

OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE Std 1528-2003 & IEEE 1528a-2005

SAR EVALUATION REPORT (Class II Permissive Change: Added W-CDMA Band IV)

> For iPhone

Model: A1428 FCC ID: BCG-E2599A

Report Number: 12U14759-2C Issue Date: 3/27/2013

Prepared for APPLE INC. 1 INFINITE LOOP, MS 26A CUPERTINO, CA 95014-2084

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History								
Rev.	Issue Date	Revisions	Revised By					
	1/17/2013	Initial Issue based on original UL CCS FCC SAR report "11U14136-7A1", FCC ID: BCG-E2599A.						
А	1/25/2013	Revised Sec. 9 based on UL CCS EMC Report "12U14759-1", FCC ID: BCG-E2599A.	Bobby Bayani					
В	3/25/2013	Revised Report based on Reviewer's comments:1. Sec. 14.2: Updated Simultaneous Transmission Analysis Table.	Bobby Bayani					
С	3/27/2013	 Revised Report based on Reviewer's comments: Sec. 7.3: Revised Table to include WCDMA 1700MHz. Sec. 9.1: Added Note in reference to Maximum Output Power Tune Up Limit. Secs. 4.2, 10.2, 11.3, and 15: Removed reference to 2.4GHz. 	Bobby Bayani					

Page 2 of 68

Table of Contents

1.	Attestation of Test Results	5
2.	Test Methodology	6
3.	Facilities and Accreditation	6
4.	Calibration and Uncertainty	7
4	.1. Measuring Instrument Calibration	7
4	2.2. Measurement Uncertainty	8
5.	Measurement System Description and Setup	9
6.	SAR Measurement Procedure	10
6	3.1. Normal SAR Measurement Procedure	10
6	2.2. Volume Scan Procedures	12
7.	Device Under Test	13
7	7.1. Band and Air Interfaces	13
7	2.2. Hotspot (Wireless router) Exposure Condition	13
7	7.3. Simultaneous Transmission	14
	7.3.1. Head Exposure Conditions	14
	7.3.2. Body-worn Accessory Exposure Condition	15
	7.3.3. Wireless Router (hotspot) Exposure Condition	16
8.	Summary of Test Configurations	17
8	2.1. Head Exposure Conditions for WWAN and WiFi	17
8	2.2. Body-worn Accessory Exposure Conditions	17
8	3.3. Hotspot Mode Exposure Conditions	18
9.	RF Output Power Measurement	19
9	9.1. W-CDMA Band IV	19
10.	Tissue Dielectric Properties	25
1	0.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests	26
1	0.2. Tissue Dielectric Parameter Check Results	27
11.	System Performance Check	28
1	1.1. System Performance Check Measurement Conditions	28
1	1.2. Reference SAR Values for System Performance Check	28
1	1.3. System Performance Check Results	29
12.	SAR Test Results	30
	Page 3 of 68	
UL (471	CCS FORM NO: CCSUP40310 73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-088 This report shall not be reproduced except in full, without the written approval of UL CCS.	Э 38

12.1	1.	W-CDMA Band IV	. 30
12	2.1.1	Head Exposure Conditions	. 30
12.1.2.		Body-worn Accessory & Hotspot Mode Exposure Conditions	. 31
13.	Sum	mary of Highest SAR Values	. 32
13.1	1.	SAR Measurement Variability and Uncertainty	. 32
13.2	2.	SAR Plots (from Summary of Highest SAR Values)	. 33
14.	Sim	ultaneous Transmission SAR Analysis	. 35
14.1	1.	Head Exposure Conditions	. 36
14	4.1.1	Sum of the SAR for W-CDMA & WiFi 2.4GHz Band	. 36
14	4.1.2	Sum of the SAR for W-CDMA & WiFi 5.2 GHz Band	. 39
14	4.1.3	Sum of the SAR for W-CDMA & WiFi 5.3 GHz Band	. 42
14	4.1.4	Sum of the SAR for W-CDMA & WiFi 5.5 GHz Band	. 44
14	4.1.5	Sum of the SAR for W-CDMA & WiFi 5.8 GHz Band	. 47
14.2	2.	Body-worn Accessory & Hotspot Mode Exposure Conditions	. 50
14	4.2.1	Sum of the SAR for W-CDMA & WiFi 2.4 GHz Band	. 50
14	4.2.2	Sum of the SAR for W-CDMA, WiFi 5.2 GHz Band & Bluetooth 2.4 GHz	. 52
14	4.2.3	Sum of the SAR for W-CDMA, WiFi 5.3 GHz Band & Bluetooth 2.4 GHz	. 54
14	4.2.4	Sum of the SAR for W-CDMA, WiFi 5.5 GHz Band & Bluetooth 2.4 GHz	. 56
14	4.2.5	Sum of the SAR for W-CDMA, WiFi 5.8 GHz Band & Bluetooth 2.4 GHz	. 58
15.	Арр	endixes	. 60
15.1	1.	System Performance Check Plots	. 60
15.2	2.	SAR Test Plots for W-CDMA Band IV	. 60
15.3	3.	SAR Test Plots for Repeatability	. 60
15.4	4.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3773	. 60
15.5	5.	Calibration Certificate for D1750V2 - SN 1053	. 60
16.	Exte	ernal Photos	. 61
17.	Ante	enna Locations & Separation Distances	. 62
18.	Setu	ıp Photos	. 63

Page 4 of 68

1. Attestation of Test Results

Applicant	Apple Inc.								
DUT description	iPhone	iPhone							
Model	A1428								
Test device is	An identical prototype								
Device category	Portable								
Exposure category	General Population/Uncont	General Population/Uncontrolled Exposure							
Date tested	12/13/2012 - 12/27/2012	12/13/2012 – 12/27/2012							
RF Exposure Rule	Freq. Range	Highest Reported SAR	Limit						
27	1710-1755 MHz	Head: 1.060 W/kg (Right Touch) Body-worn accessory: 0.977 W/kg (Front w/ 10 mm distance) Hotspot: 0.977 W/kg (Front w/ 10 mm distance)	1.6 W/kg						
Applicable Standards			Test Results						

FCC Published RF exposure KDB procedures, TCB workshop updates and OET Bulletin 65 Supplement C, IEEE Std 1528-2003 and IEEE Std 1528a-2005 Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Sunay Shih

Sunny Shih Engineering Leader UL CCS Prepared By:

Bolly Kazeni

Bobby Bayani SAR Engineer UL CCS

Page 5 of 68

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE Std 1528-2003 & IEEE 1528a-2005 and the following published KDB procedures:

- 447498 D01 General RF Exposure Guidance v05
- o 648474 D04 SAR Handsets Multi Xmiter and Ant v01
- 941225 D01 SAR test for 3G devices v02
- o 941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01
- o 941225 D06 Hot Spot SAR v01
- o 865664 D01 SAR Measurement 100 MHz to 6 GHz v01
- o 865664 D02 SAR Reporting v01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

Page 6 of 68

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturar	Type/Medal	Sorial No	Cal. Due date			
Name of Equipment	Manufacturer	i ype/wodei	Senai No.	MM	DD	Year	
S-Parameter Network Analyzer	Agilent	8753ES	MY40001647	6	27	2013	
Dielectronic Probe kit	SPEAG	SM DAK 040 CA	1082	9	18	2013	
ENA Series Network Analyzer	Agilent	E5071B	MY42100131	2	11	2013	
Dielectronic Probe kit	HP	85070E	594		N	/Α	
Synthesized Signal Generator	HP	8665B	3438A00633	2	22	2013	
Power Meter	HP	438A	3513U04320	9	17	2013	
Power Sensor A	HP	8481A	2237A31744	8	17	2013	
Power Sensor B	HP	8481A	3318A95392	8	17	2013	
Amplifier	MITEQ	4D00400600-50-30P	1622052	N/A			
Directional coupler	Werlatone	C8060-102	2149	N/A			
Synthesized Signal Generator	HP	8665B	3744A01084	5	3	2013	
Power Meter	HP	438A	2822A05684	10	7	2013	
Power Sensor A	HP	8481A	2702A66876	8	1	2013	
Power Sensor B	HP	8482A	2349A08568	4	14	2013	
Amplifier	MITEQ	4D00400600-50-30P	1620606	N/A		/Α	
Directional coupler	Werlatone	C8060-102	2141	2141		N/A	
Base Station Simulator	R&S	CMU200	106301	6	6	2013	
Base Station Simulator	Agilent	8960	GB42361452	4	4	2013	
Thermometer	ERTCO	639-1S	8350	7	30	2013	
E-Field Probe	SPEAG	EX3DV4	3773	3	14	2013	
Data Acquisition Electronics	SPEAG	DAE4	1239	6	6	2013	
System Validation Dipole	SPEAG	D1750V2	1053	8	15	2013	
System Validation Dipole	SPEAG	D2450V2	748	2	7	2013	

4.2. **Measurement Uncertainty**

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram (Head)									
Component	Error, %	Distribution	Divisor	Sensitivity	U (Xi), %				
Measurement System									
Probe Calibration (k=1)	6.00	Normal	1	1	6.00				
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47				
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94				
Boundary Effect	0.90	Rectangular	1.732	1	0.52				
Probe Linearity	3.45	Rectangular	1.732	1	1.99				
System Detection Limits	1.00	Rectangular	1.732	1	0.58				
Readout Electronics	0.30	Normal	1	1	0.30				
Response Time	0.80	Rectangular	1.732	1	0.46				
Integration Time	2.60	Rectangular	1.732	1	1.50				
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73				
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73				
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23				
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67				
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58				
Test Sample Related		Ŭ							
Test Sample Positioning	2.90	Normal	1	1	2.90				
Device Holder Uncertainty	3.60	Normal	1	1	3.60				
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89				
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31				
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85				
Liquid Conductivity - measurement	-4.59	Normal	1	0.64	-2.94				
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73				
Liquid Permittivity - measurement uncertainty	-3.57	Normal	1	0.6	-2.14				
		Combined	Standard Unce	ertainty Uc(y) =	10.40				
Expanded Uncertainty	J, Coverage Fa	ctor = 2, > 95 %	Confidence =	20.79	%				
Expanded Uncertainty	J, Coverage Fa	ctor = 2, > 95 %	Confidence =	1.64	dB				
Measurement uncertainty for 30 MHz to 6 GHz averaged over	1 gram (Body)								
Component	Error. ±%	Prob Dist	Divisor	Sensitivity	11 (Xi) %				
	- /		DINOUI	Cononing	0(10), 10				
Measurement System			Division	Cononing	0 (14), 70				
Measurement System Probe Calibration (k=1)	6.00	Normal	1	1	6.00				
Measurement System Probe Calibration (k=1) Axial Isotropy	6.00 1.15	Normal Rectangular	1 1.732	1 0.7071	6.00 0.47				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy	6.00 1.15 2.30	Normal Rectangular Rectangular	1 1.732 1.732	1 0.7071 0.7071	6.00 0.47 0.94				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect	6.00 1.15 2.30 0.90	Normal Rectangular Rectangular Rectangular	1 1.732 1.732 1.732	1 0.7071 0.7071 1	6.00 0.47 0.94 0.52				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity	6.00 1.15 2.30 0.90 3.45	Normal Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1	6.00 0.47 0.94 0.52 1.99				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response	6.00 1.15 2.30 0.90 3.45 2.40	Normal Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits	6.00 1.15 2.30 0.90 3.45 2.40 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 0.80	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Reflections Probe Positioner Probe Positioning	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 0.80 6.70	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Reflections Probe Positioner Probe Positioning	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 0.80 6.70 4.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Device Holder Test Sample Positioning	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.60 3.00 1.00 5.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Normal Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 5.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.73 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.60 3.00 1.00 5.00 7.90	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.60 3.00 1.00 5.00 7.90 1.90	Normal Rectangular	1 1.732	1 0.7071 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 7.90 1.90 -3.38	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60 3.00 1.00 5.00 7.90 1.90 -3.38 -2.21	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement Liquid Conductivity - temperature uncertainty	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 7.90 1.90 -3.38 -2.21 5.22	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33 2.35				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement Liquid Conductivity - temperature uncertainty Liquid Permittivity - temperature uncertainty	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.60 3.00 1.00 5.00 7.90 1.90 -3.38 -2.21 5.22 0.84	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33 2.35 0.11				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement Liquid Permittivity - temperature uncertainty Liquid Permittivity - temperature uncertainty	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60 3.00 1.00 5.00 7.90 1.90 -3.38 -2.21 5.22 0.84	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33 2.35 0.11 11.49				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Power Drift Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement Liquid Permittivity - temperature uncertainty Liquid Permittivity - temperature uncertainty Expanded Uncertainty	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60 3.00 1.00 5.00 7.90 1.90 -3.38 -2.21 5.22 0.84 J, Coverage Fac	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33 2.35 0.11 11.49				
Measurement System Probe Calibration (k=1) Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity Modulation Response System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Noise RF Ambient Reflections Probe Positioner Probe Positioning Post-processing Test Sample Related Device Holder Test Sample Positioning Power Scaling Phantom and Setup Phantom Uncertainty SAR Correction Liquid Conductivity - measurement Liquid Permittivity - temperature uncertainty Liquid Permittivity - temperature uncertainty Expanded Uncertainty	6.00 1.15 2.30 0.90 3.45 2.40 1.00 0.30 0.80 2.60 3.00 3.00 0.80 6.70 4.00 3.60 3.00 1.00 5.00 7.90 1.90 -3.38 -2.21 5.22 0.84 J, Coverage Far J, Coverage Far	Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00 0.47 0.94 0.52 1.99 1.39 0.58 0.30 0.46 1.50 1.73 1.73 0.46 3.87 2.31 3.60 3.00 0.58 2.89 4.56 1.10 -1.52 -0.33 2.35 0.11 11.49 % dB				

Page 8 of 68

UL CCS

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 9 of 68

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	If the test device, in the on, is smaller than the above, must be \leq the corresponding levice with at least one st device.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan s	patial resc	plution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zoom} (n)	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm		
	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z$	_{Zoom} (n-1)		
Minimum zoom scan volume x, y, z			\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 11 of 68

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Page 12 of 68

7. Device Under Test

iPhone Model: A1428	
Normal operation	 Held to head, Body-worn (Rear and Front sides) with 10 mm separation distance. Hotspot (wireless router) with 10 mm separation distance to all sides and edges.
Accessory	1. Headset

7.1. Band and Air Interfaces

Tx Frequencies	Model: A1428
	• GSM850: 824 - 849 MHz
	• GSM1900: 1850 - 1910 MHz
	• W-CDMA Band II: 1850 - 1910 MHz
	• W-CDMA Band IV: 1710 - 1755 MHz
	• W-CDMA Band V: 824 - 849 MHz
	• LTE Band 2: 1850 - 1910 MHz
	• LTE Band 4: 1710 - 1755 MHz
	• LTE Band 5: 824 - 849 MHz
	• LTE Band 17: 704 - 716 MHz
	• 802.11a/b/g/n: 2412 - 2462 MHz
	5180 – 5825 MHz
	• Bluetooth: 2402 - 2480 MHz
Mode	GSM/GPRS/EGPRS
	UMTS Rel 99
	HSDPA (Rel 7, CAT 14)
	HSUPA (Rel 6, CAT 6)
	DC-HSDPA (Rel 8, CAT 24)
	HSPA+ (Rel 6, CAT 6)
	• 802.11a/b/g/n HT20
	Bluetooth 4.0 LE
GPRS Multi-Slot Class	10
GPRS Class	В
DTM Class	Not supported

7.2. Hotspot (Wireless router) Exposure Condition

The device is capable of personal hotspot mode with WiFi in the 2.4 GHz band. The hotspot mode can be enabled by the user. However, the 5 GHz bands do not support hotspot mode.

Page 13 of 68

7.3. Simultaneous Transmission

WWAN Radio (GSM/GPRS/EGPRS/UMTS/LTE) can transmit simultaneously with WiFi/BT Radio.

- WiFi 2.4 GHz Radio cannot transmit simultaneously with Bluetooth Radio.
- WiFi 5 GHz Radio can transmit simultaneously with Bluetooth Radio
- TX1 = LAT/Primary Antenna
- TX2 = UAT/Secondary Antenna
- TX3 = WiFi/Bluetooth Antenna. WiFi 2.4 GHz and 5 GHz share the same antenna with each other and Bluetooth
- WWAN transmits using either TX1 or TX2 and not TX3, and TX1 and TX2 never transmit simultaneously. At any given time only one technology (GSM/UMTS/LTE) can transmit from Tx1 or Tx2.
- WiFi and BT transmit using only TX3

7.3.1. Head Exposure Conditions

A1428 Cellular + Wifi

User usage	SAR Test distance	Mode	Mode of Operation	Band	LTE data	GSM Voice	WCDMA Voice	GPRS/ EGPRS	DC-HSDPA	HSDPA / HSPA+ (HSDPA/HSUPA)	Wi-Fi 5GHz	Wi-Fi 2.4GHz	BT 2.4GHz				
			GSM Voice	850	No	Tx1/2	No	No	No	No	No		No				
			GSM Voice	1900	No	Tx1/2	No	No	No	No	No	Ī	No				
							WCDMA Voice	835	No	No	Tx1/2	No	No	No	No		No
			WCDMA Voice	1700	No	No	Tx1/2	No	No	No	No		No				
		Voice		WCDMA Voice	1900	No	No	Tx1/2	No	No	No	No	Tx3	No			
			LTE VOIP*	710	Tx1/2	No	No	No	No	No	No		No				
			LTE VOIP*	850	Tx1/2	No	No	No	No	No	No		No				
			LTE VOIP*	1700	Tx1/2	No	No	No	No	No	No		No				
ad	ш		LTE VOIP*	1900	Tx1/2	No	No	No	No	No	No		No				
Ч	0		GSM Voice	850	No	Tx1/2	No	No	No	No		No	No				
			GSM Voice	1900	No	Tx1/2	No	No	No	No		No	No				
			WCDMA Voice	835	No	No	Tx1/2	No	No	No	Tx3	No	No				
			WCDMA Voice	1700	No	No	Tx1/2	No	No	No		No	No				
			WCDMA Voice	1900	No	No	Tx1/2	No	No	No		No	No				
			LTE VOIP	710	Tx1/2	No	No	No	No	No		No	No				
			LTE VOIP	850	Tx1/2	No	No	No	No	No	No	No	No				
			LTE VOIP	1700	Tx1/2	No	No	No	No	No	INO	No	No				
			LTE VOIP	1900	Tx1/2	No	No	No	No	No		No	No				

7.3.2. Body-worn Accessory Exposure Condition

A1428 Cellular + Wi-Fi, Cellular + BT Simultaneous Transmission Configurations

User usage	SAR Test distance	Mode	Mode of Operation	Band	ГТЕ	GSM Voice	WCDMA Voice	GPRS/ EGPRS	WCDMA	(AUSH/AGDPA) (HSDPA/HSPA+	Wi-Fi 5GHz	Wi-Fi 2.4GHz	BT 2.4GHz
			GSM Voice	850	No	Tx1/2	No	No	No	No	No		No
			GSM Voice	1900	No	Tx1/2	No	No	No	No	No		No
			WCDMA Voice	835	No	No	Tx1/2	No	No	No	No	Tx3	No
			WCDMA Voice	1700	No	No	Tx1/2	No	No	No	No		No
			WCDMA Voice	1900	No	No	Tx1/2	No	No	No	No		No
		Ξ	GPRS/ EGPRS	850	No	No	No	Tx1/2	No	No	No	No	No
		z W	GPRS/ EGPRS	1900	No	No	No	Tx1/2	No	No	No	No	No
		НÐ	DC-HSDPA	835	No	No	No	No	Tx1/2	No	No	No	No
		- 2.4	DC-HSDPA	1700	No	No	No	No	Tx1/2	No	No	No	No
		lar +	DC-HSDPA	1900	No	No	No	No	Tx1/2	No	No	No	No
		ellul	HSPA+	835	No	No	No	No	No	Tx1/2	No	No	No
		Ŭ	HSPA+	1700	No	No	No	No	No	Tx1/2	No	No	No
			HSPA+	1900	No	No	No	No	No	Tx1/2	No	No	No
			LTE data	710	Tx1/2	No	No	No	No	No	No	No	No
ory			LTE data	850	Tx1/2	No	No	No	No	No	No	No	No
ssa			LTE data	1700	Tx1/2	No	No	No	No	No	No	No	No
acc	Е		LTE data	1900	Tx1/2	No	No	No	No	No	No	No	No
/orn	10		GSM Voice	850	No	Tx1/2	No	No	No	No		No	
h-v			GSM Voice	1900	No	Tx1/2	No	No	No	No		No	
Boo			WCDMA Voice	835	No	No	Tx1/2	No	No	No	Tx3	No	
			WCDMA Voice	1700	No	No	Tx1/2	No	No	No		No	
		BT/	WCDMA Voice	1900	No	No	Tx1/2	No	No	No		No	
		ar + BT	GPRS/ EGPRS	850	No	No	No	Tx1/2	No	No	No	No	
		ellula ifi+	GPRS/ EGPRS	1900	No	No	No	Tx1/2	No	No	No	No	
		fi/C€ Iz W	DC-HSDPA	835	No	No	No	No	Tx1/2	No	No	No	
		i Mi	DC-HSDPA	1700	No	No	No	No	Tx1/2	No	No	No	Tx3
		2H2 + 1	DC-HSDPA	1900	No	No	No	No	Tx1/2	No	No	No	
		+ 5(Iula	HSPA+	835	No	No	No	No	No	Tx1/2	No	No	
		ular Cel	HSPA+	1700	No	No	No	No	No	Tx1/2	No	No	
		Cell	HSPA+	1900	No	No	No	No	No	Tx1/2	No	No	
		<u> </u>	LTE data	710	Tx1/2	No	No	No	No	No	No	No	
			LTE data	850	Tx1/2	No	No	No	No	No	No	No	
			LTE data	1700	Tx1/2	No	No	No	No	No	No	No	
			LTE data	1900	Tx1/2	No	No	No	No	No	No	No	

Page 15 of 68

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA

FORM NO: CCSUP4031G FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

7.3.3. Wireless Router (hotspot) Exposure Condition

A1428 Hotspot simultaneous transmission

User usage	SAR Test distance	Mode	Mode of Operation	Band	ГТЕ	WCDMA	GPRS/ EGPRS	DC-HSDPA	HSPA+ (HSDPA/HSUPA)	Wi-Fi HOTSPOT 2.4GHz Only)	BT 2.4GHz					
			GPRS/ EGPRS	850	No	No	Tx1/2	No	No		No					
	U.	lar + 2.4GHz Wi-Fi HOTSPOT	GPRS/ EGPRS	1900	No	No	Tx1/2	No	No		No					
			DC-HSDPA	835	No	No	No	Tx1/2	No		No					
			DC-HSDPA	1700	No	No	No	Tx1/2	No		No					
			1 cm lar + 2.4GHz Wi-Fi H	DC-HSDPA	1900	No	No	No	Tx1/2	No		No				
spot				HSPA+	835	No	No	No	No	Tx1/2	Tv2	No				
Hot:	10			lar + 2.4GHz	llar + 2.4GHz	GHz	EH5	HSPA+	1700	No	No	No	No	Tx1/2	123	No
						HSPA+	1900	No	No	No	No	Tx1/2		No		
						llar -	ılar -	llar -	lar +	lar +	llar ⊦	LTE data	710	Tx1/2	No	No
		Cellu	LTE data	850	Tx1/2	No	No	No	No		No					
			LTE data	1700	Tx1/2	No	No	No	No		No					
			LTE data	1900	Tx1/2	No	No	No	No		No					

Page 16 of 68

8. Summary of Test Configurations

Refer to Section 17 "Antenna Location and Separation Distances" for the specific details of the antennato-antenna and antenna-to-edge(s) distances.

8.1. Head Exposure Conditions for WWAN and WiFi

Applicable to both LAT/Primary Ant. (TX1), UAT/Secondary Ant. (TX2) and WiFi/BT Ant. (TX3)

Test Configurations	SAR Required	Note
Left Touch	Yes	
Left Tilt (15°)	Yes	
Right Touch	Yes	
Right Tilt (15°)	Yes	

8.2. Body-worn Accessory Exposure Conditions

Applicable to both LAT/Primary Ant. (TX1), UAT/Secondary Ant. (TX2) and WiFi/BT Ant. (TX3)

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Rear	< 25 mm	Yes	
Front	< 25 mm	Yes	

8.3. Hotspot Mode Exposure Conditions

For WWAN (LAT/Primary Antenna)

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Rear	< 25 mm	Yes	
Front	< 25 mm	Yes	
Edge 1	>25 mm	No	SAR is not required because the distance from the antenna to the edge is > 2.5 cm as per KDB 941225 D06 Hot Spot SAR v01
Edge 2	0 mm	Yes	
Edge 3	0 mm	Yes	
Edge 4	0 mm	Yes	

For WWAN (UAT/Secondary Antenna)

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Rear	< 25 mm	Yes	
Front	< 25 mm	Yes	
Edge 1	0 mm	Yes	
Edge 2	0 mm	Yes	
Edge 3	>25 mm	No	SAR is not required because the distance from the antenna to the edge is > 2.5 cm as per KDB 941225 D06 Hot Spot SAR v01
Edge 4	0 mm	Yes	

For WiFi

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Rear	< 25 mm	Yes	
Front	< 25 mm	Yes	
Edge 1	4.7 mm	Yes	
Edge 2	35.2 mm	Yes	
Edge 3	115.4 mm	No	SAR is not required because the distance from the antenna to the edge is > 2.5 cm as per KDB 941225 D06 Hot Spot SAR v01
Edge 4	10.5 mm	Yes	

Notes:

- Edge 1= Top Edge
- Edge 2= Left Edge
- Edge 3= Right Edge
- Edge 4= Bottom Edge

9. **RF Output Power Measurement**

9.1. W-CDMA Band IV

The output power is already tuned up to the maximum limit.

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
WCDMA Conoral Sottings	Rel99 RMC	12.2kbps RMC
WCDWA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Results

Band	Mode	LIL Ch No	Freq.	Primary Antenna	Secondary Antenna	
Bana	Mode	OL ON NO.	(MHz)	Avg Pwr (dBm)		
	Rel 99 (RMC, 12.2 kbps)	1312	1712.4	23.0	21.5	
Band IV		1413	1732.6	23.0	21.5	
Danu IV		1513	1752.6	23.0	21.4	

<u>HSDPA</u>

The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1					
	Power Control Algorithm	Algorithm 2					
VV-CDIVIA	βc	2/15	12/15	15/15	15/15		
Sottings	βd	15/15	15/15	8/15	4/15		
Settings	Bd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	CM (dB)	0	1	1.5	1.5		
	D _{ACK}	8					
	D _{NAK}	8					
HSDPA	DCQI	8					
Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback (Table 5.2B.4)	4ms					
	CQI Repetition Factor (Table 5.2B.4)	2					
	Ahs =βhs/βc	30/15					

Results

Band	Mode	UL Ch No.	Freq. (MHz)	MPR	Primary Antenna Avg Pw	Secondary Antenna r (dBm)
		1312	1712.4	0	22.9	21.5
	Subtest 1	1413	1732.6	0	23.0	21.5
		1513	1752.6	0	22.9	21.4
		1312	1712.4	1	23.0	21.4
	Subtest 2	1413	1732.6	1	23.0	21.4
W-CDMA		1513	1752.6	1	23.0	21.4
Band IV	Subtest 3	1312	1712.4	1.5	22.5	21.0
		1413	1732.6	1.5	22.1	21.0
		1513	1752.6	1.5	22.5	21.0
		1312	1712.4	1.5	22.5	20.9
	Subtest 4	1413	1732.6	1.5	22.2	21.0
		1513	1752.6	1.5	22.5	20.9

Note(s):

 KDB 941225 D01 – Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is < 75% of the SAR limit.

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA	HSPA	HSPA	HSPA	HSPA				
	Subtest	1	2	3	4	5				
	Loopback Mode	Test Mode 1								
WCDMA General	Rel99 RMC	12.2kbps RMC								
	HSDPA FRC	H-Set1	H-Set1							
	HSUPA Test	HSUPA Loopback								
	Power Control Algorithm	Algorithm2	Algorithm2							
	βc	11/15	6/15	15/15	2/15	15/15				
Gonoral	βd	15/15	15/15	9/15	15/15	15/15				
Settings	βec	209/225	12/15	30/15	2/15	24/15				
Settings	βc/βd	11/15	6/15	15/9	2/15	15/15				
	βhs	22/15	12/15	30/15	4/15	30/15				
				47/15						
	βed	1309/225	94/75	47/15	56/75	134/15				
	CM (dB)	1.0	3.0	2.0	3.0	1.0				
	MPR (dB)	0	2	1	2	0				
	DACK	8								
	DNAK	8								
HSDPA	DCQI	8								
Specific	Ack-Nack repetition factor	3								
Settings	CQI Feedback (Table 5.2B.4)	4ms								
	CQI Repetition Factor (Table 5.2B.4)	2								
	Ahs = β hs/ β c 30/15									
	D E-DPCCH	6	8	8	5	7				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	21				
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81				
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9				
HSUPA Specific Settings	Reference E_TFCIs	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO 4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27					

Results

Band	Mode	UL Ch No.	Freq.	MPR	Primary Antenna	Secondary Antenna
			(101112)		Avg Pw	r (dBm)
		1312	1712.4	0	23.0	21.3
	Subtest 1	1413	1732.6	0	22.7	21.5
		1513	1752.6	0	22.8	21.5
		1312	1712.4	2	21.1	19.6
	Subtest 2	1413	1732.6	2	20.6	19.5
		1513	1752.6	2	20.9	19.4
		1312	1712.4	1	22.1	20.6
Band IV	Subtest 3	1413	1732.6	1	21.7	20.5
Danu IV		1513	1752.6	1	21.8	20.5
		1312	1712.4	2	21.0	19.5
	Subtest 4	1413	1732.6	2	20.6	19.5
		1513	1752.6	2	20.8	19.6
		1312	1712.4	0	23.0	21.5
	Subtest 5	1413	1732.6	0	22.6	21.5
		1513	1752.6	0	22.7	21.5

Note(s):

 KDB 941225 D01 – Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than ¼ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit.

Page 22 of 68

DC-HSDPA (Rel 8, CAT 24)

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Table E.5.0: Levels for HSDPA connection setup

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

	Parameter	Unit	Value						
	Nominal Avg. Inf. Bit Rate	kbps	60						
	Inter-TTI Distance	TTI's	1						
	Number of HARQ Processes	Proces	6						
		ses	0						
	Information Bit Payload (N_{INF})	Bits	120						
	Number Code Blocks	Blocks	1						
	Binary Channel Bits Per TTI	Bits	960						
	Total Available SML's in UE	SML's	19200						
	Number of SML's per HARQ Proc.	SML's	3200						
	Coding Rate		0.15						
	Number of Physical Channel Codes	Codes	1						
	Modulation		QPSK						
	Note 1: The RMC is intended to be used for mode and both cells shall transmit parameters as listed in the table.	Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table							
	Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.								
Inf. Bit Payload	120								
CRC Addition	120 24 CRC								
Code Block Segmentation	144								
Turbo-Encoding (R=1/3)	432			12 Tail Bits					
1st Rate Matching	432								
RV Selection	960								
Physical Channel Segmentation	0.39								
e eginentation	500								
Figure	C.8.19: Coding rate for Fixed reference	Channel	H-Set 12	(QPSK)					

Table C.8.1.12: Fixed Reference Channel H-Set 12

The following 4 Sub-tests for HSDPA were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

Page 23 of 68 UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1						
	Power Control Algorithm	Algorithm2						
Conorol	βc	2/15	12/15	15/15	15/15			
Settings	βd	15/15	15/15	8/15	4/15			
Settings	βd (SF)	64						
	βc/βd	2/15	12/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR	0	0	0.5	0.5			
	DACK	8						
	DNAK	8						
HSDPA	DCQI	8						
Specific	Ack-Nack Repetition factor	3						
Settings	CQI Feedback	4ms						
	CQI Repetition Factor	2						
	Ahs = βhs/ βc	30/15						

Up commands are set continuously to set the UE to Max power.

<u>Results</u>

Band	Mode	UL Ch No.	Freq. (MHz)	MPR	Primary Antenna Avg Pw	Secondary Antenna r (dBm)
		1312	1712.4	0	22.9	21.5
	Subtest 1	1413	1732.6	0	23.0	21.3
		1513	1752.6	0	23.0	21.5
	Subtest 2	1312	1712.4	0	22.9	21.5
		1413	1732.6	0	23.0	21.3
WCDMA		1513	1752.6	0	23.0	21.5
Band IV	Subtest 3	1312	1712.4	0.5	22.5	20.9
		1413	1732.6	0.5	22.5	20.9
		1513	1752.6	0.5	22.5	21.0
		1312	1712.4	0.5	22.4	21.0
	Subtest 4	1413	1732.6	0.5	22.5	20.9
		1513	1752.6	0.5	22.5	21.0

<u>HSPA+</u>

Since 16QAM is not used for uplink, the uplink Category and release is same as HSUPA, i.e., CAT 6 Rel 6. Therefore, the RF conducted power is not measured.

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	Head				
Target Frequency (Miriz)	ε _r	σ (S/m)			
300	45.3	0.87			
450	43.5	0.87			
835	41.5	0.90			
900	41.5	0.97			
1450	40.5	1.20			
1800 – 2000	40.0	1.40			
2450	39.2	1.80			
2600	39.0	1.96			
3000	38.5	2.40			

FCC OET Bulletin 65 Supplement C 01-01 & IC RSS-102

Target Frequency (MHz)	He	ead	Body		
raiget Frequency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity

HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

MSL/HSL750 (Body and Head liquids for 700 - 800 MHz)

Item	Head Tissue Simulation Liquids HSL750 Muscle (body) Tissue Simulation Liquids MSL750		
Type No	SL AAH 075		
Manufacturer	SPEAG		
The item is composed of the following ingredients:			
H ² O	Water, 35 – 58%		
Sucrese	Sugar, white, refined, 40-60%		
NaCl	Sodium Chloride, 0-6%		
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), <0.3%		
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2- methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.7%		

MSL/HSL1750 (Body and Head liquids for 1700 - 1800 MHz)

Item	Head Tissue Simulation Liquids HSL1750			
	Muscle (body) Tissue Simulation Liquids MSL1750			
Type No	SL AAM 175			
Manufacturer	SPEAG			
-The item is composed of the following ingredients:				
H ² O	Water, 52 – 75%			
C8H18O3	Diethylene glycol monobutyl ether (DGBE), 25-48%			
NaCl	Sodium Chloride, <1.0%			

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)
	Hood 1750	e'	39.6579	Relative Permittivity (c _r):	39.66	40.08	-1.06	5
Date Freq. (Mill 12/13/2012 Head 175 12/13/2012 Head 175 Head 175 Head 175 12/13/2012 Body 175 12/13/2012 Body 175 12/18/2012 Head 175 12/18/2012 Head 175 12/18/2012 Body 175	Tieau 1750	e"	13.6214	Conductivity (σ):	1.33	1.37	-3.18	5
	Hood 1710	e'	39.7758	Relative Permittivity (c _r):	39.78	40.15	-0.92	5
	Head 1710	e"	13.5276	Conductivity (σ):	1.29	1.35	-4.47	5
	Hood 1755	e'	39.6412	Relative Permittivity (c _r):	39.64	40.08	-1.09	5
	Head 1755	e"	13.6615	Conductivity (σ):	1.33	1.37	-2.82	5
	Body 1750	e'	53.2791	Relative Permittivity (c _r):	53.28	53.44	-0.30	5
Body 1750	e"	14.9635	Conductivity (σ):	1.46	1.49	-2.03	5	
10/10/2012	Rody 1710	e'	53.3710	Relative Permittivity (c _r):	53.37	53.54	-0.32	5
12/13/2012	Body 1710	e"	14.8519	Conductivity (σ):	1.41	1.46	-3.38	5
	Rody 1755	e'	53.2765	Relative Permittivity (c _r):	53.28	53.43	-0.28	5
	BOUY 1755	e"	14.9984	Conductivity (σ):	1.46	1.49	-1.72	5
Head 1750	e'	40.7016	Relative Permittivity (ε_r):	40.70	40.08	1.54	5	
	Tieau 1750	e"	13.6409	Conductivity (σ):	1.33	1.37	-3.04	5
12/18/2012	Head 1710	e'	40.8868	Relative Permittivity (c _r):	40.89	40.15	1.84	5
12/10/2012		e"	13.5107	Conductivity (σ):	1.28	1.35	-4.59	5
Head 1755	e'	40.6692	Relative Permittivity (c _r):	40.67	40.08	1.48	5	
12/18/2012 Head 1710 Head 1755	Tiedu 1755	e"	13.6617	Conductivity (σ):	1.33	1.37	-2.82	5
	Body 1750	e'	52.2595	Relative Permittivity (ε_r):	52.26	53.44	-2.21	5
Body 1750	e"	14.9793	Conductivity (σ):	1.46	1.49	-1.92	5	
12/18/2012	Body 1710	e'	52.4379	Relative Permittivity (c _r):	52.44	53.54	-2.07	5
12/10/2012	body 1710	e"	14.8543	Conductivity (σ):	1.41	1.46	-3.36	5
	Body 1755	e'	52.2513	Relative Permittivity (c _r):	52.25	53.43	-2.20	5
Douy	Douy 1755	e"	15.0254	Conductivity (σ):	1.47	1.49	-1.54	5
	Head 1750	e'	38.6815	Relative Permittivity (ε_r):	38.68	40.08	-3.50	5
	neau 1750	e"	13.7114	Conductivity (σ):	1.33	1.37	-2.54	5
12/27/2012	Head 1710	e'	38.8533	Relative Permittivity (c _r):	38.85	40.15	-3.22	5
12/21/2012		e"	13.6220	Conductivity (o):	1.30	1.35	-3.80	5
	Head 1755	e'	38.6472	Relative Permittivity (c _r):	38.65	40.08	-3.57	5
	Head 1755	e"	13.7273	Conductivity (σ):	1.34	1.37	-2.35	5

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Sorial No	Cal. Date		Target SAR Values (mW/g)			
	Senar No.			1g/10g	Head	Body	
D1750V2	1053	8/14/12	1750	1g	35.9	37.5	
				10g	19.1	20.2	

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

	System Dipole		те		Me	asured Re	sults	Target	Dolta	Est./Zoom	Plot
Date Tested	Туре	Serial #	Liqu	uid	Area Scan	Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	Ratio ±3 %	No.
12/13/2012	1750MHz	1053	Head	1g	3.54	3.48	34.8	35.9	-3.06	1.69	
12/10/2012	173010112	1000	Ticau	10g	1.92	1.86	18.6	19.1	-2.62		
12/12/2012	1750MHz	1053	Body	1g	3.90	3.89	38.9	37.5	3.73	0.26	
12/13/2012	175010112	1055	Bouy	10g	2.07	2.08	20.8	20.2	2.97		
12/18/2012	1750MHz	1053	Hood	1g	4.10	3.91	39.1	35.9	8.91	4.63	12
12/10/2012	175010112	1055	Tieau	10g	2.19	2.07	20.7	19.1	8.38		1,2
12/19/2012	17501147	1052	Body	1g	3.73	3.66	36.6	37.5	-2.40	1.88	
12/10/2012	173010112	1055	Bouy	10g	1.93	1.96	19.6	20.2	-2.97		
12/27/2012		1052	Hood	1g	3.79	3.70	37.0	35.9	3.06	2.37	
12/21/2012		1055	neau	10g	2.03	1.97	19.7	19.1	3.14		

Page 29 of 68

12. SAR Test Results

12.1. W-CDMA Band IV

Test reduction considerations

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit as per KDB 941225 D01

Test				Frea.	Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Position	Mode	Antenna	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
Loft	Rel 99		1312	1712.4	23.0	23.0				1
Touch	RMC	Primary	1413	1732.6	23.0	23.0	0.634	0.634	1	
Todoli	12.2kbps		1513	1752.6	23.0	23.0				1
L oft Tilt	Rel 99		1312	1712.4	23.0	23.0				1
(15°)	RMC	Primary	1413	1732.6	23.0	23.0	0.295	0.295	2	
^(15°) 12.2kbps		1513	1752.6	23.0	23.0				1	
Diaht	Rel 99		1312	1712.4	23.0	23.0	0.757	0.757	3	
Touch	RMC	Primary	1413	1732.6	23.0	23.0	1.060	1.060	4	
Touch	12.2kbps	1513	1752.6	23.0	23.0	0.910	0.910	5		
Diabt Tilt	Rel 99		1312	1712.4	23.0	23.0				1
(15°)	RMC	Primary	1413	1732.6	23.0	23.0	0.216	0.216	6	
(13)	12.2kbps		1513	1752.6	23.0	23.0				1
Toot		• •		Frea.					Plot	
Test			0	Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Antenna	Ch #.	Freq. (MHz)	Power Tune-up limit	(dBm) Meas.	1-g SAF Meas.	R (W/kg) Scaled	Plot No.	Note
Test Position	Mode Rel 99	Antenna	Ch #. 1312	Freq. (MHz) 1712.4	Power Tune-up limit 21.5	(dBm) Meas. 21.5	1-g SAF Meas.	R (W/kg) Scaled	Plot No.	Note
Test Position Left	Mode Rel 99 RMC	Antenna Secondary	Ch #. 1312 1413	Freq. (MHz) 1712.4 1732.6	Power Tune-up limit 21.5 21.5	(dBm) Meas. 21.5 21.5	1-g SAF Meas. 0.662	R (W/kg) Scaled 0.662	Plot No.	Note
Test Position Left Touch	Mode Rel 99 RMC 12.2kbps	Antenna Secondary	Ch #. 1312 1413 1513	Freq. (MHz) 1712.4 1732.6 1752.6	Power Tune-up limit 21.5 21.5 21.4	(dBm) Meas. 21.5 21.5 21.4	1-g SAF Meas. 0.662	R (W/kg) Scaled 0.662	Plot No.	Note 1
Test Position Left Touch	Mode Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary	Ch #. 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4	Power Tune-up limit 21.5 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.662	R (W/kg) Scaled 0.662	Plot No. 7	Note 1 1 1 1
Test Position Left Touch Left Tilt (15°)	Mode Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary Secondary	Ch #. 1312 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.5	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.5	1-g SAF Meas. 0.662 0.735	R (W/kg) Scaled 0.662 0.735	Plot No. 7 7 8	Note 1 1 1 1
Test Position Left Touch Left Tilt (15°)	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps	Antenna Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.4	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.4	1-g SAF Meas. 0.662 0.735	R (W/kg) Scaled 0.662 0.735	Plot No. 7 7 8 8	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Left Touch Left Tilt (15°)	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6 1712.4	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.5 21.4 21.5 21.5	1-g SAF Meas. 0.662 0.735 0.735	R (W/kg) Scaled 0.662 0.735 0.735	Plot No. 7 7 4 8 8 8 8 9	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Left Touch Left Tilt (15°) Right Touch	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513 1312 1413 1413	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.5	1-g SAF Meas. 0.662 0.735 0.735 0.922 0.953	R (W/kg) Scaled 0.662 0.735 0.735 0.922 0.953	Plot No. 7 7 8 8 8 9 9 10	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Left Touch Left Tilt (15°) Right Touch	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps	Antenna Secondary Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513 1312 1413 1312 1413 1513	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.5 21.4	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.5 21.4 21.5 21.4	1-g SAF Meas. 0.662 0.735 0.735 0.922 0.953 0.804	R (W/kg) Scaled 0.662 0.735 0.735 0.922 0.953 0.804	Plot No. 7 7 4 8 8 8 9 10 11	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Left Touch Left Tilt (15°) Right Touch	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5	1-g SAF Meas. 0.662 0.735 0.735 0.922 0.953 0.804 0.774	R (W/kg) Scaled 0.662 0.735 0.735 0.922 0.953 0.804 0.774	Plot No. 7 7 8 8 9 10 11 11	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Left Touch Left Tilt (15°) Right Touch Right Tilt (15°)	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary Secondary Secondary Secondary	Ch #. 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 2	(dBm) Meas. 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5	1-g SAF Meas. 0.662 0.735 0.735 0.922 0.953 0.804 0.774 0.824	R (W/kg) Scaled 0.662 0.735 0.735 0.922 0.953 0.804 0.774 0.824	Plot No. 7 7 8 8 9 10 11 12 13	Note 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12.1.1. Head Exposure Conditions

Note(s):

1. According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

Page 30 of 68

12.1.2. Body-worn Accessory & Hotspot Mode Exposure Conditions

Test			Dist		Freq	Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Position	Mode	Antenna	(mm)	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	Rel 99			1312	1712.4	23.0	23.0	0.580	0.580	15	
Rear	RMC	Primary	10	1413	1732.6	23.0	23.0	0.933	0.933	16	
	12.2kbps			1513	1752.6	23.0	23.0	0.829	0.829	17	
				1312	1712.4	23.0	23.0	0.609	0.609	18	
Front	Rel 99	Primony	10	1413	1732.6	23.0	23.0	0.977	0.977	19	
TION	12 2kbps	Fiinary	10	1413	1732.6	23.0	23.0	0.571	0.571	20	2
	12.20000			1513	1752.6	23.0	23.0	0.772	0.772	21	
	Rel 99			1312	1712.4	23.0	23.0				1
Edge 2	RMC	Primary	10	1413	1732.6	23.0	23.0	0.606	0.606	22	
	12.2kbps			1513	1752.6	23.0	23.0				1
	Rel 99			1312	1712.4	23.0	23.0	0.480	0.480	23	
Edge 3	RMC	Primary	10	1413	1732.6	23.0	23.0	0.861	0.861	24	
	12.2kbps			1513	1752.6	23.0	23.0	0.758	0.758	25	
	Rel 99			1312	1712.4	23.0	23.0				1
Edge 4	RMC	Primary	10	1413	1732.6	23.0	23.0	0.051	0.051	26	
	12.2kbps	bps	_	1513	1752.6	23.0	23.0				1
						=0.0					-
Test	T		Dict		Frog	Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Antenna	Dist. (mm)	Ch #.	Freq. (MHz)	Power Tune-up	(dBm) Meas.	1-g SAF Meas.	R (W/kg) Scaled	Plot No.	Note
Test Position	Mode	Antenna	Dist. (mm)	Ch #.	Freq. (MHz)	Power Tune-up limit	(dBm) Meas.	1-g SAF Meas.	R (W/kg) Scaled	Plot No.	Note
Test Position	Mode Rel 99	Antenna	Dist. (mm)	Ch #.	Freq. (MHz) 1712.4	Power Tune-up limit 21.5	(dBm) Meas. 21.5	1-g SAF Meas.	R (W/kg) Scaled	Plot No.	Note 1
Test Position Rear	Mode Rel 99 RMC	Antenna Secondary	Dist. (mm) 10	Ch #.	Freq. (MHz) 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.5	(dBm) Meas. 21.5 21.5 21.5	1-g SAF Meas. 0.350	R (W/kg) Scaled 0.350	Plot No. 27 28	Note 1
Test Position Rear	Mode Rel 99 RMC 12.2kbps	Antenna Secondary	Dist. (mm) 10	Ch #. 1312 1413 1413 1513	Freq. (MHz) 1712.4 1732.6 1732.6	Power Tune-up limit 21.5 21.5 21.5 21.4	(dBm) Meas. 21.5 21.5 21.5 21.4	1-g SAF Meas. 0.350 0.231	R (W/kg) Scaled 0.350 0.231	Plot No. 27 28	Note 1 2 1
Test Position Rear	Mode Rel 99 RMC 12.2kbps	Antenna Secondary	Dist. (mm) 10	Ch #. 1312 1413 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231	R (W/kg) Scaled 0.350 0.231	Plot No. 27 28	Note 1 2 1 1 1
Test Position Rear	Mode Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary	Dist. (mm) 10	Ch #. 1312 1413 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.5 21.5	(dBm) Meas. 21.5 21.5 21.5 21.4 21.5 21.5 21.5	1-g SAF Meas. 0.350 0.231	R (W/kg) Scaled 0.350 0.231	Plot No. 27 28 4	Note 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps	Antenna Secondary Secondary	Dist. (mm) 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.5 21.5 21.5 21.4	(dBm) Meas. 21.5 21.5 21.5 21.4 21.5 21.5 21.5 21.4	1-g SAF Meas. 0.350 0.231 0.284	R (W/kg) Scaled 0.350 0.231 0.284	Plot No. 27 28 29	Note 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary Secondary	Dist. (mm) 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.5 21.4 21.5 21.5 21.5 21.4 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231 0.284	R (W/kg) Scaled 0.350 0.231 0.284	Plot No. 27 28 7 29 29	Note 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary Secondary Secondary	Dist. (mm) 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 2	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.5	1-g SAF Meas. 0.350 0.231 0.284 0.284	R (W/kg) Scaled 0.350 0.231 0.284 0.284	Plot No. 27 28 29 29 29 30	Note 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps	Antenna Secondary Secondary Secondary	Dist. (mm) 10 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1712.4	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.4	(dBm) Meas. 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4	1-g SAF Meas. 0.350 0.231 0.284 0.284	R (W/kg) Scaled 0.350 0.231 0.231 0.284 0.284	Plot No. 27 28 29 29 30	Note 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary Secondary Secondary	Dist. (mm) 10 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1312	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 2	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231 0.284 0.284	R (W/kg) Scaled 0.350 0.231 0.284 0.284	Plot No.	Note 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1 Edge 2	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC	Antenna Secondary Secondary Secondary Secondary	Dist. (mm) 10 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6 1712.4 1732.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 2	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231 0.284 0.284 0.300	R (W/kg) Scaled 0.350 0.231 0.231 0.284 0.284 0.300	Plot No. 27 28 29 29 30 30 30	Note 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1 Edge 2	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps	Antenna Secondary Secondary Secondary Secondary	Dist. (mm) 10 10 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1712.4 1732.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4	1-g SAF Meas. 0.350 0.231 0.231 0.284 0.284 0.300	R (W/kg) Scaled 0.350 0.231 0.231 0.284 0.284 0.300 0.300	Plot No. 27 28 29 29 30 30 30	Note 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1 Edge 2	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99	Antenna Secondary Secondary Secondary Secondary	Dist. (mm) 10 10 10 10	Ch #. 1312 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 2	(dBm) Meas. 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231 0.284 0.284 0.300 0.300	R (W/kg) Scaled 0.350 0.231 0.231 0.284 0.284 0.300 0.300	Plot No. 27 28 7 29 29 30 30 30 31	Note 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test Position Rear Front Edge 1 Edge 2 Edge 4	Mode Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps Rel 99 RMC 12.2kbps RMC	Antenna Secondary Secondary Secondary Secondary	Dist. (mm) 10 10 10 10 10	Ch #. 1312 1413 1413 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413 1513 1312 1413	Freq. (MHz) 1712.4 1732.6 1732.6 1752.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1712.4 1732.6 1752.6 1752.6 1752.6 1752.6	Power Tune-up limit 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5 21.4 21.5	(dBm) Meas. 21.5 21.5 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5 21.5 21.4 21.5	1-g SAF Meas. 0.350 0.231 0.231 0.284 0.284 0.300 0.300 0.039	R (W/kg) Scaled 0.350 0.231 0.231 0.284 0.284 0.300 0.300 0.300	Plot No. 27 28 29 29 30 30 30 31 31	Note 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note(s):

1. According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

2. With headset attached. (The difference between the SAR values of the primary antenna without the headset and with the headset is dramatic, but this has been verified to be true through repeated testing)

13. Summary of Highest SAR Values

Results for highest SAR values for each frequency band and mode

Technology/Band	Test configuration		Mode	Antenna	Highest 1g SAR (W/kg)
	Head	Right Touch	Rel 99 RMC 12.2kbps	Primary	1.060
	Body & Hotspot	Front	Rel 99 RMC 12.2kbps	Primary	0.977

13.1. SAR Measurement Variability and Uncertainty

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Wireless	Test Configuration						Meas. SAR (W/kg)		Largest to		
Wireless Technologies	Exposure	Position	Mode	Dist. (mm)	t. n) Ch #.	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Plot No.	Note
W-CDMA Band IV	Head	Right Touch	Rel. 99 RMC 12.2kbps	10	1413	1732.6	1.060	1.040	1.02	1	2

Note(s):

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. Repeated measurement was performed on the highest measured SAR configuration in each frequency band only.

Page 32 of 68

13.2. SAR Plots (from Summary of Highest SAR Values)

Test Laboratory: UL CCS SAR Lab C

W-CDMA Band IV (Primary Antenna)

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; σ = 1.311 mho/m; ϵ_r = 39.702; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1239; Calibrated: 6/6/2012
- Probe: EX3DV4 SN3773; ConvF(7.89, 7.89, 7.89); Calibrated: 3/14/2012;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM; Type: QD000P40CD; Serial: 1632

RHS/Touch_R99_ch 1413/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.21 W/kg

RHS/Touch_R99_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.231 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.678 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

Page 33 of 68

Date: 12/13/2012

Issue Date: 3/27/2013

Date: 12/14/2012

W-CDMA Band IV (Primary Antenna)

Frequency: 1732.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.6 MHz; σ = 1.433 mho/m; ϵ_r = 53.28; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Electronics: DAE4 Sn1239; Calibrated: 6/6/2012

- Probe: EX3DV4 SN3773; ConvF(7.37, 7.37, 7.37); Calibrated: 3/14/2012;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1117

Front/R99_ch 1413/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.15 W/kg

Front/R99_ch 1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.675 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.977 W/kg; SAR(10 g) = 0.568 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.20 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

14. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v05, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR¹ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

R*i* is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5} / Ri < 0.04$

Page 35 of 68

14.1. Head Exposure Conditions

WiFi max. 1g SAR from SAR report "11U14136-7A1 FCC SAR Report" submitted under FCC ID: BCG-E2599A (APPLE INC).

14.1.1. Sum of the SAR for W-CDMA & WiFi 2.4GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Voice	Data	
Desition	W-CDMA	WiFi	$\sum 1-y SAR$
Position	Band IV 2.4 GHz		(mvv/g)
Left Touch	0.634	0.205	0.839
Left Tilt	0.295	0.131	0.426
Right Touch	1.060	0.572	1.632
Right Tilt	0.216	0.326	0.542

SAR to Peak Location Separation Ratio (SPLSR)

		Worst-case combina	Σ 1-α	Calculated			
Case #	Test Position	W-CDMA Band IV	WiFi 2.4 GHz	SAR (mW/g)	distance (mm)	SPLSR*	Fig.
1	Right Touch	1.060	0.572	1.632	79.8	0.026	1

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 36 of 68

Figure (1)

	mW/g	m	m	m				
W-CDMA Band IV	1.26	0.0644	-0.256	-0.172				
WiFi 2.4 GHz	0.833	0.0322	-0.329	-0.173				
	d: Calculated distance (mm)							
		79	9.8					
The Peak Location Separation Distance	ce is computed by u	sing the formula bel	ow:					

SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Voice	Data	$\nabla 1_{-0} SAR$	
Position	W-CDMA	WiFi	$\sum 1-y SAR$	
FUSILION	Band IV	2.4 GHz	(1107/g)	
Left Touch	0.662	0.205	0.867	
Left Tilt	0.735	0.131	0.866	
Right Touch	0.953	0.572	1.525	
Right Tilt	0.824	0.326	1.150	

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.1.2. Sum of the SAR for W-CDMA & WiFi 5.2 GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Voice	Data	$\Sigma 1 \alpha S \Lambda P$	
Desition	W-CDMA	WiFi	$\sum 1 - y SAR$	
Position	Band IV	5.2 GHz	(mvv/g)	
Left Touch	0.634	0.440	1.074	
Left Tilt	0.295	0.471	0.766	
Right Touch	1.060	0.594	1.654	
Right Tilt	0.216	0.566	0.782	

SAR to Peak Location Separation Ratio (SPLSR)

	Tost	Worst-case	combination	∑ 1-g	Calculated		
Case #	Desition	W-CDMA	WiFi	SAR	distance	(< 0.04)	Figure
Pos	Position	Band IV	5.2 GHz	(mW/g)	(mm)	(≤0.04)	
2	Right Touch	1.060	0.594	1.654	79.3	0.027	2

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 39 of 68

Figure (2)

Mode	Peak SAR	Х	Y	Z				
Mode	mW/g	m	m	m				
W-CDMA Band IV	1.26	0.0644	-0.256	-0.172				
WiFi 5.2 GHz	1.24	0.0149	-0.318	-0.171				
		d: Calculated	distance (mm)					
		79	9.3					
The Peak Location Separation Distance is computed by using the formula below:								

SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

Sum of the SAR with Measured Values (Secondary Antenna)

Toot	Voice	Data	
Desition	W-CDMA	WiFi	$\sum 1-y SAR$
Position	Band IV	5.2 GHz	(mvv/g)
Left Touch	0.662	0.440	1.102
Left Tilt	0.735	0.471	1.206
Right Touch	0.953	0.594	1.547
Right Tilt	0.824	0.566	1.390

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.1.3. Sum of the SAR for W-CDMA & WiFi 5.3 GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Toot	Voice	Data	T10SAD
Desition	W-CDMA	WiFi	$\sum r - y SAR$
Position	Band IV	5.3 GHz	(mvv/g)
Left Touch	0.634	0.384	1.018
Left Tilt	0.295	0.350	0.645
Right Touch	1.060	0.538	1.598
Right Tilt	0.216	0.474	0.690

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 42 of 68

Sum of the SAR with Measured Values (Secondary Antenna)

Test Position	Voice W-CDMA Band IV	Data WiFi 5.3 GHz	∑ 1-g SAR (mW/g)
Left Touch	0.662	0.384	1.046
Left Tilt	0.735	0.350	1.085
Right Touch	0.953	0.538	1.491
Right Tilt	0.824	0.474	1.298

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.1.4. Sum of the SAR for W-CDMA & WiFi 5.5 GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Toet	Voice	Data	$\nabla 1 \alpha S \Lambda P$
Desition	W-CDMA	WiFi	$\sum r - y $ SAR
Position	Band IV	5.5 GHz	(1100/g)
Left Touch	0.634	0.492	1.126
Left Tilt	0.295	0.530	0.825
Right Touch	1.060	0.593	1.653
Right Tilt	0.216	0.579	0.795

SAR to Peak Location Separation Ratio (SPLSR)

	Tost	Worst-case	combination	∑ 1-g	Calculated		
Case #	Desition	W-CDMA	WiFi	SAR	distance	(< 0.04)	Figure
	POSITION	Band IV	5.5 GHz	(mW/g)	(mm)	(≤0.04)	
3	Right Touch	1.060	0.593	1.653	79.3	0.027	3

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 44 of 68

Figure (3)

Mode	Peak SAR	Х	Y	Z	
Mode	mW/g	m	m	m	
W-CDMA Band IV	1.26	0.0644	-0.256	-0.172	
WiFi 5.5 GHz	1.31	0.0149	-0.318	-0.171	
	d: Calculated distance (mm)				
		79	9.3		
he Peak Location Separation Distance is computed by using the formula below:					
3QRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2	2)				

UL CCS FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 45 of 68

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Voice	Data	
Desition	W-CDMA	WiFi	$\sum 1-y SAR$
POSITION	Band IV	5.5 GHz	(1107/g)
Left Touch	0.662	0.492	1.154
Left Tilt	0.735	0.530	1.265
Right Touch	0.953	0.593	1.546
Right Tilt	0.824	0.579	1.403

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.1.5. Sum of the SAR for W-CDMA & WiFi 5.8 GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Voice	Data	$\Sigma 1 \alpha S \Delta D$
Desition	W-CDMA	WiFi	$\sum 1-y SAR$
Position	Band IV	5.8 GHz	(mvv/g)
Left Touch	0.634	0.559	1.193
Left Tilt	0.295	0.546	0.841
Right Touch	1.060	0.580	1.640
Right Tilt	0.216	0.577	0.793

SAR to Peak Location Separation Ratio (SPLSR)

	Toot	Worst-case	combination	∑ 1-g	Calculated		
Case #	Desition	W-CDMA	WiFi	SAR	distance	(< 0.04)	Figure
	POSITION	Band IV	2.4 GHz	(mW/g)	(mm)	(≤0.04)	
4	Right Touch	1.060	0.580	1.640	75.0	0.028	4

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 47 of 68

Figure (4)

Mode	Peak SAR	Х	Y	Z	
Widde	mW/g	m	m	m	
W-CDMA Band IV	1.26	0.0644	-0.256	-0.173	
WiFi 5.8 GHz	1.27	0.0168	-0.314	-0.172	
	d: Calculated distance (mm)				
		75	5.0		
The Peak Location Separation Distance	Distance is computed by using the formula below:				
SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2	3QRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)				

Page 48 of 68

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Voice	Data	
Desition	W-CDMA	WiFi	$\sum 1-y SAR$
POSITION	Band IV	5.8 GHz	(1107/g)
Left Touch	0.662	0.559	1.221
Left Tilt	0.735	0.546	1.281
Right Touch	0.953	0.580	1.533
Right Tilt	0.824	0.577	1.401

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.2. Body-worn Accessory & Hotspot Mode Exposure Conditions

WiFi and BT max. 1g SAR from SAR report "11U14136-7A1 FCC SAR Report" submitted under FCC ID: BCG-E2599A (APPLE INC).

14.2.1.Sum of the SAR for W-CDMA & WiFi 2.4 GHz Band

Sum of the SAR with Measured Values (Primary Antenna)

Test	Da	$\Sigma 1 \alpha S \Lambda P$	
Desition	W-CDMA	WiFi	$\sum r - y SAR$
Position	Band IV	2.4 GHz	(1100/g)
Rear	0.933	0.198	1.131
Front	0.977	0.083	1.060
Edge 1	0	0.084	0.084
Edge 2	0.606	0.022	0.628
Edge 3	0.861	0	0.861
Edge 4	0.051	0.170	0.221

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 50 of 68

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Da	$\Sigma 1 \alpha SAB$	
Position	W-CDMA Band IV	WiFi 2.4 GHz	(mW/g)
Rear	0.350	0.198	0.548
Front	0.284	0.083	0.367
Edge 1	0.300	0.084	0.384
Edge 2	0.039	0.022	0.061
Edge 3	0	0	0
Edge 4	0.169	0.170	0.339

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 51 of 68

14.2.2.Sum of the SAR for W-CDMA, WiFi 5.2 GHz Band & Bluetooth 2.4 GHz

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
Position	Band IV	5.2 GHz	2.4 GHz	(mvv/g)
Rear	0.933	0.050	0.109	1.092
Front	0.977	0.065	0.045	1.087

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Data			
Desition	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
POSITION	Band IV	5.2 GHz	2.4 GHz	(mvv/g)
Rear	0.350	0.050	0.109	0.509
Front	0.284	0.065	0.045	0.394

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.2.3.Sum of the SAR for W-CDMA, WiFi 5.3 GHz Band & Bluetooth 2.4 GHz

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
Position	Band IV	5.3 GHz	2.4 GHz	(1107/g)
Rear	0.933	0.068	0.109	1.110
Front	0.977	0.071	0.045	1.093

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Data			
Desition	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
POSITION	Band IV	5.3 GHz	2.4 GHz	(mv/g)
Rear	0.350	0.068	0.109	0.527
Front	0.284	0.071	0.045	0.400

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.2.4.Sum of the SAR for W-CDMA, WiFi 5.5 GHz Band & Bluetooth 2.4 GHz

Sum of the SAR with Measured Values (Primary Antenna)

Toot	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
Position	Band IV	5.5 GHz	2.4 GHz	(mvv/g)
Rear	0.933	0.076	0.109	1.118
Front	0.977	0.085	0.045	1.107

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum r - y SAR$
FUSITION	Band IV	5.5 GHz	2.4 GHz	(mv/g)
Rear	0.350	0.076	0.109	0.535
Front	0.284	0.085	0.045	0.414

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

14.2.5.Sum of the SAR for W-CDMA, WiFi 5.8 GHz Band & Bluetooth 2.4 GHz

Sum of the SAR with Measured Values (Primary Antenna)

Teet	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum 1-y SAR$
Position	Band IV	5.8 GHz	2.4 GHz	(mvv/g)
Rear	0.933	0.051	0.109	1.093
Front	0.977	0.067	0.045	1.089

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Sum of the SAR with Measured Values (Secondary Antenna)

Teet	Data			
Position	W-CDMA	WiFi	Bluetooth	$\sum r - y SAR$
POSITION	Band IV	5.8 GHz	2.4 GHz	(mv/g)
Rear	0.350	0.051	0.109	0.510
Front	0.284	0.067	0.045	0.396

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

15. Appendixes

Refer to separated files for the following appendixes.

- 15.1. System Performance Check Plots
- 15.2. SAR Test Plots for W-CDMA Band IV
- 15.3. SAR Test Plots for Repeatability
- 15.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3773
- 15.5. Calibration Certificate for D1750V2 SN 1053