

FCC CFR47 PART 20.19 ANSI C63.19-2007

HAC RF EMISSIONS TEST REPORT

For

Apple's iPhone 4, Model A1332

FCC ID: BCG-E2380A
This test report applies to FCC ID BCG-E2380B

(The sample tested for this test report was representative and based on the BCG-E2380A)

REPORT NUMBER: 11U13769-1A1

ISSUE DATE: September 12, 2011

Prepared for
APPLE INC
1 INFINITE LOOP, MS-26A
CUPERTINO, CA 95014

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	August 8, 2011	Initial Issue	
Α	September 6, 2011	Add statement in section 5 of the RF report based on FCC reviewer's comments.	Sunny Shih
A1	September 12, 2011	Updated report based on FCC reviewer's comments "09/09/2011":	Sunny Shih
		 Cover page: Updated cover page to include Both FCC IDs BCG-E2380A and BCG-E2380B. 	
		Page 8: Updated the introductory section in section 5.	

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	ACILITIES AND ACCREDITATION	5
4.	CA	ALIBRATION AND UNCERTAINTY	6
4	.1.	MEASURING INSTRUMENT CALIBRATION	6
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EC	QUIPMENT UNDER TEST	8
6.	LIS	ST OF AIR INTERFACES/BANDS & OPERATING MODES	8
6	.1.	OUTPUT POWER FOR VOICE MODES	9
7.	SY	STEM SPECIFICATIONS	10
8.	SY	STEM VALIDATION	11
8	.1.	SYSTEM VALIDATION RESULTS	12
9.	PR	ROBE MODULATION FACTOR (PMF)	13
9	.1.	PMF RESULTS	15
10.	ı	HAC RF EMISSIONS TEST PROCEDURE	16
11.	ı	RF EMISSIONS MEASUREMENT CRITERA	18
12.	,	SUMMARY OF TEST RESULTS	19
1	2.1.	. E-FIELD EMISSIONS	19
1	2.2.	. H-FIELD EMISSIONS	19
13.	١	WORST-CAST TEST PLOTS	20
14.	,	ATTACHMENTS	24
4 E	-	TEST SETUD BUOTO	ΩE

1. ATTESTATION OF TEST RESULTS

Applicant name:	APPLE INC						
Applicant name:							
	1 INFINITE LOOP, MS-2						
	CUPERTINO, CA 95014						
EUT description:	iPhone						
Model number:	A1332						
	Serial number: 7Q114CM	17A4S					
Device category:	Portable						
Exposure category:	General Population/Unco	ontrolled Exposure					
Date of tested:	June 8 -9, 2011						
Maximum E/H-Filed Emission	S						
Max. E-Field emissions:	Part 22 - Cellular band:	196.3 V/m (M3)					
	Part 24 - PCS band:	66.331 V/m (M3)					
Max. H-Field emissions:	Part 22 - Cellular band:	0.392 A/m (M4)					
	Part 24 - PCS band:	0.227 A/m (M3)					
Hearing Aid Near-Field Categ	ory: M3 (Part 22),						
	M3 (Part 24)						
Appl	Applicable Standards						
AN	ANSI C63.19-2007 Pass						

This device supports held to the ear telephone calls while transmitting in air-interface modes not defined in C63.19-2007 which have not been tested for hearing aid compatibility

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Sunay Shih

Sunny Shih Engineering Team Leader

Compliance Certification Services (UL CCS)

Tested By:

Devin Chang EMC Engineer

Compliance Certification Services (UL CCS)

REPORT NO: 11U13769-1A1 FCC ID: BCG-E2380A

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.19-2007 Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids and FCC KDB 285076 D01 HAC Guidance v02r01.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	<u>Manufacturer</u>	Type/Model	Serial Number	Cal. Due date
Data Acquisition Electronics	SPEAG	DAE3	427	7/21/11
E-Field Probe	SPEAG	ER3DV6	2339	1/20/12
H-Field Probe	SPEAG	H3DV6	6157	1/25/12
Calibration Dipole	SPEAG	CD835V3	1014	1/20/12
Calibration Dipole	SPEAG	CD1880V3	1122	7/15/11
Power Meter	Giga-Tronics	8651A	8651404	5/13/12
Power Sensor	Giga-Tronics	80701A	1834588	5/13/12
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	R&S	CMU 200	106291	11/27/10

4.2. MEASUREMENT UNCERTAINTY

HAC Uncertainty Budget According to ANSI PC63.19

Error Description	Uncertainty	Probe Dist.	Div.	(Ci) E	(Ci) H	Std. Unc.(±%)	
Error Description	value (±%)	1 Tobe Dist.	DIV.	(OI) L	(01) 11	Е	Н
Measurement System							
Probe Calibration	5.10	N	1	1	1	5.1	5.1
Axial Isotropy	4.70	R	1.732	1	1	2.7	2.7
Sensor Displacement	16.50	R	1.732	1	0.145	9.5	1.4
Boundary Effects	2.40	R	1.732	1	1	1.4	1.4
Linearity	4.70	R	1.732	1	1	2.7	2.7
Scaling to Peak Envelope Power	2.00	R	1.732	1	1	1.2	1.2
System Detection Limit	1.00	R	1.732	1	1	0.6	0.6
Readout Electronics	0.30	N	1	1	1	0.3	0.3
Response Time	0.80	R	1.732	1	1	0.5	0.5
Integration Time	2.60	R	1.732	1	1	1.5	1.5
RF Ambient Conditions	3.00	R	1.732	1	1	1.7	1.7
RF Reflections	12.00	R	1.732	1	1	6.9	6.9
Probe Positioner	1.20	R	1.732	1	0.67	0.7	0.5
Probe Positioning	4.70	R	1.732	1	0.67	2.7	1.8
Extrapolation and Interpolation	1.00	R	1.732	1	1	0.6	0.6
Test sample Related							
Test Positioning Vertical	4.70	R	1.732	1	0.67	2.7	1.8
Test Positioning Lateral	1.00	R	1.732	1	1	0.6	0.6
Device Holder and Phantom	2.40	R	1.732	1	1	1.4	1.4
Power Drift	5.00	R	1.732	1	1	2.9	2.9
Phantom and Setup Related							
Phantom Thickness	2.40	R	1.732	1	0.67	1.4	0.9
Combined Std. Uncertainty						14.7	10.9
Expanded Std. Uncertainty on Power						29.4	21.8
Expanded Std. Uncertainty on Field						14.7	10.9

Notesfor table

^{1.} N - Nomal

^{2.} R - Rectangular

^{3.} Div. - Divisor used to obtain standard uncertainty

^{4.} Ci - is te sensitivity coefficient

REPORT NO: 11U13769-1A1 DATE: September 12, 2011 FCC ID: BCG-E2380A

5. EQUIPMENT UNDER TEST

iPhone with 802.11bgn and Bluetooth radio modules.

Model: A1332

FCC IDs: BCG-E2380A and BCG-E2380B.

- Both FCC IDs BCG-E2380A and BCG-E2380B are marketed and sold as one model "Apple's iPhone 4, Model A1332"
- 2. The difference between FCC IDs BCG-E2380A and BCG-E2380B is that each uses a different WiFi / Bluetooth sub-assemblies that are soldered to the main cellular printed board. The main cellular printed board is the same for both FCC IDs BCG-E2380A and BCG-E2380B.
- Apple has evaluated both devices approved as FCC ID BCG-E2380A and BCG-E2380B and determined that there is no difference in the HAC RF/T-Coil measurements between the two products and therefore the HAC exhibits in the respective applications are the same for both FCC IDs.
- 4. The sample tested for this test report was representative and based on the BCG-E2380A build.

Normal operation:

Held to head

6. LIST OF AIR INTERFACES/BANDS & OPERATING MODES

Air- Interface	Bands (MHz)	Туре	C63.19/ Tested	Simultaneous Transmissions Note: Not to be tested	Concurrent single transmission	Reduced power 20.19 (c) (1)	Voice Over Digital Transport (Data)
	850	VO	Yes	Yes: WiFi and Bluetooth	Yes: GPRS/EDGE, WiFi and Bluetooth	N/A	N/A
GSM	1900	VO	Yes	Yes: WiFi and Bluetooth	Yes: GPRS/EDGE, WiFi and Bluetooth	Yes: See sec. 6.1 note	N/A
	GPRS/EDGE	DT	N/A	N/A	Yes: * see note	N/A	Yes
	Band V R 99	VO	Yes	Yes WiFi or Bluetooth	Yes: HSPA, WiFi and Bluetooth	N/A	N/A
UMTS	Band II R 99	VO	Yes	Yes WiFi or Bluetooth	Yes: HSPA, WiFi and Bluetooth	N/A	N/A
	HSPA	DT	N/A	N/A	Yes: * see note	N/A	Yes
WiFi	2450	DT	N/A	Yes GSM,UMTS and Bluetooth	N/A	N/A	Yes
Bluetooth	2400	DT	N/A	Yes GSM,UMTS, and WiFi	N/A	N/A	N/A

VO Voice CMRS/PTSN Service Only V/D Voice CMRS/PSTN and Data Service DT Digital Transport Note: * HAC Rating was not base on concurrent voice and data modes, Noncurrent mode was found to represent worst case rating. For M rating

6.1. OUTPUT POWER FOR VOICE MODES

GSM (GMSK)

Band	Ch No.	f (MHz)	Avg burst Pwr (dBm)	Avg burst Pwr (dBm) (with Power Reduction)
	128	824.2	32.4	n/a
GSM850	190	836.6	32.5	n/a
	251	848.8	32.5	n/a
	512	1850.2	30.4	28.0
GSM1900	661	1880	30.3	28.0
	810	1909.8	30.4	28.0

Note:

1. Power reduction is activated for GSM voice mode operation in the 1900 MHz band during HAC RF emission testing.

UMTS Release 99

Band	Ch No.	f (MHz)	Avg burst Pwr (dBm)	Avg burst Pwr (dBm) (with Power Reduction)
UMTS Band V	4132	826.4	23.7	n/a
(12.2 kbps RCM)	4183	836.6	23.4	n/a
(12.2 Kbps NOW)	4233	846.6	23.6	n/a
LIMTS Bond II	9262	1852.4	22.9	n/a
UMTS Band II (12.2 kbps RCM)	9400	1880.0	22.9	n/a
(12.2 KDPS KCIVI)	9538	1907.6	22.8	n/a

Note:

1. No Power reduction for UMTS Release 99 mode

7. SYSTEM SPECIFICATIONS

E-field and H-field measurements are performed using the DASY automated dosimetric assessment system. The DASY is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland.

The DASY HAC Extension consists of the following parts:

Test Arch Phantom

The specially designed Test Arch allows high precision positioning of both the device and any of the validation dipoles.

ER3DV6 Isotropic E-Field Probe

Construction: One dipole parallel, two dipoles normal to probe axis Built-in shielding against

static charges PEEK enclosure material (resistant to organic solvents, e.g.,

glycolether)

Calibration: In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)

Frequency: 100 MHz to > 6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity: ± 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range: 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions: Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

The closest part of the sensor element is 1.1 mm closer to the tip

Application: General near-field measurements up to 6 GHz

Field component measurements

H3DV6 3-Dimensional H-Field Probe

Construction: Three concentric loop sensors with 3.8 mm loop diameters resistively loaded

detector diodes for linear response Built-in shielding against static charges PEEK

enclosure material (resistant to organic solvents, e.g., glycolether)

Frequency: 200 MHz to 3 GHz (absolute accuracy ± 6.0%, k=2); Output linearized

Directivity: ± 0.25 dB (spherical isotropy error)

Dynamic Range: 10 mA/m to 2 A/m at 1 GHz

E-Field Interference: < 10% at 3 GHz (for plane wave)

Dimensions: Overall length: 330 mm (Tip: 40 mm)

Tip diameter: 6 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 3 mm

The closest part of the sensor element is 1.9 mm closer to the tip

Application: General magnetic near-field measurements up to 3 GHz

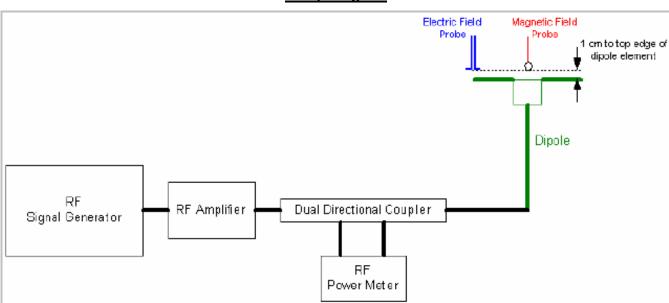
Field component measurements Surface current measurements Measurements in air or liquids

Low interaction with the measured field

8. SYSTEM VALIDATION

The test setup was validated when first configured and verified periodically thereafter to ensure proper function. The procedure provided in this section is a validation procedure using dipole antennas for which the field levels were computed by numeric modeling.

Procedure


Place a dipole antenna meeting the requirements given in ANSI-PC63.19 2007 in the normally occupied by the WD.

The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field and H-field probes so that:

- The probes and their cables are parallel to the coaxial feed of the dipole antenna
- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions; and
- The center point of the probe element(s) are 10 mm from the closest surface of the dipole elements.

Scan the length of the dipole with both E-field and H-field probes and record the maximum values for each. Compare the readings to expected values.

Setup diagram

DATE: September 12, 2011

8.1. SYSTEM VALIDATION RESULTS

E-field

			Max. measured from		Average max.	E-field Target	
Calibration Dipole	f (MHz)	Input Power (mW)	above high end (V/m)	above low end (V/m)	above arm (V/m)	Values (V/m) (From SPEAG)	Deviation ¹⁾ (%)
CD835V3 SN 1014	835	100	158.7	163.4	161.05	172	-6.37
CD1880V3 SN 1122	1880	100	133.4	135.3	134.35	137.9	-2.57

H-field

Calibration Dipole	f (MHz)	Input Power (mW)	Measured H-field (A/m)	H-field Target Values (A/m) (From SPEAG)	Deviation1) (%)
CD835V3 SN 1014	835	100	0.475	0.461	3.04
CD1880V3 SN 1122	1880	100	0.475	0.47	1.06

Notes:

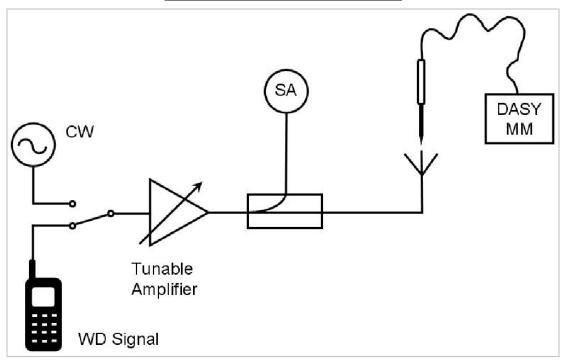
- 1) Delta (Deviation) % = 100 * (Measured value minus Target value) divided by the Target value. Deltas within ±25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty.
- 2) The maximum E-field or H-field were evaluated and compared to the target values provided by SPEAG in the calibration certificate of specific dipoles.
- 3) Please refer to the attachment for detailed measurement data and plots.

9. PROBE MODULATION FACTOR (PMF)

Purpose

The HAC Standard requires measurement of the peak envelope E- and H-fields of the wireless device (WD). Para. 4.2.2.1, and C.3.1 of the standard describes the Probe Modulation Response Factor that shall be applied to convert the probe reading to Peak Envelope Field.

Definitions


The Probe Modulation Factor (PMF) is defined as the ratio of the field readings for a CW and a modulated signal with the equivalent Field Envelope Peak as defined in the Standard (Chapter C.3.1).

Evaluation Procedure for Unknown PMF (DASY Application note, Section 28.8)

The proposed measurement setup corresponds to the procedure as required in the Standard, Chapter C.3.1.

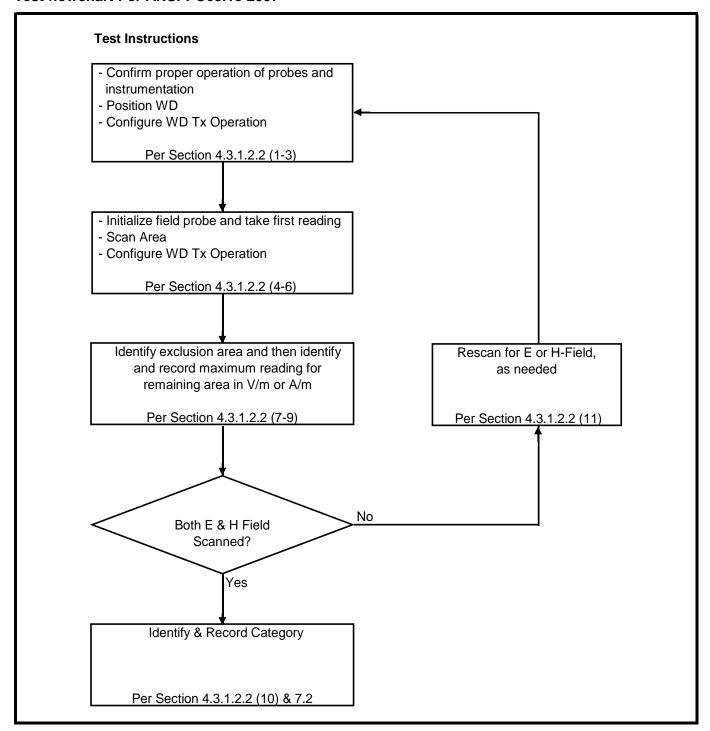
- Install a calibration dipole for the appropriate frequency band under the Test Arch Phantom and select the proper phantom section according to the probe type installed (E- or H-field). Move the probe to the field reference point. (Do not move the probe between the subsequent CW and modulated measurements.)
- 2. Install the field probe in the setup.
- 3. The modulated signal to the dipole must be monitored to record peak amplitude and compared to a CW signal with the same peak envelope level (e.g., with a directional coupler and a spectrum analyzer in zero span mode set to the operating frequency). To determine the peak envelope level of the modulated signal properly, the settings of a spectrum analyzer shall be as follows:
 - Resolution bandwidth >= emission bandwidth (4 MHz for UMTS bands, 300 kHz)
 - Video bandwidth >= 20 kHz
 - Span: zero
 - Center Frequency: nominal center frequency of channel
 - Detection: RMS detection with averaging turned on
 - Trigger: Video or IF trigger, adjusted to give a stable display of the transmission
 - Sweep rate: Sufficiently rapid to permit the transmit pulse to be resolved accurately. The sweep shall be long enough to show a complete transmission. The sweep time may be set to allow a full transmission cycle, displaying the on and off time.
- 4. Define a DASY document and set the procedure properties (frequency, modulation frequency and crest factor) according to the measured signal. Define a multimeter job for the field reading.
- 5. Define a second procedure for the evaluation of the CW signal (frequency set as above, modulation frequency = 0, crest factor = 1) and a multimeter job.

PMF Measurement Setup Diagram

The HAC measurement procedure is as follows:

- a) Modulated signals (WD and 80% AM) measurement:
 - 1) Connect the modulated signal using the appropriate frequency via the cable to the dipole.
 - 2) The signal to the dipole must be monitored to record peak amplitude with a directional coupler and a spectrum analyzer.
 - 3) Run the multimeter job in the procedure with the corresponding modulation setting in continuous mode.
 - 4) Read the envelope peak on the monitor in order to adjust the CW signal later to the same level.
- b) CW signal measurement:
 - 1) Change the signal to CW at the same center frequency, without touching or moving the dipole and probe in the setup.
 - 2) Adjust the CW signal amplitude to the same peak level on the spectrum analyzer (keep the same bandwidth and attenuation for CW and modulated signals).
 - 3) Run the multimeter job in the CW procedure in continuous mode.
 - 4) Read the multimeter total field display and note it together with modulation type and frequency.
 - 5) Calculate the Probe Modulation Factor as the ratio between the CW multimeter field reading and the reading for the applicable modulation. I.e., $PMF = \frac{E_{cw}}{E_{cw}}$ and similar for H.

9.1. PMF RESULTS


Probe	Frequency (MHz)	Type of signal	E-field V/m	PMF	
	835	GSM	17.20	2.67	
E-Field Probe	033	CW	45.86	2.07	
E-Fleid Flobe	1880	GSM	10.04	2.60	
	1000	CW	26.15	2.00	
Probe	Frequency (MHz)	Type of signal	H-field A/m	PMF	
	835	GSM	0.050	2.70	
H-Field Probe	033	CW	0.135	2.70	
n-rieid Piobe	1880	GSM	0.034	2.68	
	1000	CW	0.090	2.00	
Probe	Fraguesov (MUz)	Type of cianal	E-field V/m	PMF	
Plobe	Frequency (MHz)	Type of signal		FIVIE	
	835	UMTS	49.66	0.89	
E-Field Probe	000	CW	44.30	0.03	
L-1 leid Flobe	1880	UMTS	36.90	0.87	
	1000	CW	32.20	0.07	
Probe	Frequency (MHz)	Type of signal	H-field A/m	PMF	
				0.00	
	925	UMTS	0.144	0.00	
H-Fiold Probo	835	UMTS CW	0.144 0.129	0.90	
H-Field Probe	835 1880			0.90	

10. HAC RF EMISSIONS TEST PROCEDURE

The following are step-by-step test procedures.

- 1. Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2. Position the WD in its intended test position.
- 3. Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters, (e.g. test mode) as intended for the test.
- 4. The center sub-grid shall be centered on the center of the WD output (acoustic or T-coil output), as appropriate. Locate the field probe at the initial test position in the 5 x 5 cm grid, which is contained in the measurement plane, see illustrated in Figure 5.
- 5. Record the reading.
- 6. Scan the entire 5 x 5 cm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the peak reading.
- 7. Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum strength readings. Thus the 6 areas to be used to determine the WD's peak emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E- and H-field measurements for the WD output being measured. State another way, the center sub-grid and 3 other must be common to both the E- and H-field measurements.
- 8. Identify the highest field reading within the non-excluded sub-grids identified in step 7.
- 9. Convert the highest field reading within identified in step 8 to peak V/m or A/m, as appropriate.
- 10. Repeat steps 1-10 for both the E- and H-field measurements.
- 11. Compare this reading to the categories in ANSI-PC63.19 and record the resulting category. The lowest category number listed in ANSI-PC63.19 obtained in step 10 for either E or H field determines the M category for the audio coupling mode assessment. Record the WD category rating.

Test flowchart Per ANSI-PC63.19 2007

11. RF EMISSIONS MEASUREMENT CRITERA

Telephone near-field Categories in linear units

		Telephone RF Parameters					
		< 960) MHz	> 960 MHz			
		E-Field	H-Field	E-Field	H-Field		
Category	AWF	Emissions (V/m)	Emissions (A/m)	Emissions (V/m)	Emissions (A/m)		
M3	0	199.5 to 354.8	0.60 to 1.07	63.1 to 112.2	0.19 to 0.34		
IVIS	-5	149.6 to 266.1	0.45 to 0.80	47.3 to 84.1	0.14 to 0.25		
MA	0	< 199.5	< 0.60	< 63.1	< 0.19		
M4	-5	< 149.6	< 0.45	< 47.3	< 0.14		

12. SUMMARY OF TEST RESULTS

Note: The WiFi and Bluetooth off during HAC testing and run in a radiated environment.

12.1. E-FIELD EMISSIONS

				Peak	
Operating Mode	Ch. No.	f (MHz)	PMF	E-Field (V/m)	M-Rating
	128	824.2	2.67	162.7	М3
GSM850	190	836.6		180.7	M3
	251	848.8		196.3	M3
	512	1850.2	2.60	66.331	M3
GSM1900	661	1880.0		63.173	M3
	810	1909.8		59.744	М3
	4132	826.4		56.596	M4
UMTS band V	4183	836.6	0.89	61.145	M4
	4233	846.6		63.435	M4
UMTS band II	9262	1852.4	0.87	39.551	M4
	9400	1880.0		35.668	M4
	9538	1907.6		36.109	M4

12.2. H-FIELD EMISSIONS

				Peak	
Operating Mode	Ch. No.	f (MHz)	PMF	H-Field (A/m)	M-Rating
	128	824.2		0.325	M4
GSM850	190	836.6	2.70	0.370	M4
	251	848.8		0.392	M4
	512	1850.2		0.227	М3
GSM1900	661	1880.0	2.68	0.211	М3
	810	1909.8		0.212	М3
	4132	826.4		0.107	M4
UMTS band V	4183	836.6	0.90	0.119	M4
	4233	4233 846.6		0.121	M4
	9262	1852.4		0.129	M4
UMTS band II	9400	1880.0	0.88	0.114	M4
	9538	1907.6		0.121	M4

13. WORST-CAST TEST PLOTS

E-field worst-cast test plot for Part 22

Date/Time: 6/9/2011 8:44:51 PM

DATE: September 12, 2011

Test Laboratory: UL CCS

HAC RF Emission

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.00018

Phantom section: TCoil Section

DASY4 Configuration:

- Probe: ER3DV6 SN2339; ConvF(1, 1, 1); Calibrated: 1/20/2011
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BB
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

GSM850_E Scan/H ch/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm,

dy=5mm

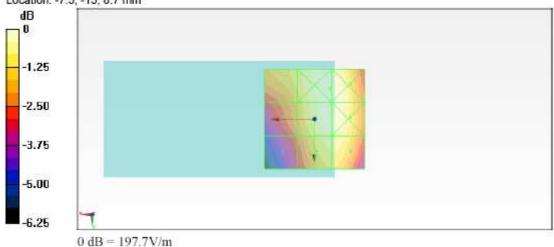
Maximum value of peak Total field = 196.3 V/m

Probe Modulation Factor = 2.670

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 87.363 V/m; Power Drift = -0.0054 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)


Peak E-field in V/m

Grid 1	Grid 2	Grid 3
176.7 M3	197.7 M3	197.5 M3
Grid 4	Grid 5	Grid 6
165.6 M3	196.3 M3	196,3 M3
Grid 7		Grid 9
151.5 M3	187.4 M3	187.5 M3

Total = 197.7 V/m E Category: M3

Location: -7.5, -15, 8.7 mm

E-field worst-cast test plot for Part 24

Date/Time: 6/9/2011 8:13:01 PM

DATE: September 12, 2011

Test Laboratory: UL CCS

HAC RF Emission

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.00018

Phantom section: TCoil Section

DASY4 Configuration:

- Probe: ER3DV6 SN2339; ConvF(1, 1, 1); Calibrated: 1/20/2011
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BB
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

GSM1900_E Scan/L ch/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm,

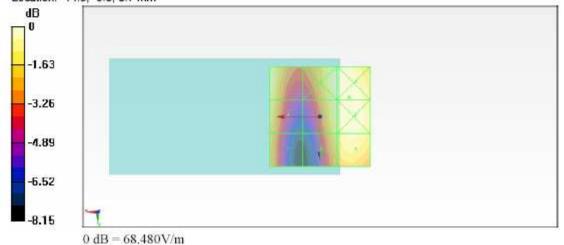
dy=5mm

Maximum value of peak Total field = 66.331 V/m

Probe Modulation Factor = 2.600

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 21.216 V/m; Power Drift = -0.03 dB


Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1 66.331 M3	Grid 2 66.037 M3	Grid 3 68.481 M3
	Grid 5 64.812 M3	Grid 6 68.433 M3
	Grid 8 59,734 M3	Grid 9 65.539 M3

Cursor: Total = 68.480 V/m E Category: M3

Location: -14.5, -9.5, 8.7 mm

H-field worst-cast test plot for Part 22

Date/Time: 6/9/2011 7:49:42 PM

DATE: September 12, 2011

Test Laboratory: UL CCS

HAC RF Emission

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.00018

Phantom section: TCoil Section

DASY4 Configuration:

- Probe: H3DV6 SN6157; ; Calibrated: 1/25/2011
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BB
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

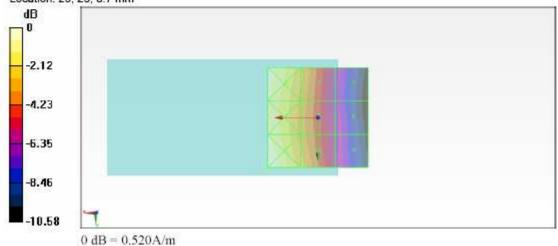
GSM850_H Scan/H ch/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm,

dy=5mm

Maximum value of peak Total field = 0.392 A/m

Probe Modulation Factor = 2.700 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.118 A/m; Power Drift = -0.01 dB


Hearing Aid Near-Field Category: M4 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.506 M3	0.381 M4	0.250 M4
Grid 4	Grid 5	Grid 6
0.487 M3	0.368 M4	0.253 M4
The second secon	Grid 8 0,392 M4	Grid 9 0.262 M4

Location: 25, 25, 8.7 mm

H-field worst-cast test plot for Part 24

Date/Time: 6/9/2011 7:22:13 PM

DATE: September 12, 2011

Test Laboratory: UL CCS

HAC RF Emission

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.00018

Phantom section: TCoil Section

DASY4 Configuration:

- Probe: H3DV6 SN6157; ; Calibrated: 1/25/2011
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BB
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

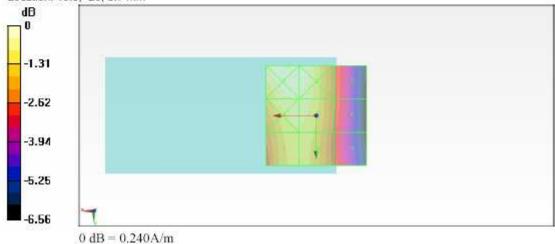
GSM1900_H Scan/L ch/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm,

dy=5mm

Maximum value of peak Total field = 0.227 A/m

Probe Modulation Factor = 2.680 Device Reference Point: 0, 0, -6.3 mm

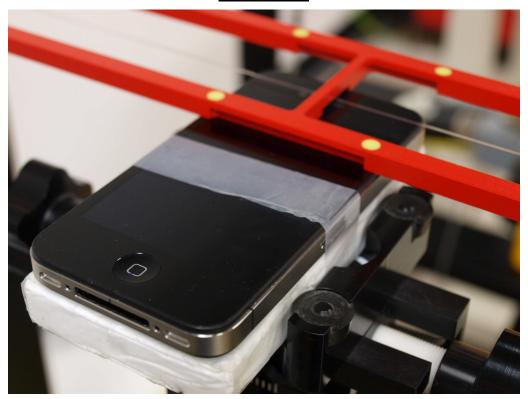
Reference Value = 0.083 A/m; Power Drift = 0.02 dB


Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.244 M3	0.240 M3	0.182 M3
Grid 4	Grid 5	Grid 6
0.228 M3	0.227 M3	0.181 M3
Grid 7	Grid 8	Grid 9
0.215 M3	0.215 M3	0.176 M3

Location: 13.5, -25, 8.7 mm



14. ATTACHMENTS

<u>No.</u>	Contents	No. of page (s)
1	System Validation Plots	4
2-1	E-field emissions test plots	12
2-2	H-field emissions test plots	12
3	Certificate of E-Field Probe - ER3DV6 SN 2339	10
4	Certificate of H-Field Probe - H3DV6 SN 6157	10
5	Certificate of Dipole CD835V3 - SN 1014	6
6	Certificate of Dipole CD1880V3 - SN 1010	6

15. **TEST SETUP PHOTO**

TEST SETUP

END OF REPORT