Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL CCS USA Client

Certificate No: EX3-7356_Apr19

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7356
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 17, 2019
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Арг-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	UQ.
Approved by:	Katja Pokovic	Technical Manager	ally
	shall not be reproduced event in full	without written approval of the laboratory	Issued: April 19, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Manufaceral Agreement fo	
Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis

& rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization & i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.36	0.53	0.56	± 10.1 %
DCP (mV) ^B	102.3	96.6	101.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	155.2	± 2.7 %	±4.7 %
		Y	0.00	0.00	1.00		142.0		
		Z	0.00	0.00	1.00		149.4		
10352-	Pulse Waveform (200Hz, 10%)	X	2.31	64.04	9.41	10.00	60.0	± 3.3 %	± 9.6 %
AAA		Y	7.64	77.58	15.25		60.0		
		Z	15.00	88.39	19.59		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.45	63.18	7.92	6.99	80.0	± 2.3 %	±9.6 %
AAA		Y	15.00	85.41	16.35		80.0		
		Z	15.00	93.51	21.07		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.57	60.69	5.74	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	15.00	85.78	14.87		95.0		
		Z	15.00	106.75	26.04		95.0		_
10355-	Pulse Waveform (200Hz, 60%)	X	0.28	60.00	4.60	2.22	120.0	± 1.1 %	± 9.6 %
AAA	, , , , , ,	Y	15.00	80.56	11.20		120.0		
		Z	15.00	134.31	36.92		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.44	60.00	6.28	0.00	150.0	± 2.7 %	± 9.6 %
AAA		Y	0.52	60.00	6.86		150.0		
		Z	0.85	64.47	10.67		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.47	71.69	17.78	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.04	67.23	15.34		150.0		
		Z	2.57	71.08	17.48		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.19	74.36	20.37	3.01	150.0	± 1.4 %	± 9.6 %
AAA		Y	2.34	67.25	17.52		150.0		
		Z	3.22	72.90	20.07		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.57	68.49	16.60	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.38	66.70	15.61	1	150.0		
		Z	3.67	68.27	16.56		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.76	66.48	16.03	0.00	150.0	± 3.9 %	± 9.6 %
AAA		Y	4.71	65.39	15.48		150.0		
		Z	4.96	66.25	16.02		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻1	Т6
Х	32.1	231.23	33.54	6.46	0.40	4.95	1.99	0.00	1.00
Y	38.6	296.05	37.25	5.45	0.18	5.05	0.00	0.36	1.01
Z	44.4	332.76	35.97	10.23	0.00	5.10	1.21	0.26	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-3.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

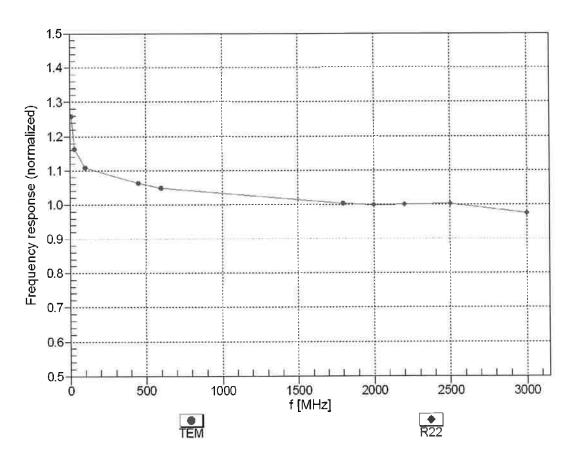
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.83	11.83	11.83	0.13	1.25	± 13.3 %
750	41.9	0.89	11.03	11.03	11.03	0.47	0.80	± 12.0 %
900	41.5	0.97	10.46	10.46	10.46	0.33	1.02	± 12.0 %
1450	40.5	1.20	9.41	9.41	9.41	0.40	0.80	± 12.0 %
1750	40.1	1.37	9.27	9.27	9.27	0.33	0.85	± 12.0 %
1900	40.0	1.40	8.89	8.89	8.89	0.28	0.85	± 12.0 %
2300	39.5	1.67	8.32	8.32	8.32	0.31	0.85	± 12.0 %
2450	39.2	1.80	7.98	7.98	7.98	0.34	0.85	± 12.0 %
2600	39.0	1.96	7.76	7.76	7.76	0.37	0.85	± 12.0 %
3500	37.9	2.91	7.40	7.40	7.40	0.30	1.25	± 13.1 %
3700	37.7	3.12	7.35	7.35	7.35	0.30	1.25	± 13.1 %
4950	36.3	4.40	6.05	6.05	6.05	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.61	5.61	5.61	0.40	1.80	± 13.1 %
5600	35.5	5.07	5.09	5.09	5.09	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.18	5.18	5.18	0.40	1.80	± 13.1 %

Calibration Parameter	[·] Determined ir	Head Tissue	Simulating Media
------------------------------	----------------------------	-------------	------------------

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

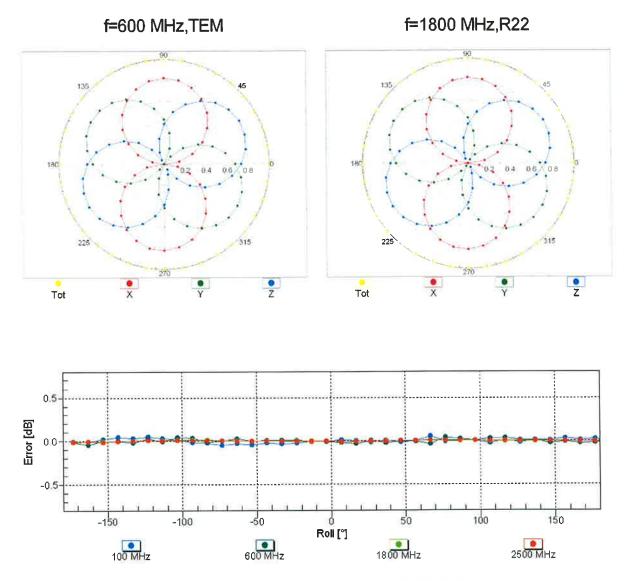
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

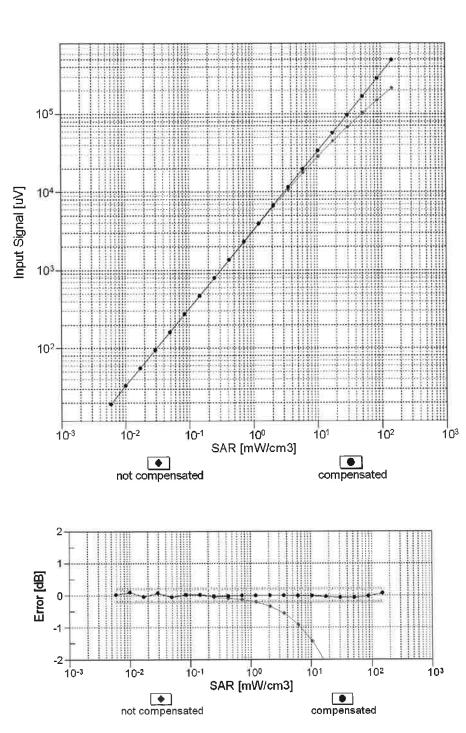

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	12.13	12.13	12.13	0.09	1.25	± 13.3 %
750	55.5	0.96	10.96	10.96	10.96	0.29	1.05	± 12.0 %
900	55.0	1.05	10.61	10.61	10.61	0.37	0.89	± 12.0 %
1450	54.0	1.30	9.13	9.13	9.13	0.36	0.85	± 12.0 %
1750	53.4	1.49	8.69	8.69	8.69	0.45	0.84	± 12.0 %
1900	53.3	1.52	8.36	8.36	8.36	0.48	0.84	± 12.0 %
2300	52.9	1.81	8.25	8.25	8.25	0.41	0.85	± 12.0 %
2450	52.7	1.95	8.09	8.09	8.09	0.36	0.87	± 12.0 %
2600	52.5	2.16	7.94	7.94	7.94	0.32	0.95	± 12.0 %
3500	51.3	3.31	7.09	7.09	7.09	0.40	1.25	± 13.1 %
3700	51.0	3.55	7.02	7.02	7.02	0.40	1.25	± 13.1 %
4950	49.4	5.01	5.51	5.51	5.51	0.50	1.90	± 13.1 %
5250	48.9	5.36	5.10	5.10	5.10	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.37	4.37	4.37	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.54	4.54	4.54	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

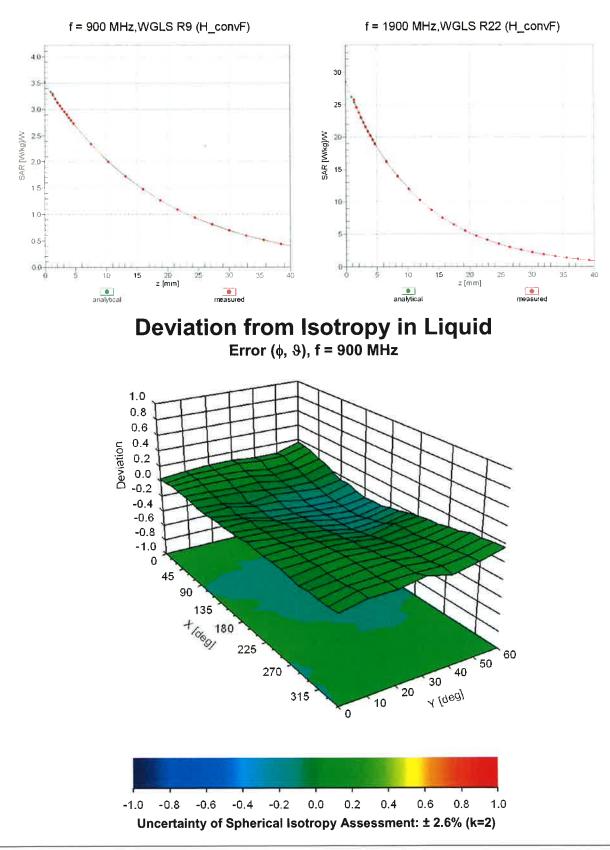
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: EX3-7448_Mar19

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7448

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

March 27, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
	1	1971 - X - 2	
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Approved by:

Leif Klysner

Katja Pokovic

Name

Function Laboratory Technician

Technical Manager

Seif Men

Issued: March 27, 2019

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization o φ rotation around probe axis Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 𝔅 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.27	0.38	0.51	± 10.1 %
DCP (mV) ^B	98.2	96.1	101.8	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	199.0	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		178.3		
		Z	0.00	0.00	1.00		189.4	1	
10352-	Pulse Waveform (200Hz, 10%)	X	3.89	70.35	12.80	10.00	60.0	± 3.5 %	± 9.6 %
AAA		Y	1.33	60.25	7.51		60.0	1	
		Z	15.00	85.46	17.74		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	4.83	74.79	13.16	6.99	80.0	± 2.4 %	± 9.6 %
AAA		Y	0.97	61.20	6.57		80.0		
		Z	15.00	87.93	17.76		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	83.63	13.90	3.98	95.0	± 1.5 %	± 9.6 %
AAA		Y	0.41	60.00	4.42		95.0		
		Z	15.00	94.75	19.66		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.37	61.85	5.67	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	0.30	60.00	2.75		120.0		
		Z	15.00	110.53	25.50		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.89	64.32	11.07	0.00	150.0	± 3.7 %	± 9.6 %
AAA		Y	0.40	60.00	4.58		150.0		
		Z	0.76	63.30	9.89		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.50	70.04	16.85	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.02	68.18	15.80		150.0		
		Z	2.48	70.37	17.11		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.82	69.57	18.34	3.01	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.22	67.25	17.44		150.0		
		Z	3.14	72.38	19.82		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.68	67.96	16.38	0.00	150.0	± 2.4 %	± 9.6 %
AAA		Y	3.37	67.16	15.87		150.0		
		Z	3.64	68.07	16.43		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	5.06	66.13	15.98	0.00	150.0	± 4.3 %	± 9.6 %
AAA		Y	4.63	65.84	15.75		150.0		
		Z	4.77	65.56	15.64		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V-2	V ^{−1}	
Х	51.9	400.46	37.75	5.81	0.37	5.02	0.31	0.45	1.00
Y	29.8	230.45	37.86	3.27	0.19	5.02	0.00	0.32	1.01
Z	42.6	318.44	35.80	8.51	0.00	5.06	1.23	0.24	1.01

Other Probe Parameters

Connector Angle (°) Mechanical Surface Detection Mode Optical Surface Detection Mode Probe Overall Length	
Optical Surface Detection Mode	52.6
	enabled
Probe Overall Length	disabled
	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

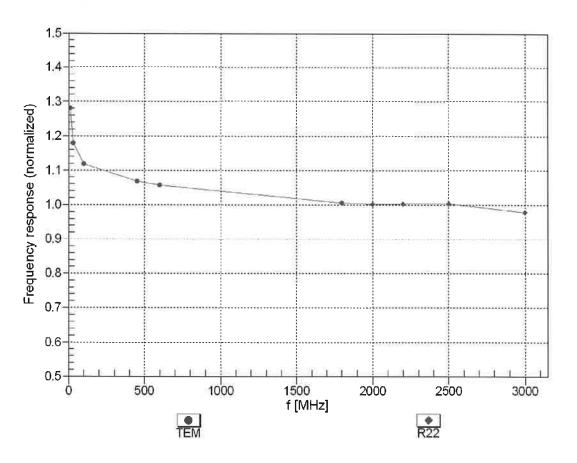
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.39	10.39	10.39	0.32	1.06	± 12.0 %
900	41.5	0.97	9.72	9.72	9.72	0.45	0.86	± 12.0 %
1750	40.1	1.37	8.41	8.41	8.41	0.41	0.84	± 12.0 %
1900	40.0	1.40	7.99	7.99	7.99	0.34	0.86	± 12.0 %
2300	39.5	1.67	7.82	7.82	7.82	0.36	0.84	± 12.0 %
2450	39.2	1.80	7.40	7.40	7.40	0.39	0.86	± 12.0 %
2600	39.0	1.96	7.19	7.19	7.19	0.33	0.94	± 12.0 %
5250	35.9	4.71	4.99	4.99	4.99	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.52	4.52	4.52	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.70	4.70	4.70	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

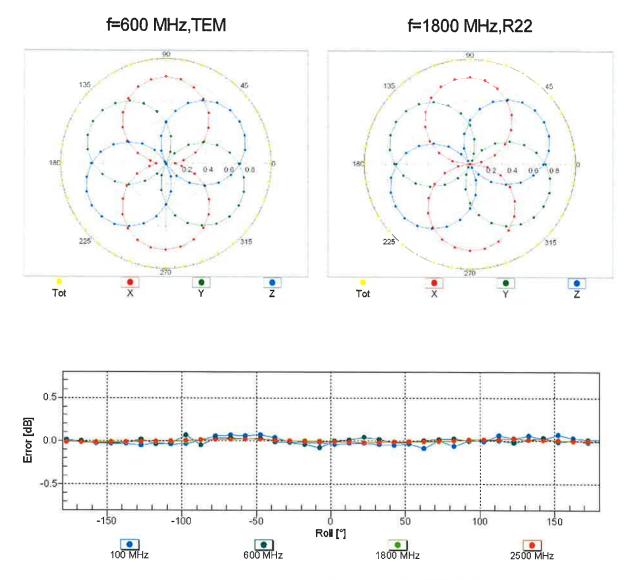
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

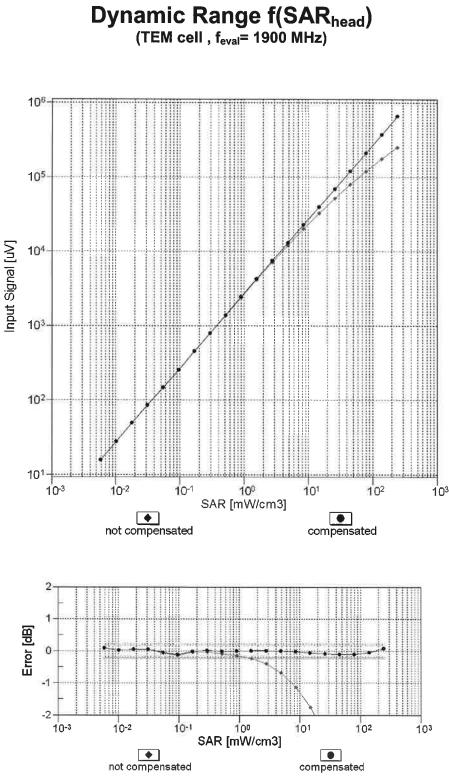

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.12	10.12	10.12	0.33	0.95	± 12.0 %
900	55.0	1.05	9.73	9.73	9.73	0.34	0.87	± 12.0 %
1750	53.4	1.49	8.37	8.37	8.37	0.33	0.85	± 12.0 %
1900	53.3	1.52	8.08	8.08	8.08	0.39	0.86	± 12.0 %
2300	52.9	1.81	7.75	7.75	7.75	0.33	0.87	± 12.0 %
2450	52.7	1.95	7.58	7.58	7.58	0.32	0.87	± 12.0 %
2600	52.5	2.16	7.36	7.36	7.36	0.24	0.98	± 12.0 %
5250	48.9	5.36	4.48	4.48	4.48	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.50	1.90	± 13.1 %
5750	48.3	5.94	3.86	3.86	3.86	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

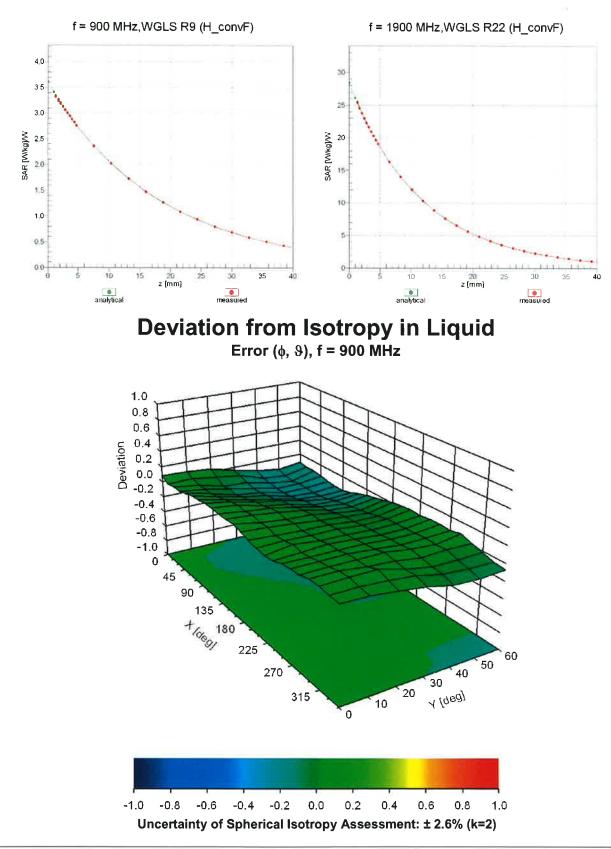
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Servizio svizzero di taratu Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: EX3-7498_Apr19

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7498
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 18, 2019
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted	ed in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(a)
Approved by:	Katja Pokovic	Technical Manager	flll
			Issued: April 19, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization &	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d)

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal . characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom . exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.41	0.38	0.50	± 10.1 %
DCP (mV) ^B	101.8	103.0	90.5	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	144.1	± 3.5 %	±4.7 %
		Y	0.00	0.00	1.00		159.2		
		Z	0.00	0.00	1.00		159.1		
10352-	Pulse Waveform (200Hz, 10%)	X	1.32	60.16	7.23	10.00	60.0	± 2.5 %	± 9.6 %
AAA		Y	2.41	65.43	9.76		60.0		
		Z	6.85	76.16	14.61		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	0.80	60.14	5.92	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	1.30	63.77	8.09		80.0		
		Z	15.00	84.48	15.70		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.41	60.00	4.41	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	0.89	64.77	7.52		95.0		
		Z	3.60	73.56	10.61		95.0		
10355- Pulse Waveform	Pulse Waveform (200Hz, 60%)	X	1.97	234.10	30.36	2.22	120.0	± 1.5 %	± 9.6 %
AAA		Y	15.00	80.82	11.13		120.0		
		Z	0.24	60.00	3.81		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.44	60.00	4.81	0.00	150.0	± 3.5 %	± 9.6 %
AAA		Y	0.45	60.00	6.02		150.0		
		Z	0.47	60.00	5.40		150.0		
10388-	QPSK Waveform, 10 MHz	X	1.81	66.00	14.62	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	2.25	69.65	16.75		150.0		
		Z	1.92	66.87	15.15		150.0		
10396-	64-QAM Waveform, 100 kHz	X	1.99	65.33	16.47	3.01	150.0	± 1.5 %	± 9.6 %
AAA		Y	2.64	70.79	19.00		150.0		
		Z	2.24	67.25	17.71		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.23	66.19	15.26	0.00	150.0	± 2.4 %	± 9.6 %
AAA		Y	3.39	67.26	15.98		150.0		
		Z	3.28	66.40	15.49		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.50	65.19	15.30	0.00	150.0	± 4.2 %	± 9.6 %
AAA		Y	4.60	65.69	15.64		150.0		
		Z	4.75	65.87	15.78		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	Т5	Т6
	fF	fF	V ⁻¹	ms.V ⁻²	ms.V⁻¹	ms	V ⁻²	V-1	
Х	29.0	221.94	37.02	2.68	0.11	4.99	0.00	0.24	1.01
Y	30.9	227.65	34.91	4.70	0.01	4.99	1.42	0.05	1.00
Z	33.9	265.60	38.57	4.42	0.17	5.08	0.00	0.33	1.01

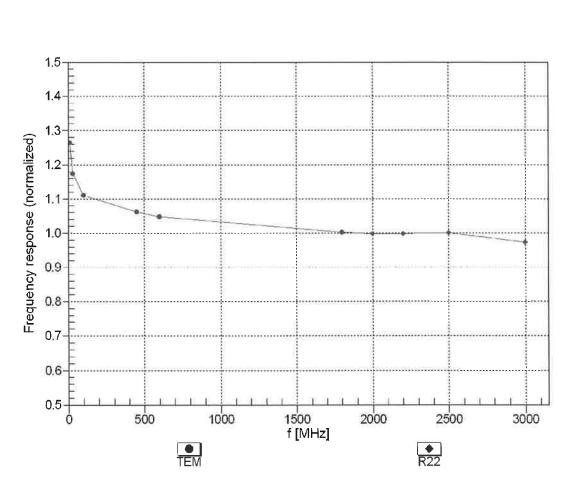
Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	58.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.42	10.42	10.42	0.38	0.85	± 12.0 %
900	41.5	0.97	9.89	9.89	9.89	0.43	0.85	± 12.0 %
1750	40.1	1.37	8.76	8.76	8.76	0.33	0.84	± 12.0 %
1900	40.0	1.40	8.48	8.48	8.48	0.26	0.85	± 12.0 %
2300	39.5	1.67	8.13	8.13	8.13	0.32	0.85	± 12.0 %
2450	39.2	1.80	7.84	7.84	7.84	0.33	0.90	± 12.0 %
2600	39.0	1.96	7.58	7.58	7.58	0.37	0.85	± 12.0 %
5250	35.9	4.71	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.67	4.67	4.67	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.01	5.01	5.01	0.40	1.80	± 13.1 %

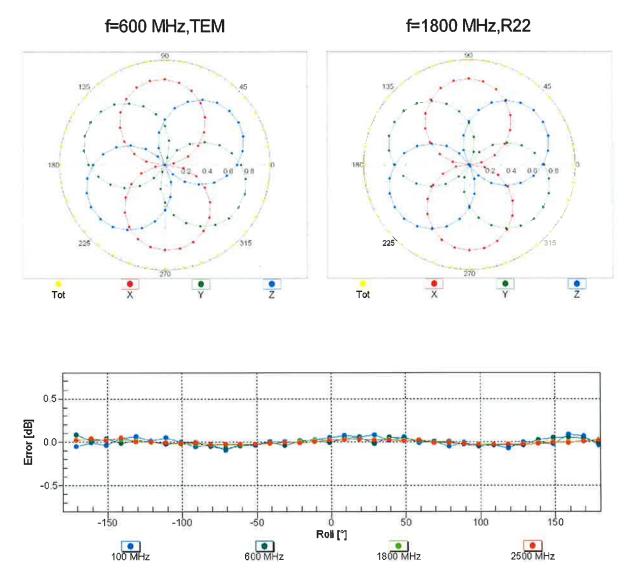
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

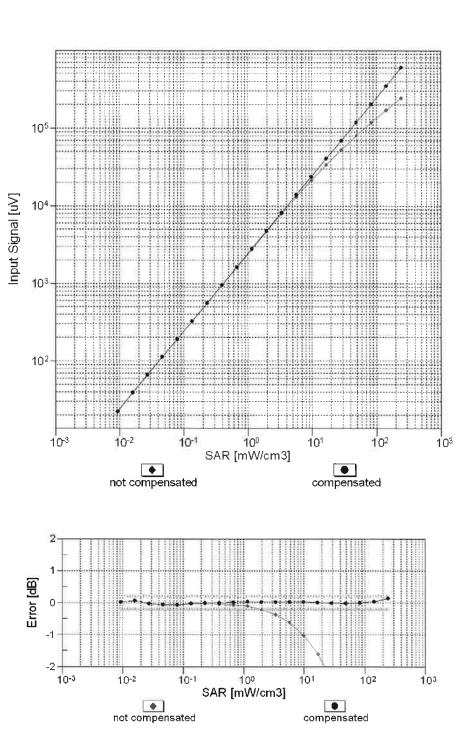

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.33	10.33	10.33	0.50	0.80	± 12.0 %
900	55.0	1.05	9.94	9.94	9.94	0.47	0.80	± 12.0 %
1750	53.4	1.49	8.50	8.50	8.50	0.36	0.80	± 12.0 %
1900	53.3	1.52	8.24	8.24	8.24	0.39	0.80	± 12.0 %
2300	52.9	1.81	8.02	8.02	8.02	0.35	0.85	± 12.0 %
2450	52.7	1.95	7.85	7.85	7.85	0.34	0.88	± 12.0 %
2600	52.5	2.16	7.60	7.60	7.60	0.32	0.93	± 12.0 %
5250	48.9	5.36	4.85	4.85	4.85	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.19	4.19	4.19	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.41	4.41	4.41	0.50	1.90	± 13.1 %

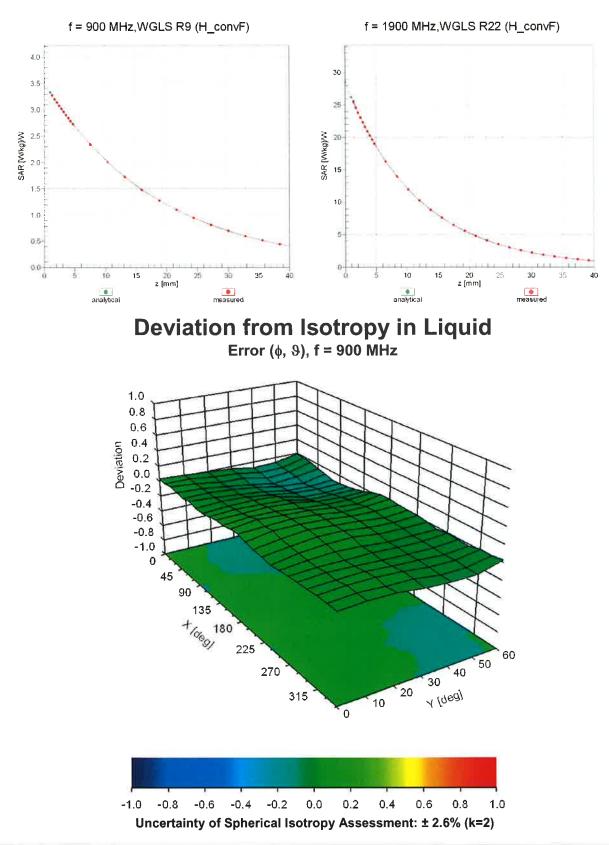
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

UL CCS USA

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3990_Aug18

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3990
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	August 17, 2018
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(A)
Approved by:	Katja Pokovic	Technical Manager	aging
	Raja r okovic	rounnoa managor	Job the
			Issued: August 21, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

S Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Osensestes Asels	information used in DACV system to align probe concern V to the rebet coordinate system

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 𝔅 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3990

Manufactured: Repaired: Calibrated: January 21, 2014 July 27, 2018 August 17, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.59	0.62	0.58	± 10.1 %
DCP (mV) ^B	103.2	103.7	102.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	180.3	±2.7 %
		Y	0.0	0.0	1.0		181.1	
		Z	0.0	0.0	1.0		183.5	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V ⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	51.17	382.8	35.69	22.24	0.371	5.10	1.385	0.346	1.008
Y	49.91	381.9	37.00	17.99	0.557	5.10	0.000	0.553	1.011
Ζ	47.38	354.6	35.71	20.46	0.309	5.10	0.610	0.396	1.007

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

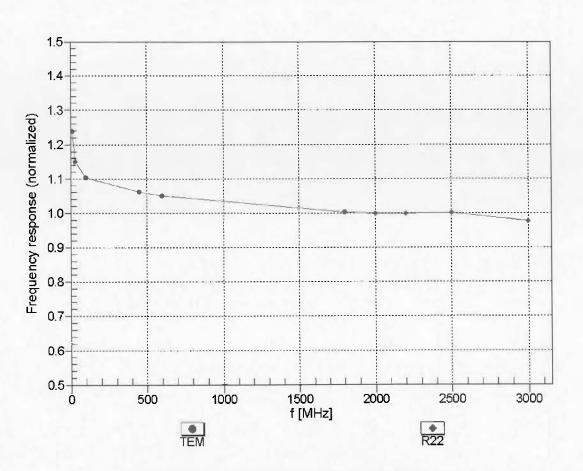
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.46	11.46	11.46	0.15	1.20	± 13.3 %
750	41.9	0.89	10.55	10.55	10.55	0.48	0.80	± 12.0 %
900	41.5	0.97	9.77	9.77	9.77	0.40	0.95	± 12.0 %
1450	40.5	1.20	9.15	9.15	9.15	0.43	0.80	± 12.0 %
1750	40.1	1.37	8.79	8.79	8.79	0.36	0.80	± 12.0 %
1900	40.0	1.40	8.38	8.38	8.38	0.32	0.85	± 12.0 %
2300	39.5	1.67	8.10	8.10	8.10	0.34	0.80	± 12.0 %
2450	39.2	1.80	7.67	7.67	7.67	0.28	0.95	± 12.0 %
2600	39.0	1.96	7.46	7.46	7.46	0.49	0.80	± 12.0 %
3500	37.9	2.91	7.31	7.31	7.31	0.25	1.20	± 13.1 %
3700	37.7	3.12	7.26	7.26	7.26	0.25	1.20	± 13.1 %
4950	36.3	4.40	5.62	5.62	5.62	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.51	5.51	5.51	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.87	4.87	4.87	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.18	5.18	5.18	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

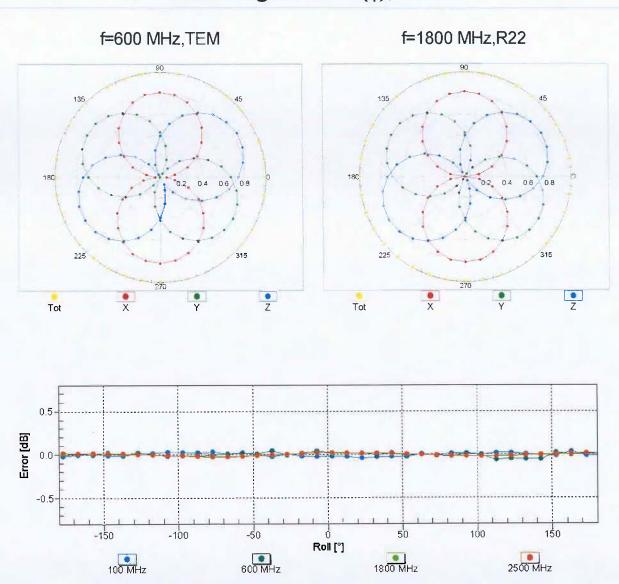
validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

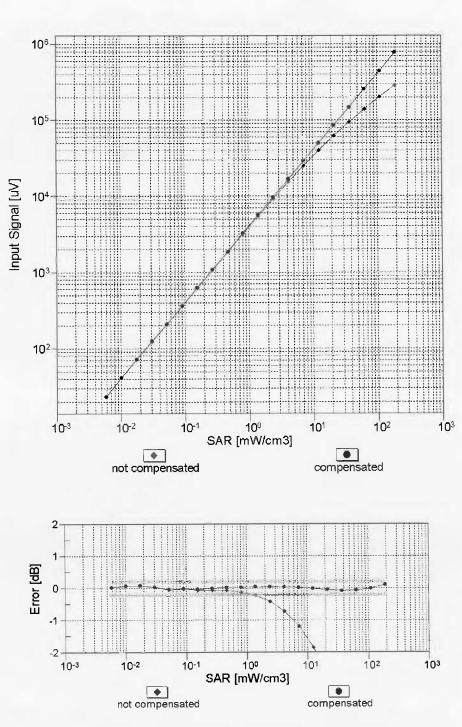

f <u>(MHz)</u> ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.46	11.46	11.46	0.08	1.20	± 13.3 %
750	55.5	0.96	10.42	10.42	10.42	0.44	0.85	± 12.0 %
900	55.0	1.05	10.14	10.14	10.14	0.44	0.86	± 12.0 %
1450	54.0	1.30	8.90	8.90	8.90	0.31	0.80	± 12.0 %
1750	53.4	1.49	8.45	8.45	8.45	0.41	0.92	± 12.0 %
1900	53.3	1.52	8.11	8.11	8.11	0.39	0.90	± 12.0 %
2300	52.9	1.81	7.83	7.83	7.83	0.37	0.89	± 12.0 %
2450	52.7	1.95	7.79	7.79	7.79	0.32	0.90	± 12.0 %
2600	52.5	2.16	7.65	7.65	7.65	0.27	0.98	± 12.0 %
3500	51.3	3.31	7.20	7.20	7.20	0.23	1.25	± 13.1 %
3700	51.0	3.55	6.91	6.91	6.91	0.26	1.25	± 13.1 %
4950	49.4	5.01	5.00	5.00	5.00	0.50	1.90	± 13.1 %
5250	48.9	5.36	4.95	4.95	4.95	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.31	4.31	4.31	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.44	4.44	4.44	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

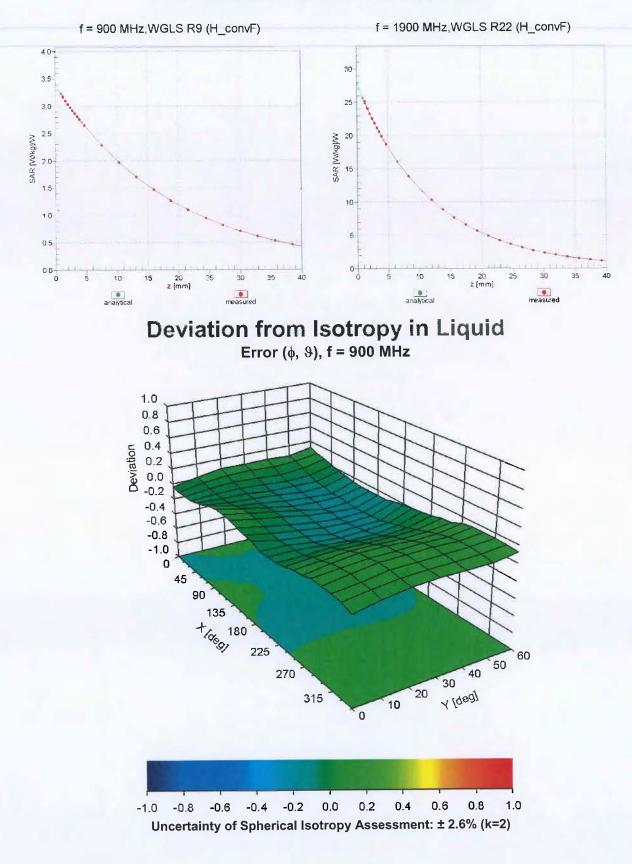
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other	Probe	Parameters
-------	-------	------------

Sensor Arrangement	Triangular
Connector Angle (°)	-7.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL CCS USA Client

Certificate No: EX3-3773_Mar19

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3773
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	March 27, 2019
	nts the traceability to national standards, which realize the physical units of measurements (SI), ainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conduct	ed in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%
Calibration Equipment used (M&TE	E critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19	
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19	
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19	
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19	
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19	

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sed My
Approved by:	Katja Pokovic	Technical Manager	Ally
			Issued: March 27, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 𝔅 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.56	0.55	0.52	± 10.1 %
DCP (mV) ^B	99.7	99.8	99.4	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	165.3	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		172.2	1	
		Z	0.00	0.00	1.00		164.6	1	
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	89.90	21.48	10.00	60.0	± 3.3 %	± 9.6 %
AAA		Y	15.00	88.73	20.84		60.0	1	
		Z	15.00	90.07	21.84		60.0	1	
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	91.09	20.90	6.99	80.0	± 1.9 %	± 9.6 %
AAA		Y	15.00	89.28	19.77		80.0	1	
		Z	15.00	90.71	21.01		80.0	1	
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	96.50	22.11	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	15.00	90.56	18.74		95.0	1	
		Ż	15.00	95.46	21.95		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	101.61	23.01	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	15.00	88.87	16.38	1	120.0	1	
		Z	15.00	100.27	22.78	1	120.0	1	
10387-	QPSK Waveform, 1 MHz	X	0.59	60.41	7.97	0.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	0.56	60.00	7.23		150.0		
		Z	0.68	61.44	9.11	1	150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.15	67.80	15.63	0.00	150.0	± 1.4 %	± 9.6 %
AAA		Y	2.00	66.38	14.63	1	150.0	1	
		Z	2.18	67.88	15.63		150.0	-	
10396-	64-QAM Waveform, 100 kHz	X	2.98	70.52	18.85	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.81	68.67	17.86	1	150.0	1	
		Z	3.38	72.62	19.62		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.46	67.00	15.73	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.37	66.42	15.29		150.0	1	
		Z	3.47	67.06	15.71		150.0	1	
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.80	65.59	15.53	0.00	150.0	±4.4 %	± 9.6 %
AAA		Y	4.79	65.39	15.37		150.0		
		Z	4.83	65.60	15.48		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻¹	Т6
Х	42.1	316.45	35.94	16.45	0.46	5.10	0.93	0.35	1.01
Y	43.6	335.47	37.37	14.69	0.62	5.10	0.00	0.57	1.01
Z	45.8	339.06	35.02	19.79	0.56	5.10	1.70	0.26	1.01

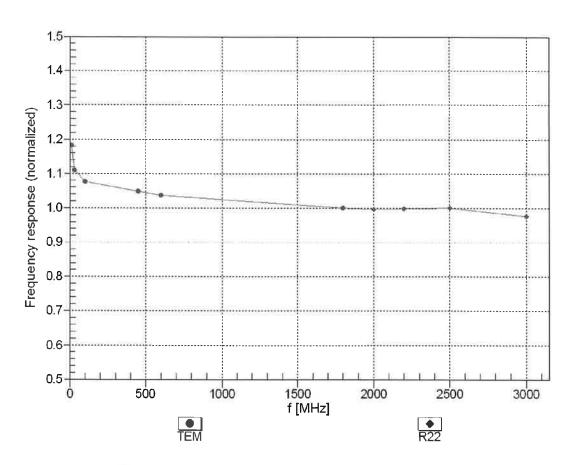
Other Probe Parameters

Triangular
-20.2
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.19	9.19	9.19	0.44	0.95	± 12.0 %
900	41.5	0.97	8.74	8.74	8.74	0.39	0.97	± 12.0 %
1750	40.1	1.37	7.57	7.57	7.57	0.42	0.85	± 12.0 %
1900	40.0	1.40	7.37	7.37	7.37	0.44	0.84	± 12.0 %
2300	39.5	1.67	6.98	6.98	6.98	0.37	0.86	± 12.0 %
2450	39.2	1.80	6.70	6.70	6.70	0.45	0.84	± 12.0 %
2600	39.0	1.96	6.47	6.47	6.47	0.38	0.88	± 12.0 %
5250	35.9	4.71	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.32	4.32	4.32	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.54	4.54	4.54	0.40	1.80	± 13.1 %

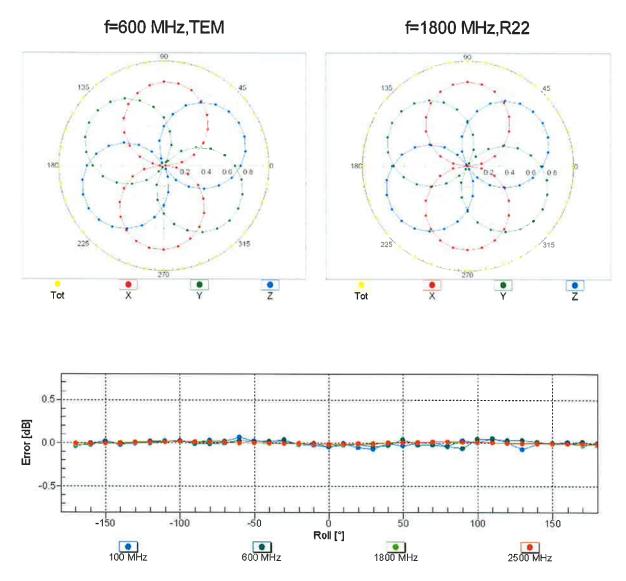
^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

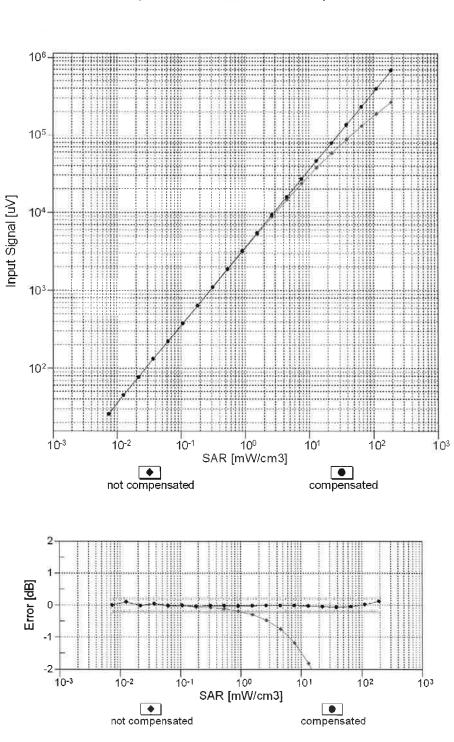

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.06	9.06	9.06	0.36	1.02	± 12.0 %
900	55.0	1.05	9.00	9.00	9.00	0.43	0.85	± 12.0 %
1750	53.4	1.49	7.30	7.30	7.30	0.45	0.85	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.42	0.85	± 12.0 %
2300	52.9	1.81	6.97	6.97	6.97	0.39	0.86	± 12.0 %
2450	52.7	1.95	6.78	6.78	6.78	0.35	0.86	± 12.0 %
2600	52.5	2.16	6.62	6.62	6.62	0.23	0.98	± 12.0 %
5250	48.9	5.36	4.25	4.25	4.25	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.68	3.68	3.68	0.50	1.90	± 13.1 %
5750	48.3	5.94	3.90	3.90	3.90	0.50	1.90	± 13.1 %

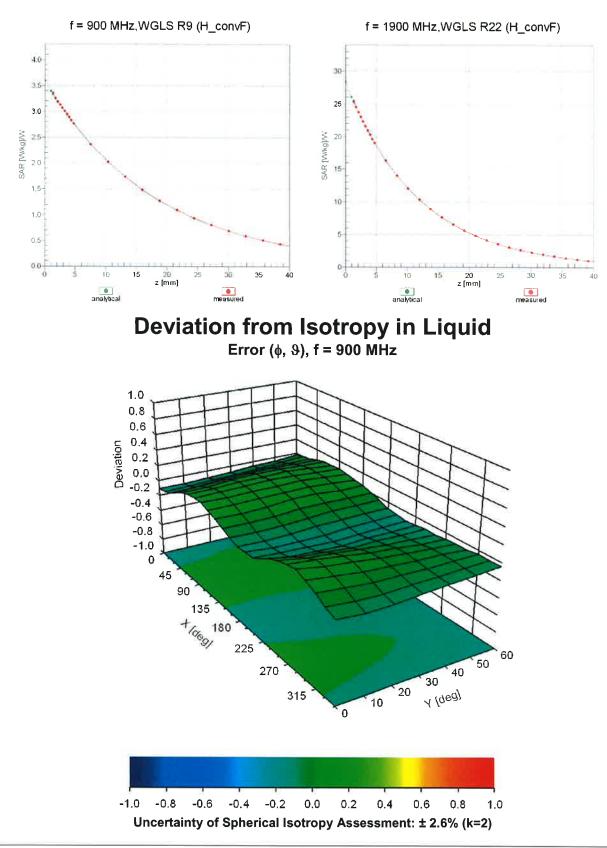
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz, The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **UL CCS USA**

Certificate No: EX3-3772_Feb19

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3772
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 20, 2019
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Арг-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Jalle
Approved by:	Katja Pokovic	Technical Manager	llas
This calibration cortificate	shall not be reproduced event in ful	without written approval of the laborate	Issued: February 26, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

-	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DACV system to align make someon V to the set of acadimeter system.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.54	0.53	± 10.1 %
DCP (mV) ^B	100.5	99.6	100.8	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	131.9	± 3.3 %	±4.7 %
		Y	0.00	0.00	1.00		129.6	1	
		Z	0.00	0.00	1.00		147.3		
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	88.92	20.73	10.00	60.0	± 3.0 %	± 9.6 %
AAA		Y	15.00	88.70	21.02		60.0	1	
		Ζ	15.00	89.60	21.48		60.0	1	
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	91.86	21.06	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	15.00	88.75	19.72		80.0	1	
		Z	15.00	90.69	20.93		80.0	1	
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	97.89	22.54	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	15.00	89.73	18.57		95.0	1	
		Z	15.00	93.74	21.00		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	108.68	26.15	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	15.00	88.67	16.52		120.0]	
		Z	15.00	98.42	21.82		120.0	1	
10387-	QPSK Waveform, 1 MHz	X	0.67	62.44	9.00	0.00	150.0	± 2.9 %	± 9.6 %
AAA		Y	0.63	60.66	8.08		150.0]	
		Z	0.73	62.39	9.58		150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.46	70.59	17.21	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.14	67.51	15.27]	150.0	1	
		Ζ	2.31	68.98	16.20		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.07	71.88	19.57	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	3.07	70.05	18.59		150.0		
		Z	3.50	73.36	19.95		150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.62	68.17	16.45	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.47	66.95	15.64		150.0		
		Z	3.55	67.57	16.00		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.73	65.69	15.67	0.00	150.0	±4.2 %	± 9.6 %
AAA		Y	4.89	65.67	15.58		150.0		
		Z	4.89	65.92	15.67		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^BNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	39.6	292.61	35.02	13.59	0.41	5.08	0.89	0.30	1.01
Y	47.3	364.45	37.46	17.78	0.76	5.10	0.00	0.63	1.01
Z	45.7	336.95	34.83	20.25	0.53	5.10	1.52	0.29	1.01

Other Probe Parameters

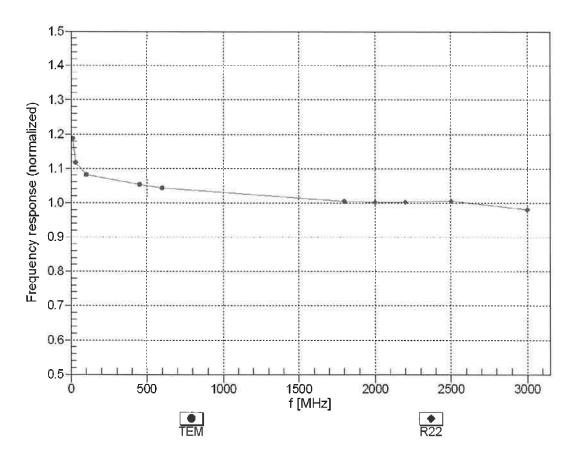
Sensor Arrangement	Triangular
Connector Angle (°)	82.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.62	9.62	9.62	0.55	0.88	± 12.0 %
900	41.5	0.97	9.00	9.00	9.00	0.67	0.84	± 12.0 %
1750	40.1	1.37	7.67	7.67	7.67	0.31	0.85	± 12.0 %
1900	40.0	1.40	7.38	7.38	7.38	0.28	0.87	± 12.0 %
2300	39.5	1.67	7.12	7.12	7.12	0.38	0.86	± 12.0 %
2450	39.2	1.80	6.82	6.82	6.82	0.36	0.90	± 12.0 %
2600	39.0	1.96	6.58	6.58	6.58	0.43	0.90	± 12.0 %
5250	35.9	4.71	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.47	4.47	4.47	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.63	4.63	4.63	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

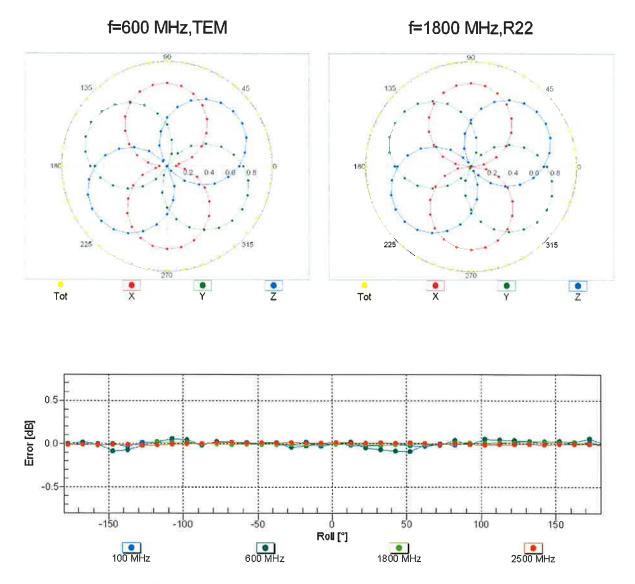
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

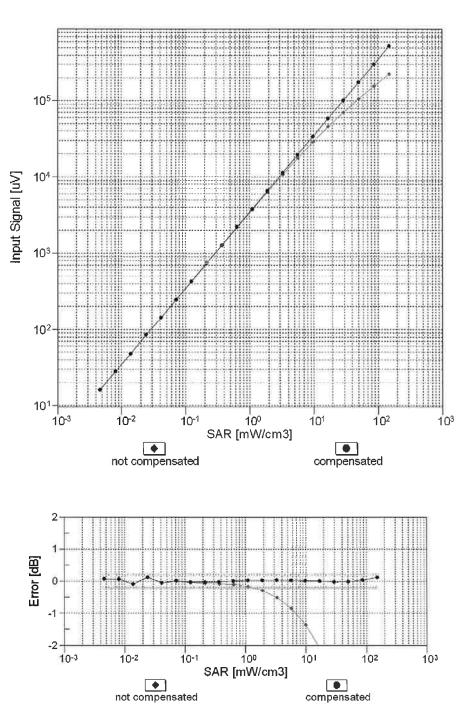

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.28	9.28	9.28	0.47	0.84	± 12.0 %
900	55.0	1.05	8.90	8.90	8.90	0.37	1.02	± 12.0 %
1750	53.4	1.49	7.41	7.41	7.41	0.42	0.84	± 12.0 %
1900	53.3	1.52	7.12	7.12	7.12	0.40	0.87	± 12.0 %
2300	52.9	1.81	7.03	7.03	7.03	0.46	0.84	± 12.0 %
2450	52.7	1.95	6.86	6.86	6.86	0.43	0.85	± 12.0 %
2600	52.5	2.16	6.74	6.74	6.74	0.34	0.92	± 12.0 %
5250	48.9	5.36	4.15	4.15	4.15	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.74	3.74	3.74	0.50	1.90	± 13.1 %
5750	48.3	5.94	3.94	3.94	3.94	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

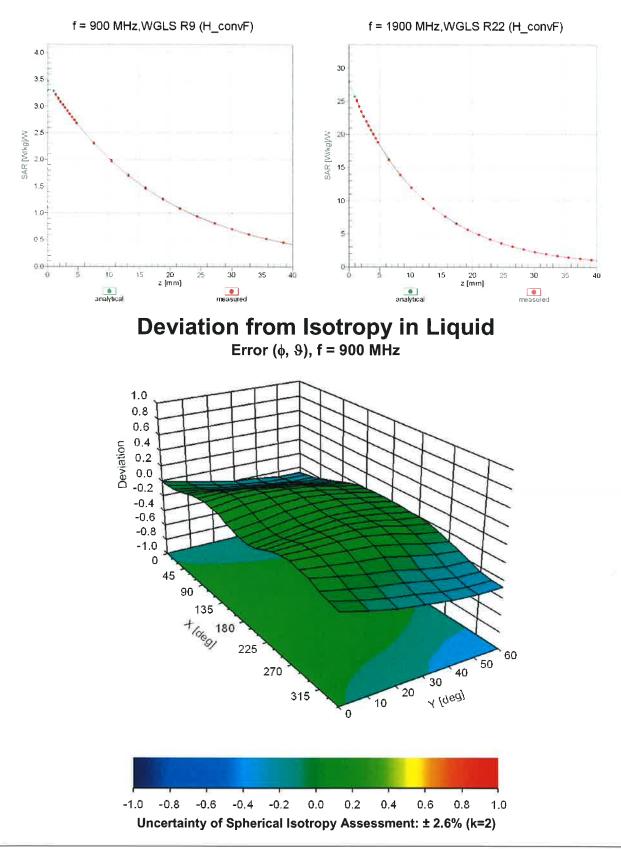
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz, Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: EX3-7463_Jul18

S

С

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7463
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	July 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	sellet-
			Issued: July 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7463

Manufactured: Calibrated: September 6, 2016 July 20, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.38 0.45		0.38	± 10.1 %	
DCP (mV) ^B	99.5	96.3	98.4		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^L (k=2)
0	CW	X	0.0	0.0	1.0	0.00	135.2	±3.3 %
-		Y	0.0	0.0	1.0		125.2	
		Z	0.0	0.0	1.0		135.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	43.76	325.2	35.85	9.050	0.564	5.028	1.684	0.198	1.009
Y	52.84	412.8	38.99	10.73	0.812	5.091	0.249	0.631	1.014
Z	42.86	318.5	35.51	8.639	0.477	5.039	1.548	0.203	1.008

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

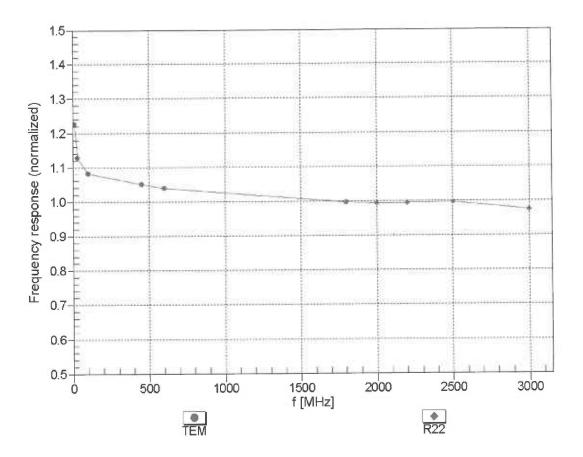
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
13	55.5	0.75	14.85	14.85	14.85	0.00	1.00	± 13.3 %
450	43.5	0.87	10.02	10.02	10.02	0.15	1.20	± 13.3 %
750	41.9	0.89	9.86	9.86	9.86	0.45	0.88	± 12.0 %
900	41.5	0.97	9.27	9.27	9.27	0.44	0.85	± 12.0 %
1450	40.5	1.20	8.55	8.55	8.55	0.37	0.80	± 12.0 %
1750	40.1	1.37	8.47	8.47	8.47	0.46	0.80	± 12.0 %
1900	40.0	1.40	7.94	7.94	7.94	0.42	0.86	± 12.0 %
2300	39.5	1.67	7.53	7.53	7.53	0.36	0.88	± 12.0 %
2450	39.2	1.80	7.22	7.22	7.22	0.35	0.95	± 12.0 %
2600	39.0	1.96	7.13	7.13	7.13	0.38	0.95	± 12.0 %
3500	37.9	2.91	6.85	6.85	6.85	0.30	1.20	± 13.1 %
3700	37.7	3.12	6.79	6.79	6.79	0.25	1.20	± 13.1 %
4950	36.3	4.40	5.72	5.72	5.72	0.40	1.80	± 13.1 9
5250	35.9	4.71	5.11	5.11	5.11	0.40	1.80	± 13.1 9
5600	35.5	5.07	4.60	4.60	4.60	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.81	4.81	4.81	0.40	1.80	± 13.1 9

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

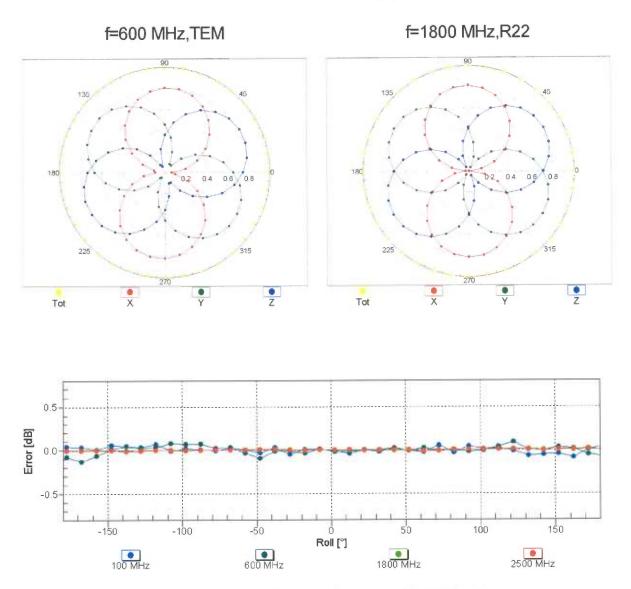
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

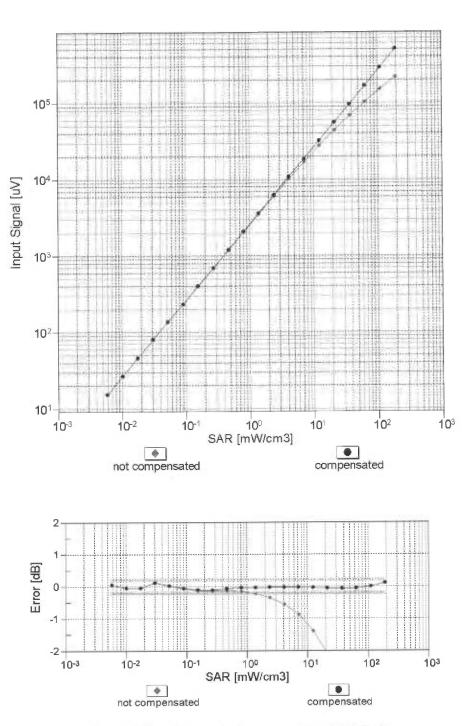

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.41	10.41	10.41	0.10	1.20	± 13.3 %
750	55.5	0.96	9.49	9.49	9.49	0.45	0.84	± 12.0 %
900	55.0	1.05	9.22	9.22	9.22	0.41	0.87	± 12.0 %
1450	54.0	1.30	8.09	8.09	8.09	0.34	0.80	± 12.0 %
1750	53.4	1.49	7.85	7.85	7.85	0.41	0.84	± 12.0 %
1900	53.3	1.52	7.56	7.56	7.56	0.30	0.80	± 12.0 %
2300	52.9	1.81	7.25	7.25	7.25	0.44	0.88	± 12.0 %
2450	52.7	1.95	7.25	7.25	7.25	0.37	0.95	± 12.0 %
2600	52.5	2.16	7.04	7.04	7.04	0.25	0.99	± 12.0 %
3500	51.3	3.31	6.35	6.35	6.35	0.25	1.25	± 13.1 %
3700	51.0	3.55	6.20	6.20	6.20	0.28	1.20	± 13.1 %
4950	49.4	5.01	4.69	4.69	4.69	0.50	1.90	± 13.1 9
5250	48.9	5.36	4.57	4.57	4.57	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.90	3.90	3.90	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.17	4.17	4.17	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

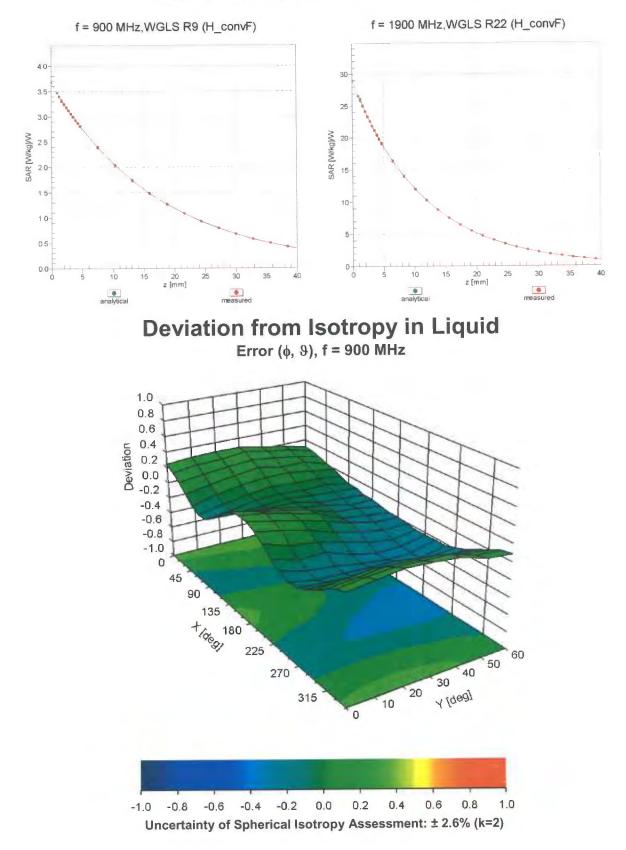
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7463

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-17.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm