

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408 538 5600 http://www.element.com

MEASUREMENT REPORT FCC PART 15.407/ ISED RSS-247 802.15.4 ab-NB

Applicant Name:

Apple Inc. One Apple Park Way

Cupertino, CA 95014

United States

Date of Testing:

6/12/2024 - 7/19/2024

Test Report Issue Date:

8/1/2024

Test Site/Location:

Element Materials Technology Morgan Hill, CA, USA

Test Report Serial No.: 1C2405230021-13.BCG

FCC ID: **BCG-A3001**

IC: 579C-A3001

APPLICANT: Apple Inc.

Certification Application Type: Model/HVIN: A3001, A3002

EUT Type: Watch

Frequency Range: 5728.75 - 5846.25MHz

Modulation Type: O-QPSK

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s): Part 15 Subpart E (15.407)

ISED Specification: RSS-247 Issue 3

ANSI C63.10-2020, KDB 789033 D02 v02r01 **Test Procedure(s):**

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2020 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RI Ortanez

Executive Vice President

Prepared by: WKR0000005913 Reviewed by: WKR0000006164

FCC ID: BCG-A3001 IC: 579C-A3001	element	ement MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Fage 1 01 49

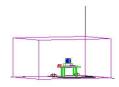


TABLE OF CONTENTS

1.0	INTRO	DDUCTION	
	1.1	Scope	
	1.2	Element Materials Technology Test Location	
	1.3	Test Facility / Accreditations	
2.0	PROD	DUCT INFORMATION	Ę
	2.1	Equipment Description	
	2.2	Device Capabilities	
	2.3	Antenna Description	6
	2.4	Test Support Equipment	
	2.5	Test Configuration	
	2.6	Software and Firmware	8
	2.7	EMI Suppression Device(s)/Modifications	8
3.0	DESC	RIPTION OF TESTS	
	3.1	Evaluation Procedure	
	3.2	AC Line Conducted Emissions	
	3.3	Radiated Emissions	10
	3.4	Environmental Conditions	10
4.0	ANTE	NNA REQUIREMENTS	11
5.0	MEAS	SUREMENT UNCERTAINTY	12
6.0	TEST	EQUIPMENT CALIBRATION DATA	13
7.0	TEST	RESULTS	14
	7.1	Summary	14
	7.2	6dB & 99% Bandwidth Measurement	15
	7.3	Conducted Output Power and Max EIRP Measurement	22
	7.4	Maximum Power Spectral Density	2
	7.5	Radiated Spurious Emission – Above 1GHz	32
	7.6	Radiated Spurious Emissions – Below 1GHz	4′
	7.7	AC Line Conducted Emissions Measurement	4
8.0	CONC	CLUSION	49

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 2 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 2 of 49

MEASUREMENT REPORT

UNII Band	Tx Frequency (MHz)	Mode (kbps)	Max. Power (mW)	Max. Power (dBm)
		250	39.537	15.97
3	5728.75 - 5846.25	500	39.628	15.98
		1000	39.628	15.98

FCC/ISED EUT Overview

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 3 of 49

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Materials Technology Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology located in Morgan Hill, CA 95037, U.S.A.

- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB# US0110) for ISED Canada as designed by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs)

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 4 of 49

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Watch FCC ID: BCG-A3001, IC: 579C-A3001**. The test data contained in this report pertains only to the emissions due to the EUT's 802.15.4 ab-NB transmitter.

Test Device Serial No.: DLCH620001E00006QM, C9NHGP1W6J, FYQK32YYK3, H47P2C2F3F, CNVHKJDYPX

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n UNII, 802.15.4 ab-NB, Bluetooth (1x, EDR, HDR4, HDR8, LE1M, LE2M), NFC, UWB, 60.5GHz Transmitter.

Band 3
Frequency (MHz)
5728.75
:
5786.25
:
5846.25

Table 2-1. 802.15.4ab-NB Frequency of Operations

Notes:

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v02r01 and ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Measured Duty Cycles			
Mada	Duty Cycle [%]		
Mode	FCM		
250kbps	85.12		
500kbps	43.16		
1000kbps	22.83		

Table 2-2. Measured Duty Cycles

FCC ID: BCG-A3001 IC: 579C-A3001	element element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage F of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 5 of 49

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

	Antenna FCM					
Simultaneous Tx	WLAN	Bluetooth	802.15.4ab - NB	LTE/WCDMA	UNII	UWB
Config	802.11b/g/n	BDR,EDR, HDR4/8, LE1/2M	O-QPSK	Mid/High Band	802.11a/n	Ch.5/Ch.9
Config 1	✓	×	×	✓	×	✓
Config 2	×	✓	×	✓	×	✓
Config 3	×	✓	✓	✓	×	×
Config 4	✓	×	✓	✓	×	×
Config 5	×	✓	×	✓	✓	×
Config 6	×	✓	×	✓	×	✓
Config 7	✓	×	×	✓	×	×
Config 8	✓	×	✓	*	×	×
Config 9	✓	×	×	×	×	✓
Config 10	×	✓	×	*	✓	×
Config 11	×	✓	×	✓	×	×
Config 12	×	✓	✓	*	×	×
Config 13	×	✓	×	*	×	✓
Config 14	×	×	✓	✓	×	×
Config 15	×	×	×	✓	✓	×
Config 16	×	×	×	✓	×	✓

Table 2-3. Simultaneous Transmission Configurations

√ = Support;
× = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst-case configuration was found to be config 5 and reported in RF UNII, RF Bluetooth, and RF Part 27b/RSS-199 test reports.

2.3 Antenna Description

The following antenna gain provided by the manufacturer was used for testing.

Fraguency (MU-1	Antenna Gain (dBi)	
Frequency [MHz]	Antenna FCM	
5728.75 – 5846.25	-3.7	

Table 2-4. Highest Antenna Gain

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 6 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 6 of 49

2.4 Test Support Equipment

1	Apple Macbook	Model:	A1398	S/N:	FVFDHG8TP3XY
	w/AC/DC Adapter	Model:	A1435	S/N:	N/A
2	Apple USB-C cable	Model:	N/A	S/N:	N/A
	w/ Charging Dock	Model:	A3276	S/N:	DQ812910BZZ08V222
	w/ Cradle	Model:	N/A	S/N:	CYV11630817A2SE03MEV1
3	Apple Magnetic Charger	Model:	A2515	S/N:	DLC310307CD1NR1AM
	Apple Magnetic Charger	Model:	A2879	S/N:	DLCH5T000ZM00000WB
4	Pathfinder Mocha X3100	Model:	920-13353-01	S/N:	DLCGMW0007G00000N7
	SiP Socket	Model:	P1 N20X S PF 271	S/N:	FN6GTE0005G00000HS
5	DC Power Supply	Model:	KPS3010D	S/N:	N/A
6	Store Sample Wristband	Model:	N/A	S/N:	DLC316300CU1QGKA2

Table 2-5. Test Support Equipment List

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 7 of 49	

Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2020 and KDB 789033 D02 v02r01. ANSI C63.10-2020 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and, 7.2, and 7.4 for antenna port conducted emissions test setups.

The worst case configuration was investigated for all combinations of the various types of metal and non-metal wristbands. The EUT was also investigated with and without wireless charger. The worst case configuration found was used for all testing.

For emissions from 1GHz - 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configurations were investigated and EUT powered by AC/DC adaptor was the worst case.

- EUT powered by AC/DC adaptor via USB-C cable with magnetic charger.
- EUT powered by host PC via USB-C cable with magnetic charger.

2.6 Software and Firmware

The test was conducted with firmware version watchOS 11 installed on the EUT.

2.7 **EMI Suppression Device(s)/Modifications**

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 8 of 49	
			1/ 40 0 00/00/0000	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu H$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOs 2X48A filters (100dB Minimum Insertion Loss, 14kHz-10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.7. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.50.40.

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 9 of 49

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCG-A3001 IC: 579C-A3001	element element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	raye 10 01 49

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 11 of 10
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 11 of 49

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.07
Line Conducted Disturbance	1.91
Radiated Disturbance (<30MHz)	4.12
Radiated Disturbance (30MHz - 1GHz)	4.85
Radiated Disturbance (1 - 18GHz)	5.08
Radiated Disturbance (>18GHz)	4.59

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 12 of 10
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 12 of 49

TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-26.5GHz PXA Signal Analyzer	10/18/2023	Annual	10/18/2024	MY55330128
Anritsu	ML2495A	Power Meter	7/8/2024	Annual	7/8/2025	1039008
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Anritsu	MA2411B	Pulse Power Sensor	11/8/2023	Annual	11/8/2024	1027293
ATM	180-442A-KF	20dB Nominal Gain Horn Antenna	3/14/2024	Annual	3/14/2025	T058701-01
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	4/9/2024	Annual	4/9/2025	00218555
Keysight Technology	N9040B	UXA Signal Analyzer	5/28/2024	Annual	5/28/2025	MY57212015
Mini-Circuits	FLC-1.5FT-SMSM+	30MHz-27GHz Conducted Cable *	9/14/2023	Annual	9/14/2024	16113316
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	8/15/2023	Annual	8/15/2024	101639
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	5/29/2024	Annual	5/29/2025	101619
Rohde & Schwarz	ESW44	EMI Test Receiver	5/1/2024	Annual	5/1/2025	101867
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz - 8GHz)	7/3/2024	Annual	7/3/2025	102356
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	6/10/2024	Annual	6/10/2025	100057
Rohde & Schwarz	HFH2-Z2	Loop Antenna	6/21/2024	Annual	6/21/2025	100519
Rohde & Schwarz	ENV216	Two-Line V-Network	7/12/2024	Annual	7/12/2025	101363
Schwarzbeck	VULB 9162	Bilog Antenna (30MHz - 6GHz)	4/29/2024	Annual	4/29/2025	00304

Table 6-1. Test Equipment List

Note:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. * Denotes passive equipment that have been internally verified/calibrated.

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 13 of 49	
			1/ 40 0 00/00/0000	

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Apple Inc.</u>

FCC ID: BCG-A3001

FCC Classification: Unlicensed National Information Infrastructure (UNII)

IC: <u>579C-A3001</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407(e)	RSS-Gen [6.7]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.2
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	N/A	CONDUCTED	N/A	Section 7.2
15.407 (a.3.i)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.3
15.407 (a.3.i)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.4
15.407(b.4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])	RADIATED	PASS	Section 7.5
15.205, 15.407(b.4)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])		PASS	Section 7.5
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	AC LINE CONDUCTED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1. All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Conducted Automation Software," Version 1.1.0.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 3.0.0.

FCC ID: BCG-A3001 IC: 579C-A3001	element)	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 14 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 14 of 49

7.2 6dB & 99% Bandwidth Measurement

§2.1049; §15.407 (e); RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2020 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be ≥ 500 kHz.

Test Procedure Used

ANSI C63.10-2020 – Subclause 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. $VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 45 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 15 of 49

6dB & 99% Bandwidth Measurements

	Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass / Fail
က	5728.75	1	O-QPSK	250	2.51	1.64	0.50	Pass
and	5786.25	24	O-QPSK	250	2.51	1.64	0.50	Pass
Bal	5846.25	48	O-QPSK	250	2.51	1.63	0.50	Pass

Table 7-2. Conducted BW Measurements (250kbps)

	Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass / Fail
က	5728.75	1	O-QPSK	500	2.44	1.30	0.50	Pass
and	5786.25	24	O-QPSK	500	2.44	1.30	0.50	Pass
Bai	5846.25	48	O-QPSK	500	2.45	1.30	0.50	Pass

Table 7-3. Conducted BW Measurements (500kbps)

		Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass / Fail
Ī	3	5728.75	1	O-QPSK	1000	2.52	1.62	0.50	Pass
	Band	5786.25	24	O-QPSK	1000	2.52	1.63	0.50	Pass
	Ř	5846.25	48	O-QPSK	1000	2.53	1.62	0.50	Pass

Table 7-4. Conducted BW Measurements (1000kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 16 of 49	

Plot 7-1. 6dB BW & 99% OBW (O-QPSK, 5728.75MHz, 250kbps)

Plot 7-2. 6dB BW & 99% OBW (O-QPSK, 5786.25MHz, 250kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 17 of 10
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 17 of 49

Plot 7-3. 6dB BW & 99% OBW (O-QPSK, 5846.25MHz, 250kbps)

Plot 7-4. 6dB BW & 99% OBW (O-QPSK, 5728.75MHz, 500kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 10 of 10
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 18 of 49

Plot 7-5. 6dB BW & 99% OBW (O-QPSK, 5786.25MHz, 500kbps)

Plot 7-6. 6dB BW & 99% OBW (O-QPSK, 5846.25MHz, 500kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 10 of 10
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 19 of 49

Plot 7-7. 6dB BW & 99% OBW (O-QPSK, 5728.75MHz, 1000kbps)

Plot 7-8. 6dB BW & 99% OBW (O-QPSK, 5786.25MHz, 1000kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 20 01 49

Plot 7-9. 6dB BW & 99% OBW (O-QPSK, 5846.25MHz, 1000kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 24 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 21 of 49

7.3 Conducted Output Power and Max EIRP Measurement §15.407(a.3.i); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2020 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

ANSI C63.10-2020 – Subclause 12.4.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 22 01 49

FCC Conducted Output Power Measurements

	Frequency [MHz]	Channel	Detector	Conducted Powers [dBm]		Conducted Power Limit	Conducted Power Margin	
	[IVIIIZ]			250kbps	500kbps	1000kbps	[dBm]	[dB]
	5728.75	1	AVG	15.90	15.97	15.88	30.00	-14.12
	5786.25	24	AVG	15.86	15.98	15.81	30.00	-14.19
I	5846.25	48	AVG	15.98	15.88	15.98	30.00	-14.02

Table 7-5. FCC Maximum Conducted Output Power

FCC ID: BCG-A3001 IC: 579C-A3001	element)	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 23 of 49

ISED Conducted Output Power Measurements

Frequency [MHz]	Channel	Detector	Conduc	ted Power	s [dBm]	Conducted Power Limit		Ant. Gain [dBi]	Max e.i.r.p.
[IVITIZ]			250kbps	500kbps	1000kbps	[dBm]	Margin	[ubi]	[dBm]
5728.75	1	AVG	15.90	15.97	15.88	30.00	-14.12	-3.70	12.18
5786.25	24	AVG	15.86	15.98	15.81	30.00	-14.19	-3.70	12.11
5846.25	48	AVG	15.98	15.88	15.98	30.00	-14.02	-3.70	12.28

Table 7-6. ISED Maximum Conducted Output Power

Sample e.i.r.p. Calculation:

At 5846.25MHz, the average conducted output power was calculated to be 15.98 dBm with an Antenna gain of -3.7 dBi.

FCC ID: BCG-A3001 IC: 579C-A3001	element element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 24 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 24 of 49

7.4 Maximum Power Spectral Density

§15.407(a.3.i); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2020 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2020 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.725 - 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2020 – Subclause 12.4.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 500kHz
- 4. VBW ≥ 3MHz
- 5. Number of sweep points > 2 x (span/RBW)
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

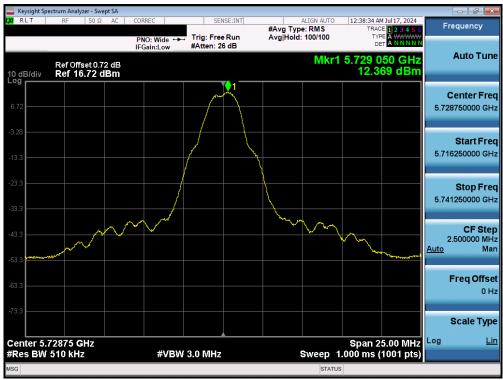
FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 25 of 49

Power Spectral Density Measurements

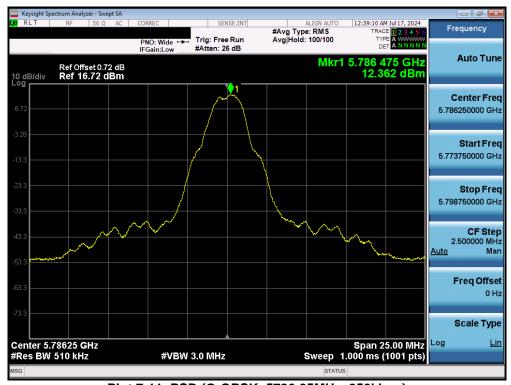
	Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
3	5728.75	1	O-QPSK	250	12.37	30.0	-17.63
Band	5786.25	24	O-QPSK	250	12.36	30.0	-17.64
Ä	5846.25	48	O-QPSK	250	12.37	30.0	-17.63

Table 7-7. Power Spectral Density Measurements (250kbps)

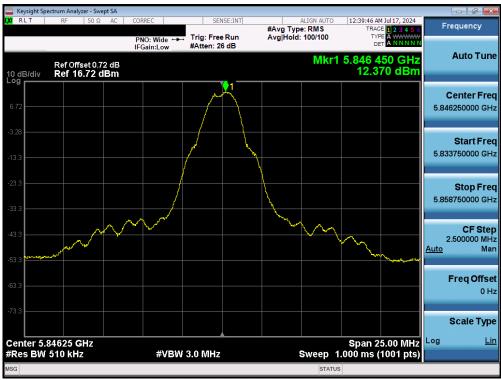
	Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
3	5728.75	1	O-QPSK	500	14.90	30.0	-15.10
Band	5786.25	24	O-QPSK	500	14.96	30.0	-15.04
ŭ	5846.25	48	O-QPSK	500	14.72	30.0	-15.28

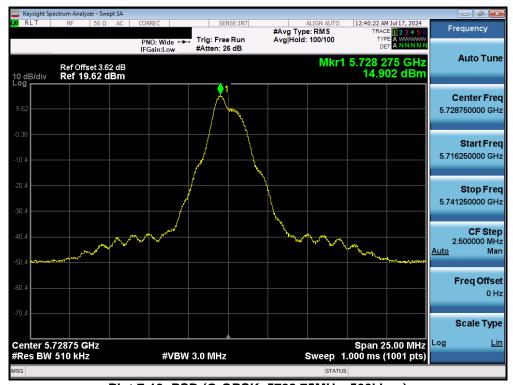

Table 7-8. Power Spectral Density Measurements (500kbps)

	Frequency [MHz]	Channel No.	Mode	Data Rate [kbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
က	5728.75	1	O-QPSK	1000	14.10	30.0	-15.90
Band	5786.25	24	O-QPSK	1000	13.65	30.0	-16.35
ĕ	5846.25	48	O-QPSK	1000	14.18	30.0	-15.82

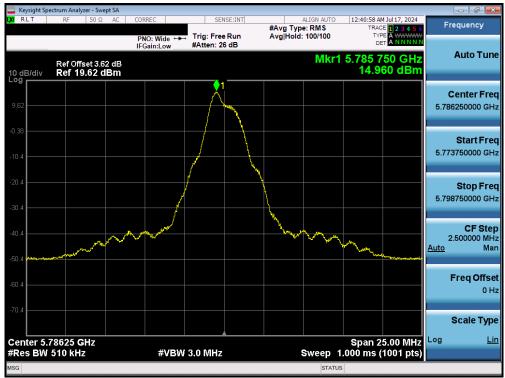

Table 7-9. Power Spectral Density Measurements (1000kbps)

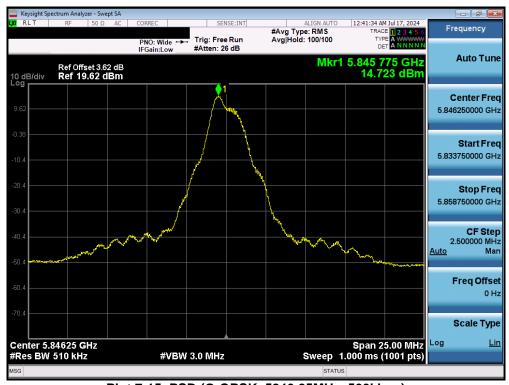
FCC ID: BCG-A3001 IC: 579C-A3001	element)	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 26 of 49


Plot 7-10. PSD (O-QPSK, 5728.75MHz, 250kbps)


Plot 7-11. PSD (O-QPSK, 5786.25MHz, 250kbps)

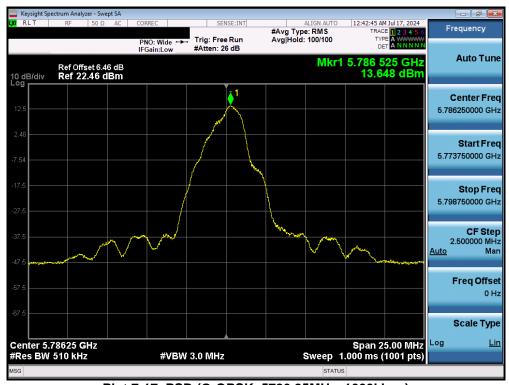
FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 27 of 49


Plot 7-12. PSD (O-QPSK, 5846.25MHz, 250kbps)


Plot 7-13. PSD (O-QPSK, 5728.75MHz, 500kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 28 01 49


Plot 7-14. PSD (O-QPSK, 5786.25MHz, 500kbps)


Plot 7-15. PSD (O-QPSK, 5846.25MHz, 500kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 49
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 29 01 49

Plot 7-16. PSD (O-QPSK, 5728.75MHz, 1000kbps)

Plot 7-17. PSD (O-QPSK, 5786.25MHz, 1000kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 30 of 49

Plot 7-18. PSD (O-QPSK, 5846.25MHz, 1000kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 31 of 49	

7.5 Radiated Spurious Emission – Above 1GHz

§15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2020 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels and power schemes were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.725 – 5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-10 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2020 – Subclauses 12.7.7.2, 12.7.6 KDB 789033 D02 v02r01 – Section G

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 49	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	raye 32 UI 49	
			11.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

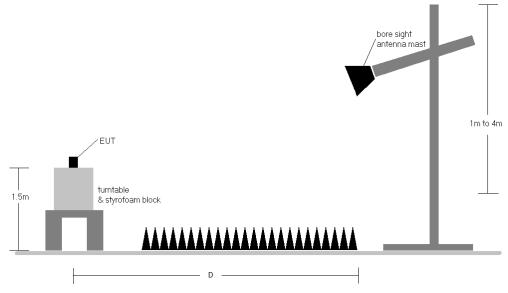


Figure 7-4. Test Instrument & Measurement Setup

FCC ID: BCG-A3001 IC: 579C-A3001	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 22 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 33 of 49

Test Notes

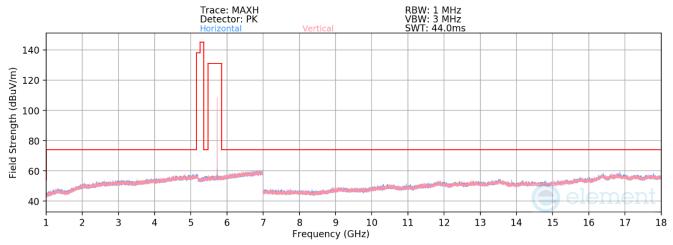
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-10.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-10. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas.
- 6. D is the measurement test distance and emissions 1-18GHz were measured at a 3 meters test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8. All supported modulation have been tested on the unit and only worst case configuration is reported.

Sample Calculations

Determining Spurious Emissions Levels

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Radiated Band Edge Measurement Offset


 The amplitude offset shown in the radiated restricted band edge plots in Section 7.5.2 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain

FCC ID: BCG-A3001 IC: 579C-A3001	element)	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dags 24 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 34 of 49	

7.5.1 Radiated Spurious Emission

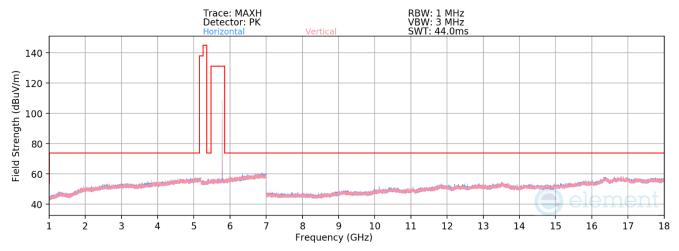
Plot 7-19. Radiated Spurious Emissions 1-18GHz (O-QPSK - 5728.75MHz)

Mode: O-QPSK

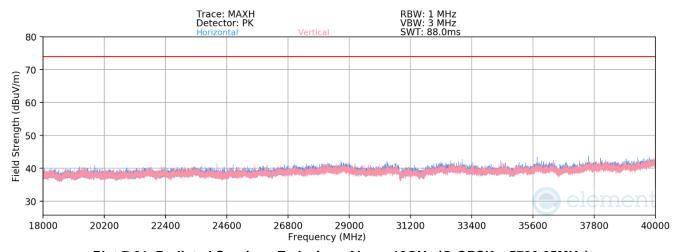
Data Rate: 250kbps

Distance of Measurements: 3 Meters

Operating Frequency: 5728.75MHz


Channel: 1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11457.50	Average	V	-	-	-82.86	15.86	40.00	53.98	-13.98
*	11457.50	Peak	V	-	-	-71.45	15.86	51.41	73.98	-22.57
	17186.25	Peak	V	-	-	-73.05	23.14	57.09	68.20	-11.11


Table 7-11. Radiated Spurious Emissions Measurements

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 40	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 35 of 49	

Plot 7-20. Radiated Spurious Emissions 1-18GHz (O-QPSK – 5786.25MHz)

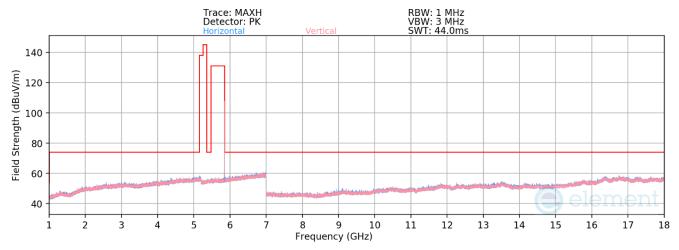
Plot 7-21. Radiated Spurious Emissions Above 18GHz (O-QPSK – 5786.25MHz)

Mode: O-QPSK

Data Rate: 250kbps

Distance of Measurements: 3 Meters

Operating Frequency: 5786.25MHz


Channel: 24

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11572.50	Average	V	-	-	-82.41	15.51	40.10	53.98	-13.88
*	11572.50	Peak	V	-	-	-70.65	15.51	51.86	73.98	-22.12
	17358.75	Peak	V	-	-	-73.13	23.85	57.72	68.20	-10.48

Table 7-12. Radiated Spurious Emissions Measurements

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 49	
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch		

Plot 7-22. Radiated Spurious Emissions 1-18GHz (O-QPSK - 5846.25MHz)

Mode:O-QPSKData Rate:250kbpsDistance of Measurements:3 MetersOperating Frequency:5846.25MHzChannel:48

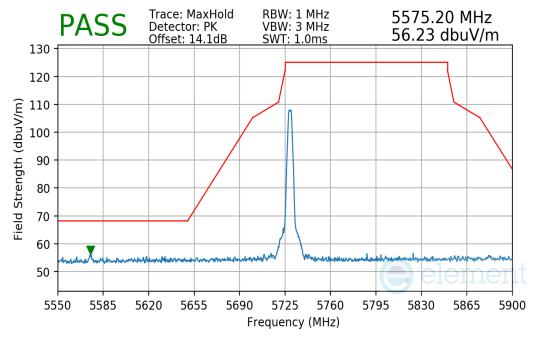
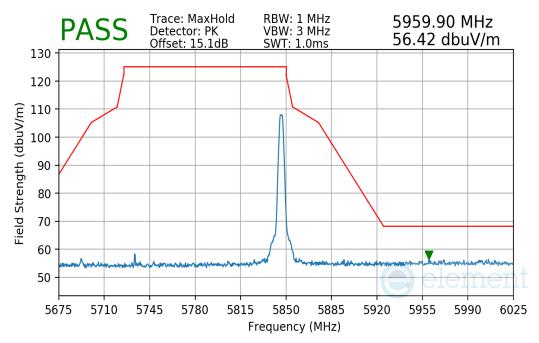
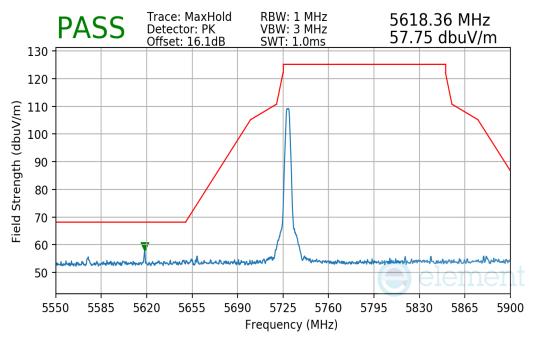
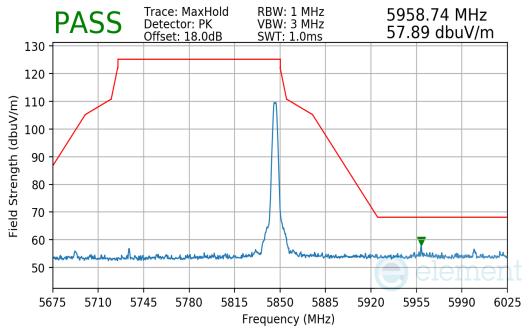

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11692.50	Average	Н	-	-	-82.69	16.09	40.40	53.98	-13.58
*	11692.50	Peak	Н	-	-	-70.91	16.09	52.18	73.98	-21.80
	17538.75	Peak	Н	-	-	-73.05	23.13	57.08	68.20	-11.12

Table 7-13. Radiated Spurious Emissions Measurements

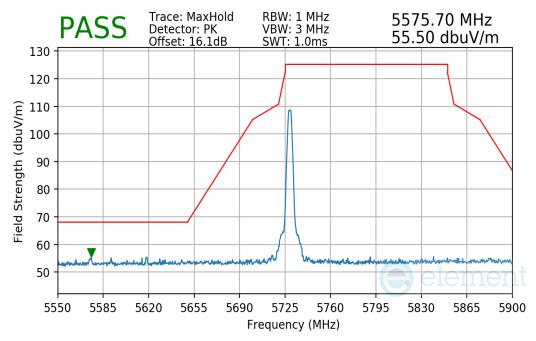

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 37 of 49

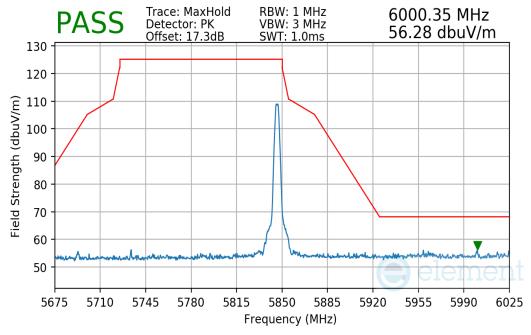
7.5.2 Radiated Band Edge Measurements §15.407(b.4) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]


Plot 7-23. Radiated Lower Band Edge Measurement (Pk, Ch. 1, O-QPSK, 250Kbps)


Plot 7-24. Radiated Upper Band Edge Measurement (Pk, Ch. 48, O-QPSK, 250Kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 38 of 49


Plot 7-25. Radiated Lower Band Edge Measurement (Pk, Ch. 1, O-QPSK, 500Kbps)


Plot 7-26. Radiated Upper Band Edge Measurement (Pk, Ch. 48, O-QPSK, 500Kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 39 of 49

Plot 7-27. Radiated Lower Band Edge Measurement (Pk, Ch. 1, O-QPSK, 1000Kbps)

Plot 7-28. Radiated Upper Band Edge Measurement (Pk, Ch. 48, O-QPSK, 1000Kbps)

FCC ID: BCG-A3001 IC: 579C-A3001	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogg 40 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 40 of 49

7.6 Radiated Spurious Emissions – Below 1GHz

§15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-14 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 - 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-14. Radiated Limits

Test Procedures Used

ANSI C63.10-2020

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. VBW = 300kHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCG-A3001 IC: 579C-A3001	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 44 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 41 of 49

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

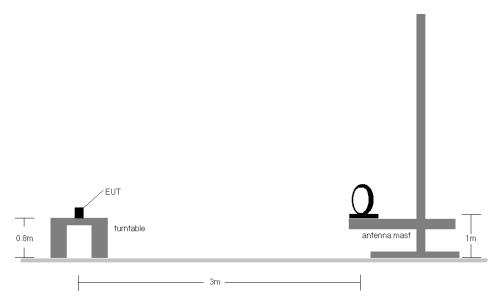


Figure 7-5. Radiated Test Setup < 30MHz

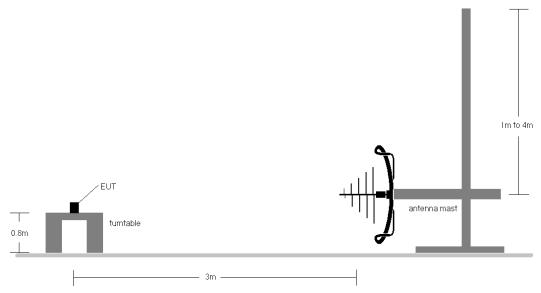


Figure 7-6. Radiated Test Setup < 1GHz

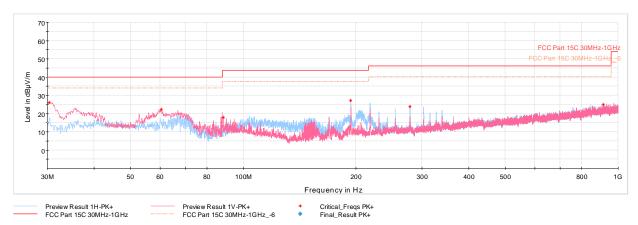
FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 40 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 42 of 49

Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-14.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes. For below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector for emissions within 6dB of the limit.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 9. All supported modulations have been tested on the unit and only worst case configuration is reported.
- 10. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT powered by AC/DC charger adaptor via USB-C cable with magnetic charger.
 - b. EUT powered by host PC via USB-C cable with magnetic charger.

Sample Calculations

Determining Spurious Emissions Levels


- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- o Margin [dB] = Field Strength Level [dB μ V/m] Limit [dB μ V/m]

FCC ID: BCG-A3001 IC: 579C-A3001	element)	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 42 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 43 of 49

Radiated Spurious Emissions (Below 1GHz)

§15.209; RSS-Gen [8.9]

Plot 7-29. RSE 30MHz - 1GHz (O-QPSK - Ch. 24), with AC/DC Adapter & magnetic charger

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
30.39	MaxPeak	V	100	244	-64.46	-16.40	26.14	40.00	-13.86
60.46	MaxPeak	٧	100	150	-68.86	-15.90	22.24	40.00	-17.76
88.44	MaxPeak	V	100	155	-69.92	-19.10	17.98	43.52	-25.54
193.59	MaxPeak	Н	200	153	-62.16	-17.60	27.24	43.52	-16.28
278.51	MaxPeak	Н	100	128	-67.63	-15.60	23.77	46.02	-22.25
913.72	MaxPeak	V	100	14	-78.76	-3.40	24.84	46.02	-21.18

Table 7-15. RSE 30MHz - 1GHz (O-QPSK - Ch. 24), with AC/DC Adapter & magnetic charger

FCC ID: BCG-A3001 IC: 579C-A3001	element)	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 44 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 44 of 49

7.7 AC Line Conducted Emissions Measurement

§15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for AC Line conducted spurious emissions. All data rates and modes were investigated for AC Line conducted spurious emissions.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted Limit (dBμV)			
(101112)	Quasi-peak	Average		
0.15 – 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30	60	50		

Table 7-16. Conducted Limits

Test Procedures Used

ANSI C63.10-2020, Subclause 6.2

Test Settings

Quasi-Peak Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Measurements

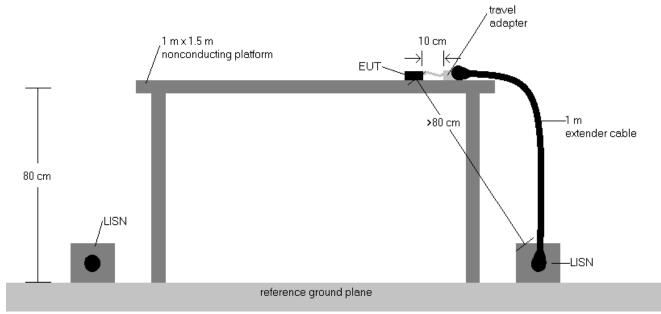
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

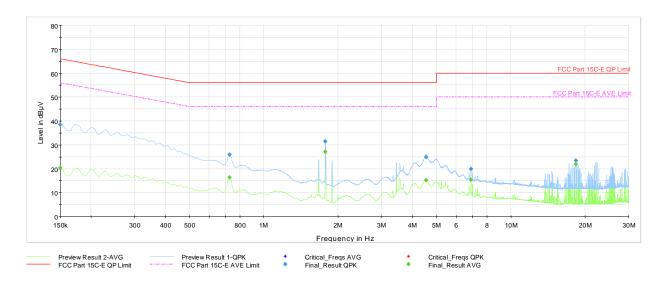
FCC ID: BCG-A3001 IC: 579C-A3001	element)	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 45 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 45 of 49

^{*}Decreases with the logarithm of the frequency.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

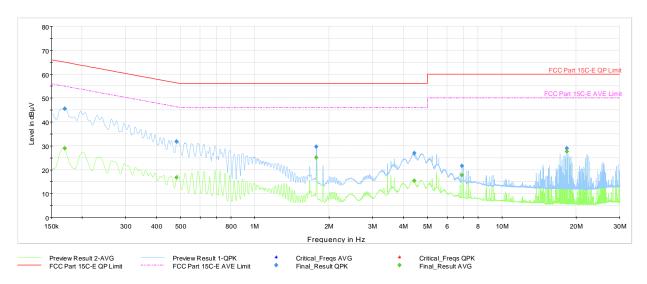



Figure 7-7. Test Instrument & Measurement Setup

Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported. The emissions found were not affected by the choice of channel used during testing.
- 2. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT powered by AC/DC adaptor via USB-C cable with magnetic charger.
 - b. EUT powered by host PC via USB-C cable with magnetic charger.
- 3. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 4. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 5. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Correction Factor (dB)
- 6. Margin (dB) = QP/AV Level (dB μ V) QP/AV Limit (dB μ V)
- 7. Traces shown in plots are made using quasi-peak and average detectors.
- 8. Deviations to the Specifications: None.

FCC ID: BCG-A3001 IC: 579C-A3001	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 40 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 46 of 49


Plot 7-30. AC Line Conducted Plot (O-QPSK - Ch. 24) (L1) with AC/DC Adapter & magnetic charger

Frequency [MHz]	Process State	QuasiPeak [dB µ V]	Averaqe [dB µ V]	Limit [dBµV]	Marqin [dB]	Line	PE
0.150	FINAL	_	20.43	56.00	-35.57	L1	GND
0.150	FINAL	38.6	_	66.00	-27.42	L1	GND
0.726	FINAL	_	16.32	46.00	-29.68	L1	GND
0.726	FINAL	25.9	_	56.00	-30.07	L1	GND
1.777	FINAL	_	27.16	46.00	-18.84	L1	GND
1.777	FINAL	31.5	_	56.00	-24.52	L1	GND
4.540	FINAL	25.0	_	56.00	-31.00	L1	GND
4.540	FINAL	_	15.25	46.00	-30.75	L1	GND
6.889	FINAL	19.9	_	60.00	-40.13	L1	GND
6.889	FINAL		15.46	50.00	-34.54	L1	GND
18.332	FINAL		21.84	50.00	-28.16	L1	GND
18.332	FINAL	23.4	_	60.00	-36.61	L1	GND

Table 7-17. AC Line Conducted (O-QPSK - Ch. 24) (L1) with AC/DC Adapter & magnetic charger

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 47 of 49

Plot 7-31. AC Line Conducted Plot (O-QPSK - Ch. 24) (N) with AC/DC Adapter & magnetic charger

Frequency [MHz]	Process State	QuasiPeak [dB µ V]	Averaqe [dBµV]	Limit [dBµ√]	Marqin [dB]	Line	PE
0.170	FINAL	_	28.97	54.95	-25.98	N	GND
0.170	FINAL	45.6	_	64.95	-19.40	N	GND
0.483	FINAL	_	16.73	46.29	-29.56	N	GND
0.483	FINAL	31.7	_	56.29	-24.55	N	GND
1.777	FINAL	_	25.03	46.00	-20.97	N	GND
1.777	FINAL	29.6	_	56.00	-26.44	N	GND
4.423	FINAL	_	15.32	46.00	-30.68	N	GND
4.425	FINAL	26.9	_	56.00	-29.08	N	GND
6.889	FINAL	21.5	_	60.00	-38.46	N	GND
6.889	FINAL	_	17.69	50.00	-32.31	Ν	GND
18.332	FINAL	_	27.62	50.00	-22.38	N	GND
18.332	FINAL	28.9	_	60.00	-31.08	N	GND

Table 7-18. AC Line Conducted (O-QPSK - Ch. 24) (N) with AC/DC Adapter & magnetic charger

FCC ID: BCG-A3001 IC: 579C-A3001	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 40 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 48 of 49

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Apple** Watch FCC ID: BCG-A3001, IC: 579C-A3001 is in compliance with is in compliance with Part 15 Subpart E (15.407) of the FCC Rules and RSS-247 of the Innovation, Science, and Economic Development Canada Rules.

FCC ID: BCG-A3001 IC: 579C-A3001	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dags 40 of 40
1C2405230021-13.BCG	6/12/2024 - 7/19/2024	Watch	Page 49 of 49