

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For 802.11 b/g/n + BT (2.1) EDR

MODEL: A1367

FCC ID: BCG-E2407 IC: 579C-E2407

REPORT NUMBER: 10U13294-16C

ISSUE DATE: August 27, 2010

Prepared for

APPLE INC 1 INFINITE LOOP, MS-26A CUPERTINO, CA 95014

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	July 14, 2010	Initial Issue	
А	August 19, 2010	Fixed some typos in the section 11.1 and 11.2	Devin Chang
В	August 25, 2010	Updated EUT description.	Devin Chang
С	August 27, 2010	Updated report. Includes	Devin Chang
		 Changed frequency range from 2412 - 2472 MHz to 2412 - 2462 MHz in the section 1 	
		 Added all SAR plots into report includes z-axis plot of the highest SAR measurement. See section 13 	

Page 2 of 28

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	6
4	4.1. MEASURING INSTRUMENT CALIBRATION	6
4	A.2. MEASUREMENT UNCERTAINTY	7
5.	EQUIPMENT UNDER TEST	8
6.	KDB 648474 SIMULTANEOUS TRANSMISSION CONSIDERATION	8
7.	SYSTEM SPECIFICATIONS	9
8.	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
9.	LIQUID PARAMETERS CHECK	11
9	0.1. LIQUID CHECK RESULTS FOR 2450 MHZ	12
10.	SYSTEM VERIFICATION	13
1	10.1. SYSTEM CHECK RESULTS FOR D2450V2	13
11.	OUTPUT POWER VERIFICATION	16
1	11.1. WIFI RF OUTPUT POWER	16
1	11.2. BLUETOOTH RF OUTPUT POWER	16
12.	SUMMARY OF TEST RESULTS	17
13.	SAR TEST PLOTS	18
14.	ATTACHMENTS	24
15.	ANTENNA LOCATIONS	25
16.	TEST SETUP PHOTOS	26
17.	EXTERNAL PHOTOS	28

1. ATTESTATION OF TEST RESULTS

	APPLE INC						
Company name:	1 INFINITE LOOP, MS-26A						
	CUPERTINO, CA 95014						
EUT description:	802.11 b/g/n + BT (2.1) EDI	R					
Model number:	A1367						
	Serial number: CCQCV00JDCPC						
Device category::	Portable						
Exposure category:	General Population/Uncontro	olled Exposure					
Date tested:	July 8, 2010						
		-					
FCC / IC rule parts	Frequency Range [MHz] Highest 1-g SAR (mW/g) Limit (mW/g						
15.247 / RSS-102	2412 – 2462	Body: 1.11 (Face up)	1.6				
	•	•					

Applicable Standards	Test Results	
FCC OET Bulletin 65 Supplement C 01-01	Daga	
IC RSS 102 Issue 4	rdss	

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

inay shih

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Chas

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 28

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IC RSS 102 Issue 4 and the following specific FCC Test Procedures.

- KDB 648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05
- KDB 248227 D01 SAR meas for 802 11abg v01r02

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 28

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer Type/Model		Carial Na	Cal. Due date			
Name of Equipment			Senai No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050	N/A		N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		N/A	
Electronic Probe kit	HP	85070C	N/A	N/A		N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV4	3531	2	22	2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	500	9	15	2010	
System Validation Dipole	SPEAG	D2450V2	706	4 18 2013		2013	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPEAG	H2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPEAG	M2450	N/A	Withir	124 h	rs of first test	

Note: Per KDB 450824 D02 requirements for dipole calibration, CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in CCS)
- 4. Impedance is within 5 Ω of calibrated measurement (test data on file in CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	2.43	Normal	1	0.64	1.56
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	0.02	Normal	1	0.6	0.01
		Combined Standard	d Uncerta	inty Uc(y) =	9.57
Expanded Uncertainty U, Cover	rage Facto	or = 2, > 95 % Confi	dence =	19.14	%
Expanded Uncertainty U, Cover	rage Facto	or = 2, > 95 % Confi	dence =	1.52	dB

Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24
Liquid Conductivity - measurement	2.43	Normal	1	0.43	1.04
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41
Liquid Permittivity - measurement uncertainty	0.02	Normal	1	0.49	0.01
	Com	bined Standard Un	certainty	Uc(y), % =	9.35
Expanded Uncertainty U, Covera	ige Factor	⁻ = 2, > 95 % Confid	dence =	18.69	%
Expanded Uncertainty U, Covera	ige Factor	⁻ = 2, > 95 % Confid	dence =	1.49	dB

Page 7 of 28

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

5. EQUIPMENT UNDER TEST

The Apple Model Number A1367 is an iPod Touch product. This is a 802.11 b/g/n + BT (2.1) EDR. The A1367 measures 110.8 mm (4.362 inches) long x 58.9 mm (2.318 inches) wide x 7.2 mm (0.283 inches) thick and weighs 99.2 grams (3.5 oz.). The rechargeable battery is not user accessible.

The Apple A1367 comes with one of three memory configurations, 8 / 16 / 32 / 64 Giga Bytes for storing music, video or data. The Apple A1367 function is fully compatible with Apple's iTunes software. The Apple A1367 in box materials include; Apple ear buds (no microphone), and 30 pin to USB cable.

Normal operation:	Hand-held, or Worn on body (LCD facing-up; LCD facing-down) with 0 mm separation distance from EUT to body.
Body Worn Accessory	Headset
Antenna-to-antenna separation distances:	0 cm - WiFi (802.11g)-to-Bluetooth antenna (WiFi-to-Bluetooth are sharing a common antenna)
Simultaneous transmission:	WiFi can not transmit simultaneously with Bluetooth

6. KDB 648474 SIMULTANEOUS TRANSMISSION CONSIDERATION

SUMMARY OF SAR EVALUATION FOR A DEVUCE WITH MULTIPLE TRANSMITTERS

Individual Transmitter Stand-alone SAR

WiFi

Bluetooth

Yes Stan-alone SAR not required due to the output \leq 60/f

SIMULTANEOUS TRANSMISSION

WiFi can not transmit simultaneously with Bluetooth

Page 8 of 28

7. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 28

8. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		900		1800 - 1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 10 of 28

9. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Torget Frequency (MHz)	He	ead	Body		
	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

9.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Body 2450 MHz Room Ambient Temperature = 24°C; Relative humidity = 41%

Measured by: Devin Chang

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)				
2450	e'	52.71	Relative Permittivity (c _r):	52.712	52.7	0.02	± 5				
2450	e"	14.65	Conductivity (σ):	1.997	1.95	2.43	± 5				
Liquid Check											
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C											
July 08, 2010 09:38 AM											
Frequency		e'	e"								
2400000000.		52.9076	14.4447	,							
2405000000.		52.8767	14.4579)							
2410000000.		52.8600	14.4928	3							
2415000000.		52.8378	14.4977	,							
2420000000.		52.8254	14.5293	3							
2425000000.		52.7897	14.5511								
2430000000.		52.7745	14.5742	2							
2435000000.		52.7635	14.5874	ŀ							
2440000000.		52.7576	14.6116	5							
2445000000.		52.7330	14.6371								
2450000000.		52.7119	14.6546	5							
2455000000.		52.6810	14.6632	2							
2460000000.		52.6841	14.6901								
2465000000.		52.6591	14.7191								
2470000000.		52.6357	14.7393	3							
2475000000.		52.6271	14.7516	6							
2480000000.		52.6000	14.7768	3							
2485000000.		52.5884	14.8034	Ļ							
2490000000.		52.5697	14.8202	2							
2495000000.		52.5494	14.8474	ŀ							
2500000000.		52.5235	14.8722	2							
The conductivit	y (σ) can	be given a	IS:								
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"									
where f = targ	et f * 10 ⁶										
E 0 = 8.85	54 * 10 ⁻¹²										

Page 12 of 28

10. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm.
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal cortificato #	Cal.	SAR Avg (mW/g)				
validation dipole		due date	Tissue:	Head	Body		
D2450V2	D2450V2-706_Apr10	4/18/13	SAR _{1g} :	51.6	52.4		
			SAR _{10g} :	24.4	24.5		

10.1. SYSTEM CHECK RESULTS FOR D2450V2

Ambient Temperature = 24°C; Relative humidity = 41%				Measured by: Devin Chang		
System	Data Testad	Measured (Normalized to 1 W)		Target	Dolta(%)	Tolerance
validation dipole	Date Testeu	Tissue:	Body	Taiyet		(%)
D2450V2	07/08/10	SAR _{1g} :	51.7	52.4	-1.34	±10
		SAR _{10g} :	24.2	24.5	-1.22	

Page 13 of 28

SYSTEM CHECK PLOT

Date/Time: 7/8/2010 10:31:38 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn500; Calibrated: 9/15/2009

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.86 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.1 V/m; Power Drift = -0.153 dB Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 5.17 mW/g; SAR(10 g) = 2.42 mW/g Maximum value of SAR (measured) = 6.74 mW/g

Page 14 of 28

<u>SYSTEM CHECK – Z Plot</u>

Date/Time: 7/8/2010 10:48:33 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.72 mW/g

Page 15 of 28

11. OUTPUT POWER VERIFICATION

11.1. WIFI RF OUTPUT POWER

802.11b						
Channel #		Conducted Avg Power				
	Freq. (MHZ)	(dBm)	(mW)			
1	2412	16.8	47.9			
6	2437	16.9	48.8			
11	2462	16.8	47.9			
802.11g						
1	2412	14.6	28.8			
6	2437	16.7	46.8			
11	2462	14.6	28.8			
802.11n HT20						
1	2412	13.8	24.0			
6	2437	16.6	45.7			
11	2462	13.7	23.4			

Note: KDB 248227 - SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2. BLUETOOTH RF OUTPUT POWER

Bluetooth					
Mode	Channel #	Freq. (MHz)	Conducted Avg Power		
			(dBm)	(mW)	
GFSK	0	2402	10.7	11.7	
	39	2441	11.2	13.2	
	78	2480	11.5	14.1	
QPSK	0	2402	10.0	10.0	
	39	2441	10.2	10.5	
	78	2480	10.2	10.5	
8PSK	0	2402	7.9	6.2	
	39	2441	8.2	6.6	
	78	2480	8.1	6.5	

Note: According to KDB 648474, Table 2, Unlicensed transmitters

When there is no simultaneous transmission – (WiFi can not transmit simultaneously with Bluetooth)

 \boxtimes Output \leq 60/f (25 mW): SAR is not required

Output > 60/f (25 mW): stand-alone SAR required

Page 16 of 28

12. SUMMARY OF TEST RESULTS

Body SAR with 0 cm separation distance

Band	Mode	Test position	Ch No.	Freq. (MHz)	SAR (mW/g)	
					1-g	10-g
2.4 GHz	802.11b	Face up	1	2412	1.110	0.351
			6	2437	1.110	0.349
			11	2462	1.010	0.314
		w/ headset	6	2437	1.090	0.339
		Face down	1	2412		
			6	2437	0.293	0.126
			11	2462		

Note: KDB 248227 - SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels

Page 17 of 28

13. SAR TEST PLOTS

BODY SAR plot

Date/Time: 7/8/2010 1:27:16 PM

Test Laboratory: Compliance Certification Services

WiFi_Body

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.94 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Face up_L-ch/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.08 mW/g

Face up_L-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 23.8 V/m; Power Drift = -0.098 dB Peak SAR (extrapolated) = 4.12 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.351 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.69 mW/g

Page 18 of 28

Worst-case BODY SAR plot

Date/Time: 7/8/2010 11:17:22 AM

Test Laboratory: Compliance Certification Services

WiFi_Body

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn500; Calibrated: 9/15/2009

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Face up_M-ch/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.983 mW/g

Face up_M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 22.5 V/m; Power Drift = 0.167 dB Peak SAR (extrapolated) = 4.11 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.349 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.66 mW/g

Page 19 of 28

Worst-case BODY Z-axis

Date/Time: 7/8/2010 11:32:40 AM

Test Laboratory: Compliance Certification Services

WiFi_Body

DUT: Apple; Type: N/A; Serial: N/A

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1

Face up_M-ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.80 mW/g

Page 20 of 28

BODY SAR plot

Date/Time: 7/8/2010 1:58:53 PM

Test Laboratory: Compliance Certification Services

WiFi_Body

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2.01 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Face up_H-ch/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.03 mW/g

Face up_H-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 22.7 V/m; Power Drift = -0.127 dB Peak SAR (extrapolated) = 3.72 W/kg SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.314 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.58 mW/g

Page 21 of 28

BODY SAR plot

Date/Time: 7/8/2010 5:06:26 PM

Test Laboratory: Compliance Certification Services

WiFi Body

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ε = 52.8; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Face up M-ch w/headset/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 mW/g

Face up_M-ch w/headset/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 22.8 V/m; Power Drift = -0.202 dB Peak SAR (extrapolated) = 3.98 W/kg SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.339 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 mW/g

Page 22 of 28

BODY SAR plot

Date/Time: 7/8/2010 11:41:13 AM

Test Laboratory: Compliance Certification Services

WiFi_Body

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Face down_M-ch/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.321 mW/g

Face down_M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 12.7 V/m; Power Drift = 0.149 dB Peak SAR (extrapolated) = 0.655 W/kg SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.126 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.391 mW/g

Page 23 of 28

14. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9

Page 24 of 28