

Element Washington DC LLC

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

MEASUREMENT REPORT FCC PART 15.407 Narrowband UNII BDR

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States

Date of Testing: 6/7/2022 - 9/24/2022 Test Site/Location: Element Washington DC LLC, Morgan Hill, CA, USA Test Report Serial No.: 1C2204080014-04-R1.BCG

FCC ID: APPLICANT:

BCG-A2699

Apple Inc.

Application Type: Model/HVIN: EUT Type: Frequency Range: Modulation Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification A2699 Wireless Earbud 5157 – 5245MHz, 5731 – 5844MHz GFSK Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C2204080014-04-R1.BCG) supersedes and replaces the previously issued test report (1C2204080014-04.BCG) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: BCG-A2699	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 1 of 55
			\/ 10 5 12/15/2021

TABLE OF CONTENTS

1.0	INTR	ODUCTI	ION	4			
	1.1	Scop	De				
	1.2	Elem	nent Washington DC LLC Test Location				
	1.3	Test	Facility / Accreditations				
2.0	PRO	DUCT IN	FORMATION	5			
	2.1	Equip	pment Description	5			
	2.2	Devic	ce Capabilities	5			
	2.3	Anter	nna Description	6			
	2.4	Test	Support Equipment	6			
	2.5	Test	Configuration	7			
	2.6	Softw	ware and Firmware	7			
	2.7	EMIS	Suppression Device(s)/Modifications	7			
3.0	DESC	CRIPTIO	N OF TESTS	8			
	3.1	Evalu	uation Procedure				
	3.2	AC L	ine Conducted Emissions				
	3.3	Radia	ated Emissions	9			
	3.4	Envir	ronmental Conditions	9			
4.0	ANTE	ENNA RE	EQUIREMENTS	10			
5.0							
6.0	TEST	EQUIP	MENT CALIBRATION DATA	12			
7.0	TEST	RESUL	TS	13			
	7.1	Sumr	mary				
	7.2	26dB	3 & 99% Bandwidth Measurement – BDR				
	7.3		& 99% Bandwidth Measurement – BDR				
	7.4		ducted Output Power and Max EIRP Measurement – BDR				
	7.5		imum Power Spectral Density – BDR				
	7.6	Radia	ated Spurious Emission – Above 1GHz	30			
		7.6.1	Radiated Spurious Emissions (1-18GHz)				
		7.6.2	Radiated Spurious Emission (Above 18GHz)				
		7.6.3	Radiated Spurious Emissions (1-18GHz)				
		7.6.4	Radiated Spurious Emission (Above 18GHz)				
		7.6.5	Radiated Band Edge Measurements				
	7.7	Radia	ated Spurious Emissions – Below 1GHz				
	7.8	AC L	ine Conducted Emissions Measurement				
8.0	CON	CLUSION	N	54			
9.0	APPE	ENDIX A					

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 2 of 55
			V 10 5 12/15/2021

MEASUREMENT REPORT

UNII Band	Mode	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)		
1	GFSK	5157 - 5245	9.931	9.97		
3	GFSK	5731 - 5844	11.272	10.52		
FCC EUT Overview						

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Fage 3 01 55
			V 10.5 12/15/2021

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Washington DC LLC Test Location

These measurement tests were conducted at the Element Washington DC LLC facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Washington DC LLC located in Morgan Hill, CA 95037, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 4 of 55	
			V/ 10 5 12/15/2021	

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Wireless Left Earbud FCC ID: BCG-A2699**. The test data contained in this report pertains only to the emissions due to the EUT's Narrowband UNII transmitter.

• This Narrowband UNII module has been tested by manufacturer and the following were confirmed:

- A) The hopping sequence is pseudorandom
- B) 79 channels can be used at a time for hopping
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequence with the transmit signal
- E) Narrowband UNII can only hop within the same UNII band and cannot hop between bands

Test Device Serial No.: HM6HV17018JQ, HM6HR0P518JQ, HM6HR0PR18JQ, HM6HK0XE18JQ

2.2 Device Capabilities

This device contains the following capabilities:

Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8, HDRp4, HDRp8), NB UNII (1x, LE2M, HDR4, HDR8, HDRp4, HDRp8).

Band 1	Band 3	
Frequency (MHz)	Frequency (MHz)	
5157	5131	
:	:	
5201	5788	
:	:	
5245	5844	

Table 2-1. NB UNII BDR Frequency of Operations

Notes:

This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the U-NII Band 1 U-NII Band 3. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v02r01 and ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Measured Duty Cycle					
Mode	Band	Duty Cycle [%]			
NB UNII BDR	UNII - 1	76.7			
	UNII - 3	76.6			

Table 2-2. Measured Duty Cycles

 Additionally, this device is sold together in the same package as a system with FCC ID: BCG-A2698 and FCC ID: BCG-A2700. Co-Tx configurations were tested, and the worst case has been included in the RF BTLE Report.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 5 of 55
			V/ 10 5 12/15/2021

Antenna Description 2.3

Following antenna gains provided by manufacturer were used for testing.

Frequency [MHz]	Antenna Gain (dBi)		
5157 - 5245	-3.4		
5731 - 5844	-6.0		

Table 2-3. Highest Antenna Gain

See Appendix A for full antenna specs sheet.

Test Support Equipment 2.4

1	Apple Macbook	Model:	A2289	S/N:	FVFDHH1UP3XY			
	w/ AD/DC Adapter	Model:	A2164	S/N:	N/A			
2	Apple Airpod Charging Case	Model:	A2700	S/N:	GHQ7JH6VWH			
	Apple Airpod (Right)	Model:	A2698	S/N:	HM6HQ1R418JP			
3	Apple Lightning Cable	Model:	N/A	S/N:	N/A			
	W/ AD/DC Adapter	Model:	A2305	S/N:	C4H0106004QPF4FAD			
4	Crispy Bacon Arrow Cable	Model:	N/A	S/N:	591-0580-887-2			
	ZZ21xx HAM UART Cable	Model:	N/A	S/N:	F7514HMN0031983			
5	Mussel_FA Board	Model:	N/A	S/N:	920-11282-01			
	Table 2-4. Test Support Equipment List							

Table 2-4. Test Support Equipment List

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 6 of 55
	•		V 10 5 12/15/2021

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, and 7.5 for antenna port conducted emissions test setups.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated.

- EUT charged by charging case and powered by AC/DC adaptor with lightning cable.
- EUT charged by charging case and powered by host PC with lightning cable.

2.6 Software and Firmware

The test was conducted with firmware version 5A335 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 55
1C2204080014-04-R1.BCG 6/7/2022 - 9/24/2022 Wireless Earbud		Page 7 of 55	
			V/ 10 E 10/1E/2021

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x $3.66m \times 2.7m$ shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz - 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.50.40.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 9 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 8 of 55
			V/ 10 5 12/15/2021

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of EE	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 9 of 55	
			\/ 10 5 12/15/2021	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 10 of 55
			V 10 5 12/15/2021

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.77
Line Conducted Disturbance	2.70
Radiated Disturbance (<30MHz)	4.38
Radiated Disturbance (30MHz - 1GHz)	4.75
Radiated Disturbance (1 - 18GHz)	5.20
Radiated Disturbance (>18GHz)	4.72

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 11 of 55
			V 10.5 12/15/2021

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial #
Agilent	N9020A	MXA Signal Analyzer	4/26/2022	Annual	4/26/2023	MY56470202
Anritsu	MA2411B	Pulse Power Sensor	11/30/2021	Annual	11/30/2022	1726261
Anritsu	MA2411B	Pulse Power Sensor	5/19/2022	Annual	5/19/2023	1911106
Anritsu	ML2495A	Power Meter	12/6/2021	Annual	12/6/2022	1039008
Anritsu	ML2496A	Power Meter	11/29/2021	Annual	11/29/2022	1840005
ETS-Lindgren	3117	Double Ridged Guide Horn Antenna (1-18 GHz)	5/24/2022	Annual	5/24/2023	240049
ETS-Lindgren	3142E	Biconilog Antenna - (30MHz-6GHz)	10/21/2021	Annual	10/21/2022	208204
Rohde & Schwarz	ENV216	Two-Line V-Network	1/14/2022	Annual	1/14/2023	101364
Rohde & Schwarz	FSVA3044	Signal Analyzer 44GHz	5/12/2022	Annual	5/12/2023	101098
Rohde & Schwarz	FSW43	Signal and Spectrum Analyzer 2Hz to 43GHz	5/19/2022	Annual	5/19/2023	104093
Rohde & Schwarz	FSW67	Signal and Spectrum Analyzer (2Hz-67GHz)	4/21/2022	Annual	4/21/2023	101366
Rohde & Schwarz	TS-PR18	Pre Amplifier 1-18GHz	1/6/2022	Annual	1/6/2023	101639
Rohde & Schwarz	TS-PR1	Preamplifier - Antenna System; 30MHz - 1GHz	4/18/2022	Annual	4/18/2023	102081
Rohde & Schwarz	180-442A-KF	Horn (Small)	1/19/2022	Annual	1/19/2023	T058701-2
Rohde & Schwarz	TS-PR1840	Pre Amplifier 18-40GHz	4/18/2022	Annual	4/18/2023	100050
Rohde & Schwarz	HFH2-Z2	Loop Antenna	4/3/2022	Annual	4/3/2023	100546

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 12 of 55
	•		V 10 5 12/15/2021

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
---------------	------------

FCC ID: BCG-A2699

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407	26dB Bandwidth	N/A		N/A	Section 7.2
15.247(a)(2)	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
2.1049	Occupied Bandwidth	N/A	CONDUCTED	PASS	Section 7.2
15.407 (a.1.iv)	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a)		PASS	Section 7.3
15.407 (a.1.iv)	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a)		PASS	Section 7.5
15.407(b.1)	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b)		PASS	Section 7.6
15.205, 15.407(b.1)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Section 7.6, 7.7
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	AC LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1. All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "UNII Automation," Version 7.0.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.2.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 13 of 55
			V 10.5 12/15/2021

7.2 26dB & 99% Bandwidth Measurement – BDR §2.1049; §15.407

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Subclause 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW > 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

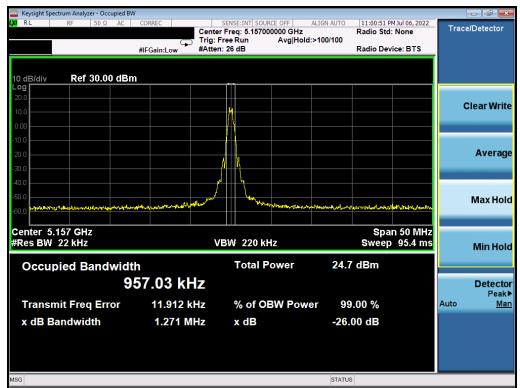
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

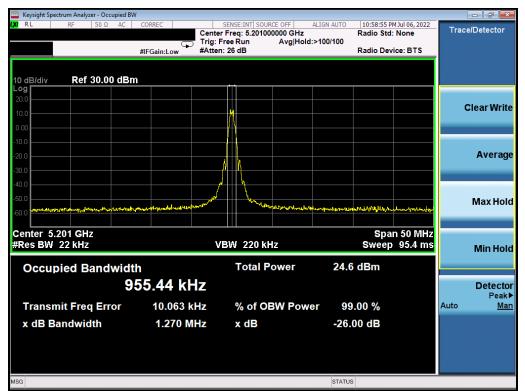
Test Notes

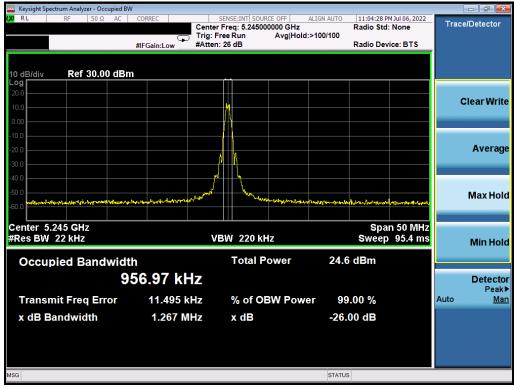
None


FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 14 of 55
	•		V 10 5 12/15/2021

26dB & 99% Bandwidth Measurements

	Frequency [MHz]	Mode	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 26dB Bandwidth [MHz]
Ξ	5157	GFSK	1	0.9570	1.2710
Band	5201	GFSK	1	0.9554	1.2700
ä	5245	GFSK	1	0.9570	1.2670


Table 7-2. Conducted Bandwidth Measurements


Plot 7-1. 26dB BW & 99% OBW (BDR GFSK - 5157MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 15 of 55
		-	V 10 5 12/15/2021

Plot 7-3. 26dB BW & 99% OBW (BDR GFSK - 5245MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 16 of 55
	•		V 10.5 12/15/2021

7.3 6dB & 99% Bandwidth Measurement – BDR §2.1049; §15.407 (e)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Subclause 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

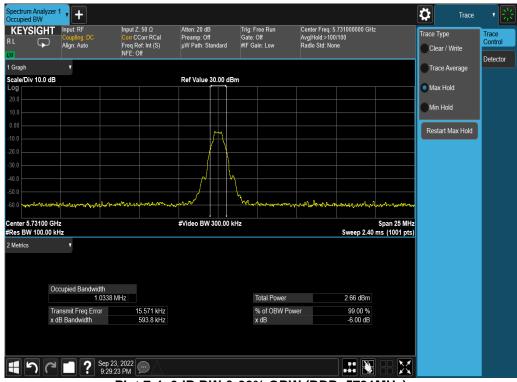
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

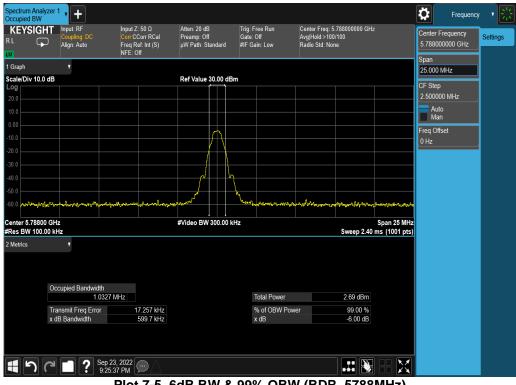
Test Notes

None

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 17 of 55
	•		V 10 5 12/15/2021


6dB & 99% Bandwidth Measurements

		Frequency [MHz]	Mode	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass / Fail
	3	5731	GFSK	1	1.0338	0.5938	0.50	Pass
	Band	5788	GFSK	1	1.0327	0.5997	0.50	Pass
	Ő	5844	GFSK	1	1.0373	0.5986	0.50	Pass


Table 7-3. Conducted BW Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of FF	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 18 of 55	
	•		V 10.5 12/15/2021	

Plot 7-4. 6dB BW & 99% OBW (BDR, 5731MHz)

Plot 7-5. 6dB BW & 99% OBW (BDR, 5788MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 19 of 55
	•		V 10.5 12/15/2021

Spectrum Analy Occupied BW							Trace	- 7 袋
KEYSIGH	Counting: DC	Input Ζ: 50 Ω Corr CCorr RCal	Atten: 20 dB Preamp: Off	Trig: Free Run Gate: Off	Center Freq: 5.8440000 Avg Hold:>100/100	00 GHz	Trace Type	Trace
RL 두	Align: Auto	Freq Ref: Int (S) NFE: Off	µW Path: Standard	#IF Gain: Low	Radio Std: None		Clear / Write	Control
1 Graph	.						T	Detector
Scale/Div 10.0			Ref Value 30.00 dBr	m			Trace Average	
Log							Max Hold	
20.0							Min Hold	
10.0								
0.00							Restart Max Hold	
-10.0								
-20.0								
-30.0			+ $A + R$					
-40.0			<u> </u>					
-50.0				↓				
-60.0 pm-almhay	monthe marked and the second	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	and the second second	When Maliga mariful and	. Mandon and Mapping An	William grand and a Constant		
Center 5.84400	GHz		#Video BW 300.00 kl	Hz		Span 25 MHz		
#Res BW 100.0	00 kHz				Swee	p 2.40 ms (1001 pts)		
2 Metrics	¥							
	Occupied Bandwidth							
	1.0373	MHz		Total Power	2.63	dBm		
	Transmit Freq Error	14.285 kHz		% of OBW Pow		00 %		
	x dB Bandwidth	598.6 kHz		x dB	-6.0	0 dB		
1 5	C Sep 2 9:27	23, 2022						

Plot 7-6. 6dB BW & 99% OBW (BDR, 5844MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 20 of 55
			V/ 10 5 12/15/2021

7.4 Conducted Output Power and Max EIRP Measurement – BDR <u>§15.407(a.1.iv)</u>

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. B is the 26dB BW per FCC 15.407.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

ANSI C63.10-2013 – Subclause 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 21 of 55
			V 10 5 12/15/2021

Conducted Output Power Measurements

Freq [MHz]	Detector	Conducted Power [dBm]	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5157	AVG	9.91	23.98	-14.07
5201	AVG	9.95	23.98	-14.03
5245	AVG	9.97	23.98	-14.01
5745	AVG	10.52	30.00	-19.48
5785	AVG	10.46	30.00	-19.54
5825	AVG	10.38	30.00	-19.62

Table 7-4. FCC Maximum Conducted Output Power

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 22 of 55
			V 10 5 12/15/2021

7.5 Maximum Power Spectral Density – BDR

§15.407(a.1.iv)

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz band, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Subclause 12.3.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

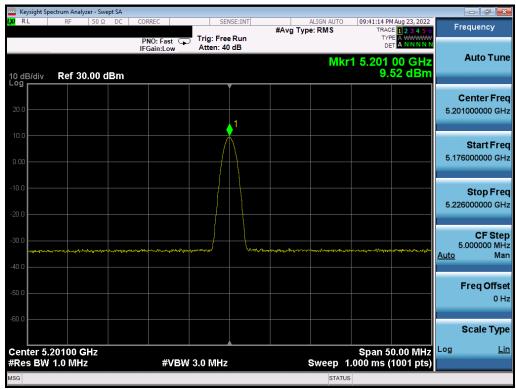
Test Notes

None

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of EE	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 23 of 55	
			V 10 5 12/15/2021	

Power Spectral Density Measurements

	Frequency [MHz]	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/MHz]	Max Power Density [dBm/MHz]	Margin [dB]
1	5157	GFSK	1	9.72	11.0	-1.28
Band	5201	GFSK	1	9.52	11.0	-1.48
Ő	5245	GFSK	1	9.80	11.0	-1.20


Table 7-5. Power Spectral Density Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of FF	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 24 of 55	
			V 10 5 12/15/2021	

L RF 50 Ω AC CORREC SENSE:INT ALIGN AUTO 06:30:29 PM Aug 19, 2022 #Avg Type: RMS TRACE 12, 3, 4, 56 Trig: Free Run IFGain:Low Atten: 40 dB Mkr1 5.157 00 GHz 9.72 dBm Center Fr 5.15700000 G Start Fr 5.132000000 G
PNO: Fast Trig: Free Run Trig: Free Run Trig: Free Run IFGain:Low Atten: 40 dB Der Annunt Ref Offset 1.16 dB Mkr1 5.157 00 GHz B/div Ref 30.00 dBm 9.72 dBm 1 5.15700000 G 5.15700000 G Start Free
Center Fr 5.15700000 G Start Fr
Center Fr 5.15700000 G Start Fr
Stop Fr 5.182000000 G
CF Str 5.00000 M Auto
Freq Offs 0
Scale Ty
ter 5.15700 GHz Span 50.00 MHz Sweep 1.000 ms (1001 pts)
STATUS

Plot 7-7. PSD (BDR GFSK – 5157MHz)

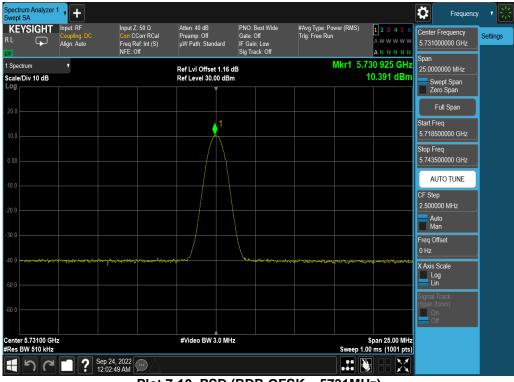
Plot 7-8. PSD (BDR GFSK – 5201MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage OF of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 25 of 55
			V 10.5 12/15/2021

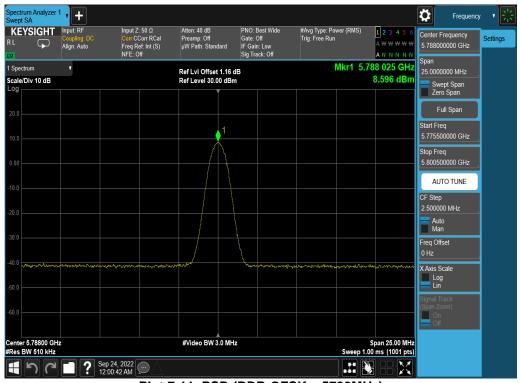
	ctrum Analyze										
L <mark>XI</mark> RL	RF	50 Ω DC	CORREC	SEI	SE:INT	#Avg Typ	ALIGN AUTO	09:42:13 P	Aug 23, 2022	Fr	equency
			PNO: Fast G	Trig: Free				TYP			
			IFGain:Low	Atten: 40	dB		B.G.Lee				Auto Tune
	Bof 20	00 dBm					INIKI	1 5.245 9 8	00 GHZ 02 dBm		
10 dB/div	Rel 30.	оо авті		,				1			
										(Center Freq
20.0										5.24	5000000 GHz
					1						
10.0				1	1						Start Freq
0.00					\mathbf{A}					5.22	0000000 GHz
0.00											
-10.0											
										5.07	Stop Freq 0000000 GHz
-20.0				<u> </u>						5.27	0000000 GHZ
-30.0										F	CF Step 5.000000 MHz
and the second second	وهدلو محارك وسيتجمع تعريكهم	an shared and a second	and and a second and the second s	annow at	hanne	******	Carley granteen allowed	may have the	and the second	Auto	Man
-40.0											
											Freq Offset
-50.0											0 Hz
-60.0											
-60.0											Scale Type
Center 5.2		IZ						Span 5	0.00 MHz	Log	Lin
#Res BW	1.0 WHZ		#VBV	V 3.0 MHz				1.000 ms (1001 pts)		
MSG							STATU	s			

Plot 7-9. PSD (BDR GFSK – 5245MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Fage 20 01 55
			V/ 10 5 12/15/2021



	Frequency [MHz]	Mode	Data Rate [Mbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
3	5731	GFSK	1	10.39	30.0	-19.61
and	5788	GFSK	1	8.60	30.0	-21.40
Bai	5844	GFSK	1	9.18	30.0	-20.82


Table 7-6. Power Spectral Density Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of FF	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 27 of 55	
			V 10.5 12/15/2021	

Plot 7-10. PSD (BDR GFSK – 5731MHz)

Plot 7-11. PSD (BDR GFSK – 5788MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 28 of 55
	•		V 10.5 12/15/2021

Keysight	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS) Trig: Free Run	1 2 3 4 5 6 A \vee vee vee vee vee vee vee vee vee ve	Center Frequency 5.844000000 GHz Span	Setting
Spectrum cale/Div 10 dB	T		Ref LvI Offset 1.16 Ref Level 30.00 dBr		Mkr1 5.8	344 000 GHz 9.176 dBm	25.0000000 MHz	
0.0							Zero Span Full Span	
			1				Start Freq 5.831500000 GHz	
							Stop Freq 5.856500000 GHz	
							AUTO TUNE CF Step	
							2.500000 MHz Auto Man	
.0							Freq Offset 0 Hz	
.0	wy/hillinger/s-yeerleitour	<u>ราให้</u> ในที่ให้ครามมากัสมารณ์และ			na balan di kana na kana na kana na ka	and may love had a	X Axis Scale Log Lin	
							Signal Track (Span Zoom) On Off	
nter 5.84400 GH es BW 510 kHz			#Video BW 3.0 MH	lz	Sweep 1.	Span 25.00 MHz 00 ms (1001 pts)		

Plot 7-12. PSD (BDR GFSK – 5844MHz)

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 29 of 55
			V/ 10 5 12/15/2021

7.6 Radiated Spurious Emission – Above 1GHz §15.407(b) §15.205 §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels and data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.25 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725 – 5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-7 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-7. Radiated Limits

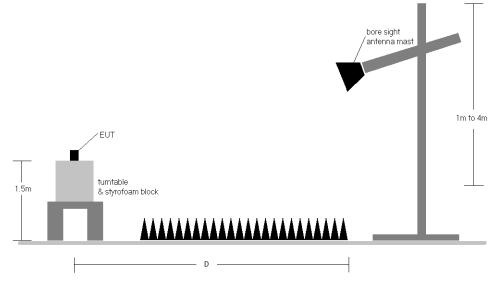
Test Procedures Used

ANSI C63.10-2013 – Subclauses 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of EE	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 30 of 55	
			V/ 10 5 12/15/2021	

Test Settings

Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 31 of 55
	•	-	V 10.5 12/15/2021

Test Notes

- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-7.
- 2. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-7. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas.
- 6. D is the measurement test distance and emissions 1-18GHz were measured at a 3 meters test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8. All data rates were investigated and only the worst case is reported.
- 9. The unit was tested with all possible modes and only the highest emission is reported.

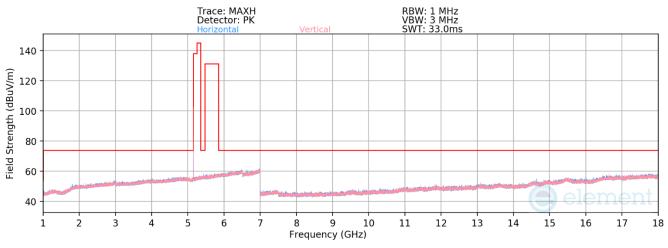
Sample Calculations

Determining Spurious Emissions Levels

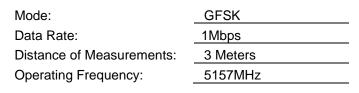
- \circ Field Strength Level [dB_µV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.6.5 was calculated using the formula:

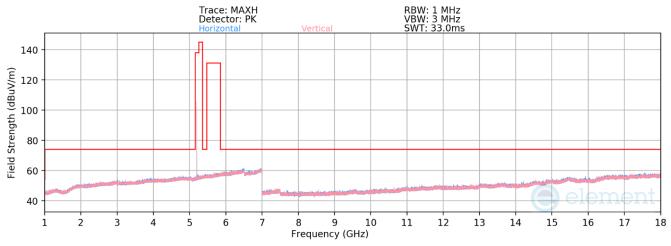

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 32 of 55
			V 10 5 12/15/2021



7.6.1 Radiated Spurious Emissions (1-18GHz)

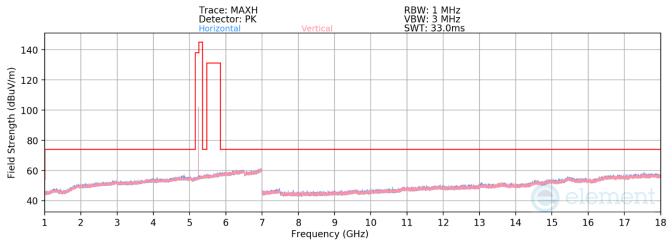
§15.407(b) §15.205 §15.209



	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10314.00	Peak	н	278	228	-66.50	10.34	0.00	50.84	68.23	-17.39
*	15471.00	Avg	н	264	303	-82.49	18.64	1.16	44.31	53.98	-9.67
*	15471.00	Peak	Н	264	303	-70.93	18.64	0.00	54.71	73.98	-19.27

Table 7-8. Radiated Emissions Measurements

FCC ID: BCG-A2699			Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 33 of 55	
	•		V 10 5 12/15/2021	


GFSK
1Mbps
3 Meters
5201MHz

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10402.00	Peak	Н	291	294	-68.87	10.82	0.00	48.95	68.23	-19.28
*	15603.00	Avg	Н	271	276	-83.66	18.04	1.16	42.54	53.98	-11.44
*	15603.00	Peak	Н	271	276	-72.69	18.04	0.00	52.35	73.98	-21.63

Table 7-9. Radiated Emissions Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 34 of 55
			V 10.5 12/15/2021

GFSK
1Mbps
3 Meters
5245MHz

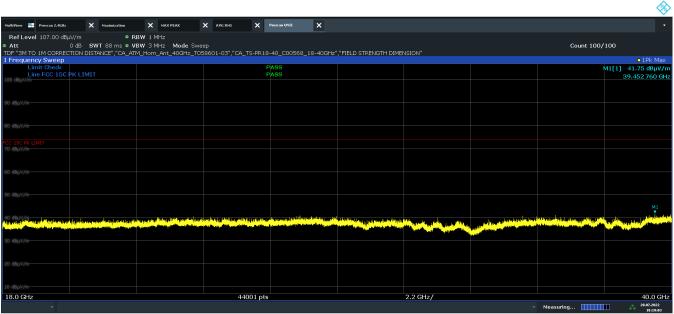
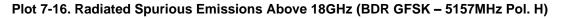

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10490.00	Peak	Н	264	245	-67.71	11.03	0.00	50.32	68.23	-17.91
*	15735.00	Avg	н	312	300	-81.34	17.33	1.16	44.15	53.98	-9.83
*	15735.00	Peak	Н	312	300	-70.75	17.33	0.00	53.58	73.98	-20.40

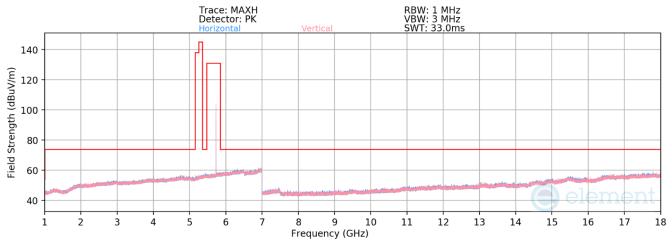
Table 7-10. Radiated Emissions Measurements


FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 35 of 55	
			V 10 5 12/15/2021	

7.6.2 Radiated Spurious Emission (Above 18GHz)

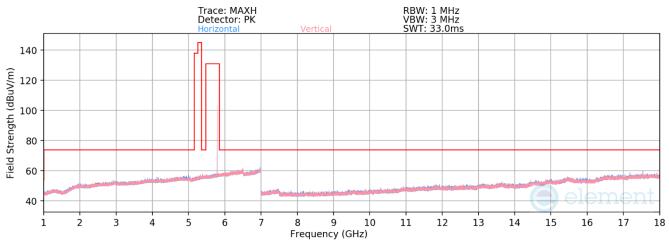
18:19:04 20.07.2022

	X Maximization	× MAX PEAK	X AVG RMS X	Prescan UNII X					
e fLevel 107.00 dBμV tt 0		RBW 1 MHz VBW 3 MHz Mode Sw	een					Count 100/	100
"3M TO 1M CORRECT.			058601-03","CA_TS-PR18	-40_C00568_18-40GHz	","FIELD STRENGTH DIME	NSION"		Count 1007	
equency Sweep Limit Check				ASS					● 1Pk N M1[1] 41.93 dB _F
Line FCC 15C PI				ASS					39.878 250
uV/m	and the second states of the backwall	All the standard states and states at			and the second	and the second	الاعتباد المتعادي	فأأقرى فالغري فيعيده والتعجير بتريط	مرالية مالية منابعة
and the second s		and the second state of the second states as	and the second difference of the second differ	and the second secon	and the second			New York Control of Street, or St	All and the second s
) GHz			44001 pts			2.2 GHz/		Measuring	40.0


18:20:59 20.07.2022

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of FF	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 36 of 55	
	•		V 10.5 12/15/2021	

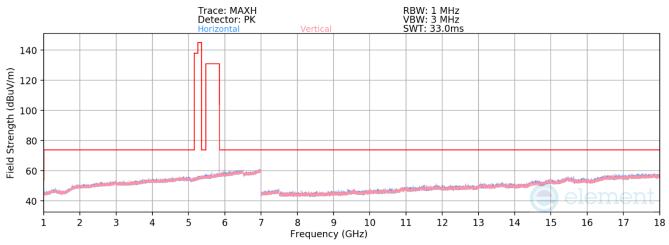
7.6.3 Radiated Spurious Emissions (1-18GHz)


Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5731MHz

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11462.00	Avg	Н	236	316	-82.47	12.46	1.16	38.15	53.98	-15.83
*	11462.00	Peak	Н	236	316	-71.09	12.46	0.00	48.37	73.98	-25.61
	17193.00	Peak	Н	395	258	-72.41	21.81	0.00	56.40	68.23	-11.83

Table 7-11. Radiated Emissions Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 37 of 55	
	•		V 10.5 12/15/2021	


Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5788MHz

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11576.00	Avg	Н	250	298	-82.33	12.45	1.16	38.28	53.98	-15.70
*	11576.00	Peak	Н	250	298	-70.71	12.45	0.00	48.74	73.98	-25.24
	17364.00	Peak	Н	305	252	-73.62	21.74	0.00	55.12	68.23	-13.11

Table 7-12. Radiated Emissions Measurements

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 38 of 55	
	•		V 10 5 12/15/2021	

Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5844MHz

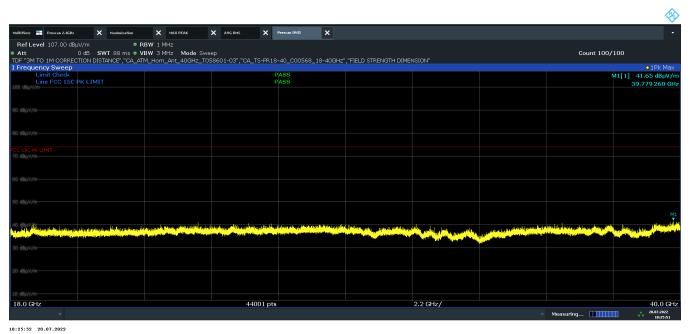
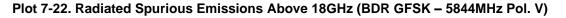

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Duty Cycle Correction [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11688.00	Avg	Н	243	313	-81.41	12.45	1.16	39.20	53.98	-14.78
*	11688.00	Peak	Н	243	313	-70.51	12.45	0.00	48.94	73.98	-25.04
	17532.00	Peak	Н	382	242	-71.18	22.69	0.00	58.51	68.23	-9.72

Table 7-13. Radiated Emissions Measurements

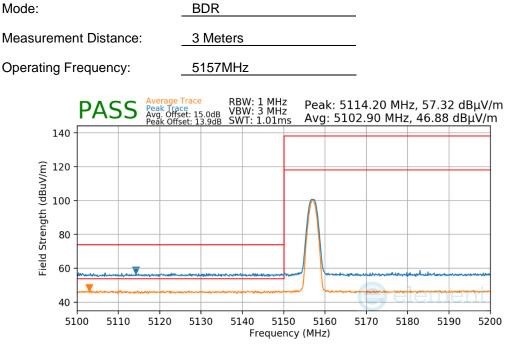
FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 39 of 55	
	•		V 10 5 12/15/2021	


7.6.4 Radiated Spurious Emission (Above 18GHz)

Plot 7-21. Radiated Spurious Emissions Above 18GHz (BDR GFSK – 5844MHz Pol. H)

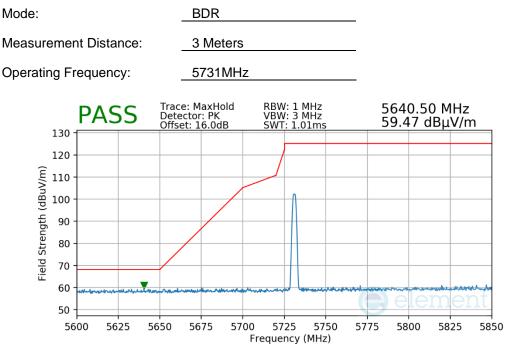
w 📑 Prescan 2.4GHz	× Maximization	× MAX PEAK	X AVG RMS X	Prescan UNII 🗙					
Level 107.00 dBµV/m		3W 1 MHz							
		W 3 MHz Mode Swe		18-40 000569 18-40	GHz", "FIELD STRENGTH DIM	ENSION"		Count 100,	100
quency Sweep	ISTANCE , CALAIN								• 1Pk №
Limit Check Line FCC 15C PK LIM				PASS PASS					M1[1] 41.73 dB _F 39.878 750
IV/m	the second by		الاردين فعالمان والعار والم	a that old be assessed in the station		and the state of the	and the second	uni	the stand of the state
		and the second second second second	and a static static static static	Constitution of the second states of the second sta			and the second second second	And the state of the second	Warner
			44001 p			2.2 GHz/			40.0

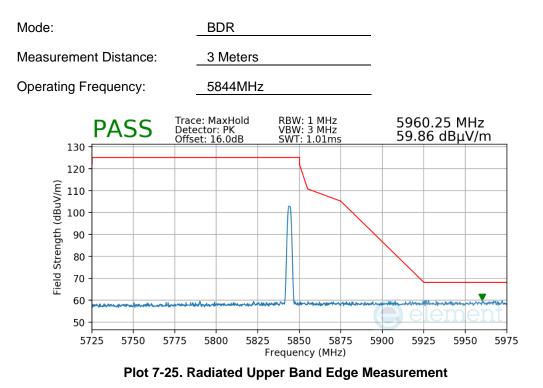
18:24:30 20.07.2022


FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 40 of 55	
	•		V 10.5 12/15/2021	

7.6.5 Radiated Band Edge Measurements §15.407(b.1) §15.205 §15.209

The amplitude offset shown in the following plots for average measurements was calculated using the formula:


Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain


Plot 7-23. Radiated Lower Band Edge Measurement

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 41 of 55	
	•		V 10 5 12/15/2021	

FCC ID: BCG-A2699	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of FF
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 42 of 55
			V 10.5 12/15/2021

7.7 Radiated Spurious Emissions – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-14 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-14. Radiated Limits

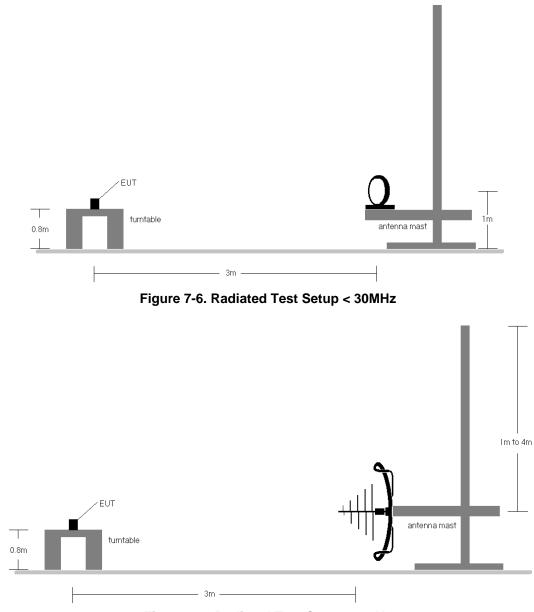
Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. VBW = 300kHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 43 of 55
			V/ 10 5 12/15/2021

The EUT and measurement equipment were set up as shown in the diagrams below.

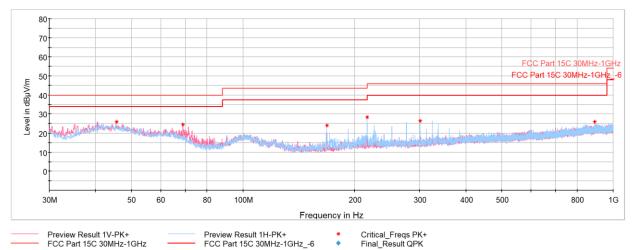
FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 44 of 55	
	•		V 10.5 12/15/2021	

Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-14.
- The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes. For below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector for emissions within 6dB of the limit.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 9. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT charged by charging case and powered by AC/DC adaptor with lightning cable.
 - b. EUT charged by charging case and powered by host PC with lightning cable.

Sample Calculations

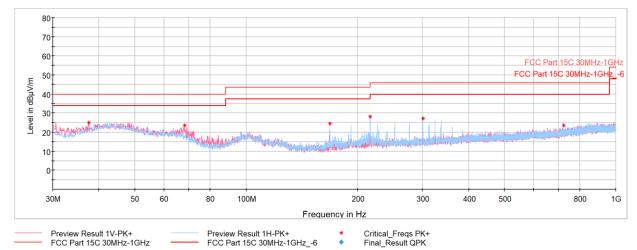
Determining Spurious Emissions Levels


- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 45 of 55
		-	V 10 5 12/15/2021

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element Washington DC LLC. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209


Plot 7-26. Radiated Spurious Emissions Below 1GHz (BDR GFSK – 5157MHz), with AC/DC Adapter and lightning cable

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
45.52	Max Peak	V	200	282	-65.10	-15.85	26.05	40.00	-13.95
68.80	Max Peak	V	100	313	-62.62	-19.88	24.50	40.00	-15.50
168.27	Max Peak	н	100	209	-62.49	-20.33	24.18	43.52	-19.34
216.34	Max Peak	н	100	177	-60.80	-17.72	28.48	46.02	-17.54
300.58	Max Peak	н	100	82	-65.22	-15.36	26.42	46.02	-19.60
889.52	Max Peak	Н	100	317	-76.65	-4.38	25.97	46.02	-20.05

Table 7-15. Radiated Spurious Emissions Below 1GHz (BDR GFSK – 5157MHz), with AC/DC Adapter and lightning cable

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of FF	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 46 of 55	
			\/ 10 5 12/15/2021	

Plot 7-27. Radiated Spurious Emissions Below 1GHz (BDR GFSK – 5844MHz), with AC/DC Adapter and lightning cable

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
37.52	Max Peak	V	100	15	-63.95	-18.10	24.95	40.00	-15.05
68.12	Max Peak	V	200	182	-63.64	-19.66	23.70	40.00	-16.30
168.27	Max Peak	Н	100	225	-62.11	-20.33	24.56	43.52	-18.96
216.48	Max Peak	Н	100	199	-61.19	-17.72	28.09	46.02	-17.93
300.39	Max Peak	Н	100	239	-64.54	-15.38	27.08	46.02	-18.94
721.47	Max Peak	н	100	220	-76.38	-7.01	23.61	46.02	-22.41

Table 7-16. Radiated Spurious Emissions Below 1GHz (BDR GFSK – 5844MHz), with AC/DC Adapter and lightning cable

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 55	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 47 of 55	
			V 10.5 12/15/2021	

7.8 AC Line Conducted Emissions Measurement §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for AC Line conducted spurious emissions. All data rates and modes were investigated for AC Line conducted spurious emissions.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted I	₋imit (dBμV)
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-17. Conducted Limits

*Decreases with the logarithm of the frequency.

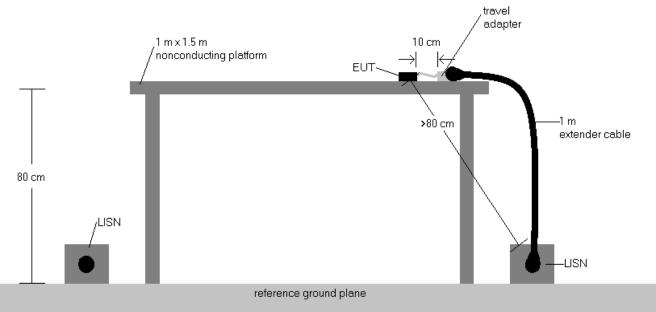
Test Procedures Used

ANSI C63.10-2013, Subclause 6.2

Test Settings

Quasi-Peak Measurements

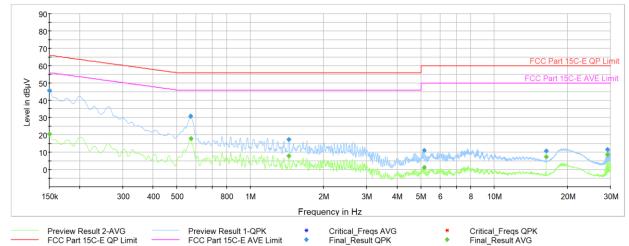
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


Average Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of EE	
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 48 of 55	
			V 10 5 12/15/2021	

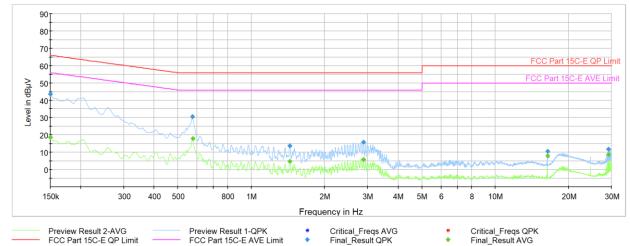
The EUT and measurement equipment were set up as shown in the diagram below.



Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported. The emissions found were not affected by the choice of channel used during testing.
- 2. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT charged by charging case and powered by AC/DC adaptor with lightning cable.
 - b. EUT charged by charging case and powered by host PC with lightning cable.
- 3. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 4. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 5. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Correction Factor (dB)
- 6. Margin (dB) = QP/AV Level (dB μ V) QP/AV Limit (dB μ V)
- 7. Traces shown in plots are made using quasi-peak and average detectors.
- 8. Deviations to the Specifications: None.

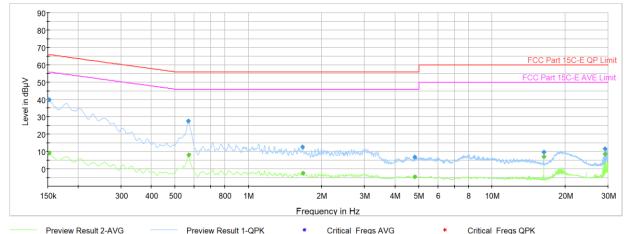
FCC ID: BCG-A2699	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 49 of 55
		-	V 10 5 12/15/2021



Frequency [MHz]	Process State	QuasiPeak [dBµV]	Averaqe [dBµV]	Limit [dB µ V]	Marqin [dB]	Line	PE
0.150	FINAL		20.71	56.00	-35.29	L1	GND
0.150	FINAL	45.6		66.00	-20.43	L1	GND
0.569	FINAL	30.8		56.00	-25.17	L1	GND
0.571	FINAL		18.03	46.00	-27.97	L1	GND
1.442	FINAL		7.87	46.00	-38.13	L1	GND
1.442	FINAL	17.4		56.00	-38.56	L1	GND
5.150	FINAL	11.1		60.00	-48.93	L1	GND
5.150	FINAL		1.46	50.00	-48.54	L1	GND
16.346	FINAL	11.0		60.00	-49.05	L1	GND
16.346	FINAL		7.39	50.00	-42.61	L1	GND
29.164	FINAL		8.64	50.00	-41.36	L1	GND
29.164	FINAL	11.7		60.00	-48.34	L1	GND

Table 7-18. AC Line Conducted Data (BDR GFSK – 5157MHz) (L1) with host PC and lightning cable

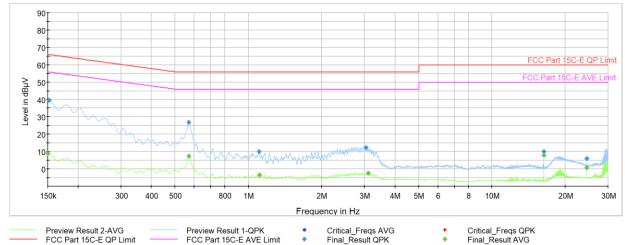
FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 50 of 55
			V 10 5 12/15/2021



Frequency [MHz]	Process State	QuasiPeak [dBµV]	Averaqe [dBµV]	Limit [dB µ V]	Marqin [dB]	Line	PE
0.150	FINAL		18.88	56.00	-37.12	N	GND
0.150	FINAL	43.6		66.00	-22.44	Ν	GND
0.573	FINAL	30.8		56.00	-25.25	N	GND
0.575	FINAL		17.91	46.00	-28.09	N	GND
1.439	FINAL	13.8		56.00	-42.17	Ν	GND
1.442	FINAL		4.75	46.00	-41.25	Ν	GND
2.882	FINAL	15.9		56.00	-40.11	Ν	GND
2.882	FINAL		5.89	46.00	-40.11	Ν	GND
16.366	FINAL	10.6		60.00	-49.37	Ν	GND
16.366	FINAL		8.06	50.00	-41.94	N	GND
29.164	FINAL		8.79	50.00	-41.21	Ν	GND
29.164	FINAL	11.9		60.00	-48.07	N	GND

Table 7-19. AC Line Conducted Data (BDR GFSK – 5157MHz) (N) with host PC and lightning cable

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E1 of EE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 51 of 55
			V 10 5 12/15/2021



Frequency [MHz]	Process State	QuasiPeak [dBµV]	Averaqe [dBµV]	Limit [dBµV]	Marqin [dB]	Line	PE
0.159	FINAL	51.4		65.52	-14.07	L1	GND
0.161	FINAL		32.78	55.40	-22.62	L1	GND
0.571	FINAL	35.8		56.00	-20.24	L1	GND
0.573	FINAL		27.11	46.00	-18.89	L1	GND
1.871	FINAL	18.5		56.00	-37.51	L1	GND
1.874	FINAL		14.97	46.00	-31.03	L1	GND
8.169	FINAL		3.90	50.00	-46.10	L1	GND
8.185	FINAL	10.2		60.00	-49.82	L1	GND
16.373	FINAL	11.1		60.00	-48.87	L1	GND
16.373	FINAL		7.59	50.00	-42.41	L1	GND
29.182	FINAL		10.86	50.00	-39.14	L1	GND
29.182	FINAL	14.0		60.00	-46.01	L1	GND

Table 7-20. AC Line Conducted Data (BDR GFSK – 5844MHz) (L1) with host PC and lightning cable

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 52 of 55
			V 10 5 12/15/2021

Frequency [MHz]	Process State	QuasiPeak [dBµ∨]	Averaqe [dBµV]	Limit [dB µ V]	Marqin [dB]	Line	PE
0.164	FINAL		30.87	55.28	-24.41	N	GND
0.164	FINAL	49.9		65.28	-15.43	Ν	GND
0.571	FINAL		29.17	46.00	-16.83	N	GND
0.571	FINAL	36.7		56.00	-19.29	Ν	GND
1.100	FINAL		17.00	46.00	-29.00	Ν	GND
1.102	FINAL	20.0		56.00	-35.96	Ν	GND
7.305	FINAL	13.0		60.00	-46.97	Ν	GND
7.352	FINAL		7.23	50.00	-42.77	Ν	GND
16.400	FINAL	12.6		60.00	-47.41	N	GND
16.400	FINAL		8.77	50.00	-41.23	Ν	GND
29.175	FINAL		10.79	50.00	-39.21	N	GND
29.175	FINAL	14.6		60.00	-45.44	N	GND

Table 7-21. AC Line Conducted Data (BDR GFSK – 5844MHz) (N) with host PC and lightning cable

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 53 of 55
			V 10 5 12/15/2021

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Apple Wireless Left Earbud FCC ID: BCG-A2699** is in compliance with is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 55
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 54 01 55
			V 10 5 12/15/2021

9.0 APPENDIX A

Antenna gains provided by manufacturer.

Frequency (MHz)	H (dBi)	V (dBi)
2402	-12.1	-4.1
2441	-10.8	-3.6
2480	-10.3	-3.4
5150	-8.2	-4.2
5250	-7.6	-3.4
5725	-6.1	-6.0
5850	-7.4	-7.4
5925	-7.1	-6.8
5987	-5.5	-5.2
6113	-4.4	-3.5
6176	-4.8	-1.9
6238	-3.0	-2.7
6301	-3.7	-2.1
6425	-5.1	-2.7

Table 9-1. Antenna Gains

FCC ID: BCG-A2699	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga FE of FE
1C2204080014-04-R1.BCG	6/7/2022 - 9/24/2022	Wireless Earbud	Page 55 of 55
			V 10 5 12/15/2021