FCC/IC Test Report #### FOR: **Model Name: A1337** **iPad** FCC ID: BCG-E2328A IC ID: 579C-E2328A 47 CFR Part 2, 22, 24 RSS-132 Issue 2 **RSS-133 Issue 5** TEST REPORT #: EMC_APPLE_055_FCC22_24_Rev1 DATE: 2010-03-01 FCC listed: A2LA accredited IC recognized # 3462B-1 #### CETECOM Inc. 411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May Date of Report: 2010-03-01 Page 2 of 87 # **Table of Contents** | 1 | Ass | essment | 4 | |---|-------|---|--------------| | 2 | Adr | ninistrative Data | | | | 2.1 | IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT | 5 | | | 2.2 | IDENTIFICATION OF THE CLIENT | 5 | | | 2.3 | IDENTIFICATION OF THE MANUFACTURER | 5 | | 3 | Equ | ipment under Test (EUT) | (| | | 3.1 | SPECIFICATION OF THE EQUIPMENT UNDER TEST | | | | 3.2 | IDENTIFICATION OF THE EQUIPMENT UNDER TEST (EUT) | | | | 3.3 | IDENTIFICATION OF ACCESSORY EQUIPMENT | | | 4 | Sub | ject of Investigation | 8 | | 5 | | asurements | | | | 5.1 | RF POWER OUTPUT | 9 | | | 5.1. | | | | | 5.1.2 | v . | | | | 5.1.3 | | | | | 5. | 1.3.1 FCC 22.913 (a) Effective radiated power limits. | | | | 5. | 1.3.2 FCC 24.232 (b)(c) Power limits | | | | 5.1.4 | | | | | 5.1.5 | | | | | 5.1.6 | | | | | 5.1.7 | 7 RF Power Output 1900MHz band | 12 | | | 5.1.8 | | | | | 5.2 | OCCUPIED BANDWIDTH/EMISSION BANDWIDTH | 31 | | | 5.2. | | | | | 5.2.2 | · · · · · · · · · · · · · · · · · · | | | | 5.2.3 | | | | | 5.2.4 | 1 | 32 | | | 5.2.5 | 1 | | | | 5.2.6 | | | | | 5.2.7 | J | | | | 5.2.8 | | | | | 5.2.9 | | | | | 5.2. | 1 | | | | 5.2.1 | | | | | 5.2.1 | | | | | 5.3 | CONDUCTED SPURIOUS EMISSIONS | | | | 5.3.1 | J | | | | 5.3.2 | | | | | 5.3.3 | | | | | | or all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm | | | | | 3.3.1 FCC 22.917 Emission limitations for cellular equipment | | | | | 3.3.2 FCC 24.238 Emission limitations for Broadband PCS equipment | | | | 5.3.4 | \boldsymbol{J} | | | | 5.3.5 | \boldsymbol{J} | | | | 5.4 | SPURIOUS EMISSIONS RADIATED | | | | 5.4. | · J | | | | 5.4.2 | | | | | 5.4.3 | | | | | Fo | or all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm | 54 | Date of Report: 2010-03-01 Page 3 of 87 | 8 Revision History | 87 | |---|----| | 7 Block Diagrams | 85 | | 6 Test Equipment And Ancillaries Used For Tests | 84 | | 5.5.2 Test Results: | 83 | | 5.5.1 §15.207 Conducted limits- Intentional Radiators: | | | 5.5 AC POWER LINE CONDUCTED EMISSIONS | | | 5.4.6.4 Test Results Receiver Spurious Emission | 80 | | 5.4.6.3 Results | 79 | | 5.4.6.2 §15.109 Radiated emission limits- Unintentional Radiators: | 79 | | 5.4.6.1 References | | | 5.4.6 Radiated out of band emissions results on EUT- Receive Mode: | | | 5.4.5.4 Test Results Transmitter Spurious Emission UMTS FDD2: | | | 5.4.5.3 Test Results Transmitter Spurious Emission PCS-1900: | | | 5.4.5.2 Test Results Transmitter Spurious Emission UMTS FDDV | | | 5.4.5.1 Test Results Transmitter Spurious Emission GPRS850: | | | 5.4.5 Radiated out of band emissions results on EUT- Transmit Mode: | | | 5.4.4 Radiated out of band measurement procedure: | | | 5.4.3.2 FCC 24.238 Emission limitations for Broadband PCS equipment | | | 5.4.3.1 FCC 22.917 Emission limitations for cellular equipment | 54 | Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 4 of 87 **Signature** ### 1 Assessment **Date** The following is in compliance with the applicable criteria specified in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 132 and RSS 133. | Company | Description | Model # | |------------|-------------|---------| | Apple Inc. | iPad | A1337 | #### **Responsible for Testing Laboratory:** **Section** | 2010-03-01 | Compliance | (Director) | | |-----------------|-------------|-------------------------------|-----------| | Date | Section | Name | Signature | | Responsible for | the Report: | | | | 2010-03-01 | Compliance | Marc Douat (Test Lab Manager) | | Name Hailra Ctuablarry The test results of this test report relate exclusively to the test item specified in Section3. CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA. Date of Report: 2010-03-01 Page 5 of 87 ## 2 Administrative Data ## 2.1 Identification of the Testing Laboratory Issuing the EMC Test Report | Company Name: | CETECOM Inc. | | |--------------------------------------|--|--| | Department: | Compliance | | | Address: | 411 Dixon Landing Road
Milpitas, CA 95035
U.S.A. | | | Telephone: | +1 (408) 586 6200 | | | Fax: | +1 (408) 586 6299 | | | Responsible Test Lab Manager: | Heiko Strehlow | | | Responsible Project Leader: | Marc Douat | | ## 2.2 Identification of the Client | Applicant's Name: | Apple Inc. | |-------------------|------------------------------| | Street Address: | 1 Infinite Loop Mail Stop26A | | City/Zip Code | Cupertino, California 95014 | | Country | USA | | Contact Person: | Bob Steinfeld | | Phone No. | 408-974-2618 | | Fax: | 408-862-5061 | | e-mail: | steinfe@apple.com | #### 2.3 Identification of the Manufacturer Same as above applicant. Date of Report: 2010-03-01 Page 6 of 87 # 3 Equipment under Test (EUT) # 3.1 Specification of the Equipment under Test | Marketing Name: | iPad | |---------------------------|--| | Model No: | A1337 | | Product Type: | Tablet | | Hardware Revision : | A | | Software Revision: | 06.12.50 (7B293) | | FCC-ID: | BCG-E2328A | | IC-ID: | 579C-E2328A | | Engage | GPRS 850: 824.2-848.8MHz; PCS 1900: 1850.2-1909.8MHz | | Frequency: | FDD V: 826.4-846.6MHz; FDD II: 1852.4-1907.6MHz | | Type(s) of Modulation: | GMSK; 8-PSK; Dual BPSK | | N 1 6 1 1 | GPRS850: 125 and PCS 1900: 300 | | Number of channels: | FDD II: 278/ FDD V: 103 | | Antenna Type: | PIFA | | Power Supply: | 4.2 VDC battery, 110VAC Adapter | | Temperature Range: | 0°C to 35°C | Date of Report: 2010-03-01 Page 7 of 87 # 3.2 <u>Identification of the Equipment Under Test (EUT)</u> | EUT# | Serial Number | HW Version | SW Version | |------|---------------|------------|------------------| | 1 | YM003001EMB | A | 06.12.50 (7B293) | | 2 | YM003004EMB | A | 06.12.50 (7B293) | # 3.3 Identification of Accessory equipment | AE# | Туре | Manufacturer | Model | |-----|-----------------------|--------------------------|----------------| | 1 | 10W USB Power Adapter | Foxlink Technology, Ltd. | A1357 W010A051 | Date of Report: 2010-03-01 Page 8 of 87 #### 4 Subject of Investigation The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in the following test standards: - 47 CFR Part 2: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission Frequency allocations and radio treaty matters; general rules and regulations. - 47 CFR Part 22: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission subchapter B- common carrier services; Part 22- Public mobile services - 47 CFR Part 24: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communications Commission subchapter B- common carrier services; Part 24- Personal communication services - RSS 132- Issue 2: Spectrum management and telecommunication policy- Radio Standards Specifications Cellular telephones employing new technologies operating in the bands 824-849MHz and 869-894MHz - RSS 133- Issue 5: Spectrum management and telecommunication policy- Radio Standards Specifications- 2GHz personal communication services Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 9 of 87 #### 5 Measurements #### 5.1 RF Power Output #### 5.1.1 References FCC: CFR Part 2.1046, CFR Part 22.913, CFR Part 24.232 IC: RSS 132 Section 4.4 and 6.4; RSS 133 Section 4.3 #### 5.1.2 FCC 2.1046 Measurements required: RF power output. Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated. #### **5.1.3** Limits: ### 5.1.3.1 FCC 22.913 (a) Effective radiated power limits. The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts. #### 5.1.3.2 FCC 24.232 (b)(c) Power limits. - (b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP). - (c) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel. #### **5.1.4** Conducted Output Power Measurement procedure #### Ref: TIA-603C 2004 2.2.1 Conducted Carrier Output Power Rating - 1. Connect the equipment as
shown in the above diagram. A Digital RadioCommunication Tester (DRT) is used to enable the EUT to transmit and to measure the output power. - 2. Adjust the settings of the DRT to set the EUT to its maximum power at the required channel. - 3. Record the output power level measured by the DRT. - 4. Correct the measured level for all losses in the RF path. - 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 10 of 87 #### **5.1.5** Radiated Output Power Measurement procedure # Ref: TIA-603C 2004 -2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP) - 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation. - 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel. - 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings. - 4. Rotate the EUT 360°. Record the peak level in dBm (LVL). - 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna. - 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm). - 7. Determine the ERP using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB) - 8. Determine the EIRP using the following equation: **EIRP** (dBm) = **ERP** (dBm) + 2.14 (dB) - 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. #### Spectrum analyzer settings: RBW=VBW=3MHz (**Note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.) Date of Report: 2010-03-01 Page 11 of 87 ## 5.1.6 RF Power Output 850MHz band Limit: Nominal Peak Output Power < 38.45 dBm (7W) Measurement Uncertainty Conducted: ±0.5 dB Measurement Uncertainty Radiated: ±3.0 dB | Conducted Peak Output Power (dBm) | | | | | |-----------------------------------|------|-------|------|--| | Frequency (MHz) | GPRS | EGPRS | UMTS | | | 824.2 | 32.9 | 30 | 26.4 | | | 836.6 | 33 | 30.1 | 26.4 | | | 848.8 | 32.8 | 30 | 26.3 | | | ERP Peak Output Power (dBm) | | | | | |-----------------------------|------|-------|------|--| | Frequency (MHz) | GPRS | EGPRS | UMTS | | | 824.2 | 28.9 | 26.2 | 23.8 | | | 836.6 | 29.8 | 27.3 | 24.0 | | | 848.8 | 29.6 | 27.8 | 23.2 | | Date of Report: 2010-03-01 Page 12 of 87 ## 5.1.7 RF Power Output 1900MHz band Limit: Nominal Peak Output Power < 33 dBm (2W) Measurement Uncertainty Conducted: ±0.5 dB Measurement Uncertainty Radiated: ±3.0 dB | Conducted Peak Output Power (dBm) | | | | | |-----------------------------------|------|-------|------|--| | Frequency (MHz) | GPRS | EGPRS | UMTS | | | 1850.2 | 30.5 | 29.1 | 24.9 | | | 1880 | 30.6 | 29 | 24.4 | | | 1909.2 | 30.4 | 29.2 | 24.1 | | | EIRP Peak Output Power (dBm) | | | | |------------------------------|------|-------|------| | Frequency (MHz) | GPRS | EGPRS | UMTS | | 1850.2 | 31.0 | 29.1 | 26.8 | | 1880 | 31.3 | 28.9 | 27.5 | | 1909.2 | 32.7 | 30.0 | 27.3 | Date of Report: 2010-03-01 Page 13 of 87 ## 5.1.8 Results # ERP (GPRS 850) CHANNEL 128 §22.913(a) ERP850L Date of Report: 2010-03-01 Page 14 of 87 ## ERP (GPRS 850) CHANNEL 190 §22.913(a) ERP850 M MaxPeak-GearWrite Date of Report: 2010-03-01 Page 15 of 87 ## ERP (GPRS 850) CHANNEL 251 §22.913(a) ERP850 H MaxPeak-GearWrite Date of Report: 2010-03-01 Page 16 of 87 ## ERP (EGPRS 850) CHANNEL 128 §22.913(a) ERP850 L MaxPeak-GearWrite Date of Report: 2010-03-01 Page 17 of 87 ## ERP (EGPRS 850) CHANNEL 190 §22.913(a) ERP850 M MaxPeak-GearWrite Date of Report: 2010-03-01 Page 18 of 87 ## ERP (EGPRS 850) CHANNEL 251 §22.913(a) ERP850 H MaxPeak-GearWrite Date of Report: 2010-03-01 Page 19 of 87 # ERP (UMTS FDD5) CHANNEL 4132 §22.913(a) ERP850 L MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 20 of 87 # ERP (UMTS FDD5) CHANNEL 4183 §22.913(a) ERP850 M MaxPeak-GearWrite Date of Report: 2010-03-01 Page 21 of 87 # ERP (UMTS FDD5) CHANNEL 4233 §22.913(a) ERP850 H MaxPeak-GearWrite Date of Report: 2010-03-01 Page 22 of 87 ## EIRP (PCS-1900) CHANNEL 512 §24.232(b) EIRP1900L MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 23 of 87 ## EIRP (PCS-1900) CHANNEL 661 §24.232(b) EIRP1900M MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 24 of 87 ## EIRP (PCS-1900) CHANNEL 810 §24.232(b) EIRP1900H MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 25 of 87 ## EIRP (EGPRS 1900) CHANNEL 512 §24.232(b) EIRP1900L MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 26 of 87 ## EIRP (EGPRS 1900) CHANNEL 661 §24.232(b) EIRP1900M MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 27 of 87 ## EIRP (EGPRS 1900) CHANNEL 810 §24.232(b) EIRP1900H MaxPeak-ClearWrite Date of Report: 2010-03-01 Page 28 of 87 # EIRP (UMTS FDD2) CHANNEL 9262 §24.232(b) EIRP1900L MaxPeak-GearWrite Date of Report: 2010-03-01 Page 29 of 87 ## EIRP (UMTS FDD2) CHANNEL 9400 §24.232(b) EIRP1900M MaxPeak-GearWhite Date of Report: 2010-03-01 Page 30 of 87 # EIRP (UMTS FDD2) CHANNEL 9538 §24.232(b) EIRP1900H MaxPeak-GearWrite Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 31 of 87 ### 5.2 Occupied Bandwidth/Emission Bandwidth #### 5.2.1 References FCC: CFR Part 2.1049, CFR Part 22.917, CFR Part 24.238 IC: RSS 132 Section 4.2; RSS 133 Section 6.5 ### 5.2.2 FCC 2.1049 Measurements required: Occupied bandwidth The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable. (h) Transmitters employing digital modulation techniques-when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. #### 5.2.3 Occupied / Emission bandwidth measurement procedure - 1. Connect the equipment as shown in the above diagram. - 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel. - 3. Set the spectrum analyzer to measure the 99% (-20 dB) occupied bandwidth. Record the value. - 4. Set the spectrum analyzer to measure the 99.5% (-26 dB) emission bandwidth. Record the value. - 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. Spectrum analyzer settings: Meaasurement bandwidth of atleast 1% of the occupied bandwidth. Date of Report: 2010-03-01 Page 32 of 87 # 5.2.4 Occupied/Emission Bandwidth- 850 MHz band | GPRS 850: GMSK Mode | | | | |---------------------|------------------------------|------------------------|--| | Frequency
(MHz) | 99% Occupied Bandwidth (kHz) | -26dBc Bandwidth (kHz) | | | 824.2 | 244.39 | 308.49 | | | 836.4 | 244.39 | 313.3 | | | 848.8 | 243.59 | 314.1 | | | EGPRS 850: 8PSK Mode | | | | |----------------------|------------------------------|------------------------|--| | Frequency
(MHz) | 99% Occupied Bandwidth (kHz) | -26dBc Bandwidth (kHz) | | | 824.2 | 245.19 | 307.69 | | | 836.4 | 249.2 | 314.1 | | | 848.8 | 245.19 | 313.3 | | | FDD V: UMTS Mode | | | | |------------------|------------------------------|------------------------|--| | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | -26dBc Bandwidth (MHz) | | | 826.4 | 4.13 | 4.66 | | | 836.0 | 4.13 | 4.66 | | | 846.6 | 4.15 | 4.66 | | Date of Report: 2010-03-01 Page 33 of 87 # 5.2.5 Occupied/Emission Bandwidth- 1900 MHz band | GPRS 1900: GMSK Mode | | | | |----------------------|------------------------------|------------------------|--| | Frequency
(MHz) | 99% Occupied Bandwidth (kHz) | -26dBc Bandwidth (kHz) | | | 1850.2 | 243.59 | 315.7 | | | 1880.0 | 241.98 | 316.5 | | | 1909.8 | 245.19 | 314.1 | | | EGPRS 1900: 8PSK Mode | | | | |-----------------------|------------------------------|------------------------|--| | Frequency
(MHz) | 99% Occupied Bandwidth (kHz) | -26dBc Bandwidth (kHz) | | | 1850.2 | 243.59 | 299.68 | | | 1880.0 | 245.19 | 304.49 | | | 1909.8 | 244.39 | 308.49 | | | FDD II: UMTS Mode | | | | |--------------------|------------------------------|------------------------|--| | Frequency
(MHz) | 99% Occupied Bandwidth (MHz) | -26dBc Bandwidth (MHz) | | | 1852.4 | 4.15 | 4.65 | | | 1880.0 | 4.13 | 4.68 | | | 1907.6 | 4.17 | 4.68 | | Date of Report: 2010-03-01 Page 34 of 87 # **5.2.6 Results** # Occupied band Width GPRS850 MHz Date: 11.JAN.2010 09:46:18 Date: 11.JAN.2010 09:55:42 Date: 11.JAN.2010 09:57:57 Date of Report: 2010-03-01 Page 35 of 87 # Occupied band Width EGPRS850 MHz Date: 11.JAN.2010 12:06:09 Date: 11.JAN.2010 12:05:01 Date: 11.JAN.2010 12:03:44 Date of Report: 2010-03-01 Page 36 of 87 ## Occupied band Width UMTS FDD5 Date: 11.JAN.2010 11:00:45 Date: 11.JAN.2010 11:02:35 Date: 11.JAN.2010 11:03:19 Date of Report: 2010-03-01 Page 37 of 87 ## Occupied band Width PCS1900 MHz Date: 11.JAN.2010 10:28:38 Date: 11.JAN.2010 10:30:08 Date: 11.JAN.2010 10:31:28 Date of Report: 2010-03-01 Page 38 of 87 ## Occupied band Width EGPRS1900 MHz Date: 11.JAN.2010 11:44:11 Date: 11.JAN.2010 11:45:38 Date: 11.JAN.2010 11:46:55 Date of Report: 2010-03-01 Page 39 of 87 # Occupied band Width UMTS FDD2 Date: 11.JAN.2010 11:32:29 Date: 11.JAN.2010 11:30:36 Date: 11.JAN.2010 11:33:36 Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 40 of 87 Frequency Stability ### 5.2.7 References FCC: CFR Part 2.1055, CFR Part 22.355, CFR Part 24.235 IC: RSS 132 Section 4.3 and 6.3; RSS 133 Section 4.2 ### **5.2.8** Limits ### For Hand carried battery powered
equipment: According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235/22.355 Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.4VDC and 4.2VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of –8.1% and +13.51%. For the purposes of measuring frequency stability these voltage limits are to be used. ### For equipment powered by primary supply voltage: According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235/22.355 Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires to vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. ### **Method of Measurement:** In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU 200 Universal Radio Communication Tester. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30 C. - 3. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GPRS 850 & 4183 for FDD5 & 661 for PCS1900 & 9400 for FDD2), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10 C increments from -30 C to +50 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements. - 5. Re-measure carrier frequency at room temperature with nominal voltage. Re-measure carrier frequency at low and high voltage. Pause at nominal voltage for 1 1/2 hours un-powered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at +50 C. Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 41 of 87 - 7. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GPRS 850 & 4183 for FDD5 & 661 for PCS1900 & 9400 for FDD2), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10 C increments from +50 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements. - 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure. ### 5.2.9 Test Results Frequency Stability (GPRS-850): Channel 190 (836.6 MHz) | Voltage (V) | Frequency Error (Hz) | Frequency Error (ppm) | |-------------|----------------------|-----------------------| | Low V: 3.4 | 7 | 0.008 | | High V: 4.2 | -12 | -0.014 | ### §2.1055 (a)(1) AFC FREQ ERROR vs. TEMPERATURE | Temperature (°C) | Frequency Error (Hz) | Frequency Error (ppm) | |------------------|----------------------|-----------------------| | -30 | -26 | -0.031 | | -20 | 21 | 0.025 | | -10 | -23 | -0.027 | | 0 | 23 | 0.027 | | +10 | -22 | -0.026 | | +20 | -12 | -0.014 | | +30 | -19 | -0.023 | | +40 | -14 | -0.017 | | +50 | 18 | 0.022 | | Battery End Point | Frequency Error (Hz) | Frequency Error (ppm) | |--------------------------|---|-----------------------| | (V DC) | • | • • • • • | | 3.2 | 7 | 0.008 | Date of Report: 2010-03-01 Page 42 of 87 ## 5.2.10 Test Results Frequency Stability (GPRS-1900): Channel 661 (1880.0 MHz) | Voltage (V) | Frequency Error (Hz) | Frequency Error (ppm) | |-------------|----------------------|-----------------------| | Low V: 3.4 | 62 | 0.033 | | High V: 4.2 | 50 | 0.027 | ## §2.1055 (a)(1) AFC FREQ ERROR vs. TEMPERATURE | Temperature (°C) | Frequency Error (Hz) | Frequency Error (ppm) | |------------------|----------------------|-----------------------| | -30 | 68 | 0.036 | | -20 | 58 | 0.031 | | -10 | 53 | 0.028 | | 0 | 46 | 0.024 | | +10 | 58 | 0.031 | | +20 | 50 | 0.027 | | +30 | 46 | 0.024 | | +40 | 31 | 0.016 | | +50 | 39 | 0.021 | | Battery End Point (V DC) | Frequency Error (Hz) | Frequency Error (ppm) | |--------------------------|----------------------|-----------------------| | 3.2 | 62 | 0.033 | Date of Report: 2010-03-01 Page 43 of 87 ## 5.2.11 Test Results Frequency Stability (FDD V): Channel 4183 (836.6 MHz) | Voltage (V) | Frequency Error (Hz) | Frequency Error (ppm) | |-------------|----------------------|-----------------------| | Low V: 3.4 | 12 | 0.014 | | High V: 4.2 | 12 | 0.014 | ## §2.1055 (a)(1) AFC FREQ ERROR vs. TEMPERATURE | Temperature (°C) | Frequency Error (Hz) | Frequency Error (ppm) | |------------------|----------------------|-----------------------| | -30 | 13 | 0.016 | | -20 | 11 | 0.013 | | -10 | 13 | 0.016 | | 0 | 11 | 0.013 | | +10 | 13 | 0.016 | | +20 | 12 | 0.014 | | +30 | 13 | 0.016 | | +40 | 11 | 0.013 | | +50 | 11 | 0.013 | | Battery End Point (V DC) | Frequency Error (Hz) | Frequency Error (ppm) | |--------------------------|----------------------|-----------------------| | 3.2 | 12 | 0.014 | Date of Report: 2010-03-01 Page 44 of 87 ## 5.2.12 Test Results Frequency Stability (FDD II): Channel 9400 (1880.0 MHz) | Voltage (V) | Frequency Error (Hz) | Frequency Error (ppm) | |-------------|----------------------|-----------------------| | Low V: 3.4 | -8 | -0.004 | | High V: 4.2 | -22 | -0.012 | ## §2.1055 (a)(1) AFC FREQ ERROR vs. TEMPERATURE | Temperature (°C) | Frequency Error (Hz) | Frequency Error (ppm) | |------------------|----------------------|-----------------------| | -30 | -27 | -0.014 | | -20 | -25 | -0.013 | | -10 | -24 | -0.013 | | 0 | -22 | -0.012 | | +10 | -27 | -0.014 | | +20 | -22 | -0.012 | | +30 | -24 | -0.013 | | +40 | -26 | -0.014 | | +50 | -23 | -0.012 | | Battery End Point (V DC) | Frequency Error (Hz) | Frequency Error (ppm) | |--------------------------|----------------------|-----------------------| | 3.2 | -8 | -0.004 | Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 45 of 87 ### **5.3** Conducted Spurious Emissions ### 5.3.1 References FCC: CFR Part 2.1051, CFR Part 22.917, CFR Part 24.238 IC: RSS 132 Section 4.5 and 6.5; RSS 133 Section 4.4 ### 5.3.2 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals. The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified. ### **5.3.3** Limits (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. For all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm. ### 5.3.3.1 FCC 22.917 Emission limitations for cellular equipment. The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service. (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. ### 5.3.3.2 FCC 24.238 Emission limitations for Broadband PCS equipment. The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service. (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The
Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 46 of 87 emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. ### 5.3.4 Measurement Procedure -Conducted Out of band Emissions ### Ref: TIA-603C 2004 2.2.13 Unwanted Emissions: Conducted Spurious - 1. Connect the equipment as shown in the above diagram. - 2. Set the spectrum analyzer to measure peak hold with the required settings. - 3. Set the signal generator to a known output power and record the path loss in dB (**LOSS**) for frequencies up to the tenth harmonic of the EUT's carrier frequency. \ **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm). - 4. Replace the signal generator with the EUT. - 5. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel. - 6. Set the spectrum analyzer to measure peak hold with the required settings. Offset the spectrum analyzer reference level by the path loss measured above. - 7. Measure and record all spurious emissions up to the tenth harmonic of the carrier frequency. - 8. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. - 9. If necessary steps 6 and 7 may be performed with the spectrum analyzer set to average detector. (**Note:** Step 3 above is performed prior to testing and **LOSS** is recorded by test software. Steps 2, 6, and 7 above are performed with test software.) ### 5.3.5 <u>Test Results- Conducted Out of band Emission</u> No measurable spurious emissions noted. Emission above the limit in the plots is from EUT uplink. All measurement conducted in GPRS and UMTS mode with highest power settings. Plots here show worse case emission for each channel under any modulation. Date of Report: 2010-03-01 Page 47 of 87 ## **Conducted Out of band Emission GPRS850** Date: 11.JAN.2010 10:14:15 Date: 11.JAN.2010 10:12:47 Date: 11.JAN.2010 10:14:37 Date of Report: 2010-03-01 Page 48 of 87 ## **Conducted Out of band Emission GPRS1900** Date: 11.JAN.2010 10:33:43 Date: 11.JAN.2010 10:33:11 Date of Report: 2010-03-01 Page 49 of 87 ## **Conducted Out of band Emission UMTS FDD5** Date: 11.JAN.2010 11:09:33 Date: 11.JAN.2010 11:08:57 Date: 11.JAN.2010 11:10:31 Date of Report: 2010-03-01 Page 50 of 87 ## **Conducted Out of band Emission UMTS FDD2** Date: 11.JAN.2010 10:40:11 Date: 11.JAN.2010 10:39:24 Date: 11.JAN.2010 10:40:49 Date of Report: 2010-03-01 Page 51 of 87 ## **Band Edge GPRS850 GPRS** Date: 11.JAN.2010 10:05:14 Date: 11.JAN.2010 10:01:49 ## **Band Edge GPRS850 EGPRS** Date: 11.JAN.2010 12:00:49 Date: 11.JAN.2010 12:01:28 Date of Report: 2010-03-01 Page 52 of 87 ## Band Edge GPRS1900 GPRS Date: 11.JAN.2010 10:27:06 Date: 11.JAN.2010 10:25:56 ## **Band Edge GPRS1900 EGPRS** Date: 11.JAN.2010 11:48:32 Date: 11.JAN.2010 11:47:56 Page 53 of 87 Date of Report: 2010-03-01 Date: 11.JAN.2010 11:07:37 Date: 11.JAN.2010 11:04:48 ## **Band Edge UMTS FDD2** Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 54 of 87 ### 5.4 Spurious Emissions Radiated ### 5.4.1 References FCC: CFR Part 2.1053, CFR Part 22.917, CFR Part 24.238 IC: RSS 132 Section 4.5 and 6.5; RSS 133 Section 4.4 ### 5.4.2 FCC 2.1053 Measurements required: Field strength of spurious radiation. Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. ### **5.4.3** Limits: (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. For all power levels +30dBm to 0dBm, this becomes a constant specification of -13dBm. ### 5.4.3.1 FCC 22.917 Emission limitations for cellular equipment. The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service. (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. ### 5.4.3.2 FCC 24.238 Emission limitations for Broadband PCS equipment. The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service. (b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the Date of Report: 2010-03-01 Page 55 of 87 carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. ### 5.4.4 Radiated out of band measurement procedure: ### Ref: TIA-603C 2004- 2.2.12 Unwanted emissions: Radiated Spurious - 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation. - 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel. - 3. Set the spectrum analyzer to measure peak hold with the required settings. - 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency. - 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna. - 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm). - 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB): - 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized. - 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB): - 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. - (Note: Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4 and 7 above are performed with test software.) Spectrum analyzer settings: RBW=VBW=1MHz Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 56 of 87 ### **Measurement Survey**: The site is constructed in accordance with ANSI C63.4 requirements and is recognized by the FCC to be in compliance for a 3m site. The spectrum is scanned from 30MHz to the 10th harmonic of the highest frequency generated by the EUT. Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GPRS-850 & PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GPRS-850 & PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. Radiated emission measurements were made only with Packet Data mode GMSK modulation because this mode represents the worse case emission for all the modulations for GPRS. All measurements are done in horizontal and vertical polarization; the plots show the worst case where it is not indicated otherwise. Unless mentioned otherwise, the peaks in the plots are from the carrier frequency. Radiated emissions measurements were made also with UMTS FDD mode. Date of Report: 2010-03-01 Page 57 of 87 ## 5.4.5 Radiated out of band emissions results on EUT- Transmit Mode: ## **5.4.5.1** Test Results Transmitter Spurious Emission GPRS850: | Harmonic | Tx ch-128
Freq.
(MHz) | Level (dBm) | Tx ch-190
Freq.
(MHz) | Level (dBm) | Tx ch-251
Freq.
(MHz) | Level (dBm) | |------------------|-----------------------------|-------------|-----------------------------|-------------
-----------------------------|-------------| | 1 | 824.2 | - | 836.6 | - | 848.8 | - | | 2 | 1648.4 | NF | 1673.2 | NF | 1697.6 | NF | | 3 | 2472.6 | NF | 2509.8 | NF | 2546.4 | NF | | 4 | 3296.8 | NF | 3346.4 | NF | 3395.2 | NF | | 5 | 4121 | NF | 4183 | NF | 4244 | NF | | 6 | 4945.2 | NF | 5019.6 | NF | 5092.8 | NF | | 7 | 5769.4 | NF | 5856.2 | NF | 5941.6 | NF | | 8 | 6593.6 | NF | 6692.8 | NF | 6790.4 | NF | | 9 | 7417.8 | NF | 7529.4 | NF | 7639.2 | NF | | 10 | 8242 | NF | 8366 | NF | 8488 | NF | | NF = Noise Floor | | | | | | | Date of Report: 2010-03-01 Page 58 of 87 ### **Radiated Spurious Emissions (GPRS-850)** Note – Worst case plot # FCC 22 30-1000MHz Mid Channel FCC 22 30-1000MHz Date of Report: 2010-03-01 Page 59 of 87 ## FCC 22 1-9GHz Low Channel Date of Report: 2010-03-01 Page 60 of 87 ## FCC 22 1-9GHz Mid Channel Date of Report: 2010-03-01 Page 61 of 87 # FCC 22 1-9GHz High Channel Date of Report: 2010-03-01 Page 62 of 87 ## **5.4.5.2** Test Results Transmitter Spurious Emission UMTS FDDV | Harmonic | Tx ch-4132
Freq.
(MHz) | Level (dBm) | Tx ch-4183
Freq.
(MHz) | Level (dBm) | Tx ch-4233
Freq.
(MHz) | Level (dBm) | |-----------------|------------------------------|-------------|------------------------------|-------------|------------------------------|-------------| | 1 | 826.4 | - | 836.6 | - | 846.6 | - | | 2 | 1652.8 | NF | 1673.2 | NF | 1693.2 | NF | | 3 | 2479.2 | NF | 2509.8 | NF | 2539.8 | NF | | 4 | 3305.6 | NF | 3346.4 | NF | 3386.4 | NF | | 5 | 4132 | NF | 4183 | NF | 4233 | NF | | 6 | 4958.4 | NF | 5019.6 | NF | 5079.6 | NF | | 7 | 5784.8 | NF | 5856.2 | NF | 5926.2 | NF | | 8 | 6611.2 | NF | 6692.8 | NF | 6772.8 | NF | | 9 | 7437.6 | NF | 7529.4 | NF | 7619.4 | NF | | 10 | 8264 | NF | 8366 | NF | 8466 | NF | | NF= Noise Floor | | | | | | | Date of Report: 2010-03-01 Page 63 of 87 ### **Radiated Spurious Emissions (UMTS FDDV)** Note – Worst case plot # FCC 22 30-1000MHz Mid Channel FCC 22 30-1000MHz Date of Report: 2010-03-01 Page 64 of 87 ## FCC 22 1-9GHz Low Channel Date of Report: 2010-03-01 Page 65 of 87 ## FCC 22 1-9GHz Mid Channel Date of Report: 2010-03-01 Page 66 of 87 # FCC 22 1-9GHz High Channel Date of Report: 2010-03-01 Page 67 of 87 ## **5.4.5.3** Test Results Transmitter Spurious Emission PCS-1900: | Harmonic | Tx ch-512
Freq.(MHz) | Level (dBm) | Tx ch-661
Freq. (MHz) | Level (dBm) | Tx ch-810
Freq. (MHz) | Level (dBm) | |------------------|-------------------------|-------------|--------------------------|-------------|--------------------------|-------------| | 1 | 1850.2 | - | 1880.0 | - | 1909.8 | - | | 2 | 3700.4 | NF | 3760 | NF | 3819.6 | NF | | 3 | 5550.6 | NF | 5640 | NF | 5729.4 | NF | | 4 | 7400.8 | NF | 7520 | NF | 7639.2 | NF | | 5 | 9251 | NF | 9400 | NF | 9549 | NF | | 6 | 11101.2 | NF | 11280 | NF | 11458.8 | NF | | 7 | 12951.4 | NF | 13160 | NF | 13368.6 | NF | | 8 | 14801.6 | NF | 15040 | NF | 15278.4 | NF | | 9 | 16651.8 | NF | 16920 | NF | 17188.2 | NF | | 10 | 18502 | NF | 18800 | NF | 19098 | NF | | NF = Noise Floor | | | | | | | Date of Report: 2010-03-01 Page 68 of 87 ### Radiated Spurious Emissions (PCS 1900) Tx: Note – Worst case plot # FCC 24 30-1000MHz Mid Channel FOC 22 30-1000MHz Date of Report: 2010-03-01 Page 69 of 87 # FCC 24 1-18GHz Low Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 70 of 87 ## FCC 24 1-18GHz Mid Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 71 of 87 # FCC 24 1-18GHz High Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 72 of 87 # FCC 24 18-19GHz Mid Channel FCC 24 18-19.1GHz Date of Report: 2010-03-01 Page 73 of 87 ## **5.4.5.4** Test Results Transmitter Spurious Emission UMTS FDD2: | Harmonic | Tx ch-9262
Freq. (MHz) | Level (dBm) | Tx ch-9400
Freq.
(MHz) | Level (dBm) | Tx ch-9538
Freq.
(MHz) | Level (dBm) | | |----------|---------------------------|-------------|------------------------------|-------------|------------------------------|-------------|--| | 1 | 1852.4 | - | 1880.0 | - | 1907.6 | - | | | 2 | 3704.8 | NF | 3760 | NF | 3815.2 | NF | | | 3 | 5557.2 | NF | 5640 | NF | 5722.8 | NF | | | 4 | 7409.6 | NF | 7520 | NF | 7630.4 | NF | | | 5 | 9262 | NF | 9400 | NF | 9538 | NF | | | 6 | 11114.4 | NF | 11280 | NF | 11445.6 | NF | | | 7 | 12966.8 | NF | 13160 | NF | 13353.2 | NF | | | 8 | 14819.2 | NF | 15040 | NF | 15260.8 | NF | | | 9 | 16671.6 | NF | 16920 | NF | 17168.4 | NF | | | 10 | 18524 | NF | 18800 | NF | 19076 | NF | | | | NF= Noise Floor | | | | | | | Date of Report: 2010-03-01 Page 74 of 87 ### **Radiated Spurious Emissions (UMTS FDDII) Tx:** Note – Worst case plot # FCC 24 30-1000MHz Mid Channel FOC 22 30-1000MHz Date of Report: 2010-03-01 Page 75 of 87 # FCC 24 1-18GHz Low Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 76 of 87 ## FCC 24 1-18GHz Mid Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 77 of 87 # FCC 24 1-18GHz High Channel FCC 24 1-18GHz Date of Report: 2010-03-01 Page 78 of 87 # FCC 24 18-19GHz Mid Channel FCC 24 18-19.1GHz -13cBmLimitLine ----- Preview Result 1 * Data Reduction 1 [4] Date of Report: 2010-03-01 Page 79 of 87 ## 5.4.6 Radiated out of band emissions results on EUT- Receive Mode: #### 5.4.6.1 References FCC: CFR Part 15.109, 2.1053 IC: RSS 132 Section 4.6 and 6.6 ## 5.4.6.2 §15.109 Radiated emission limits- Unintentional Radiators: (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency of emission (MHz) | Field strength (μV/m) | |-----------------------------|------------------------| | 30–88 | $100 (40 dB \mu V/m)$ | | 88–216 | $150 (43.5 dB\mu V/m)$ | | 216–960 | $200~(46~dB\mu V/m)$ | | Above 960 | $500 (54 dB\mu V/m)$ | (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the following: | Frequency of emission (MHz) | Field strength (μV/m) | |-----------------------------|-----------------------| | 30–88 | 90 | | 88–216 | 150 | | 216–960 | 210 | | Above 960 | 300 | #### **5.4.6.3** Results No significant emissions measurable. Plots reported here represent the worse case emissions. Date of Report: 2010-03-01 Page 80 of 87 ## 5.4.6.4 Test Results Receiver Spurious Emission Receive Mode: 30MHz-1GHz ## **Final Result 1** | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Meas.
Time
(ms) | Bandwidth
(kHz) | Antenna
height
(cm) | Polarity | Turntable position (deg) | Corr.
(dB) | Margin
(dB) | Limit
(dBµV/m) | |--------------------|-----------------------|-----------------------|--------------------|---------------------------|----------|--------------------------|---------------|----------------|-------------------| | 33.261812 | 15.2 | 20.000 | 120.000 | 120.0 | V | 30.0 | 6.8 | 24.8 | 40.0 | | 41.383301 | 26.3 | 20.000 | 120.000 | 171.0 | V | 10.0 | 5.6 | 13.7 | 40.0 | | 45.129578 | 26.7 | 20.000 | 120.000 | 120.0 | V | 0.0 | 6.1 | 13.3 | 40.0 | | 49.828667 | 29.5 | 20.000 | 120.000 | 120.0 | V | 0.0 | 6.7 | 10.5 | 40.0 | | 52.834479 | 33.2 | 20.000 | 120.000 | 120.0 | V | 0.0 | 7.1 | 6.8 | 40.0 | | 56.887578 | 20.5 | 20.000 | 120.000 | 162.0 | V | 30.0 | 7.5 | 19.5 | 40.0 | | 819.569454 | 23.5 | 20.000 | 120.000 | 120.0 | V | 128.0 | 25.4 | 22.5 | 46.0 | | 839.553155 | 23.9 | 20.000 | 120.000 | 184.0 | V | 144.0 | 25.7 | 22.1 | 46.0 | #### (continuation of the "Final Result 1" table from column 10 ...) | Frequency (MHz) | Comment | |-----------------|---------| | 33.261812 | | | 41.383301 | | | 45.129578 | | | 49.828667 | | | 52.834479 | | | 56.887578 | | | 819.569454 | | | 839.553155 | | ### FCC 1530-1000MHz Date of Report: 2010-03-01 Page 81 of 87 **Receive Mode: 1GHz-18GHz** FCC 151-18GHz Test Report #: EMC APPLE 055 FCC22 24 Rev1 Date of Report: 2010-03-01 Page 82 of 87 ## 5.5 AC Power Line Conducted Emissions ### 5.5.1 §15.207 Conducted limits- Intentional Radiators: (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu H/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. | | Conducted limit (dBμV) | | | | | |-----------------------------|------------------------|-----------|--|--|--| | Frequency of emission (MHz) | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5–5 | 56 | 46 | | | | | 5–30 | 60 | 50 | | | | ^{*}Decreases with the logarithm of the frequency. Analyzer Settings: RBW = 10KHz; VBW = 10KHz Date of Report: 2010-03-01 Page 83 of 87 ## 5.5.2 Test Results: #### **CISPR 22 Mains Conducted** Date of Report: 2010-03-01 Page 84 of 87 ## 6 Test Equipment And Ancillaries Used For Tests | No | Instrument/Ancillary | Type | Manufacturer | Serial No. | Cal Due | Interval | |----|---------------------------------|------------------|--------------------|--------------|-----------|----------| | 01 | Spectrum Analyzer | ESIB 40 | Rohde &
Schwarz | 100107 | May 2010 | 1 year | | 02 | Spectrum Analyzer | FSEM 30 | Rohde &
Schwarz | 100017 | May 2010 | 1 year | | 03 | Signal Generator | SMY02 | Rohde &
Schwarz | 836878/011 | May 2010 | 1 year | | 04 | Power-Meter | NRVD | Rohde &
Schwarz | 0857.8008.02 | May 2010 | 1 year | | 05 | Biconilog Antenna | 3141 | EMCO | 0005-1186 | June 2010 | 1 year | | 06 | Horn Antenna (1-
18GHz) | SAS-
200/571 | AH Systems | 325 | June 2010 | 1 year | | 07 | Horn Antenna (18-26.5GHz) | 3160-09 | EMCO | 1240 | June
2010 | 1 year | | 08 | Power Splitter | 11667B | Hewlett Packard | 645348 | n/a | n/a | | 09 | Climatic Chamber | VT4004 | Voltsch | G1115 | May 2010 | 1 year | | 10 | High Pass Filter | 5HC2700 | Trilithic Inc. | 9926013 | n/a | n/a | | 11 | High Pass Filter | 4HC1600 | Trilithic Inc. | 9922307 | n/a | n/a | | 12 | Pre-Amplifier | JS4-
00102600 | Miteq | 00616 | May 2010 | 1 year | | 13 | Power Sensor | URV5-Z2 | Rohde & Schwarz | DE30807 | May 2010 | 1 year | | 14 | Digital Radio Comm.
Tester | CMD-55 | Rohde &
Schwarz | 847958/008 | May 2010 | 1 year | | 15 | Universal Radio
Comm. Tester | CMU 200 | Rohde &
Schwarz | 832221/06 | May 2010 | 1 year | | 16 | LISN | ESH3-Z5 | Rohde &
Schwarz | 836679/003 | May 2010 | 1 year | | 17 | Loop Antenna | 6512 | EMCO | 00049838 | July 2010 | 2 years | Date of Report: 2010-03-01 Page 85 of 87 ## 7 Block Diagrams Date of Report: 2010-03-01 Page 86 of 87 Date of Report: 2010-03-01 Page 87 of 87 ## 8 Revision History | Date | Report Name | Changes to report | Report prepared by | |------------|------------------------------|--|--------------------| | 2010-02-18 | EMC_APPLE_055 _FCC22_24 | Original | Marc | | 2010-03-01 | EMC_APPLE_055 _FCC22_24_Rev1 | Modulations updated. GSM replaced with GPRS. Plot on pg 35 updated. 19GHz plots added. | Marc |