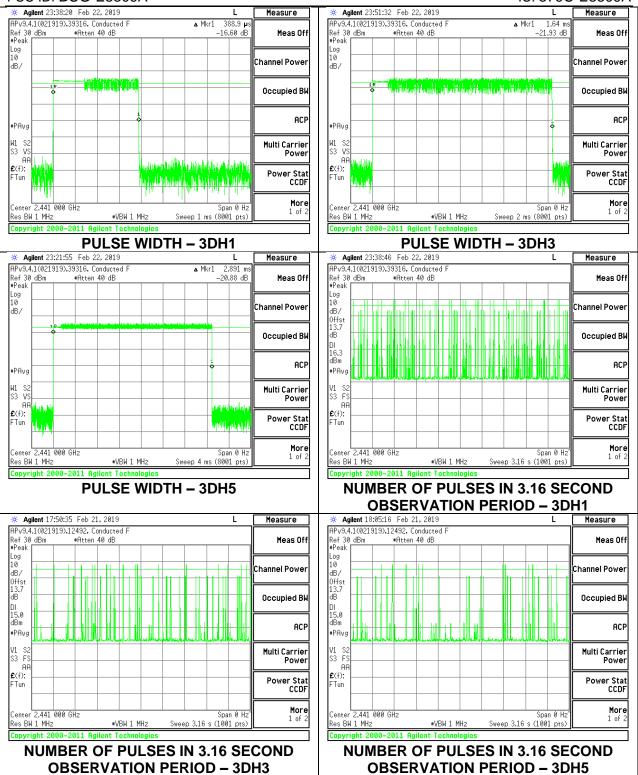
DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)		
GFSK Norma	l Mode						
DH1	0.300	32	0.0960	0.4	-0.3040		
DH3	1.369	17	0.2327	0.4	-0.1673		
DH5	2.887	10	0.2887	0.4	-0.1113		
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)		
GFSK AFH M	GFSK AFH Mode						
DH1	0.300	8	0.02400	0.4	-0.3760		
DH3	1.369	4.25	0.05818	0.4	-0.3418		
DH5	2.887	2.5	0.07218	0.4	-0.3278		



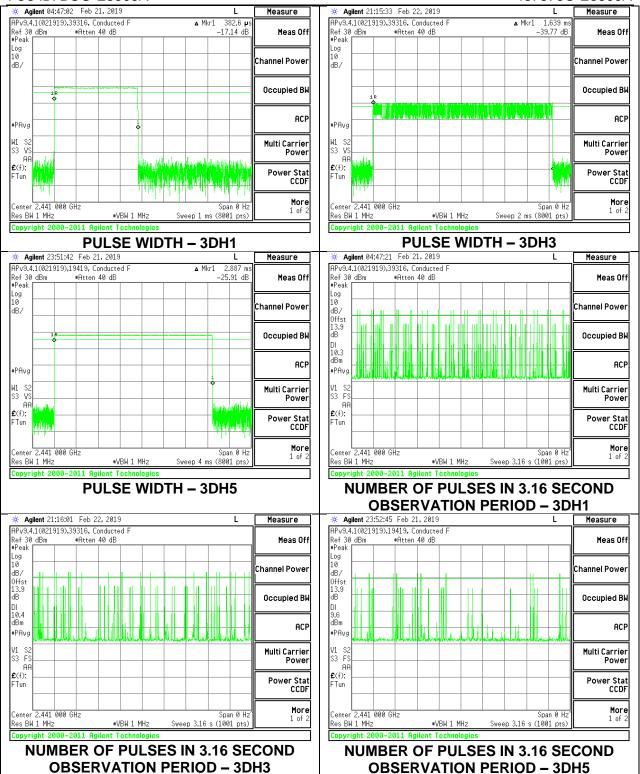
8.5.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

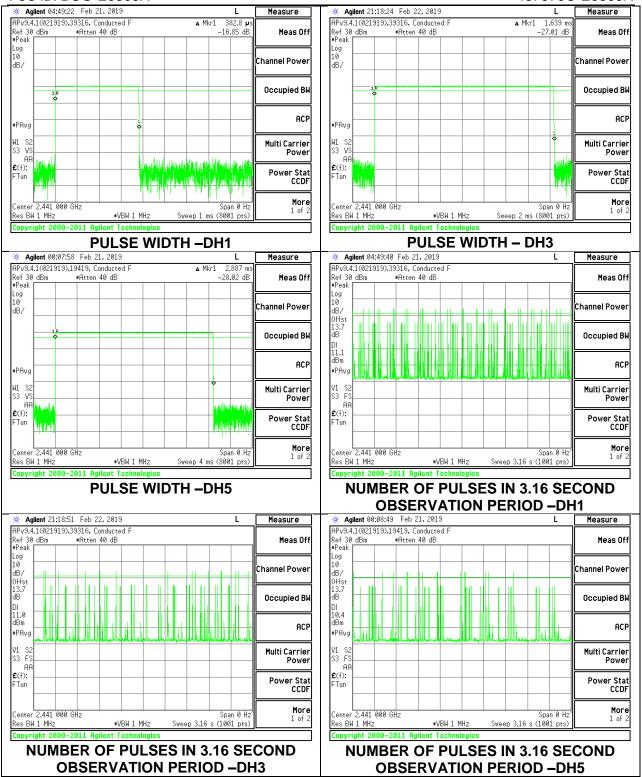
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
8PSK Normal	Mode				
3DH1	0.388	32	0.12416	0.4	-0.27584
3DH3	1.640	16	0.2624	0.4	-0.1376
3DH5	2.891	12	0.34692	0.4	-0.05308


Note: for AFH(8PSK) mode, please refer to the results of AFH(GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.

Antenna 5


DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
8PSK Normal	Mode				
3DH1	0.389	31	0.12059	0.4	-0.27941
3DH3	1.640	17	0.2788	0.4	-0.1212
3DH5	2.891	10	0.2891	0.4	-0.1109

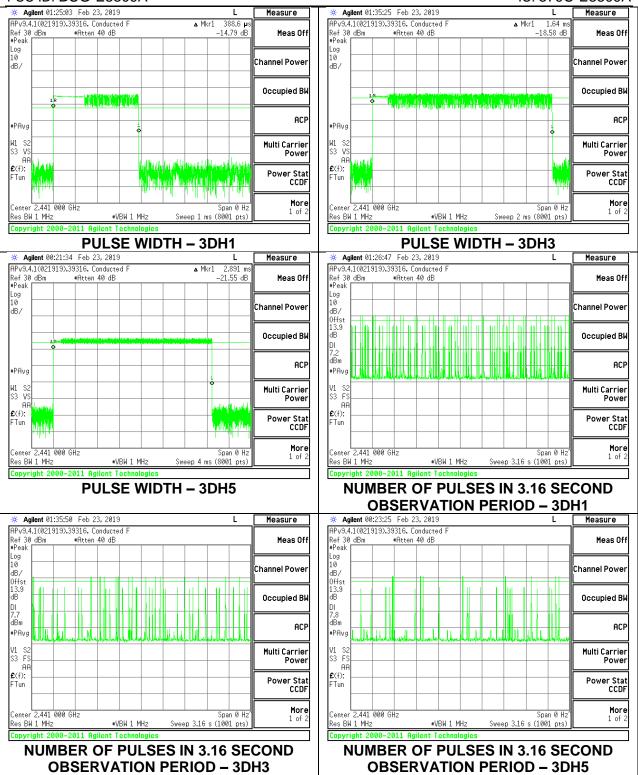
Note: for AFH(8PSK) mode, please refer to the results of AFH(GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.



8.5.3. LOW POWER BASIC DATA RATE GFSK MODULATION

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	l Mode					
DH1	0.383	32	0.1226	0.4	-0.2774	
DH3	1.639	20	0.3278	0.4	-0.0722	
DH5	2.887	10	0.2887	0.4	-0.1113	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH Mode						
DH1	0.383	8	0.03064	0.4	-0.3694	
DH3	1.639	5	0.08195	0.4	-0.3181	
DH5	2.887	2.5	0.07218	0.4	-0.3278	

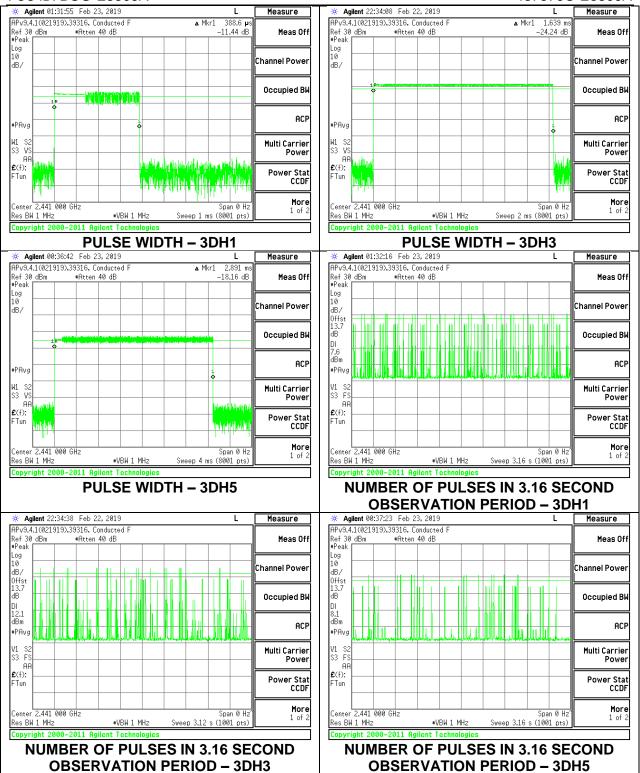
DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	l Mode					
DH1	0.383	31	0.1187	0.4	-0.2813	
DH3	1.639	14	0.2295	0.4	-0.1705	
DH5	2.887	12	0.3464	0.4	-0.0536	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH Mode						
DH1	0.383	7.75	0.02968	0.4	-0.3703	
DH3	1.639	3.5	0.05737	0.4	-0.3426	
DH5	2.887	3	0.08661	0.4	-0.3134	



8.5.4. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width (msec)	Pulses in 3.16	of Occupancy (sec)	(sec)	(sec)
		seconds			
8PSK Normal	Mode				
3DH1	0.389	32	0.12448	0.4	-0.27552
3DH3	1.640	16	0.2624	0.4	-0.1376
3DH5	2.891	9	0.26019	0.4	-0.13981


Note: for AFH(8PSK) mode, please refer to the results of AFH(GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.

Antenna 5

DH Packet	Pulse	Number of	Average Time	Limit	Margin		
	Width	Pulses in	of Occupancy				
	(msec)	3.16	(sec)	(sec)	(sec)		
		seconds					
8PSK Normal	8PSK Normal Mode						
3DH1	0.389	32	0.12448	0.4	-0.2755		
3DH3	1.639	16	0.26224	0.4	-0.1378		
3DH5	2.891	9	0.26019	0.4	-0.1398		

Note: for AFH(8PSK) mode, please refer to the results of AFH(GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate demonstrates compliance with channel occupancy when AFH is employed.

8.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power. **RESULTS**

8.6.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

Antenna 2

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(N.411-)	(dD)	(alD)	(dp)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.85	21	-2.15
Middle	2441	18.87	21	-2.13
High	2480	18.86	21	-2.14

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	4			(1-)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	19.76	21	-1.24
Middle	2441	19.80	21	-1.20
High	2480	19.91	21	-1.09

8.6.2. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

Antenna 2

Tested By:	20773
Date:	7/3/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.22	21	-2.78
Middle	2441	18.27	21	-2.73
High	2480	18.19	21	-2.81

Tested By:	20773
Date:	7/3/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.21	21	-2.79
Middle	2441	18.29	21	-2.71
High	2480	18.23	21	-2.77

8.6.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

Tested By:	30306
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.23	21	-2.77
Middle	2441	18.30	21	-2.7
High	2480	18.28	21	-2.72

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.23	21	-2.77
Middle	2441	18.31	21	-2.69
High	2480	18.23	21	-2.77

8.6.4. LOW POWER BASIC DATA RATE GFSK MODULATION

Antenna 2

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	/n all \	(15.)	(15.)	(15)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.56	21	-8.44
Middle	2441	12.65	21	-8.35
High	2480	12.60	21	-8.4

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.52	21	-8.48
Middle	2441	12.55	21	-8.45
High	2480	12.47	21	-8.53

8.6.5. LOW POWER ENHANCED DATA RATE QPSK MODULATION

Antenna 2

Tested By:	20773
Date:	7/3/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	10.90	21	-10.1
Middle	2441	11.04	21	-9.96
High	2480	10.95	21	-10.05

Tested By:	20773
Date:	7/3/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
	(141112)	(abiii)	(abiii)	(45)
Low	2402	11.05	21	-9.95
Middle	2441	11.08	21	-9.92
High	2480	11.02	21	-9.98

8.6.6. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.12	21	-9.88
Middle	2441	11.14	21	-9.86
High	2480	11.05	21	-9.95

Tested By:	30606
Date:	7/2/2019

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
	(171112)	(dbiii)	(ubiii)	(ub)
Low	2402	10.98	21	-10.02
Middle	2441	11.13	21	-9.87
High	2480	11.08	21	-9.92

8.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power. **RESULTS**

8.7.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

Antenna 2

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	18.55
Middle	2441	18.57
High	2480	18.56

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	4	4.5
	(MHz)	(dBm)
Low	2402	19.52
Middle	2441	19.57
High	2480	19.70

8.7.2. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

Antenna 2

Tested By:	20773
Date	7/3/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	15.67
Middle	2441	15.68
High	2480	15.50

Tested By:	20773
Date	7/3/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	15.61
Middle	2441	15.71
High	2480	15.63

8.7.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	15.68
Middle	2441	15.75
High	2480	15.70

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	15.69
Middle	2441	15.72
High	2480	15.66

8.7.4. LOW POWER BASIC DATA RATE GFSK MODULATION

Antenna 2

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	12.25
Middle	2441	12.29
High	2480	12.27

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	. ,	12.20
Low	2402	12.20
Middle	2441	12.23
High	2480	12.17

8.7.5. LOW POWER ENHANCED DATA RATE QPSK MODULATION

Antenna 2

Tested By:	20773
Date	7/3/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.58
Middle	2441	8.64
High	2480	8.61

Tested By:	20773
Date	7/3/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.64
Middle	2441	8.69
High	2480	8.62

8.7.6. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.71
Middle	2441	8.74
High	2480	8.68

Tested By:	30606
Date	6/25/2019

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.64
Middle	2441	8.73
High	2480	8.66

8.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

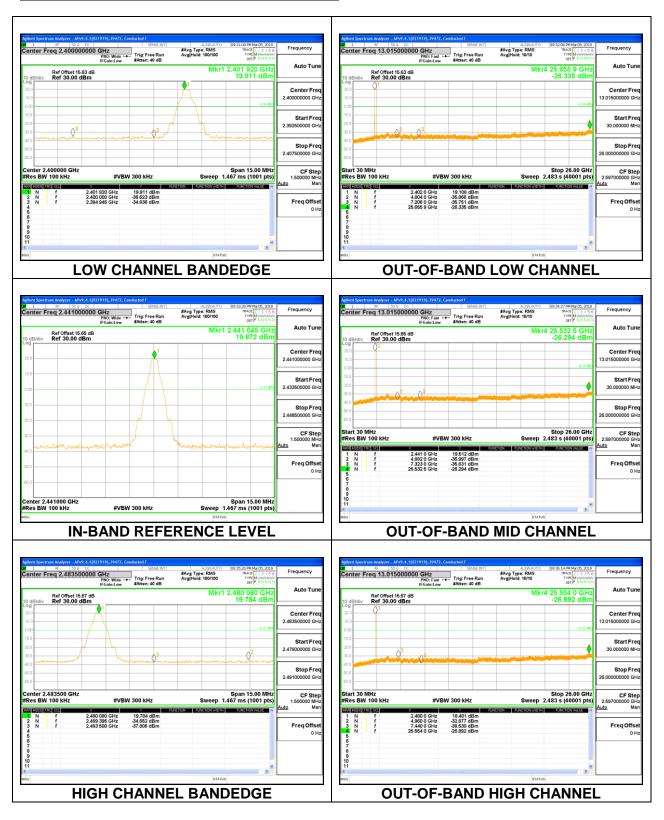
RSS-247 5.5

Limit = -20 dBc

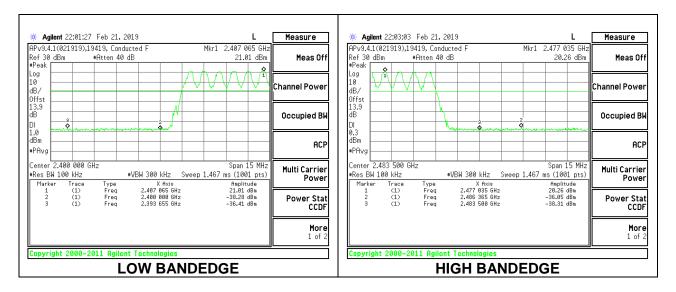
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

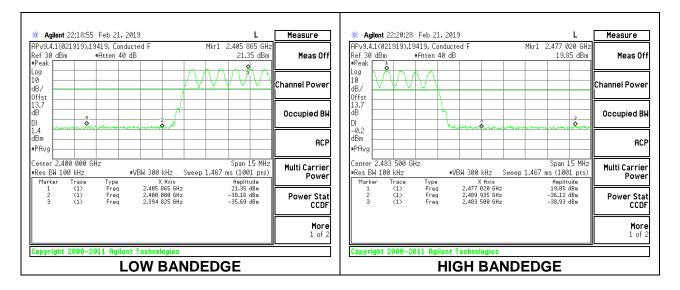

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Note: Test procedures and setting on beamforming mode are same as BT basic and EDR mode

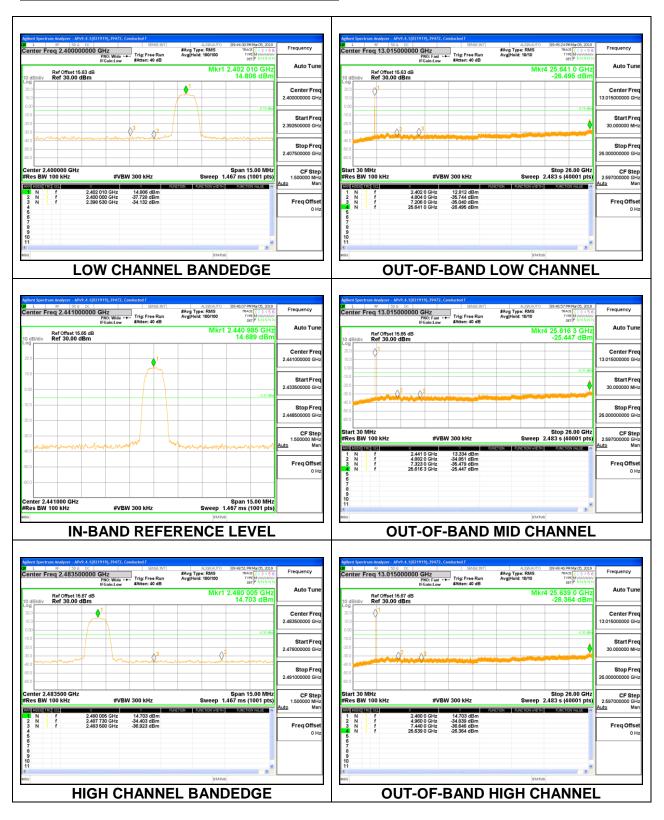

RESULTS

8.8.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

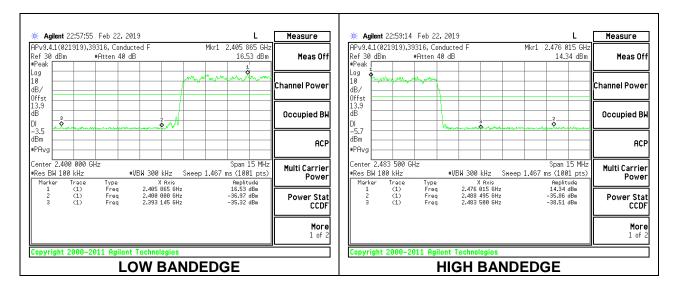

Antenna 2 SPURIOUS EMISSIONS, NON-HOPPING


Antenna 2 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Antenna 5 SPURIOUS EMISSIONS, NON-HOPPING



Antenna 5 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON



8.8.2. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

Antenna 2 SPURIOUS EMISSIONS, NON-HOPPING

Antenna 2 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

