

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

QUAD-BAND RADIO WITH WLAN AND BT RADIO

MODEL NUMBER: A1456, A1532

FCC ID: BCG-E2644A IC: 579C-E2644A, 579C-E2644B

REPORT NUMBER: 13U14897-12

ISSUE DATE: JULY 22, 2013

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Rev. Date Revisions			
	07/22/13	Initial Issue	T. Chan	

Page 2 of 76

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	1
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	СА	LIBRATION AND UNCERTAINTY	5
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	SAMPLE CALCULATION	5
4	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	3
5	5.1.	DESCRIPTION OF EUT	5
5	5.2.	MAXIMUM OUTPUT POWER	5
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	5.4.	SOFTWARE AND FIRMWARE	5
5	5.5.	WORST-CASE CONFIGURATION AND MODE	5
5	6.6.	DESCRIPTION OF TEST SETUP	7
6.	TE	ST AND MEASUREMENT EQUIPMENT	•
7.	AN	TENNA PORT TEST RESULTS10)
7 . 7	AN 7.1.	TENNA PORT TEST RESULTS 10 20 dB AND 99% BANDWIDTH 10) כ
7 . 7 7	AN 7.1. 7.2.	TENNA PORT TEST RESULTS 1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19	נ כ ס
7 . 7 7 7	AN 7.1. 7.2. 7.3.	TENNA PORT TEST RESULTS 10 20 dB AND 99% BANDWIDTH 10 HOPPING FREQUENCY SEPARATION 19 NUMBER OF HOPPING CHANNELS 2 ⁻¹)) 9
7 . 7 7 7 7	AN 7.1. 7.2. 7.3. 7.4.	TENNA PORT TEST RESULTS 10 20 dB AND 99% BANDWIDTH 10 HOPPING FREQUENCY SEPARATION 19 NUMBER OF HOPPING CHANNELS 27 AVERAGE TIME OF OCCUPANCY 27))) 1 7
7 . 7 7 7 7 7	AN 7.1. 7.2. 7.3. 7.4. 7.5.	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS27AVERAGE TIME OF OCCUPANCY27OUTPUT POWER38	ס ס פ 1 7 5
7 . 7 7 7 7 7 7	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS27AVERAGE TIME OF OCCUPANCY27OUTPUT POWER38AVERAGE POWER40) クライ アラフ
7 . 7 7 7 7 7 7 7	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7.	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS27AVERAGE TIME OF OCCUPANCY27OUTPUT POWER38AVERAGE POWER40CONDUCTED SPURIOUS EMISSIONS47	D <i>O</i> <i>J</i> <i>T</i> <i>T</i> <i>T</i> <i>T</i> <i>T</i> <i>T</i> <i>T</i> <i>T</i>
7. 7 7 7 7 7 7 8.	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RA	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS27AVERAGE TIME OF OCCUPANCY27OUTPUT POWER38AVERAGE POWER40CONDUCTED SPURIOUS EMISSIONS47DIATED TEST RESULTS50) <i>)</i> <i>1</i> <i>7</i> <i>5</i> <i>)</i> <i>1</i> <i>)</i>
7. 7 7 7 7 7 7 8. 8	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RA	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS21AVERAGE TIME OF OCCUPANCY21OUTPUT POWER38AVERAGE POWER40CONDUCTED SPURIOUS EMISSIONS41DIATED TEST RESULTS50LIMITS AND PROCEDURE50) クライア5フイ) フ
7. 7 7 7 7 7 7 7 8. 8 8	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RA 8.1. 8.2.	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION15NUMBER OF HOPPING CHANNELS27AVERAGE TIME OF OCCUPANCY27OUTPUT POWER32AVERAGE POWER40CONDUCTED SPURIOUS EMISSIONS47DIATED TEST RESULTS50LIMITS AND PROCEDURE50TRANSMITTER ABOVE 1 GHz51	D <i>D</i> <i>D</i> <i>D</i> <i>D</i> <i>D</i> <i>D</i> <i>D</i> <i>D</i>
7. 7 7 7 7 7 7 7 8. 8 8	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RA 8.1. 8.2. 8.2. 8.2. 8.2.	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION19NUMBER OF HOPPING CHANNELS21AVERAGE TIME OF OCCUPANCY21OUTPUT POWER32AVERAGE POWER40CONDUCTED SPURIOUS EMISSIONS41DIATED TEST RESULTS50LIMITS AND PROCEDURE50TRANSMITTER ABOVE 1 GHz51.1BASIC DATA RATE GFSK MODULATION51.2ENHANCED DATA RATE 8PSK MODULATION55	D 0 9 1 7 5 0 1 D 0 1 1 0 1 1 3
7. 7 7 7 7 7 7 7 8. 8 8 8	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.2. 8.2 8.2 8.2 8.2 8.2	TENNA PORT TEST RESULTS 10 20 dB AND 99% BANDWIDTH 10 HOPPING FREQUENCY SEPARATION 19 NUMBER OF HOPPING CHANNELS 2° AVERAGE TIME OF OCCUPANCY 27 OUTPUT POWER 32 AVERAGE POWER 40 CONDUCTED SPURIOUS EMISSIONS 4° DIATED TEST RESULTS 50 LIMITS AND PROCEDURE 50 1. BASIC DATA RATE GFSK MODULATION 51 .2. ENHANCED DATA RATE 8PSK MODULATION 55 WORST-CASE BELOW 1 GHz 61	D D D D D D D D D D D D D D D D D D D
7. 7 7 7 7 7 7 7 8. 8 8 8 8 8 8 8 9.	AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.2. 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8	TENNA PORT TEST RESULTS1020 dB AND 99% BANDWIDTH10HOPPING FREQUENCY SEPARATION15NUMBER OF HOPPING CHANNELS21AVERAGE TIME OF OCCUPANCY21OUTPUT POWER32AVERAGE POWER34CONDUCTED SPURIOUS EMISSIONS41DIATED TEST RESULTS50LIMITS AND PROCEDURE50TRANSMITTER ABOVE 1 GHz51.1BASIC DATA RATE GFSK MODULATION51.2ENHANCED DATA RATE 8PSK MODULATION52WORST-CASE BELOW 1 GHz50POWER LINE CONDUCTED EMISSIONS70	D D D D D D D D D D D D D D D D D D D

Page 3 of 76

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.
EUT DESCRIPTION:	QUAD-BAND RADIO WITH WLAN AND BT RADIO
MODEL:	A1456, A1532
SERIAL NUMBER:	C7JKP0A0FLTW
DATE TESTED:	MAY 22 and JULY 9, 2013

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Ny

Thu Chan WiSE Operations Manager UL Verification Services Inc.

Tested By:

Mona Hua WiSE ENGINEER UL Verification Services Inc.

Page 4 of 76

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, and FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 76

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Model A1456/A1532 is a mobile phone with multimedia functions (music, application support, and video), cellular GSM/GPRS/EGPRS/WCDMA/HSPA+/DC-HSDPA/CDMA/EVDO/LTE radio, IEEE 802.11a/b/g/n, Bluetooth and GPS radio. The rechargeable battery is not user accessible.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	12.87	19.36
2402 - 2480	Enhanced 8PSK	12.69	18.58

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PiFA antenna, with a maximum gain as below table.

Frequency (MHz)	Antenna Gain (dBi)
2400 -2483.5	0.21

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Bluetooth Version 1.4.8.7

5.5. WORST-CASE CONFIGURATION AND MODE

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as worst-case scenario.

EUT is a portable device that has three orientations; therefore, X (Lay down), Y (Landscape) and Z orientations (Standup) have been investigated, and the worst case was found to be at Y (Landscape) position.

Page 6 of 76

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	F00127	02/22/14		
Antenna, Horn, 18 GHz	ETS Lindgren	3117	F00132	02/19/14		
Antenna, Horn, 26.5 GHz	ARA	MVVH-1826/B	C00589	04/28/14		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB3	F00027	03/07/14		
Preamplifier, 1300 MHz	Sonoma	310	981661	11/06/13		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	F00130	03/18/14		
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	1000741	07/06/14		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	04/17/14		
Peak / Average Power Sensor	Agilent / HP	N1911A	F00153	04/05/14		
Peak Power Meter	Agilent / HP	E9323A	F00026	04/03/14		

I/O CABLES (CONDUCTED)

I/O Cable List						
Cable	Cable Port # of identical Connector Cable Type Cable Length Remarks			Remarks		
No		ports	Туре		(m)	
1	Antenna	1	SMA	Shielded	0.1m	To Spectrum Analyzer

I/O CABLES (RADIATED)

I/O Cable List							
Cable Port # of identical Connector Cable Type Cable Length Remarks No ports Type (m)		Remarks					
1	Jack	1	Earphone	Unshielded	0.5m	N/A	

TEST SETUP

The EUT is a stand-alone device.

Page 7 of 76

SETUP DIAGRAM FOR TESTS (CONDUCTED)

SETUP DIAGRAM FOR TESTS (RADIATED)

Page 8 of 76

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	F00127	02/22/14		
Antenna, Horn, 18 GHz	ETS Lindgren	3117	F00132	02/19/14		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	04/28/14		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB3	F00027	03/07/14		
Preamplifier, 1300 MHz	Sonoma	310	981661	11/06/13		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	F00130	03/18/14		
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	1000741	07/06/14		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	04/17/14		
Peak / Average Power Sensor	Agilent / HP	N1911A	F00153	04/05/14		
Peak Power Meter	Agilent / HP	E9323A	F00026	04/03/14		

Page 9 of 76

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

<u>GFSK</u>

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(KHz)	(KHz)
Low	2402	1011.000	946.5324
Middle	2441	991.324	961.2418
High	2480	986.317	939.7444

<u>8PSK</u>

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.351	1.8392
Middle	2441	1.345	1.4586
High	2480	1.339	1.3577

Page 10 of 76

<u>GFSK</u>

20 dB BANDWIDTH

Page 11 of 76

Page 12 of 76

<u>8PSK</u>

20 dB BANDWIDTH

Page 13 of 76

Page 14 of 76

<u>GFSK</u>

99% BANDWIDTH

Page 15 of 76

Page 16 of 76

8PSK

99% BANDWIDTH

Page 17 of 76

	ay 2, 2013		R I	Sweep
Ch Freq Occupied Bandwidth	2.48 GHz	Т	rig Free	100.0 m Auto <u>M</u>
	1// 20 ID			Swee <u>Single Co</u>
#Samp Log 10 dB/ Offst 11 dB Center 2.480 000 GHz #Res BW 30 kHz	#UBW 100 k	Sµ Hz #Sweep 100 ms (pan 3 MHz 601 pts)	Auto Sweer Tirr Norm <u>Acc</u> On <u>C</u> Gate Setup
Occupied Ban	dwidth	Occ BW % Pwr x dB -2	99.00 % 0.00 dB	Point 60

Page 18 of 76

7.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

Page 19 of 76

<u>GFSK</u>

<u>8PSK</u>

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 20 of 76

7.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

Page 21 of 76

<u>GFSK</u>

NUMBER OF HOPPING CHANNELS

Page 22 of 76

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 76

Page 24 of 76

<u>8PSK</u>

NUMBER OF HOPPING CHANNELS

Page 25 of 76

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 26 of 76

7.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

<u>RESULT</u>

Page 27 of 76

<u>GFSK</u>

GFSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.4069	31	0.126	0.4	-0.274
DH3	1.6670	16	0.267	0.4	-0.133
DH5	2.9070	13	0.378	0.4	-0.022

<u>8PSK</u>

8PSK Mode

DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
DH1	0.4169	32	0.133	0.4	-0.267
DH3	1.6640	17	0.283	0.4	-0.117
DH5	2.9200	13	0.380	0.4	-0.020

Page 28 of 76

GFSK, DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 29 of 76

PULSE WIDTH GFSK DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 30 of 76

PULSE WIDTH GFSK DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 31 of 76

<u>8PSK, DH1</u>

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 32 of 76

PULSE WIDTH 8PSK DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 33 of 76

PULSE WIDTH 8PSK DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 34 of 76

7.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

<u>GFSK</u>

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.62	30	-17.38
Middle	2441	12.87	30	-17.13
High	2480	12.42	30	-17.58

<u>8PSK</u>

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.48	21	-8.52
Middle	2441	12.69	21	-8.31
High	2480	11.95	21	-9.05

Page 35 of 76

<u>GFSK</u>

OUTPUT POWER

Page 36 of 76
🔆 Agilent 15:58:	28 Jun 5, 2013			RΤ	Peak Search
Ref 30 dBm /Peak	Atten 30 dE	3	Mkr1 2	.480 000 GHz 12.42 dBm	Next Peak
.og 0 B/					Next Pk Right
Offst 16 IB					Next Pk Left
PAvg					Min Search
A1 S2 53 FC					Pk-Pk Search
(f): Tun Swp					Mkr © C
Start 2.475 000 GH Res BW 3 MHz	lz	VBW 3 MHz	Stop 2. Sweep 1	.485 000 GHz ms (601 pts)	More 1 of 2

Page 37 of 76

8PSK

OUTPUT POWER

Page 38 of 76

Agilent 16:12	:57 Jun 5, 2013			RΤ	Freq/Channel
ef 30 dBm Peak	Atten 30 dB		Mkr1 2.	479 950 GHz 11.95 dBm	Center Freq 2.48000000 GHz
9g 					Start Freq 2.47500000 GH;
ifist					Stop Fred 2.48500000 GHz
PAvg					CF Ste 1.0000000 MH; <u>Auto M</u>
1 S2 3 FC					Freq Offset 0.00000000 Hz
(): Гun wp					Signal Track On <u>C</u>
enter 2.480 000 (Res BW 3 MHz	GHz VBW	/ 3 MHz	Sweep 1 i	Span 10 MHz ns (601 pts)	

Page 39 of 76

7.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.0 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

<u>GFSK</u>

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	12.35
Middle	2441	12.40
High	2480	12.25

<u>8PSK</u>

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	10.25
Middle	2441	10.30
High	2480	10.00

.

Page 40 of 76

7.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

<u>RESULTS</u>

Page 41 of 76

<u>GFSK</u>

SPURIOUS EMISSIONS, LOW CHANNEL

Page 42 of 76

SPURIOUS EMISSIONS, MID CHANNEL

Page 43 of 76

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 44 of 76

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 76

<u>8PSK</u>

SPURIOUS EMISSIONS, LOW CHANNEL

Page 46 of 76

SPURIOUS EMISSIONS, MID CHANNEL

Page 47 of 76

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 48 of 76

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 49 of 76

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

<u>RESULTS</u>

For the Band edge measurement, there is no need for the average reading since the peak reading passed with the peak limit. The average reading = peak reading – $20*\log (1/duty cycle)$, and the $20*\log (1/duty cycle)$ is greater than 20dB.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

Page 51 of 76

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

RESTRICTED BANDEDGE (HIGH CHANNEL)

Page 52 of 76

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL

Page 53 of 76

Page 54 of 76

MID CHANNEL

Page 55 of 76

MID CHANNEL

Page 56 of 76

HIGH CHANNEL

Page 57 of 76

Page 58 of 76

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL)

LOW CHANNEL RESTRICTED, PEAK, HORIZ . arker 1 2.38376000000 GHz PR0: Fast -----IFGainS rev 20-43 AM May 20, 2013 Peak Search #Avg Type: RMS Avg[Held: 100/100 UNTP PPPP NextPeak Mkr1 2.383 76 GHz 51.355 dBµV Ref Offset 7.8 dB Ref 104.79 dBµV Next Pk Right Next Pk Left Marker Delta 0 Mkr-CF Mkr-RefLvl Mon 1 of 2 Start 2.31000 GHz Stop 2.39000 GHz #VBW 3.0 MHz Sweep 1.00 ms (1001 pts) #Res BW 1.0 MHz

Page 59 of 76

RESTRICTED BANDEDGE (HIGH CHANNEL)

Page 60 of 76

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL

	UL Frenont -	- Chariber	E		1.61	1 XX				9 Jul 2	61 C16	47:57
.0352				w.			Rodicted	Emissio	ns 3-Met	ers		
1.80							Project:1301 Calif igunatio	4987 miEUT Only				
98		Made:BT BPSK Law On Tested by F. Gubriera										
88	-	Carlos Car		_		1			1.1			
78	1.644	Linit cap	saliy na	-		22						
68	i											
-	fivg-L	ini ti sidBu	W/m2	u luite de	1.4.144	-		_	_			-
58	مامانوسودرورون	-		and the local data of				2.00	فليصلده	deter bit		
48			-		manutaria	-	Add and the second second		-	محيالمانها		
зø												
28							1					
40, 64												
10	813				Freedow	The second se	(H-T		1898	38		1888
	hogi (Mt.) Nil	the state of a		Handhin Liter	r romorow	he m	1 14 15 18	This See	As Electrick	Cale 1		
	7.000 0840 12.0		a alfant	in laten here	441	1 est. dor	114 H 34	-	the second	Seraphal .		
	Frequency	Deeding	1	AF T24C	Ama (chi /2ci la	1	Auglingit	Margin	Linnit	Margin	Lloight	
	Frequency	(dBuV)	Det	(dB/m)	HPF (dB)	Corrected	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(cm)	Polarity
ker	(GHz)			20	-29.4	48	53.97	-5 97	74	-26	199	н

Page 61 of 76

Page 62 of 76

MID CHANNEL

Page 63 of 76

Page 64 of 76

HIGH CHANNEL

Page 65 of 76

Page 66 of 76

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 67 of 76

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 68 of 76

Horizonta	30 - 1000M	Hz								
Marker No.	Test Frequency	Meter Reading	Detector	T122 Antenna Factor (dB/m)	Preamp and Cable (dB)	dB(uVolt s/meter)	E-Fields [dBuV/m] - QPk	Margin (dB)	Height [cm]	Polarity
1	63.8245	46.77	PK	7.8	-31.9	22.67	40	-17.33	400	Horz
2	102.1347	49.99	PK	11	-31.6	29.39	43.52	-14.13	200	Horz
3	178.7552	52.94	PK	11.2	-31.2	32.94	43.52	-10.58	300	Horz
4	369.2151	50.97	РК	15	-30.6	35.37	46.02	-10.65	200	Horz
Vertical 3	0 - 1000MHz									
Marker No.	Test Frequency	Meter Reading	Detector	T122 Antenna Factor (dB/m)	Preamp and Cable (dB)	dB(uVolt s/meter)	E-Fields [dBuV/m] - QPk	Margin (dB)	Height [cm]	Polarity
5	63.8245	52.3	РК	7.8	-31.9	28.2	40	-11.8	300	Vert
6	102.256	56.86	РК	11.1	-31.6	36.36	43.52	-7.16	200	Vert
7	178.8764	50.74	РК	11.2	-31.2	30.74	43.52	-12.78	300	Vert
8	369.0939	42.64	РК	15	-30.6	27.04	46.02	-18.98	200	Vert

Page 69 of 76

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 "	56 to 46 "
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 70 of 76

RESULTS

6 WORST EMISSIONS

roject No:13U14	987								
lient Name:									
Model/Device:BT	Worst Case								
Fest Volt/Freq:11	5 VAC/ 60Hz								
Test By:Mona Hua	3								
Line-L1 .15 - 30MH	łz								
Test Frequency	Meter Reading		T24 IL L1	LC Cables	dB(uVolt	CISPR 11/22 Class B Quasi-		CISPR 11/22 Class B	
(MHz)	(dBuV)	Detector	(dB)	1&3 (dB)	s)	peak	Margin	Average	Margin
0.159	49.08	РК	0.1	0	49.18	65.5	-16.32	-	-
0.159	35.1	Av	0.1	0	35.2	-	-	55.5	-20.3
0.7305	45.56	РК	0.1	0	45.66	56	-10.34	-	-
0.7305	30.85	Av	0.1	0	30.95	-	-	46	-15.05
0.8205	45.82	PK	0.1	0	45.92	56	-10.08	-	-
0.8205	26.99	Av	0.1	0	27.09	-	-	46	-18.91
4.8615	40.63	РК	0.1	0.1	40.83	56	-15.17	-	-
4.8615	23.5	Av	0.1	0.1	23.7	-	-	46	-22.3
17.6775	39.17	PK	0.2	0.2	39.57	60	-20.43	-	-
17.6775	23.96	Av	0.2	0.2	24.36	-	-	50	-25.64
Line-L2 .15 - 30MH	łz								
						CISPR 11/22		CISPR 11/22	
Test Frequency	Meter Reading		T24 IL L1	LC Cables	dB(uVolt	Class B Quasi-		Class B	
(MHz)	(dBuV)	Detector	(dB)	1&3 (dB)	s)	peak	Margin	Average	Margin
0.1635	48.71	PK	0.1	0	48.81	65.3	-16.49	-	-
0.1635	29.35	Av	0.1	0	29.45	-	-	55.3	-25.85
0.8025	46.5	PK	0.1	0	46.6	56	-9.4	-	-
0.8025	25.07	Av	0.1	0	25.17	-	-	46	-20.83
6.2205	39.14	РК	0.1	0.1	39.34	60	-20.66	-	-
6.2205	23.27	Av	0.1	0.1	23.47	-	-	50	-26.53
17.8575	39.86	PK	0.2	0.2	40.26	60	-19.74	-	-
17.8575	17.83	Av	0.2	0.2	18.23	-	-	50	-31.77
PK - Peak detecto	r								
	actor								

Page 71 of 76

LINE 1 RESULTS

Page 72 of 76
LINE 2 RESULTS

Page 73 of 76