

FCC 47 CFR PART 15 SUBPART E CERTIFICATION TEST REPORT

FOR

CELLULAR PHONE WITH BLUETOOTH AND WLAN RADIOS

MODEL NUMBER: A1524

FCC ID: BCG-E2817A

REPORT NUMBER: 14U17676-E9, Revision C


ISSUE DATE: AUGUST 05, 2014

Prepared for
APPLE, INC.
1 INFINITE LOOP
CUPERTINO, CA 95014, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/28/2014	Initial Issue	D. Garcia
A	7/30/14	Product description updated, updated sections 1, 5.6, 9.1.3, 9.2.3, 9.3.3, 9.4.3, 9.5.3, 9.6.3, 9.7.3, 9.8.3, 9.9.3, 9.10.3, 9.11.3, 9.12.3, 9.13.3, 9.14.3, 9.15.3, 9.15.4, 9.16.4, 9.17.4, 9.18.4, 9.19.4, 10.2.17, 12	D. Garcia
В	08/02/14	Address TCB Questions	T. Lee
C	08/05/14	Update sections 5.2 and 5.5	D. Garcia

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	8
2. T	EST METHODOLOGY	9
3. F	ACILITIES AND ACCREDITATION	9
4. C	ALIBRATION AND UNCERTAINTY	9
4.1.	MEASURING INSTRUMENT CALIBRATION	9
4.2.	SAMPLE CALCULATION	9
4.3.	MEASUREMENT UNCERTAINTY	10
5. E	QUIPMENT UNDER TEST	11
5.1.	DESCRIPTION OF EUT	11
5.2.	MAXIMUM OUTPUT POWER	11
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5.4.	SOFTWARE AND FIRMWARE	12
5.5.	WORST-CASE CONFIGURATION AND MODE	12
5.6.	DESCRIPTION OF TEST SETUP	13
6. T	EST AND MEASUREMENT EQUIPMENT	17
7. N	IEASUREMENT METHODS	18
8. O	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS	19
8.1.	ON TIME AND DUTY CYCLE RESULTS	19
8.2.	DUTY CYCLE PLOTS	20
9. A	NTENNA PORT TEST RESULTS	00
		22
9.1.		
9	. 802.11a MODE IN THE 5.2 GHz BAND	22 22
9	802.11a MODE IN THE 5.2 GHz BAND	22 22
9 9 9	. 802.11a MODE IN THE 5.2 GHz BAND	22 25 25
9 9 9	802.11a MODE IN THE 5.2 GHz BAND	22 25 28 29
9 9 9 9 9.2.	802.11a MODE IN THE 5.2 GHz BAND	22 25 28 29 33
9 9 9 9 9.2. 9	802.11a MODE IN THE 5.2 GHz BAND	
9 9 9 9 9.2. 9	802.11a MODE IN THE 5.2 GHz BAND	
9 9 9 9 9.2. 9 9	802.11a MODE IN THE 5.2 GHz BAND 1.1. 26 dB BANDWIDTH 1.2. 99% BANDWIDTH 1.3. OUTPUT POWER 1.4. PSD 802.11n HT20 MODE IN THE 5.2 GHz BAND 2.1. 26 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. PSD	
9 9 9 9 9.2. 9 9 9	802.11a MODE IN THE 5.2 GHz BAND 1.1. 26 dB BANDWIDTH 1.2. 99% BANDWIDTH 1.3. OUTPUT POWER 1.4. PSD 802.11n HT20 MODE IN THE 5.2 GHz BAND 2.1. 26 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. PSD	
9 9 9 9 9.2. 9 9 9 9.3. 9	802.11a MODE IN THE 5.2 GHz BAND	
9 9 9 9 9.2. 9 9 9 9.3. 9	802.11a MODE IN THE 5.2 GHz BAND 1.1. 26 dB BANDWIDTH 1.2. 99% BANDWIDTH 1.3. OUTPUT POWER 1.4. PSD 802.11n HT20 MODE IN THE 5.2 GHz BAND 2.1. 26 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. PSD 802.11n HT40 MODE IN THE 5.2 GHz BAND 3.1. 26 dB BANDWIDTH	

	O MODE IN THE 5.2 GHz BAND	
9.5. 802.11a MODE IN THE 5.	3 GHz BAND	50
	0 0112 D1 110	
9.5.4. PSD		66
	THE 5.3 GHz BAND	
	THE 5.3 GHz BAND	
	THE 5.3 GHZ BAIND	
9.7.4. PSD		86
9.8. 802.11ac 80MHz MODE I	N THE 5.3 GHz BAND	89
	6 GHz BAND	
9.9.4. PSD		102
9.10. 802.11n HT20 MODE II	N THE 5.6 GHz BAND	106
	-	
	CHANNEL 144, IN THE 5.6 GHz BAND	
	1	
	₹	
	AND PSD	
9.12. 802.11n HT40 MODE II	N THE 5.6 GHz BAND	125
	1	
The state of the s	CHANNEL 142, IN THE 5.6 GHz BAND	
	1	
5.16.2. 55/0 BANDWIDTT	Page 4 of 382	100
	raye 4 UI 302	

9.13.3. 9.13.4.	AVERAGE POWEROUTPUT POWER AND PSD	
9.14. 8 9.14.1. 9.14.2. 9.14.3. 9.14.4.	302.11ac 80MHz MODE IN THE 5.6 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH OUTPUT POWER PSD	142 143 144
9.15. 8 9.15.1. 9.15.2. 9.15.3. 9.15.4.	302.11ac 80MHz MODE, CHANNEL 138, 5.6 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	148 149 150
9.16. 8 9.16.1. 9.16.2. 9.16.3. 9.16.4. 9.16.5.	802.11a MODE IN THE 5.8 GHz BAND 6 dB BANDWIDTH 26 dB BANDWIDTH 99% BANDWIDTH OUTPUT POWER PSD	156 162 165
9.17. 8 9.17.1. 9.17.2. 9.17.3. 9.17.4. 9.17.5.	802.11n HT20 MODE IN THE 5.8 GHz BAND	169 172 175 178
9.18. 8 9.18.1. 9.18.2. 9.18.3. 9.18.4. 9.18.5.	802.11n HT40 MODE IN THE 5.8 GHz BAND 6 dB BANDWIDTH	182 184 186 188
9.19. 8 9.19.1. 9.19.2. 9.19.3. 9.19.4. 9.19.5.	302.11ac 80 MODE IN THE 5.8 GHz BAND	191 192 193
	ATED TEST RESULTS	
	LIMITS AND PROCEDURE TRANSMITTER ABOVE 1 GHz	197
10.2.1. 10.2.2. 10.2.3. 10.2.4. 10.2.5.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BANDTX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND TX ABOVE 1G 802.11ac 80MHz MODE IN THE 5.2 GHz BAND TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	205 213 219 223
10.2.6. 10.2.7. 10.2.8.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND TX ABOVE 1G 802.11ac 80MHz MODE IN THE 5.3 GHz BAND	239

10.2.9. 10.2.10. 10.2.11. 10.2.12. 10.2.13. 10.2.14. 10.2.15. 10.2.16. 10.2.17.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BANDTX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BANDTX ABOVE 1 GHz 802.11n HT20 MODE, CHANNEL 144, 5.6 GHz BANDTX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BANDTX ABOVE 1G 802.11ac 80MHz MODE IN THE 5.6 GHz BANDTX ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BANDTX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BANDTX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BANDTX ABOVE 1G 802.11ac 80MHz MODE IN THE 5.8 GHz BANDTX ABOVE 1G 802.11ac 80MHz MODE IN THE 5.8 GHz BAND	258 0267 269 280 294
10.3. WC	PRST-CASE BELOW 1 GHz	
10.4. WC	PRST-CASE 18 to 26 GHz	315
	PRST-CASE 26 to 40 GHz	
	VER LINE CONDUCTED EMISSIONS	
	IC FREQUENCY SELECTION	
	ERVIEW	
12.1.1.		
	TEST AND MEASUREMENT SYSTEM	
12.1.3.	SETUP OF EUT (CLIENT MODE)	335
12.1.4.	SETUP OF EUT (CLIENT-TO-CLIENT COMMUNICATIONS MODE)	336
12.1.5.	DESCRIPTION OF EUT	337
12.2. CLI	ENT MODE RESULTS FOR 20 MHz BANDWIDTH	339
12.2.1.	TEST CHANNEL	
12.2.2.	RADAR WAVEFORM AND TRAFFIC	
12.2.3.	OVERLAPPING CHANNEL TESTS	
12.2.4.	MOVE AND CLOSING TIME	341
12.3. CLI	ENT MODE RESULTS FOR 40 MHz BANDWIDTH	346
12.3.1.	TEST CHANNEL	
12.3.2.	RADAR WAVEFORM AND TRAFFIC	346
12.3.3.	OVERLAPPING CHANNEL TESTS	
12.3.4.	MOVE AND CLOSING TIME	348
12.3.5.	NON-OCCUPANCY PERIOD	353
12.4. CLI	ENT MODE RESULTS FOR 80 MHz BANDWIDTH	354
12.4.1.	TEST CHANNEL	
12.4.2.	RADAR WAVEFORM AND TRAFFIC	354
12.4.3.	OVERLAPPING CHANNEL TESTS	356
12.4.4.	MOVE AND CLOSING TIME	356
	ENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 20 MHz	263
12.5.1.	TEST CHANNEL	
. —	RADAR WAVEFORM AND TRAFFIC	
	OVERLAPPING CHANNEL TESTS	
12.5.4.		
12.6. CLI	ENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 40 MHz	
	Н	
	TEST CHANNEL	
12.6.2.	RADAR WAVEFORM AND TRAFFIC	368
	Page 6 of 382	

REPORT NO:	14U17676-E9C
FCC ID: BCG-	F2817A

OFTUD	DUOTOO	075
12.6.4.	MOVE AND CLOSING TIME	370
12.6.3.	OVERLAPPING CHANNEL TESTS	370
	12.6.4.	12.6.3. OVERLAPPING CHANNEL TESTS

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 INFINITE LOOP

CUPERTINO, CA 95014, U.S.A.

EUT DESCRIPTION: CELLULAR PHONE WITH BLUETOOTH AND WLAN RADIOS

MODEL: A1524

SERIAL NUMBER: C39MV097G1G3 (Conducted) C39MV004G2YF (Radiated)

DATE TESTED: JUNE 3, 2014 TO JULY 24, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

FRANCISCO DE ANDA

PROJECT LEAD

UL VERIFICATION SERVICES INC.

somine de avole

Chris Xiong

EMC TECHNICIAN

UL VERIFICATION SERVICES INC.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
☐ Chamber A	
☐ Chamber B	
☐ Chamber C	☐ Chamber G

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Model A1524 is a mobile phone with multimedia functions (music, application support, and video), Cellular GSM/GPRS/EGPRS/CDMA2000/EVDO Rev.A/ EVDO Rev.B /WCDMA/HSPA+/DC-HSDPA/LTE FDD & Carrier Aggregation radio, IEEE 802.11a/b/g/n/ac radio, Bluetooth radio and NFC. The rechargeable battery is not user accessible.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5180 - 5240	802.11a	16.90	48.98
5180 - 5240	802.11n HT20	16.86	48.53
5190 - 5230	802.11n HT40	16.82	48.08
5210	802.11ac VHT80	12.78	18.97
5260 - 5320	802.11a	16.50	44.67
5260 - 5320	802.11n HT20	16.50	44.67
5270 - 5310	802.11n HT40	16.45	44.16
5290	802.11ac VHT80	12.86	19.32
5500 - 5700	802.11a	16.94	49.43
5500 - 5700	802.11n HT20	16.96	49.66
5720	802.11n HT20	15.98	39.63
5510 - 5670	802.11n HT40	16.98	49.89
5710	802.11n HT40	14.95	31.26
5530	802.11ac VHT80	12.98	19.86
5690	802.11ac VHT80	12.92	19.59
5745 - 5825	802.11a	16.83	48.19
5745 - 5825	802.11n HT20	16.93	49.32
5755 - 5795	802.11n HT40	16.93	49.32
5775	802.11ac VHT80	12.89	19.45

5.3. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes a PiFA antenna, with a maximum gain as below table:

FREQUENCY (MHZ)	ANTENNA GAIN (dBi)
5150 5250	-2.56
5250 5350	-1.46
5500 5700	-0.44
5725 5850	-0.87

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 7.16.121

The test utility software used during testing was wl 7.16 RC121.0.

5.5. **WORST-CASE CONFIGURATION AND MODE**

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X (Flatbed), Y (Landscape), Z (Portrait), it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X (Flatbed) orientation.

Worst-case data rates as provided by the client were: Based on the baseline scan, the worst-case data rates were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0 802.11ac VHT80mode: MCS0

Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

There are three vendors of the WiFi/Bluetooth radio modules: variant 1, variant 2 and variant 3 and they have the same mechanical outline, same on board antenna, matching circuit, antenna structure and same specification. Baseline testing was performed on all three variants to determine the worst case on all conducted power and radiated emissions.

5.6. DESCRIPTION OF TEST SETUP

CONDUCTED TESTS SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	Lenovo	T61	00044-315-135-244	MCLJ07H081
AC Adapter	Lenovo	N/A	92P1213	N/A
DC Power Supply	Sorensen	XT 15-4	1319A02780	N/A

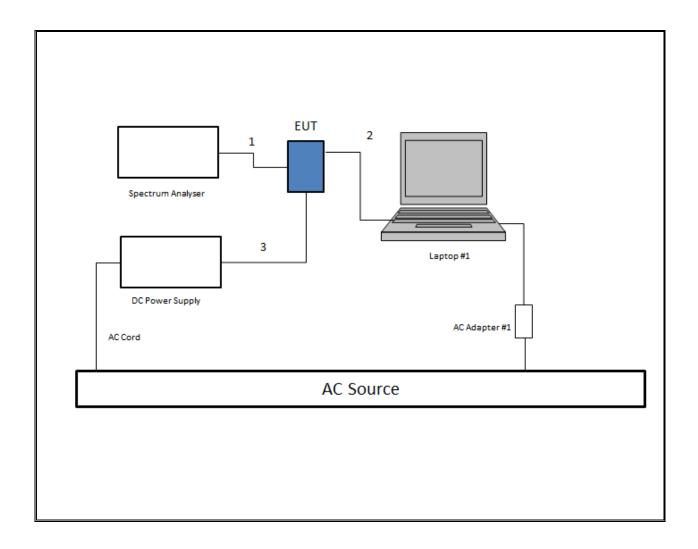
RADIATED TESTS SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number							
Earphone	Apple	N/A	N/A				
AC Adpater							

I/O CABLES (RF Conducted Test)

	I/O Cable List							
Cable	Cable Port # of identical Connector Cable Type Cable Remarks							
No		ports	Туре		Length (m)			
1	Antenna	1	SMA	Un-Shielded	0.1	to spectrum Analyzer		
2	USB	1	USB	Shielded	1m	To EUT		
3	DC	1	n/a	Un-Shielded	0.5	Power supply to EUT		

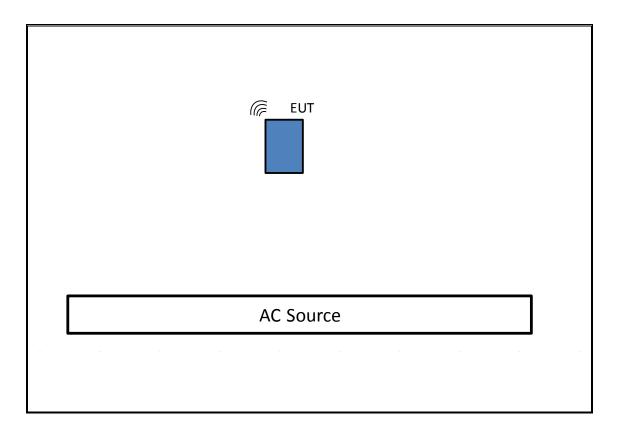
I/O CABLES (RF Radiated Test)


	I/O CABLE LIST						
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	2	US 115V	Un-shielded	2m	NA	
2	DC	1	US 115V	Un-shielded	1m	NA	
3	Jack	1	Earphone	Un-shielded	0.5m	NA	
4	RF In/Out	1	Antenna	Un-shielded	none	NA	

TEST SETUP

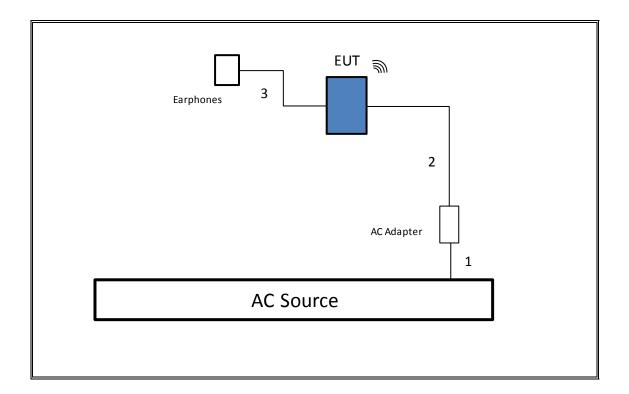
TEST SETUP- CONDUCTED PORT

The EUT was tested connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.


SETUP DIAGRAM

TEST SETUP- RADIATED-ABOVE 1 GHZ

The EUT was tested battery powered. Test software exercised the EUT.


SETUP DIAGRAM

TEST SETUP- BELOW 1GHZ & AC LINE CONDUCTED TESTS

The EUT was tested with earphones connected and powered by AC adapter. Test software exercised the EUT.

SETUP DIAGRAM

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Horn, 18 GHz	ETS Lindgren	3117	F00131	02/18/15			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	11/26/14			
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	06/28/15			
Peak / Average Power Sensor	Agilent / HP	N1911A	F00153	03/06/15			
Peak Power Meter	Agilent / HP	E9323A	F00025	04/30/15			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	F00129	06/25/15			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	F00411	03/21/15			
Spectrum Analyzer, 40 GHz	Agilent / HP	8564E	C00951	07/29/14			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	F00168	03/28/15			
Preamplifier, 1300 MHz	Sonoma	310	F00008	05/27/15			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	F00165	03/25/15			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	08/20/14			
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	F00092	09/05/14			
LISN, 30 MHz	FCC	LISN-50/250-25-2	C00626	01/14/15			

REPORT NO: 14U17676-E9C FCC ID: BCG-E2817A

7. MEASUREMENT METHODS

26 dB Emission BW: KDB 789033 D02 v01, Section C.

99% Occupied BW: KDB 789033 D02 v01, Section D.

Power and PSD: KDB 789033 D02 v01, Method SA-1 and SA-1 Alternative.

Power Spectral Density: KDB 789033 D02 v01, Section F.

Unwanted emissions in restricted bands: KDB 789033 D02 v01, Sections G.3, G.4, G.5, and G.6.

Unwanted emissions in non-restricted bands: KDB 789033 D02 v01, Sections G.3, G.4, and G.5.

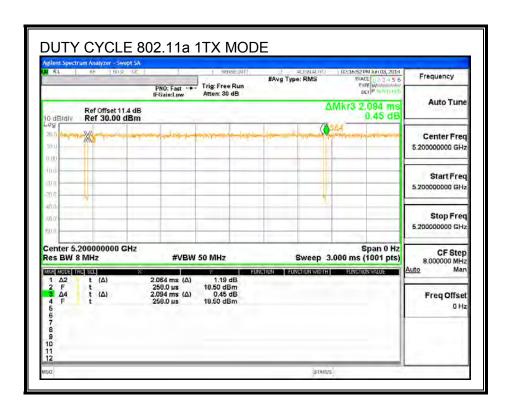
DATE: AUGUST 05, 2014

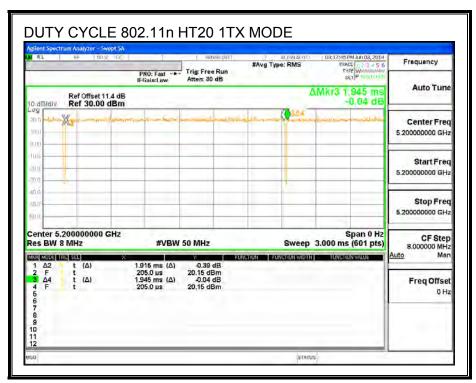
REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

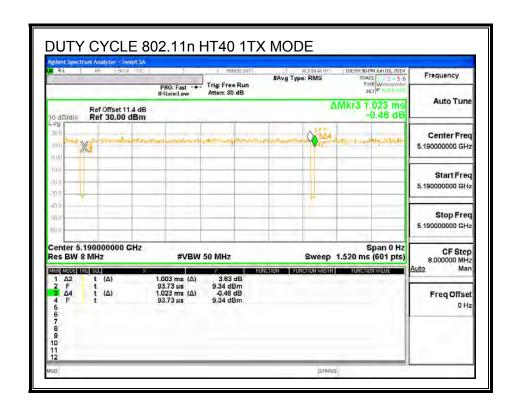
8. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

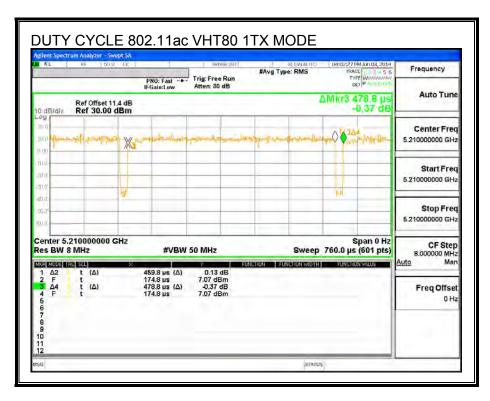
LIMITS

None; for reporting purposes only.


PROCEDURE


KDB 789033 Zero-Span Spectrum Analyzer Method.


8.1. ON TIME AND DUTY CYCLE RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 1TX	2.064	2.094	0.986	98.57%	0.00	0.010
802.11n HT20 1TX	1.915	1.945	0.985	98.46%	0.00	0.010
802.11n HT40 1TX	1.003	1.023	0.980	98.04%	0.00	0.010
802.11ac VHT80 1TX	0.460	0.479	0.960	96.03%	0.18	2.175

8.2. DUTY CYCLE PLOTS

Page 21 of 382

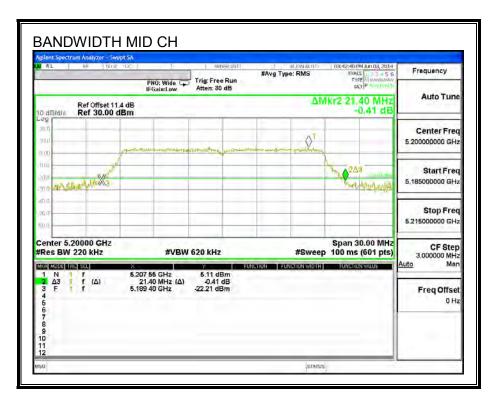
REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9. ANTENNA PORT TEST RESULTS

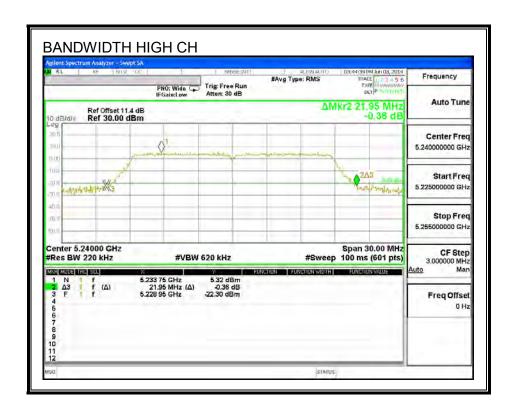
9.1. 802.11a MODE IN THE 5.2 GHz BAND

9.1.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

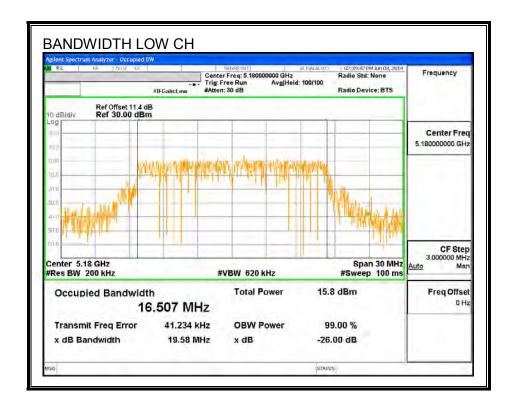

Channel	Frequency	26 dB Bandwidth		
	(MHz)	(MHz)		
Low	5180	21.15		
Mid	5200	21.40		
High	5240	21.95		

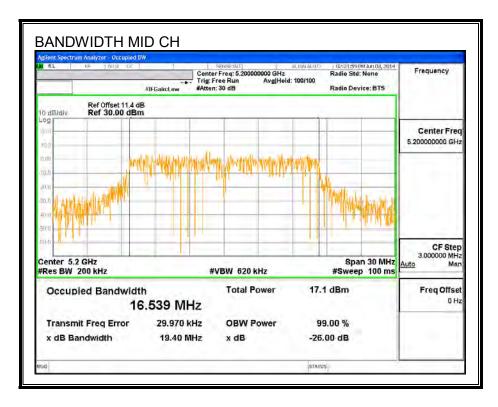
26 dB BANDWIDTH

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.1.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.507
Mid	5200	16.539
High	5240	16.531

99% BANDWIDTH

9.1.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

RESULTS

Channel Frequency		Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	15.98	24.00	-8.02
Mid	5200	16.89	24.00	-7.11
High	5240	16.90	24.00	-7.10

9.1.4. PSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

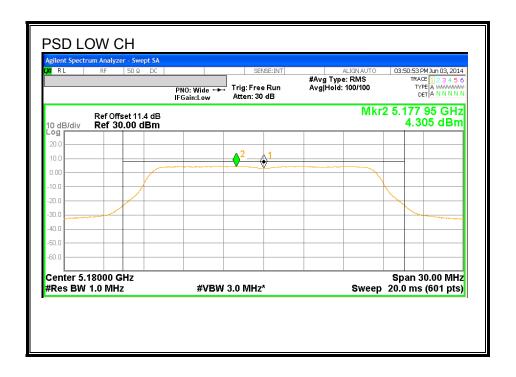
DIRECTIONAL ANTENNA GAIN

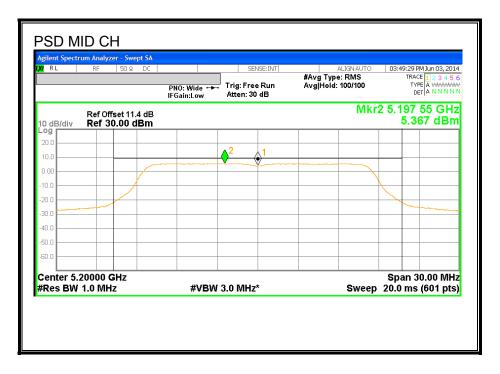
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna Gain (dBi) -2.56

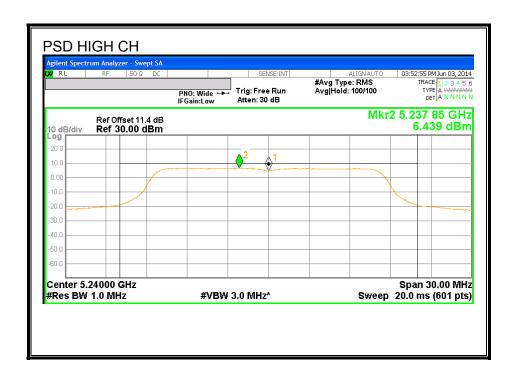
RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	21.15	16.507	-2.56
Mid	5200	21.40	16.539	-2.56
High	5240	21.95	16.531	-2.56


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

PSD Results

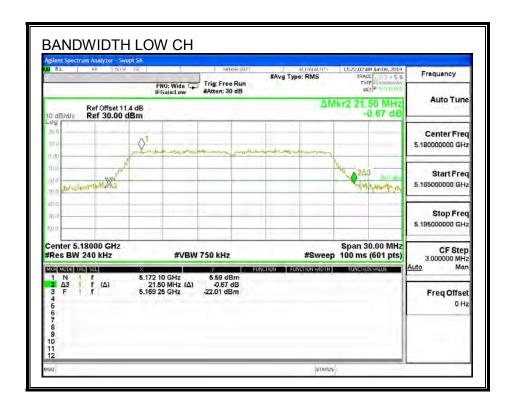

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	4.305	4.31	11.00	-6.70
Mid	5200	5.367	5.37	11.00	-5.63
High	5240	6.439	6.44	11.00	-4.56

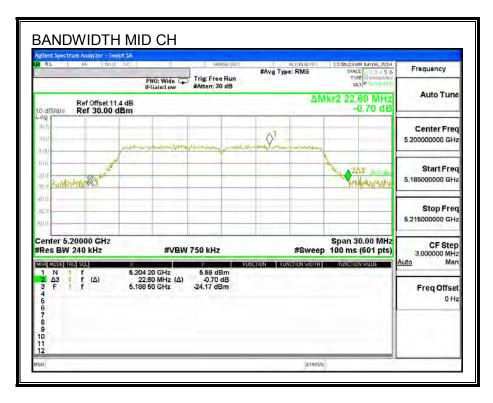
<u>PSD</u>

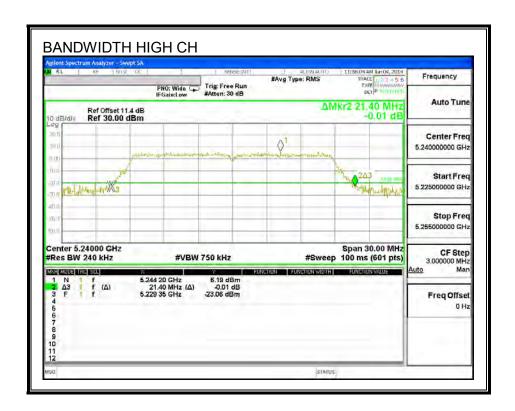
This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

9.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

9.2.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

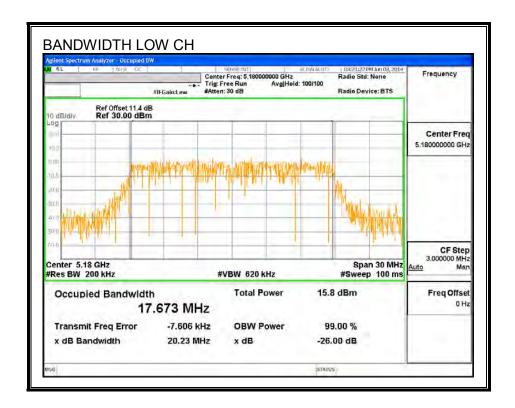

RESULTS

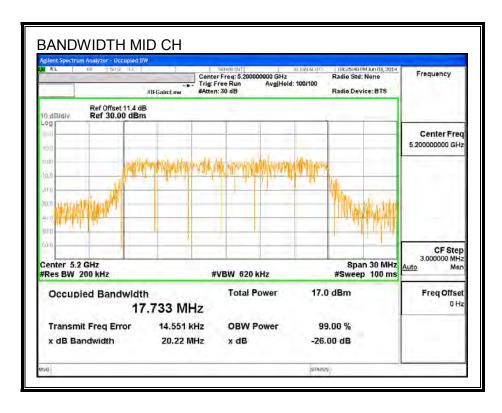
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	21.50
Mid	5200	22.60
High	5240	21.40

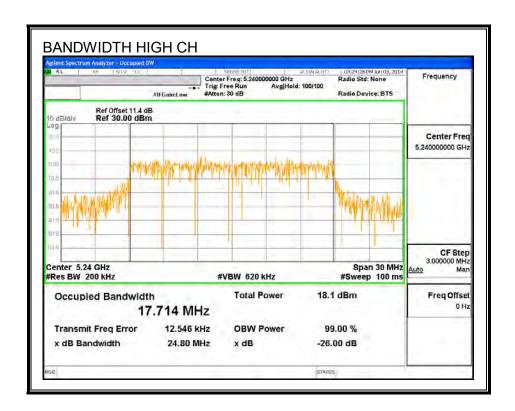
26 dB BANDWIDTH

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.2.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.673
Mid	5200	17.733
High	5240	17.714

99% BANDWIDTH

9.2.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	15.98	24	-8.02
Mid	5200	16.86	24	-7.14
High	5240	16.80	24	-7.20

9.2.4. PSD

LIMITS

For the band 5.15–5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

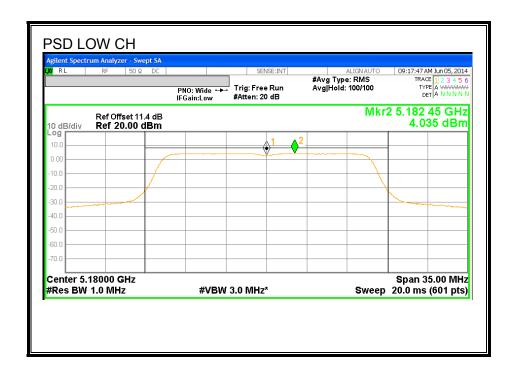
DIRECTIONAL ANTENNA GAIN

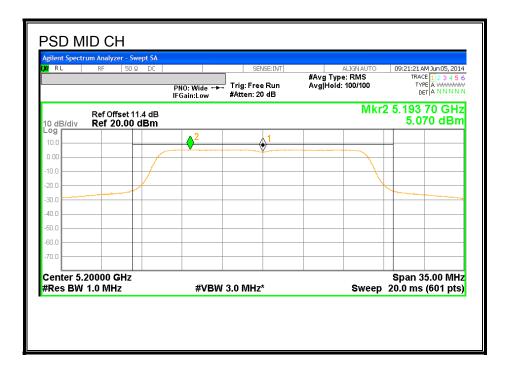
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	21.50	17.673	-2.56
Mid	5200	22.60	17.733	-2.56
High	5240	21.40	17.714	-2.56

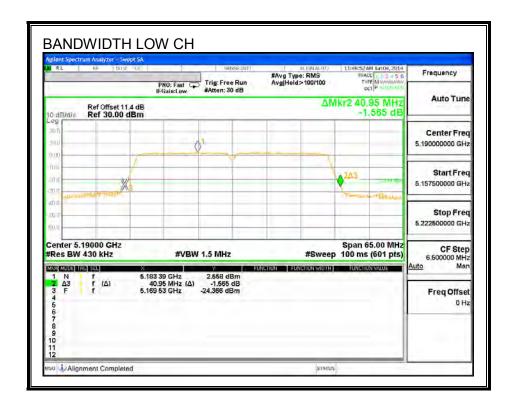

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

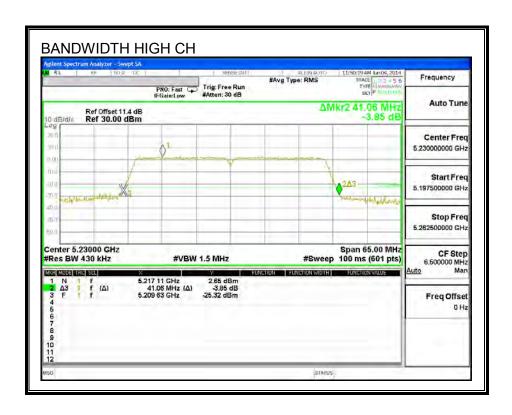

PSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	4.035	4.04	11.00	-6.97
Mid	5200	5.070	5.07	11.00	-5.93
High	5240	6.026	6.03	11.00	-4.97

<u>PSD</u>

9.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND


9.3.1. 26 dB BANDWIDTH

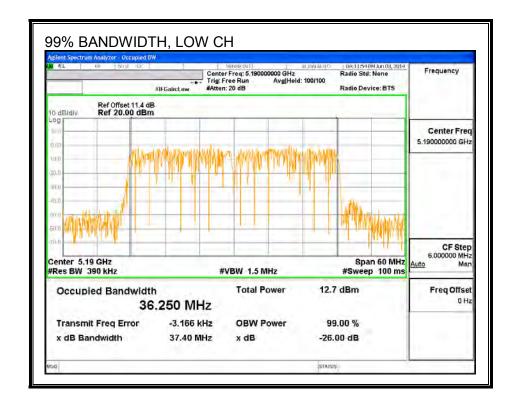

LIMITS

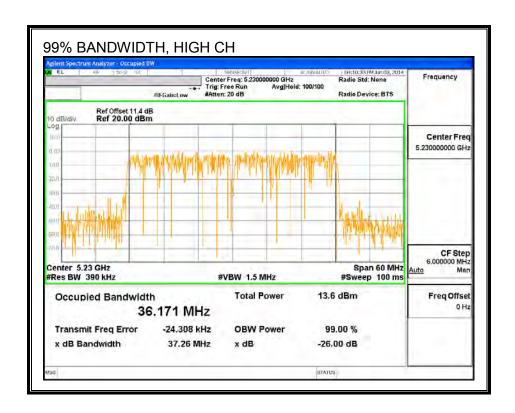
None; for reporting purposes only.

Channel Frequency		26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	40.95
High	5230	41.06

26 dB BANDWIDTH

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A


9.3.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	5190	36.250	
High	5230	36.171	

99% BANDWIDTH

9.3.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

Channel Frequency		Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5190	12.57	24	-11.43
High	5230	16.82	24	-7.18

DATE: AUGUST 05, 2014

9.3.4. PSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

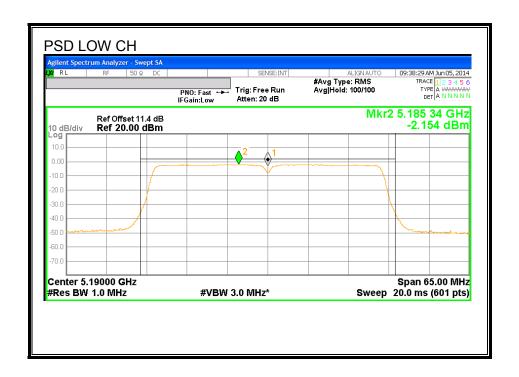
DIRECTIONAL ANTENNA GAIN

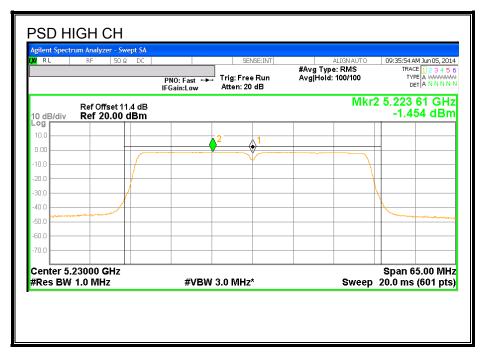
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna Gain (dBi) -2.56

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5190	40.95	36.250	-2.56
High	5230	41.06	36.171	-2.56

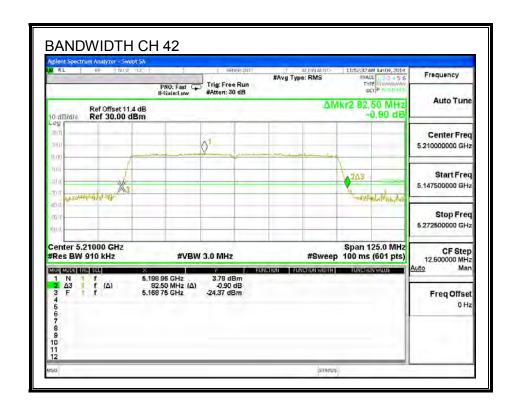

Duty Cycle CF (dB) 0.0	Included in Calculations of Corr'd Power & PPSD	
------------------------	---	--

PPSD Results

Channel	Frequency		Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5190	(dBm) -2.154	(dBm) -2.15	(dBm) 11.00	(dB) -13.15

PSD

802.11ac 80MHz 1TX SISO MODE IN THE 5.2 GHz BAND 9.4.


9.4.1. 26 dB BANDWIDTH

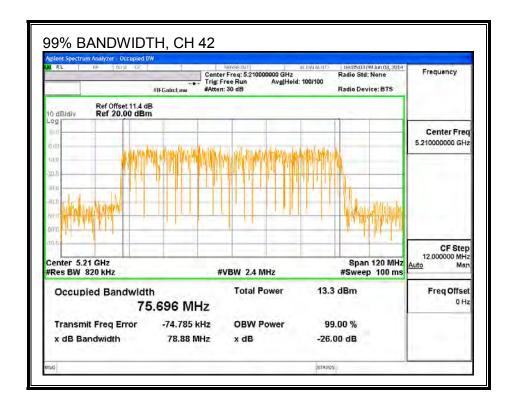
LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
42	5210	82.50

26 dB BANDWIDTH

9.4.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
42	5210	75.696

99% BANDWIDTH

9.4.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.38 dB (including 10 dB pad, 1.2 dB cable and 0.18dB duty cycle correction factor) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
42	5210	12.78	24	-11.22

DATE: AUGUST 05, 2014

9.4.4. PSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

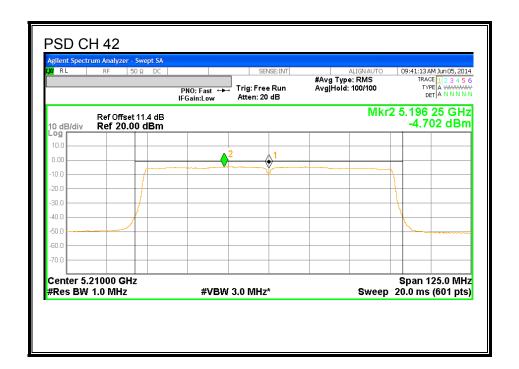
DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-2.56

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
42	5210	82.50	75.696	-2.56

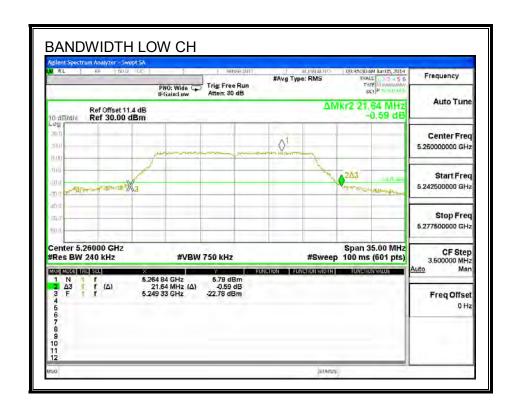
Duty Cycle CF (dB)	0.18	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

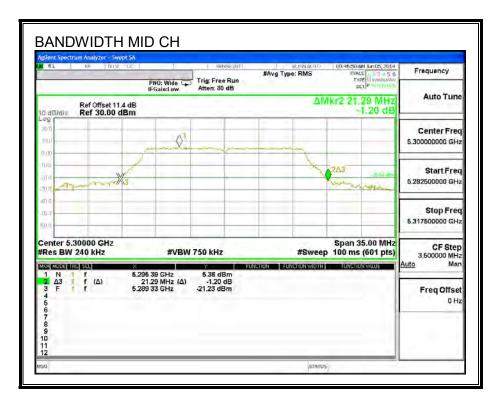
PPSD Results

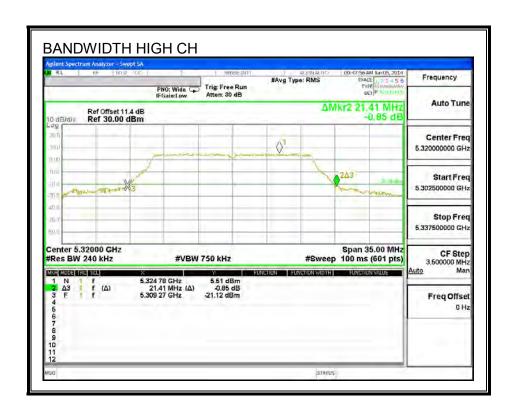
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
42	5210	-4.702	-4.52	11.00	-15.52

PSD

9.5. 802.11a MODE IN THE 5.3 GHz BAND


9.5.1. 26 dB BANDWIDTH

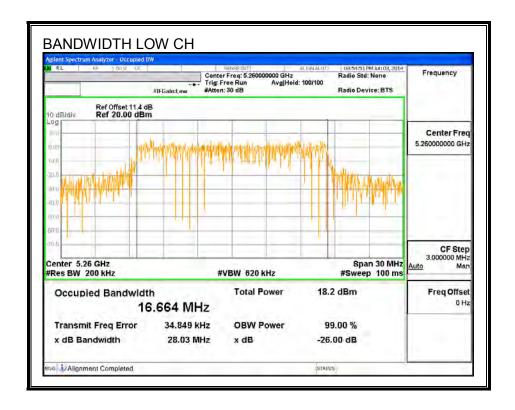

LIMITS


None; for reporting purposes only.

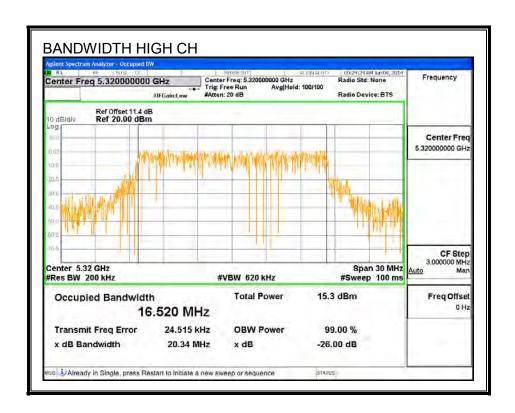
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	21.64
Mid	5300	21.29
High	5320	21.41

26 dB BANDWIDTH

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A


9.5.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel Frequency !		99% Bandwidth
	(MHz)	(MHz)
Low	5260	16.664
Mid	5300	16.523
High	5320	16.520

99% BANDWIDTH

9.5.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-1.46

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	16.50	24	-7.50
Mid	5300	16.43	24	-7.57
High	5320	16.45	24	-7.55

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.5.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.15–5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

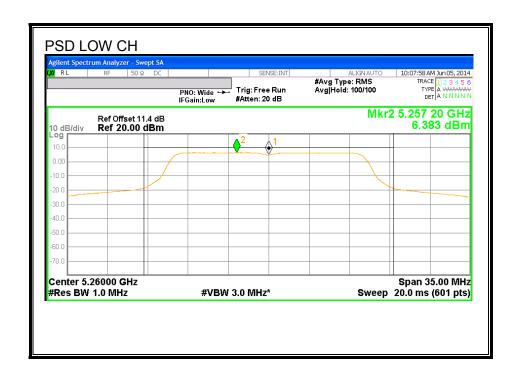
DIRECTIONAL ANTENNA GAIN

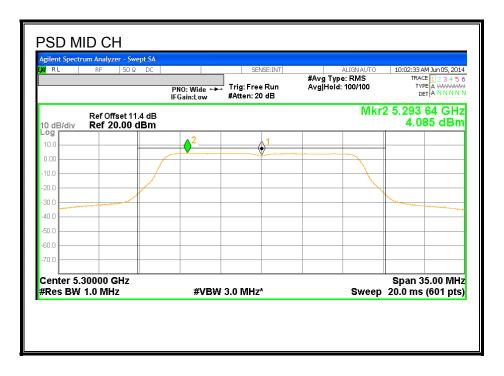
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

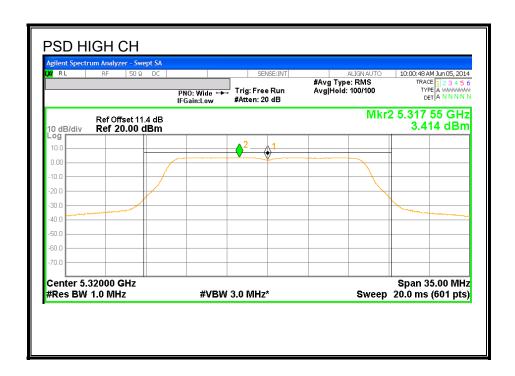
Antenna Gain (dBi) -1.46 REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional	
		26 dB	99%	Gain	
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	
Low	5260	21.64	16.664	-1.46	
Mid	5300	21.29	16.523	-1.46	
High	5320	21.41	16.520	-1.46	

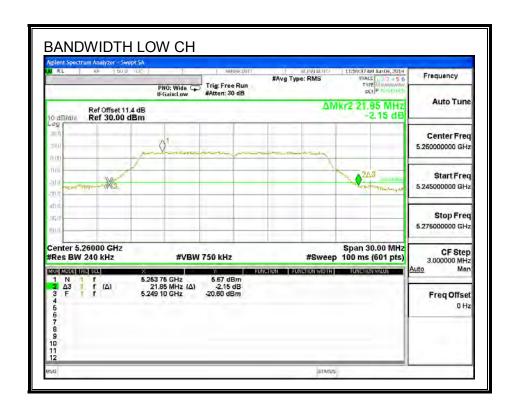

Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--

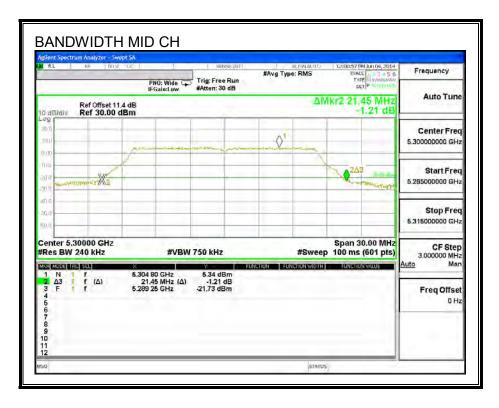

PPSD Results

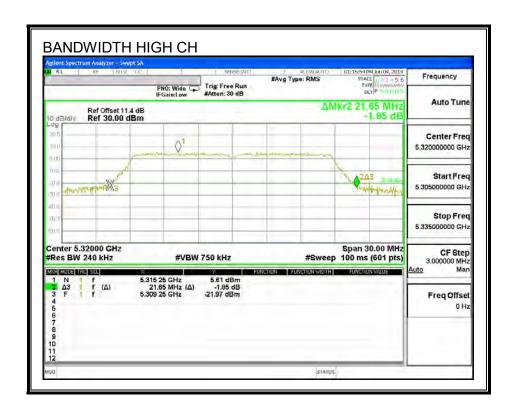
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	6.383	6.38	11.00	-4.62
Mid	5300	4.085	4.09	11.00	-6.92
High	5320	3.414	3.41	11.00	-7.59

PSD

9.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND

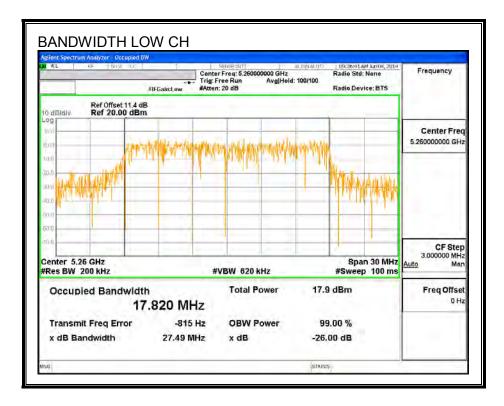

9.6.1. 26 dB BANDWIDTH

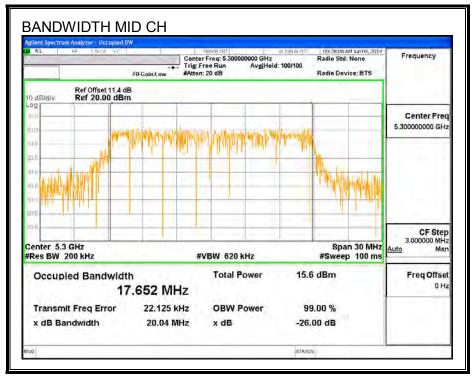

LIMITS

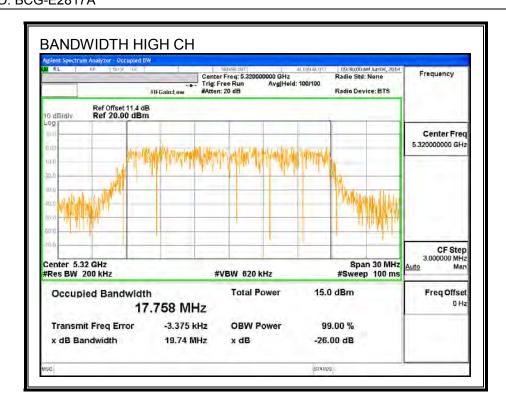

None; for reporting purposes only.

Channel Frequency		26 dP Pandwidth	
Chamilei	rrequency	20 ub bandwidth	
	(MHz)	(MHz)	
Low	5260	21.85	
Mid	5300	21.45	
High	5320	21.65	

26 dB BANDWIDTH


9.6.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low 5260		17.820		
Mid 5300		17.652		
High	5320	17.758		

99% BANDWIDTH

9.6.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-1.46

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	16.49	24	-7.51
Mid	5300	16.40	24	-7.60
High	5320	16.50	24	-7.50

9.6.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

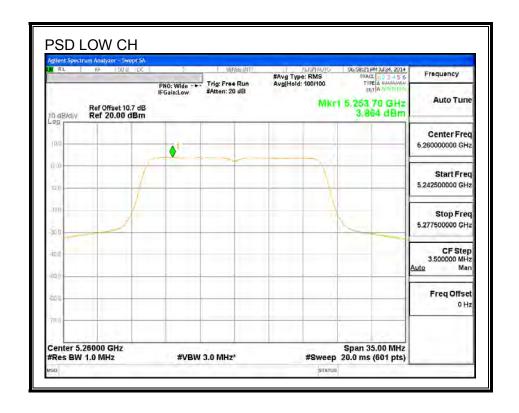
DIRECTIONAL ANTENNA GAIN

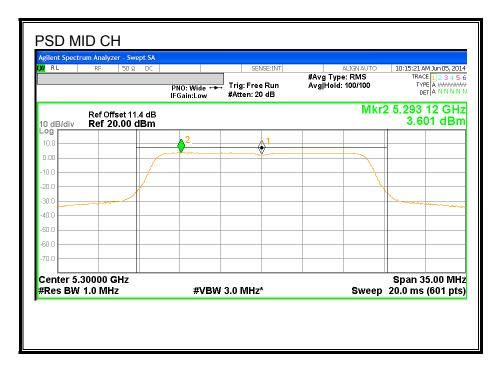
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

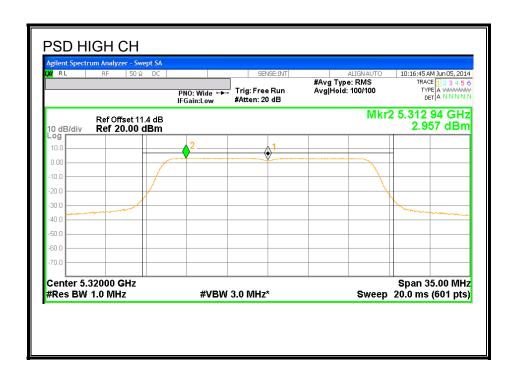
Antenna
Gain
(dBi)
-1.46

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5260	21.85	17.820	-1.46
Mid	5300	21.45	17.652	-1.46
High	5320	21.65	17.758	-1.46

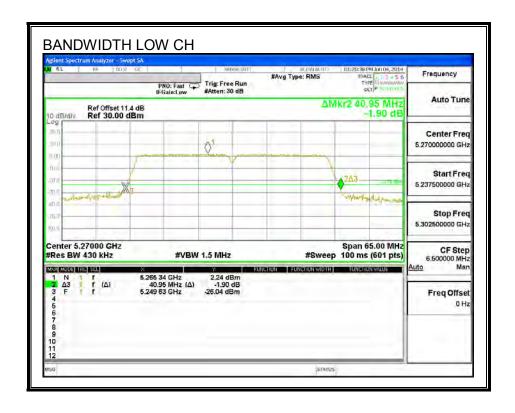

Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--


PPSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	3.864	3.86	11.00	-7.14
Mid	5300	3.601	3.60	11.00	-7.40
High	5320	2.957	2.96	11.00	-8.04

PSD

9.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

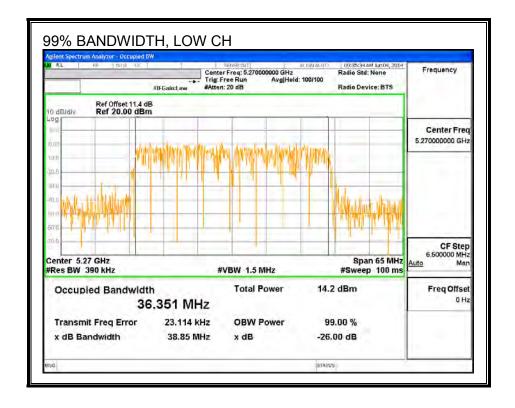

9.7.1. 26 dB BANDWIDTH

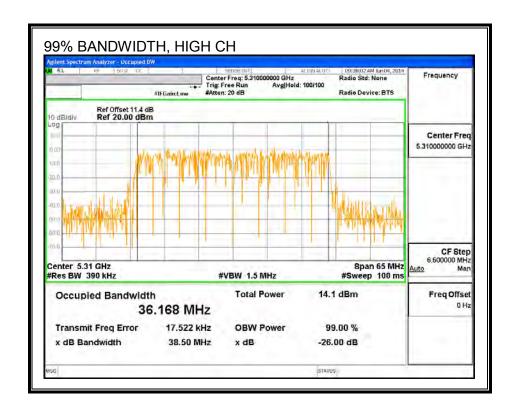
LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth		
	(MHz)	(MHz)		
Low 5270		40.95		
High 5310		40.63		

26 dB BANDWIDTH


9.7.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low 5270		36.351		
High 5310		36.168		

99% BANDWIDTH

9.7.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain

Antenna			
Gain			
(dBi)			
-1.46			

Channel	Frequency Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5270	16.45	24	-7.55
High	5310	13.95	24	-10.05

9.7.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

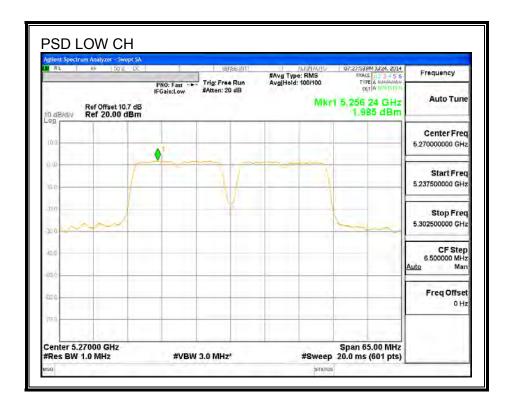
DIRECTIONAL ANTENNA GAIN

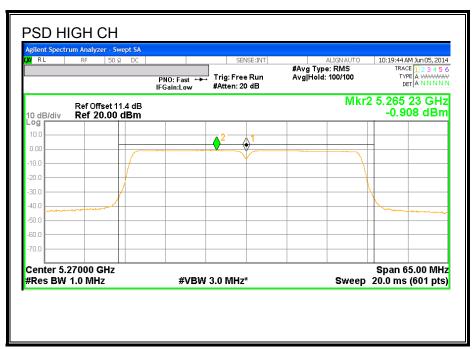
There is only one transmitter output therefore the directional gain is equal to the antenna gain

Antenna Gain (dBi) -1.46

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5270	40.95	36.351	-1.46
High	5310	40.63	36.106	-1.46


Duty Cycle CF (dB) 0	0.00	Included in Calculations of Corr'd Power & PSD
----------------------	------	--

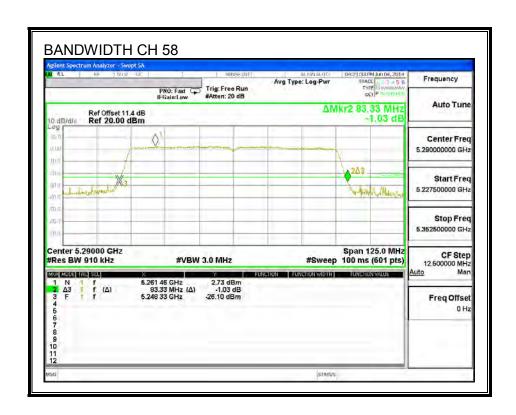
PPSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5270	(dBm) 1.985	(dBm) 1.99	(dBm) 11.00	(dB) -9.02

<u>PSD</u>

9.8. 802.11ac 80MHz MODE IN THE 5.3 GHz BAND

9.8.1. 26 dB BANDWIDTH


LIMITS

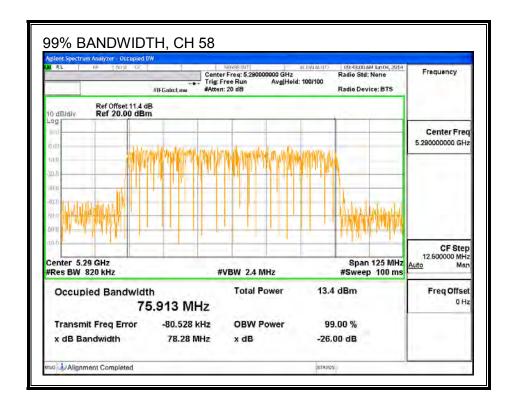
None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
58	5290	83.33

26 dB BANDWIDTH

9.8.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
58	5290	75.913

99% BANDWIDTH

9.8.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.38 dB (including 10 dB pad, 1.2 dB cable, and 0.18dB duty cycle correction factor) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

Antenna
Gain
(dBi)
-1.46

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
58	5290	12.86	24	-11.14

9.8.4. PSD

LIMITS

FCC §15.407 (a) (2)

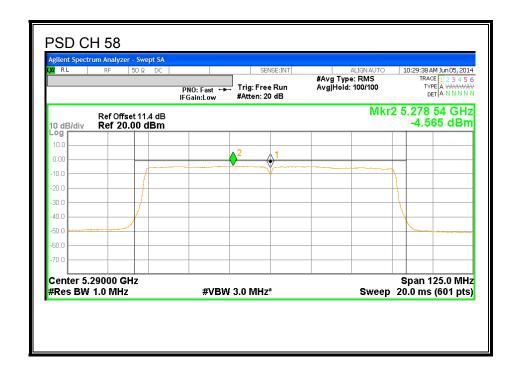
For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
58	5290	83.33	75.913	-1.46

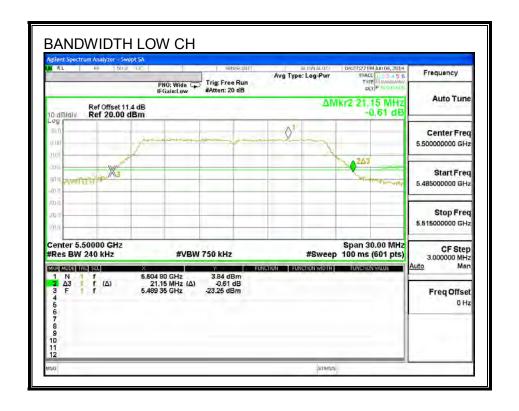
Duty Cycle CF (dB)	0.18	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

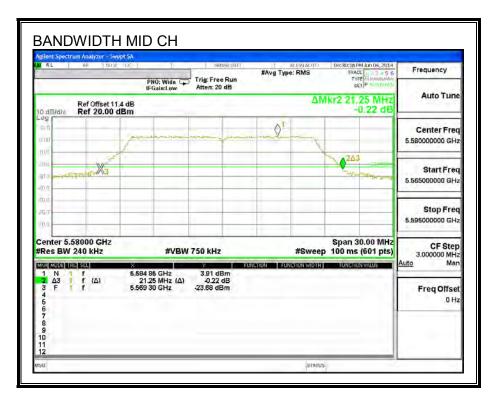
PPSD Results

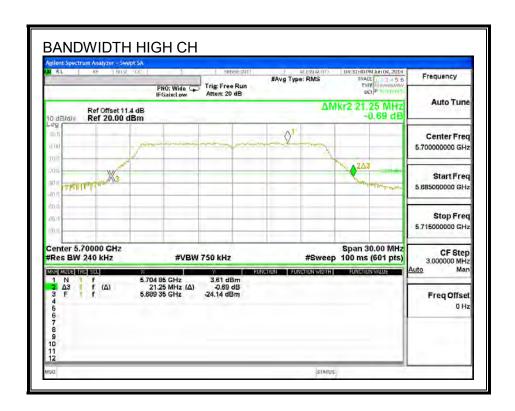
Channel	Frequency		Total	PSD	
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
58	5290	-4.565	-4.39	11.00	-15.39

PSD

9.9. 802.11a MODE IN THE 5.6 GHz BAND

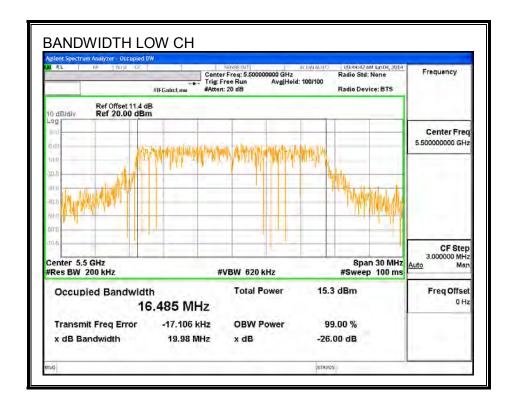

9.9.1. 26 dB BANDWIDTH

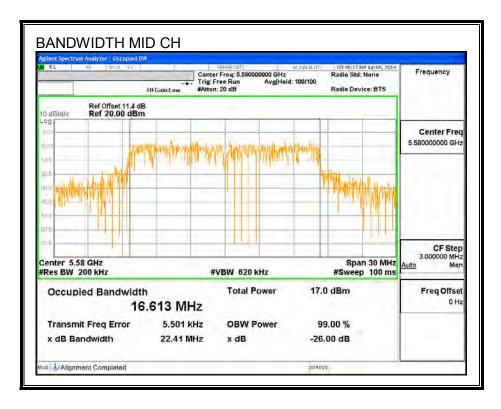

LIMITS

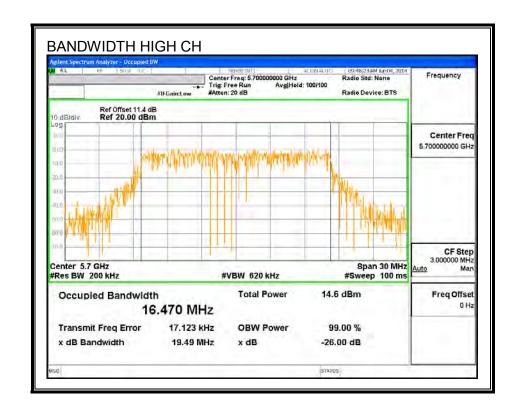

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	21.15
Mid	5580	21.25
High	5700	21.25

26 dB BANDWIDTH


9.9.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel Frequency!		99% Bandwidth
	(MHz)	(MHz)
Low	5500	16.485
Mid	5580	16.613
High	5700	16.470

99% BANDWIDTH

9.9.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	14.90	24	-9.10
Mid	5580	16.94	24	-7.06
High	5700	15.88	24	-8.12

9.9.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

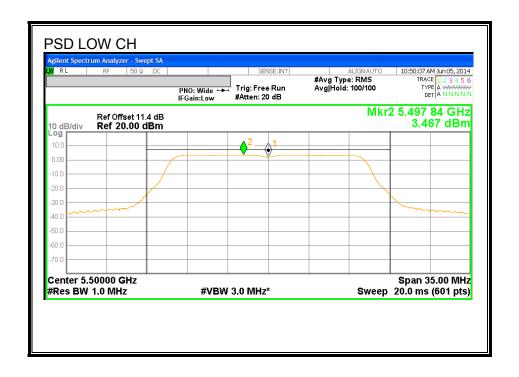
DIRECTIONAL ANTENNA GAIN

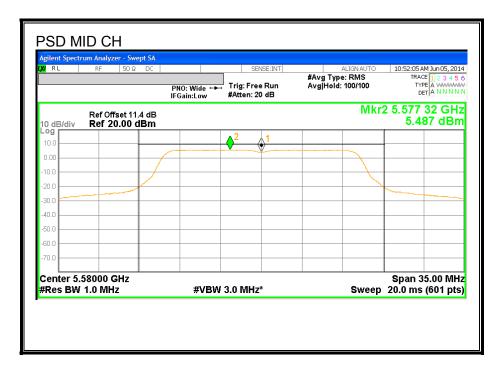
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

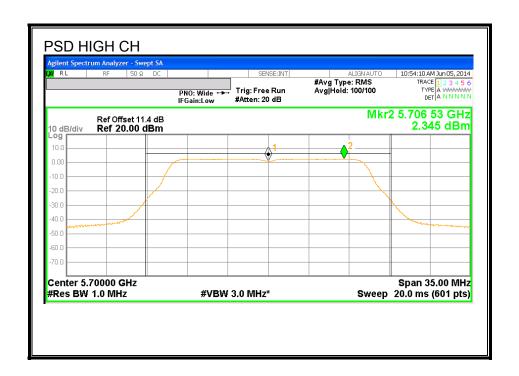
Antenna
Gain
(dBi)
-0.44

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5500	21.15	16.485	-0.44
Mid	5580	21.25	16.613	-0.44
High	5700	21.25	16.470	-0.44


Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--

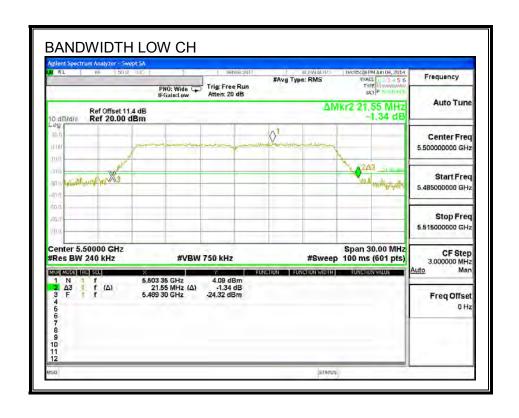

PPSD Results

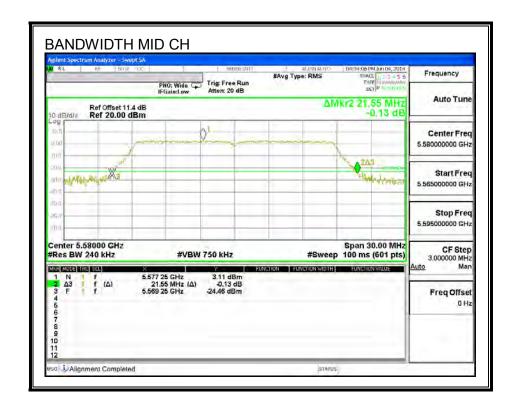
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	3.467	3.47	11.00	-7.53
Mid	5580	5.487	5.49	11.00	-5.51
High	5700	2.345	2.35	11.00	-8.66

PSD

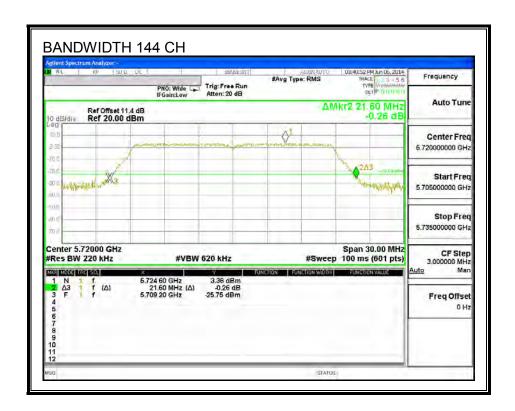
9.10. 802.11n HT20 MODE IN THE 5.6 GHz BAND

9.10.1. 26 dB BANDWIDTH


LIMITS

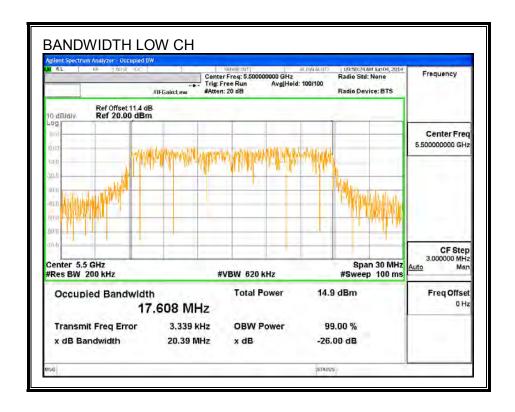

None; for reporting purposes only.

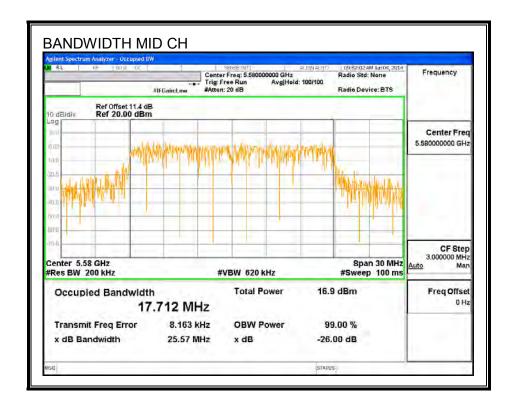
RESULTS

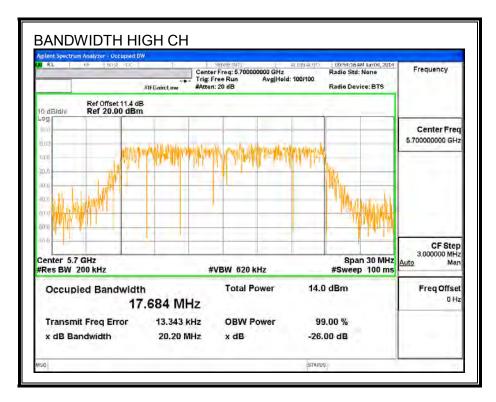

Channel	Frequency	26 dB Bandwidth	
	(MHz)	(MHz)	
Low	5500	21.55	
Mid	5580	21.55	
High	5700	21.50	
144	5720	21.60	

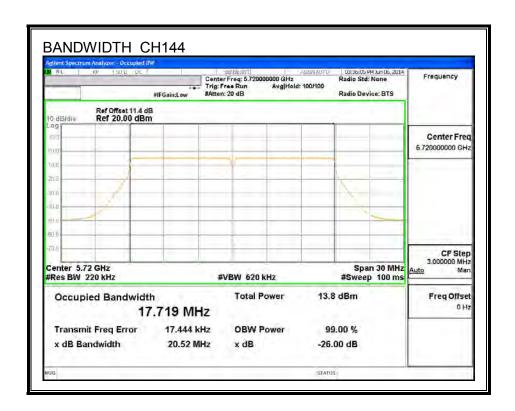
26 dB BANDWIDTH

9.10.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.608
Mid	5580	17.712
High	5700	17.684
144	5720	17.719

99% BANDWIDTH

9.10.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	14.98	24	-9.02
Mid	5580	16.96	24	-7.04
High	5700	15.99	24	-8.01

9.10.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

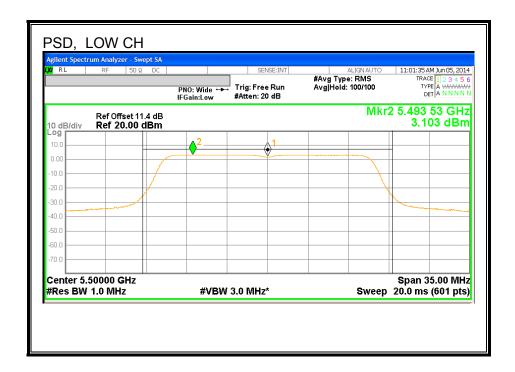
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

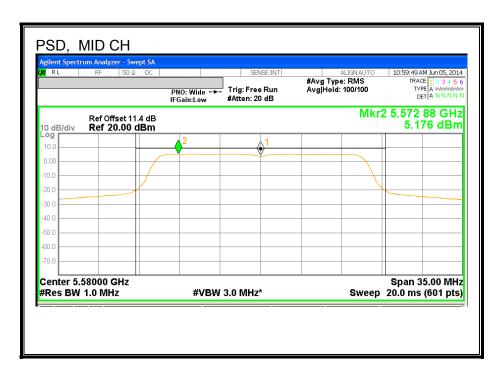
Antenna Gain (dBi) -0.44

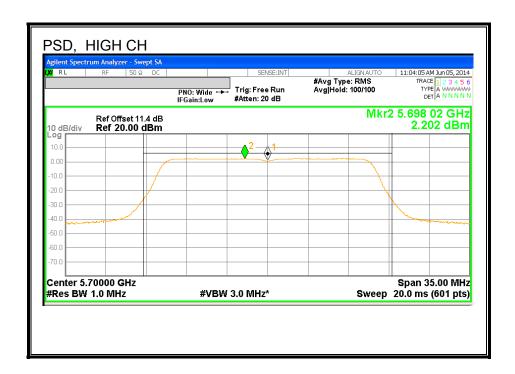
REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

RESULTS

Bandwidth and Antenna Gain

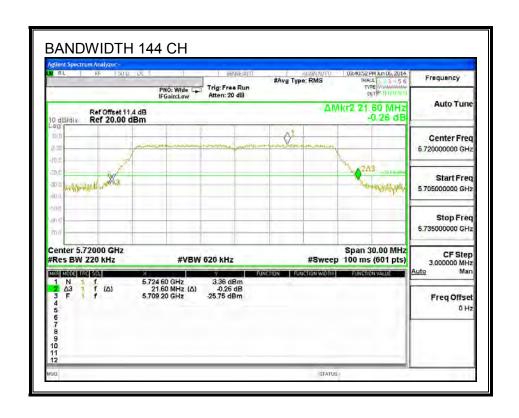

Channel	Frequency	Min Min		Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5500	21.55	17.608	-0.44
Mid	5580	21.55	17.712	-0.44
High	5700	21.50	17.684	-0.44


Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--


PSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	3.103	3.10	11.00	-7.90
Mid	5580	5.176	5.18	11.00	-5.82
High	5700	2.202	2.20	11.00	-8.80

PSD,


9.11. 802.11n HT20, MODE, CHANNEL 144, IN THE 5.6 GHz BAND

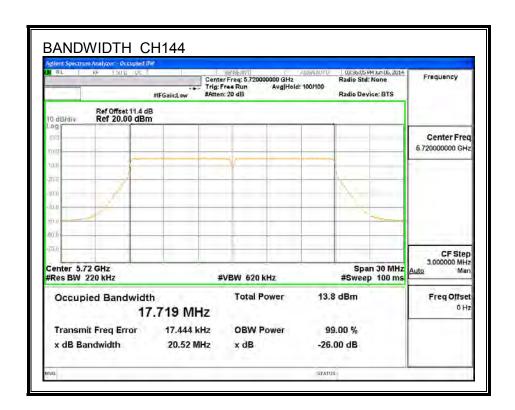
9.11.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
144	5720	21.60

9.11.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel Frequency		99% Bandwidth
	(MHz)	(MHz)
144	5720	17.719

99% BANDWIDTH

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.11.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
144	5720	15.98

9.11.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna Gain (dBi) -0.44

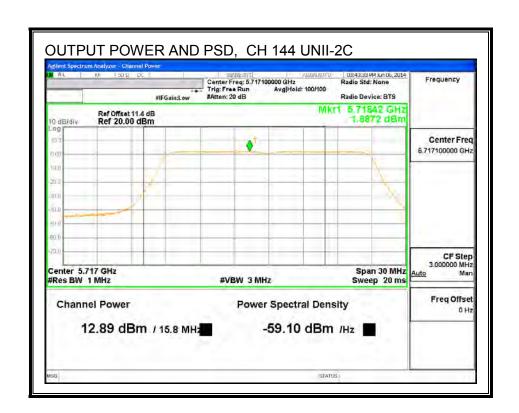
RESULTS

STRADDLE CHANNEL 144 RESULTS

UNII-2C BAND

Bandwidth, Antenna Gain, and Limits

(Channel	Frequency	Min	Directional Directional		Power	PSD
			26 dB	Gain	Gain	Limit	Limit
			BW	for Power	for PSD		
		(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
	144	5720	21.60	-0.44	-0.44	24.00	11.00


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

Output Power Results

Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	12.89	12.89	24.00	-11.11

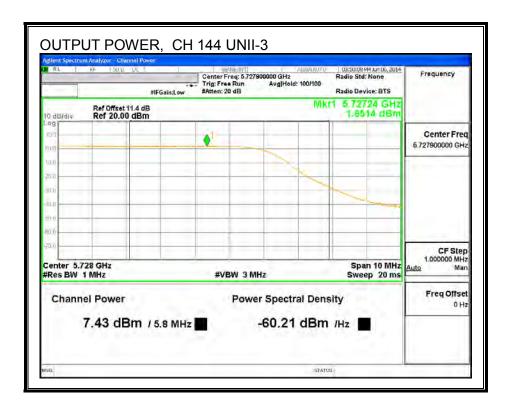
PSD Results

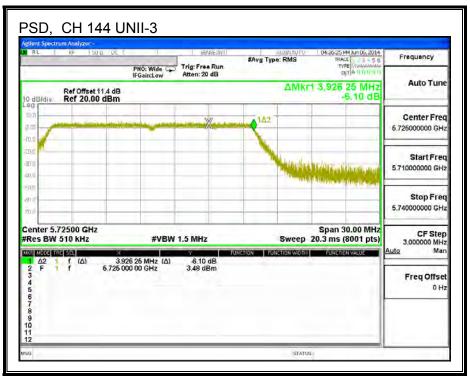
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)

UNII-3 BAND

Antenna Gain and Limit

Channel	Frequency	Directional	Power	PSD
		Gain	Limit	Limit
	(MHz)	(dBi)	(dBm)	(dBm)
144	5720	0.44	30.00	30.00


Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--


Output Power Results

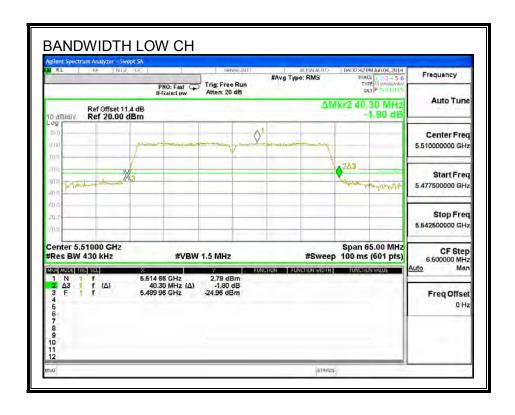
Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	7.43	7.43	30.00	-22.57

PSD Results

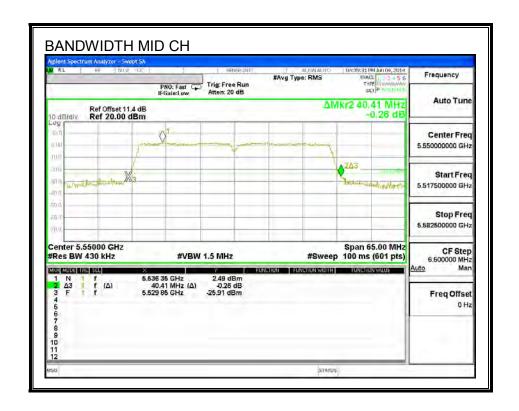
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
144	5720	1.65	1.65	30.00	-28.35

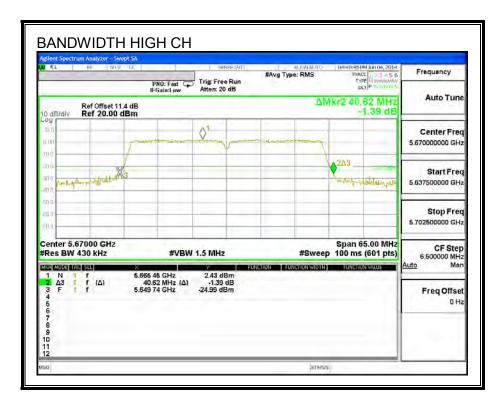
9.12. 802.11n HT40 MODE IN THE 5.6 GHz BAND

9.12.1. 26 dB BANDWIDTH


LIMITS

None; for reporting purposes only.

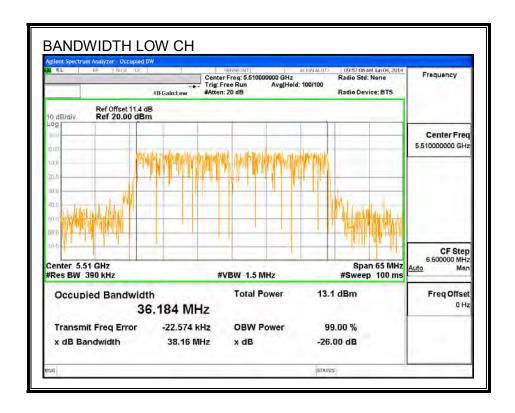

RESULTS

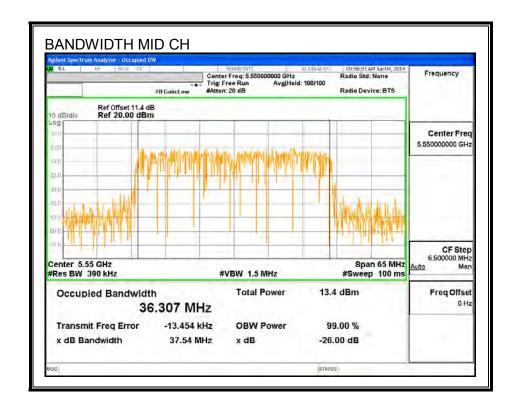

Channel Frequency		26 dB Bandwidth	
	(MHz)	(MHz)	
Low	5510	40.30	
Mid	5550	40.41	
High	5670	40.62	

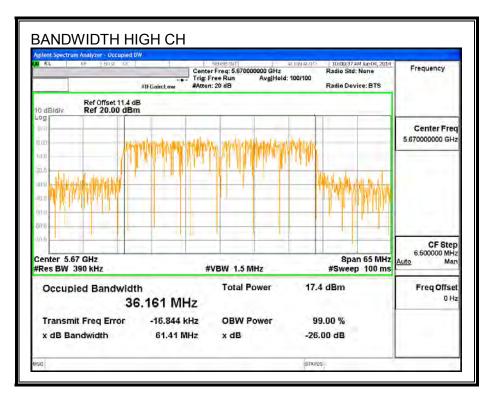
26 dB BANDWIDTH

26 dB BANDWIDTH

9.12.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5510	36.184
Mid	5550	36.307
High	5670	36.161

99% BANDWIDTH

9.12.1. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5510	14.91	24	-9.09
Mid	5550	16.92	24	-7.08
High	5670	16.98	24	-7.02

REPORT NO: 14U17676-E9C

DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.12.2. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

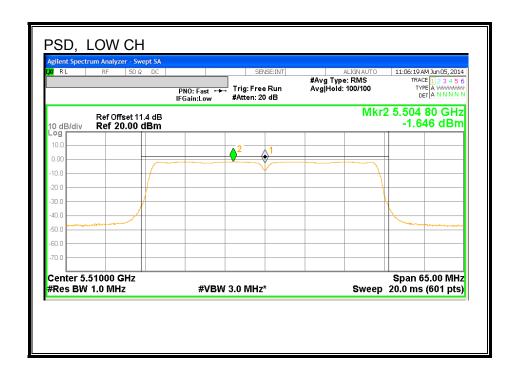
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

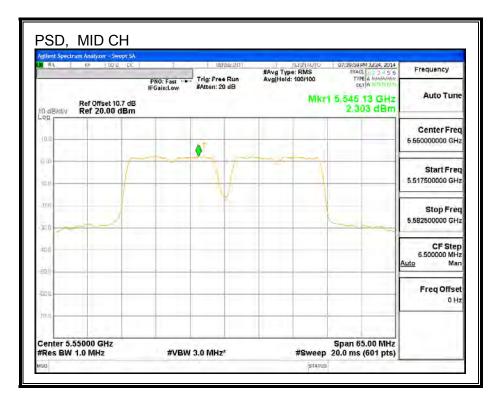
Antenna Gain (dBi) -0.44

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

RESULTS

Bandwidth and Antenna Gain


Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5510	40.30	36.184	-0.44
Mid	5550	40.41	36.307	-0.44
High	5670	40.62	36.161	-0.44


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

PPSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	-1.646	-1.65	11.00	-12.65
Mid	5550	2.303	2.30	11.00	-8.70
High	5670	2.308	2.31	11.00	-8.69

PSD

9.13. 802.11n HT40 MODE, CHANNEL 142, IN THE 5.6 GHz BAND

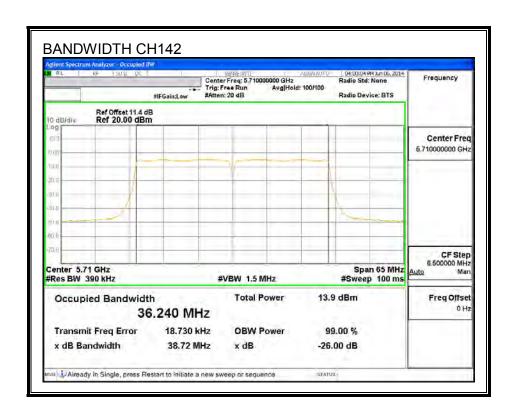
9.13.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
142	5710	40.08

9.13.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
142	5710	36.240

99% BANDWIDTH

9.13.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
142	5710	14.95

9.13.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna Gain (dBi) -0.44

DATE: AUGUST 05, 2014

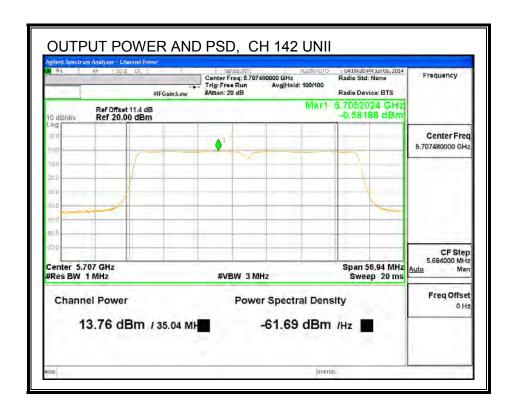
RESULTS

STRADDLE CH 142 RESULTS

UNII-2C BAND

Bandwidth, Antenna Gain, and Limits

I	Channel	Frequency	Min	Directional	Directional	Power	PSD
			26 dB	Gain	Gain	Limit	Limit
١			BW	for Power	for PSD		
١		(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
	142	5710	40.08	-0.44	-0.44	24.00	11.00


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

Output Power Results

Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	13.76	13.76	24.00	-10.24

PSD Results

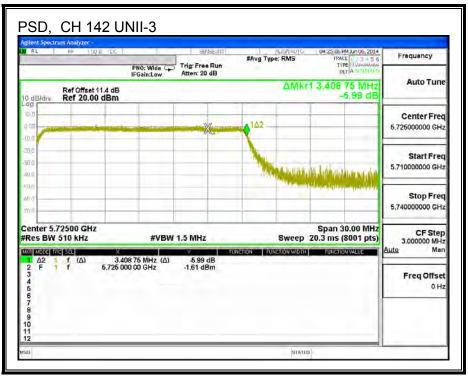
Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-0.58	-0.58	11.00	-11.58

UNII-3 BAND

Antenna Gain and Limit

Channel	Frequency	Directional	Power	PSD
		Gain	Limit	Limit
	(MHz)	(dBi)	(dBm)	(dBm)
142	5710	-0.44	30.00	30.00


Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
--------------------	------	--


Output Power Results

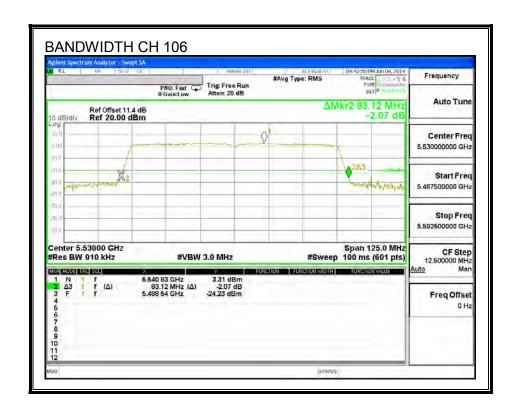
Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	3.52	3.52	30.00	-26.48

PSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-1.22	-1.22	30.00	-31.22

9.14. 802.11ac 80MHz MODE IN THE 5.6 GHz BAND

9.14.1. 26 dB BANDWIDTH


LIMITS

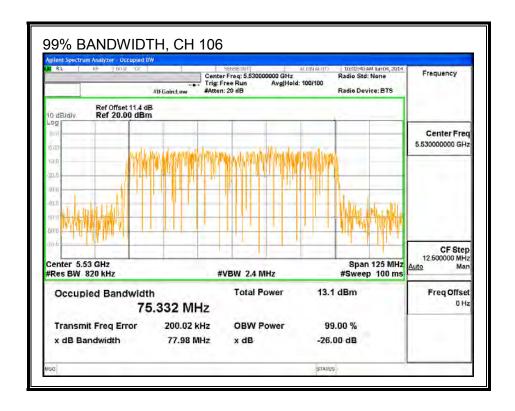
None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
106	5530	83.12

26 dB BANDWIDTH

9.14.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
106	5530	75.332	

99% BANDWIDTH

9.14.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.38 dB (including 10 dB pad and 1.2dB cable and 0.18dB duty cycle correction factor) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)
106	5530	12.98	24	-11.02

9.14.4. PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

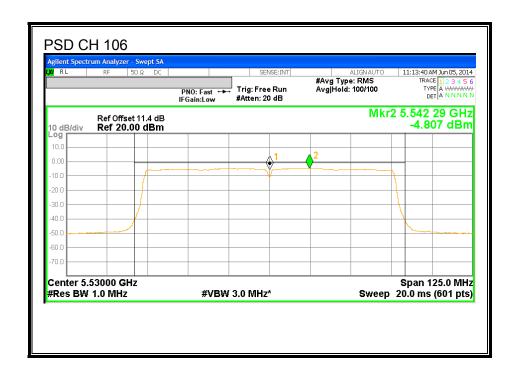
DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

RESULTS

Bandwidth and Antenna Gain


Channel	Channel Frequency		Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
106	5530	83.12	75.332	-0.44

Duty Cycle CF (dB)	0.18	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

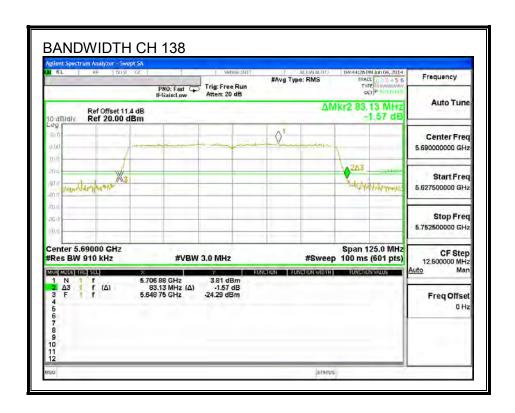
PPSD Results

Channel	Frequency		Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
106	5530	-4.807	-4.63	11.00	-15.63

PSD

9.15. 802.11ac 80MHz MODE, CHANNEL 138, 5.6 GHz BAND

9.15.1. 26 dB BANDWIDTH


LIMITS

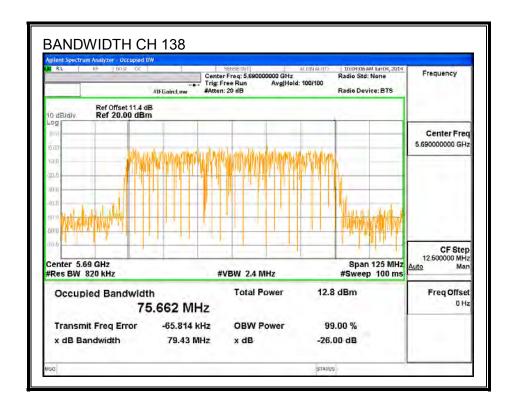
None; for reporting purposes only.

RESULTS

Frequency	26 dB Bandwidth
(MHz)	(MHz)
5690	83.13

26 dB BANDWIDTH

9.15.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Frequency	99% Bandwidth
(MHz)	(MHz)
5690	75.662

99% BANDWIDTH

9.15.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Mid	5690	12.92	

9.15.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.44

RESULTS

Limits (FCC), portion in UNII 2 ext band

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
138	5690	76.57	72.831	-0.44

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PSD
		Power	Power	EIRP	Limit	PSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
138	5690	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Output Power Results

Channel	Frequency	Meas	Total	Power	Power
		Power	Corr'd	Limit	Margin
			Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
138	5690	12.86	13.04	24.00	-10.96

PSD Results

Channel	Frequency		Total	PSD	PSD	
		Meas	Corr'd	Limit	Margin	
		PSD	PSD			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
138	5690	-4.49	-4.31	11.00	-15.31	

Duty Cycle CF (dB) 0.18	Included in Calculations of Corr'd Power & PPSD
-------------------------	---

Limits (FCC), portion in DTS 2 ext band

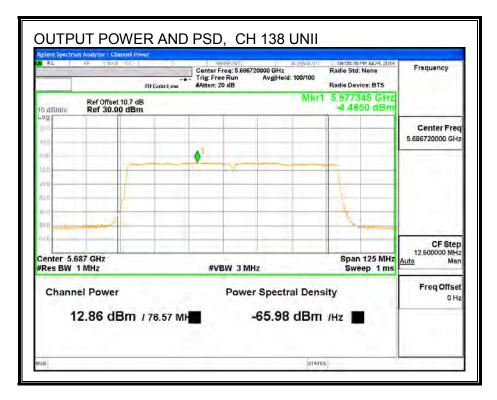
Bandwidth and Antenna Gain

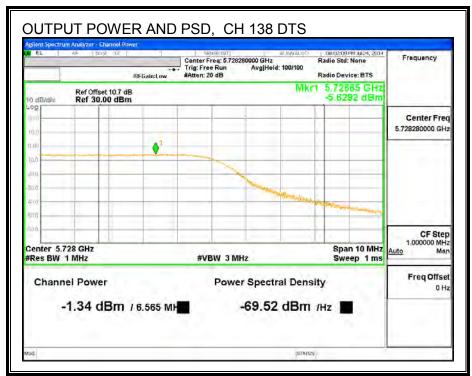
CI	hannel	Frequency	Min	Min	Directional
			26 dB	99%	Gain
			BW	BW	
		(MHz)	(MHz)	(MHz)	(dBi)
	138	5690	76.57	72.831	-0.44

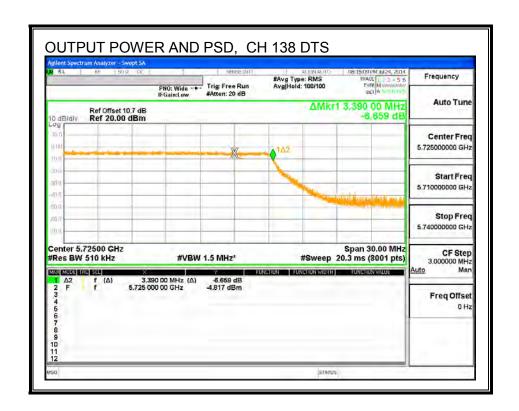
Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PSD
		Power	Power	EIRP	Limit	PSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
138	5690	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Output Power Results


	- alpart of the trooping							
Channel	Frequency	Meas	Total	Power	Power			
		Power	Corr'd	Limit	Margin			
			Power					
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)			
138	5690	-1.34	0.18	24.00	-23.82			


PSD Results

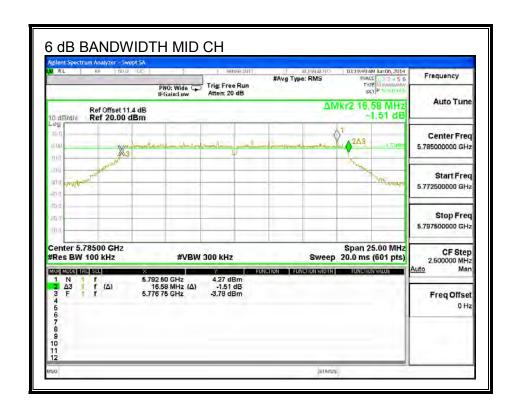

	. • • • • • • • • • • • • • • • • • • •							
Channel	Frequency		Total	PSD	PSD			
		Meas	Corr'd	Limit	Margin			
		PSD	PSD					
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)			
138	5690	-5.629	-5.45	11.00	-16.45			

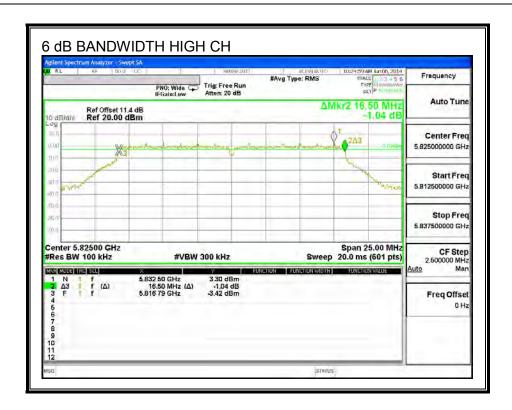
Duty Cycle CF (dB)	0.18	Included in Calculations of Corr'd Power & PPSD
	0.10	o.aaoa

OUTPUT POWER AND PSD,

9.16. 802.11a MODE IN THE 5.8 GHz BAND

9.16.1. 6 dB BANDWIDTH

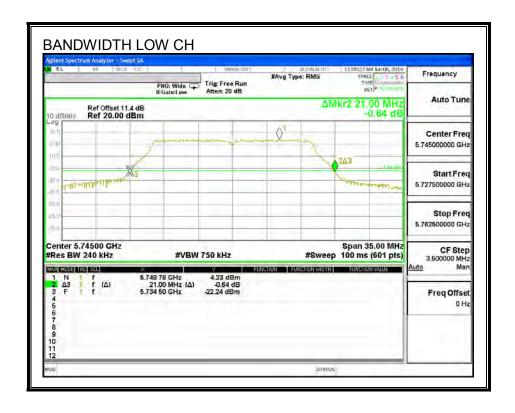

LIMITS

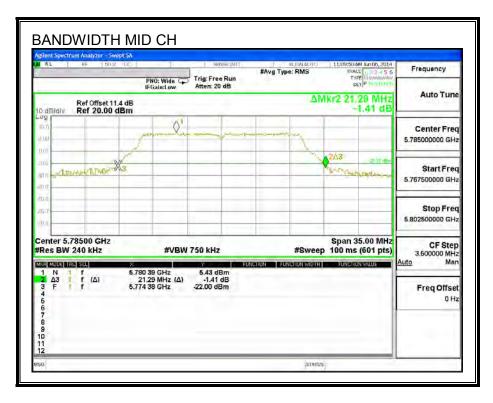

FCC §15.407 (e)

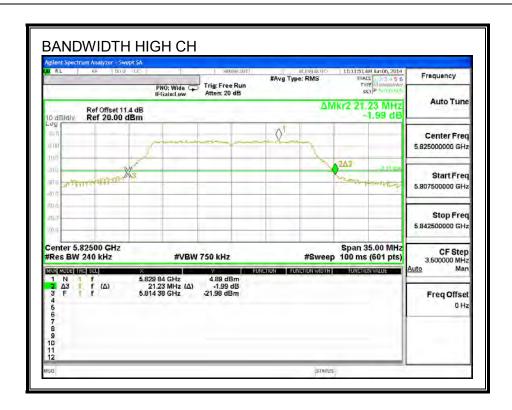
The minimum 6 dB bandwidth shall be at least 500 kHz.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	16.50	0.5
Mid	5785	16.58	0.5
High	5825	16.50	0.5

6 dB BANDWIDTH LOW CH #Avg Type: RMS PNO; Wide G Auto Tune ΔMkr2 16,50 MHz -0,57 dB Ref Offset 11.4 dB Ref 20.00 dBm Center Freq 5.745000000 GHz Start Freq 5.732500000 GH: Stop Freq 5.757500000 GHz Center 5.74500 GHz #Res BW 100 kHz Span 25.00 MHz Sweep 20.0 ms (601 pts) CF Step 2.500000 MHz **#VBW 300 kHz** 16.50 MHz (Δ) 5.736 79 GHz Freq Offset 0 Hz

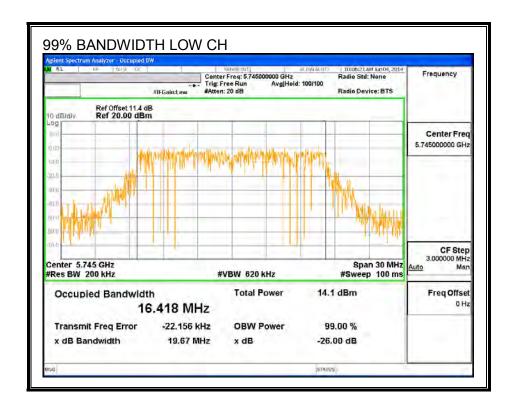

9.16.2. 26 dB BANDWIDTH

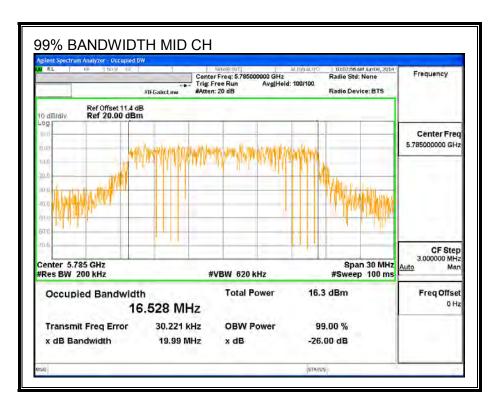

LIMITS

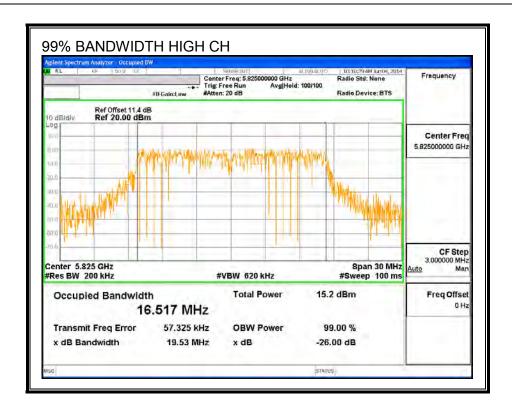

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5745	21.00
Mid	5785	21.29
High	5825	21.23

26 dB BANDWIDTH


9.16.3. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.418
Mid	5785	16.528
High	5825	16.517

99% BANDWIDTH

DATE: AUGUST 05, 2014

9.16.4. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 30 dBm. In addition, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.87

RESULTS

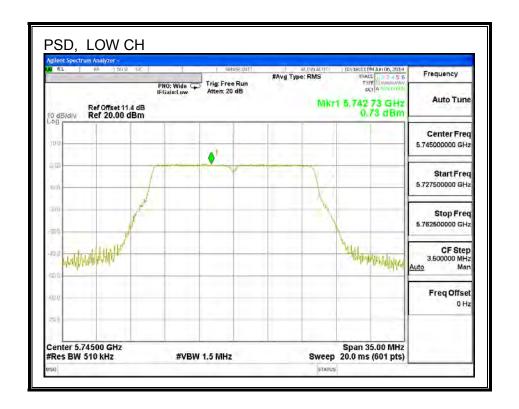
Output Power Results

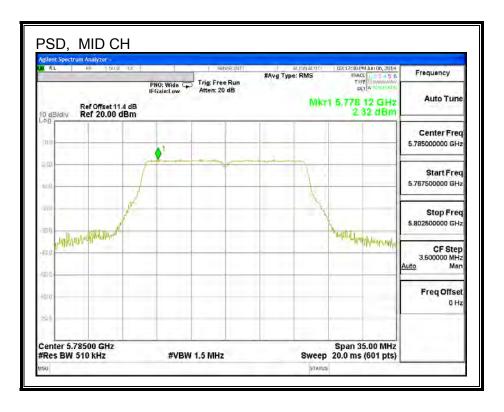
Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	15.930	15.93	30.00	-14.07
Mid	5785	16.830	16.83	30.00	-13.17
High	5825	16.820	16.82	30.00	-13.18

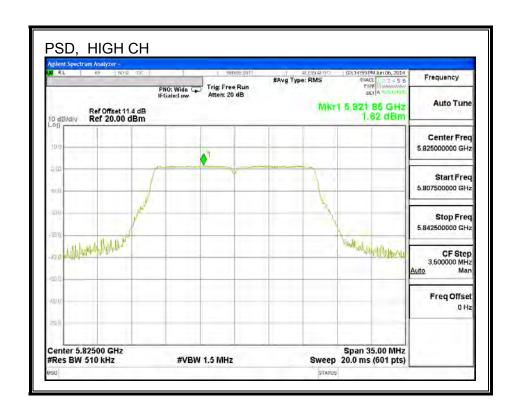
9.16.5. PSD

LIMITS

FCC §15.407 (a) (3)


For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


RESULTS

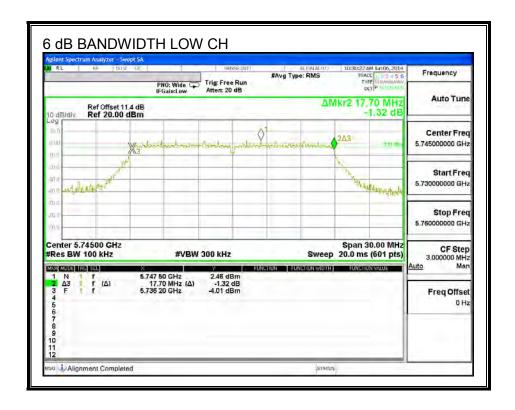

PSD Results

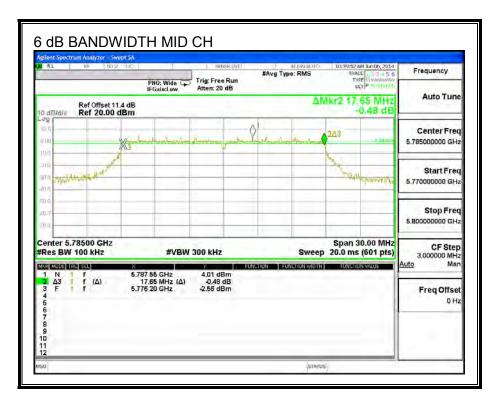
Channel	Frequency		Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	0.73	30.0	-29.3
Mid	5785	2.32	30.0	-27.7
High	5825	1.62	30.0	-28.4

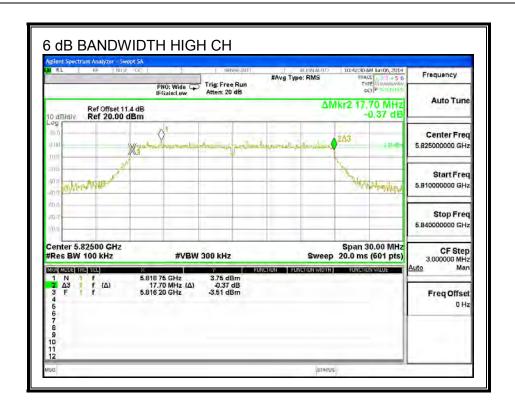
PSD,

9.17. 802.11n HT20 MODE IN THE 5.8 GHz BAND

9.17.1. 6 dB BANDWIDTH

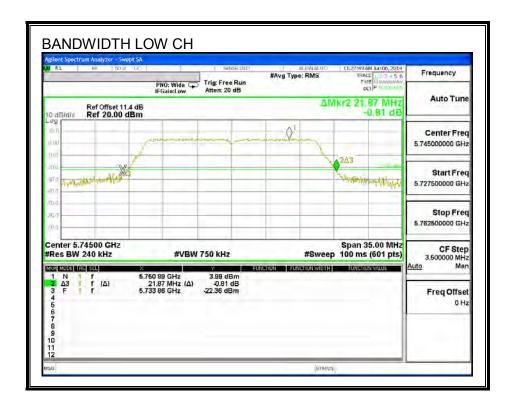

LIMITS

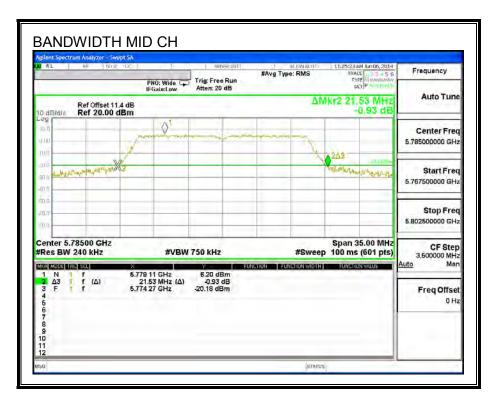

FCC §15.407 (e)

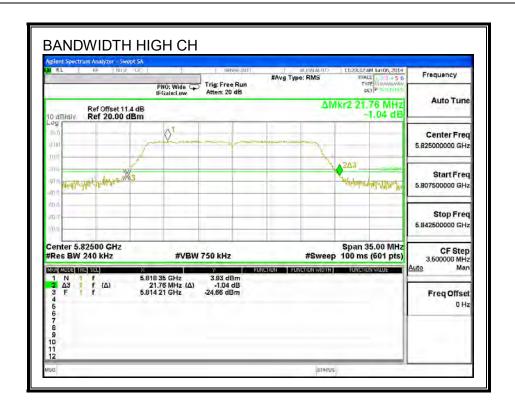

The minimum 6 dB bandwidth shall be at least 500 kHz.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	17.70	0.5
Mid	5785	17.65	0.5
High	5825	17.70	0.5

6 dB BANDWIDTH

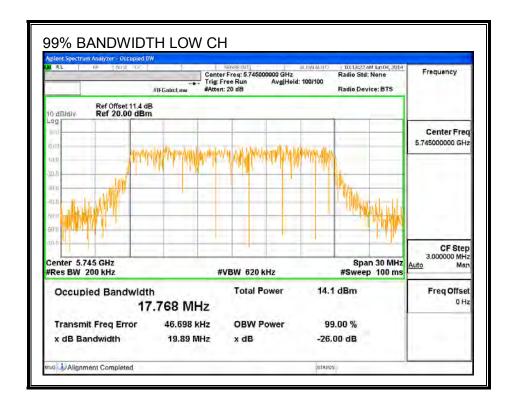

9.17.2. 26 dB BANDWIDTH

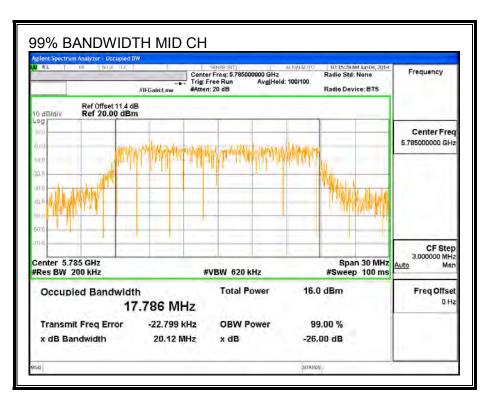

LIMITS

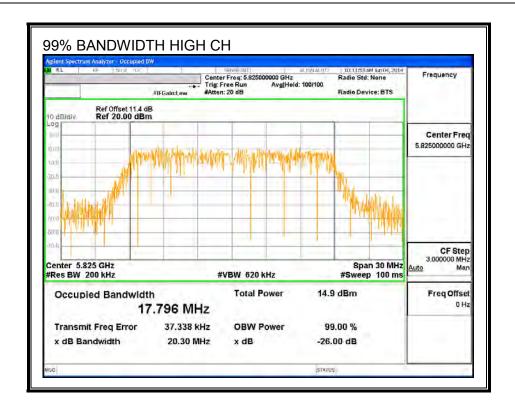

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth	
	(MHz)	(MHz)	
Low	5745	21.87	
Mid	5785	21.53	
High	5825	21.76	

26 dB BANDWIDTH


9.17.3. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	5745	17.768		
Mid	5785	17.786		
High	5825	17.796		

99% BANDWIDTH

DATE: AUGUST 05, 2014

9.17.4. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725-5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of a1 W or 30 dBm. In addition, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.87

RESULTS

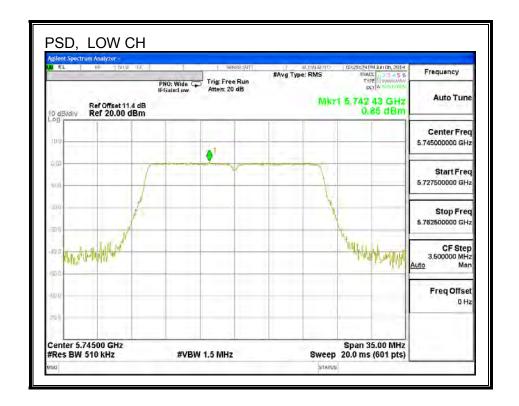
Output Power Results

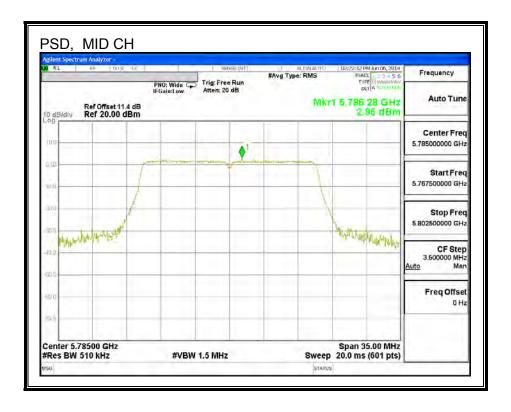
Channel	Frequency		Total	Power	Power	
		Meas	Corr'd	Limit	Margin	
		Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5745	15.920	15.92	30.00	-14.08	
Mid	5785	16.890	16.89	30.00	-13.11	
High	5825	16.930	16.93	30.00	-13.07	

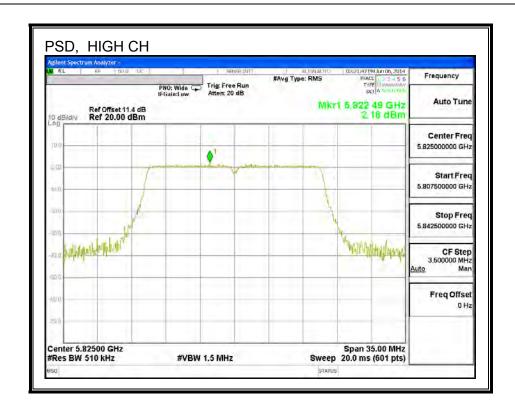
9.17.5. PSD

LIMITS

FCC §15.407 (a) (3)


For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


RESULTS

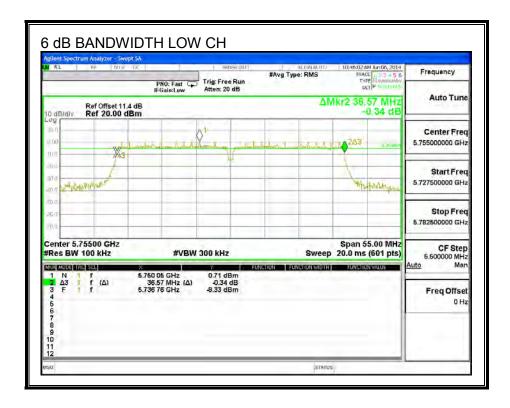

PSD Results

Channel	Frequency		Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	0.85	30.0	-29.2
Mid	5785	2.95	30.0	-27.1
High	5825	2.18	30.0	-27.8

PSD

9.18. 802.11n HT40 MODE IN THE 5.8 GHz BAND

9.18.1. 6 dB BANDWIDTH


LIMITS

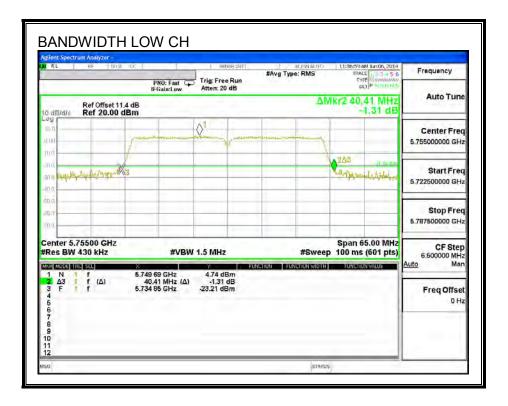

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5755	36.57	0.5
High	5795	36.58	0.5

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A


9.18.2. 26 dB BANDWIDTH

LIMITS

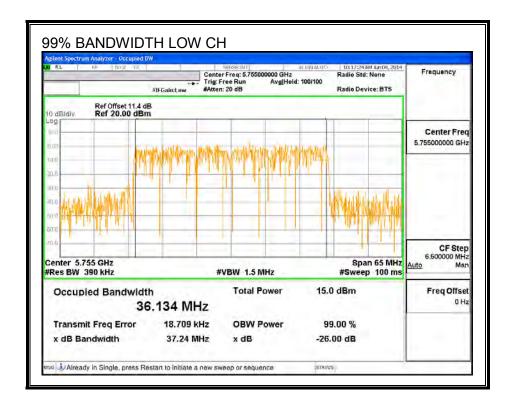
None; for reporting purposes only.

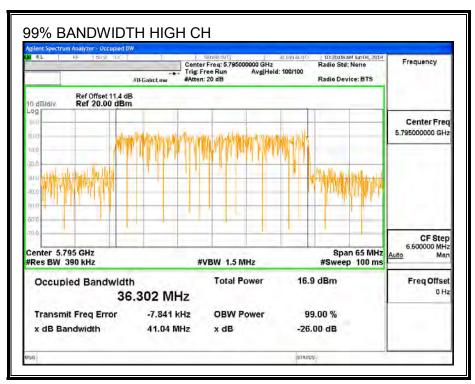
RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5755	40.41
High	5795	40.30

REPORT NO: 14U17676-E9C DATE: AUGUST 05, 2014 FCC ID: BCG-E2817A

9.18.3. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5755	36.134
High	5795	36.302

99% BANDWIDTH

DATE: AUGUST 05, 2014

9.18.4. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 30 dBm. In addition, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.87

RESULTS

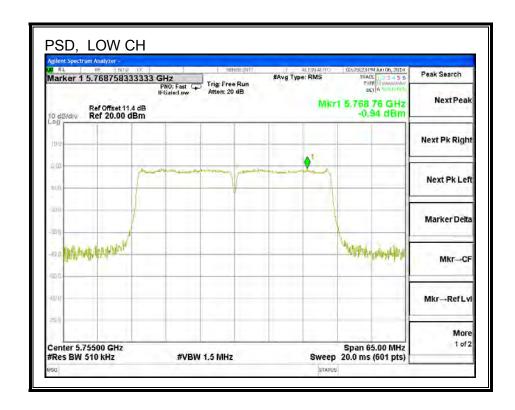
Output Power Results

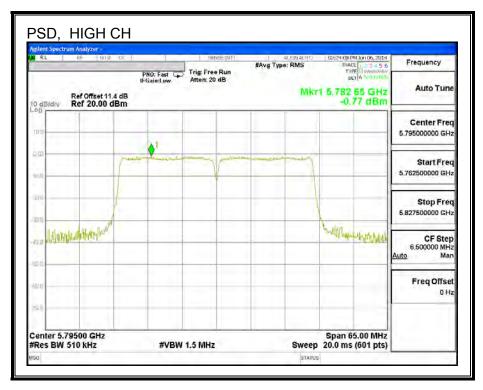
Catpat.	output: ono: Nocuito					
Channel	Frequency		Total	Power	Power	
		Meas	Corr'd	Limit	Margin	
		Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5755	14.370	14.37	30.00	-15.63	
High	5795	16.930	16.93	30.00	-13.07	

9.18.5. PSD

LIMITS

FCC §15.407 (a) (3)


For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


RESULTS

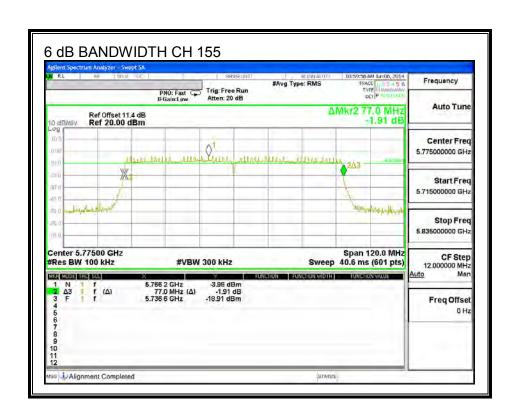
PSD Results

Channel	Frequency		Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5755	-0.94	8.0	-8.9
High	5795	-0.77	8.0	-8.8

PSD,

9.19. 802.11ac 80 MODE IN THE 5.8 GHz BAND

9.19.1. 6 dB BANDWIDTH

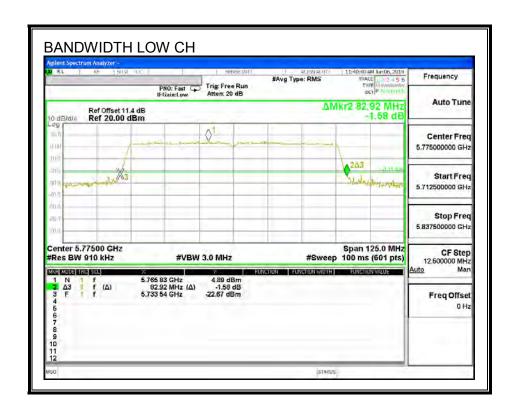

LIMITS

FCC §15.407 (e)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
155	5775	77.00	0.5


9.19.2. 26 dB BANDWIDTH

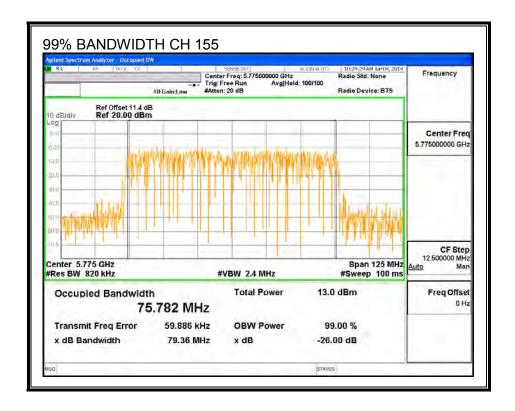
LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5775	82.92

9.19.3. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
155	5775	75.782

99% BANDWIDTH

9.19.4. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 30 dBm. In addition, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter was setup for a gated power measurement.

The cable assembly insertion loss of 11.38 dB (including 10 dB pad 1.2dB cable and 0.18dB duty cycle correction factor) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Antenna
Gain
(dBi)
-0.87

RESULTS

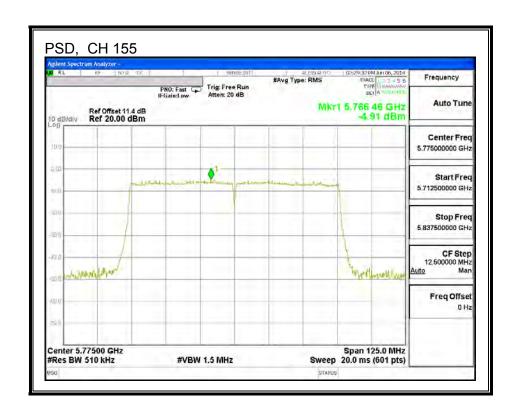
Output Power Results

Channel	Frequency		Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	12.890	13.07	30.00	-16.93

9.19.5. PSD

LIMITS

FCC §15.407 (a) (3)


For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

PSD Results

Channel	Frequency		Limit	Margin
		Meas		
	(MHz)	(dBm)	(dBm)	(dB)

PSD

DATE: AUGUST 05, 2014

10. RADIATED TEST RESULTS

10.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

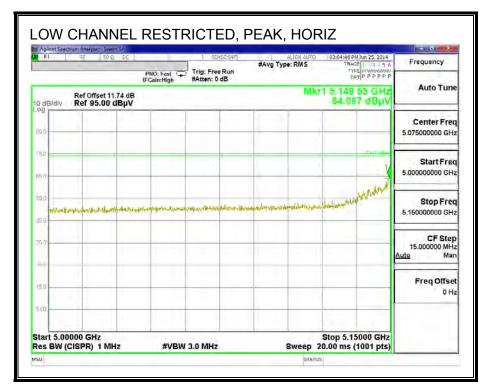
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

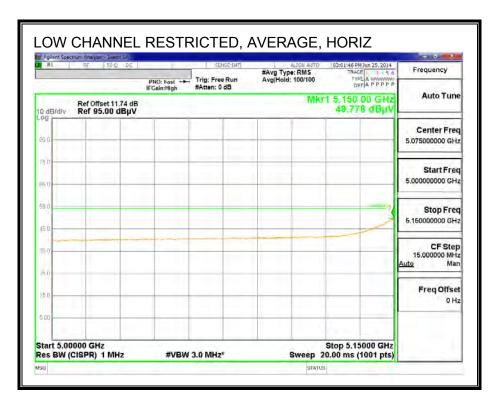
TEST PROCEDURE

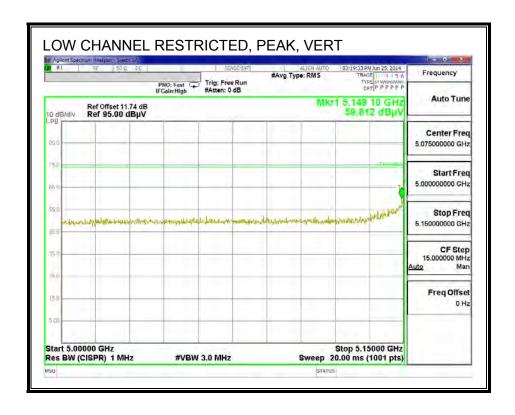
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

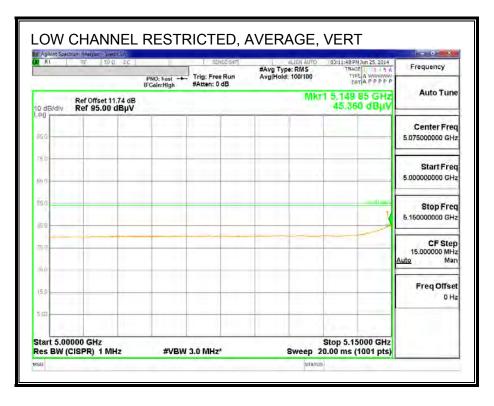
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

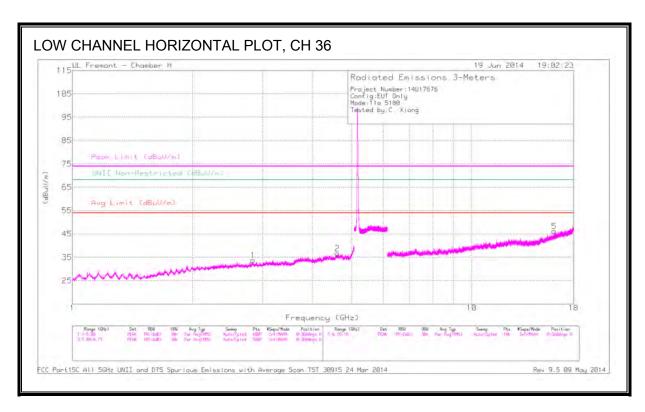

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

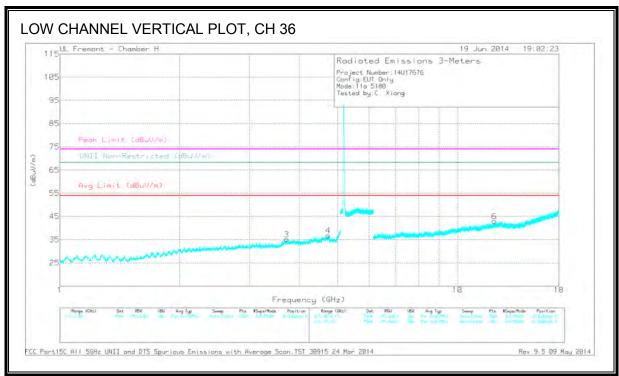

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


10.2. TRANSMITTER ABOVE 1 GHz


10.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)





HARMONICS AND SPURIOUS EMISSIONS

REPORT NO: 14U17676-E9C **DATE: AUGUST 05, 2014** FCC ID: BCG-E2817A

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.828	41.84	PK1	32.5	-33	0	41.34	-	-	74	-32.66	-	-	250	203	Н
	* 2.834	30.52	AD1	32.5	-33	.1	30.12	54	-23.88	-	-	-	-	250	203	Н
2	* 4.615	41.69	PK1	34.1	-31.8	0	43.99	-	-	74	-30.01	-	-	189	218	Н
	* 4.61	30.74	AD1	34.1	-31.7	.1	33.24	54	-20.76	-	-	-	-	189	218	Н
3	* 3.72	41.84	PK1	33.2	-32.7	0	42.34	-	-	74	-31.66	-	-	68	145	V
	* 3.724	31.1	AD1	33.2	-32.8	.1	31.6	54	-22.4	-	-	-	-	68	145	V
4	* 4.735	41.03	PK1	34.3	-31.5	0	43.83	-	-	74	-30.17	-	-	332	249	V
	* 4.734	30.18	AD1	34.3	-31.5	.1	33.08	54	-20.92	-	-	-	-	332	249	V
5	* 16.083	35.73	PK1	41.2	-24.1	0	52.83	-	-	74	-21.17	-	-	313	154	Н
	* 16.078	24.94	AD1	41.2	-24.1	.1	42.14	54	-11.86	-	-	-	-	313	154	Н
6	* 12.399	36.56	PK1	39.1	-25.1	0	50.56	-	-	74	-23.44	-	-	34	185	V
	* 12.394	25.82	AD1	39.1	-25.2	.1	39.82	54	-14.18	-	-	-	-	34	185	V

 $^{^{\}star}$ - indicates frequency in CFR15.205/IC7.2.2 Restricted Band PK1 - KDB789033 Method: Peak

AD1 - KDB789033 Method: AD Primary Power Average