

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654

http://www.pctest.com

MEASUREMENT REPORT FCC Part 15.247 WLAN 802.11b/g/n

Applicant Name:

Apple Inc. 1 Infinite Loop Cupertino, CA 95014 **United States**

Date of Testing: 6/7-8/18/2017 Test Site/Location: PCTEST Lab., Morgan Hill, CA, USA Test Report Serial No.: 1C1706160002-60-04-R4.BCG

FCC ID:	BCG-A1860
APPLICANT:	Apple Inc.
Application Type:	Certification
Model:	A1860, A1957
EUT Type:	Watch
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247 KDB 558074 D01 v04, KDB 648474 D03 v01r04,
Test Procedure(s):	KDB 414788 D01 Radiated Test Site v01

		Conducted Power			
	. .	Avg Conducted		Peak Conducted	
Mode	(MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
802.11b	2412 - 2472	88.512	19.47	158.125	21.99
802.11g	2412 - 2472	85.114	19.30	303.389	24.82
802.11n	2412 - 2472	88.512	19.47	303.389	24.82

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01 v04. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C1706160002-60-04-R4.BCG) supersedes and replaces the previously issued test report (S/N: 1C1706160002-60-04-R3.BCG) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

andy Ortanez President

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 1 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 1 01 63
© 2017 PCTEST Engineering Laborat	tory Inc.		VAF

06/06/2017

TABLE OF CONTENTS

FCC	PART	15.247 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Antenna Description	5
	2.4	Test Support Equipment	6
	2.5	Test Configuration	6
	2.6	Software and Firmware	6
	2.7	EMI Suppression Device(s)/Modifications	7
3.0	DESC	RIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	AC Line Conducted Emissions	8
	3.3	Radiated Emissions	9
	3.4	Environmental Conditions	9
4.0	ANTE	NNA REQUIREMENTS	.10
5.0	MEAS	SUREMENT UNCERTAINTY	.11
6.0	TEST	EQUIPMENT CALIBRATION DATA	.12
7.0	TEST	RESULTS	.13
	7.1	Summary	.13
	7.2	6dB Bandwidth Measurement	.14
	7.3	Output Power Measurement	.20
		7.3.1 Average Output Power Measurement	21
		7.3.2 Peak Output Power Measurement	22
	7.4	Power Spectral Density	.23
	7.5	Conducted Emissions at the Band Edge	.29
	7.6	Conducted Spurious Emissions	.36
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	. 40
		7.7.1 Radiated Spurious Emission Measurements	43
		7.7.2 Radiated Restricted Band Edge Measurements	47
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	. 55
	7.9	Line-Conducted Test Data	. 59
8.0	CON	CLUSION	.63

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 2 01 63
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	Apple Inc.				
APPLICANT ADDRESS:	1 Infinite Loop				
	Cupertino, CA 95014,	United States			
TEST SITE:	PCTEST ENGINEERIN	NG LABORATOF	RY, INC.		
TEST SITE ADDRESS:	18855 Adams Court, M	lorgan Hill, CA 9	5037 USA		
FCC RULE PART(S):	Part 15.247				
BASE MODEL:	A1860, A1957				
FCC ID:	BCG-A1860				
FCC CLASSIFICATION:	Digital Transmission S	ystem (DTS)			
Test Device Serial No.:	FH7TL01WJ2GQ Droduction Production Engineering				
DATE(S) OF TEST:	6/7-8/18/2017				
TEST REPORT S/N:	1C1706160002-60-04-	R4.BCG			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Morgan Hill, CA 95037, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 3 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 18855 Adams Court, Morgan Hill, CA 95037.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 4 01 63
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.

06/06/2017

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Watch FCC ID: BCG-A1860**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter. According to the manufacturer, models A1860 and A1957 are electrically identical. Model A1860 was used for final testing.

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE), NFC

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01 v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles			
Duty Cycle			
802.11 10	ANT1		
2.4GHz	b	98.2	
	g	98.2	
	n	98.2	

Table 2-1.	Measured	Duty	Cycles
------------	----------	------	--------

2.3 Antenna Description

Following antenna was used for the testing.

Frequency	Antenna Gain
(GHz)	(dBi)
2.4	-13.39

Table 2-2. Antenna Peak Gain

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 5 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 5 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

2.4 Test Support Equipment

1	Apple MacBook	Model:	A1502	S/N:	C02NQ01YG465
	w/ AC/DC Adapter	Model:	A1435	S/N:	C04325505K1F288BG
2	Apple USB Cable	Model:	Kanzi	S/N:	20153D
	w/ Charging Dock	Model:	FAPS61	S/N:	6304000736
	w/ Dock	Model:	X241	S/N:	SJH3002AP2AS
3	USB Cable	Model:	N/A	S/N:	N/A
			Shielded USB Cable		
4	w/ AC Adapter	Model:	B353	S/N:	N/A
5	Test Pathfinder Board	Model:	X988	S/N:	FGH7648700BDHMV323
6	Wireless Charging Pad (WCP)	Model:	A1598	FCC ID:	BCGA1598

Table 2-3. Test Support Equipment Used

2.5 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups. Additional radiated spurious emissions measurements were performed with the EUT on a certified wireless charging pad (WCP) while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

The worst case configuration was investigated for all combinations of the three materials, aluminum, ceramic, and stainless steel, and two types of wristbands, leather and metal mesh. The store display sample was investigated with the three types of EUTs. The EUT was also investigated with and without wireless charger. The worst case configuration found was used for all testing. The worst case material was aluminum and the worst case accessory was metal strap.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report. The worst orientation was found to be X-orientation (flatbed).

For AC line conducted and radiated test below 1GHz, following configuration were investigated and EUT powered by AC/DC was the worst case.

- EUT powered by AC/DC adaptor via USB cable with wireless charger
- EUT powered by host PC via USB cable with wireless charger

2.6 Software and Firmware

The test was conducted with firmware version 15R328 installed on the EUT.

For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.4.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 6 01 63
2017 PCTEST Engineering Laboratory. Inc. V 6.6			

06/06/2017

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 60
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 7 01 63
1	© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

3.0 **DESCRIPTION OF TESTS**

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v04 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.20.01.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 8 01 63
© 2017 PCTEST Engineering Laboratory, Inc. V 6.6			

06/06/2017

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm high Styrodur Plastic Test Table is placed on top of the turntable. For measurements above 1GHz, another Styrodur Plastic Test Table of 70cm height is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 9 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 10 01 63
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dere 11 of CO
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 11 01 63
Ĩ	© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	ACLC Conducted	ACLC Emissions Cable Set	3/17/2017	Biennial	10/1/2017	CAACLC1
-	AM WN25	WLAN Cable Set	3/17/2017	Annual	3/17/2018	AM WN25
-	EMI 3117-ESW1	Radiated Cable Set	3/1/2017	Biennial	3/1/2018	N/A
-	EMI HL562E-ESW1	Radiated Cable Set	2/28/2017	Biennial	2/28/2018	N/A
Anritsu	MA2411B	Pulse Power Sensor	10/14/2015	Biennial	10/14/2017	1027293
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
Rohde & Schwarz	180-442AKF	20dB Nominal Gain Horn Antenna	2/24/2017	Annual	2/24/2018	T058701-03
COM-POWER	LIN-120A	LISN	2/22/2017	Annual	2/22/2018	241296
Keysight Technologies	N9030A	3Hz-44Ghz PXA Signal Analyzer	3/13/2017	Annual	3/13/2018	MY49430244
Rohde & Schwarz	ERTS.2	Loop Antenna Cable Set	3/17/2017	Biennial	3/17/2018	AM Loop1
Rohde & Schwarz	ESW26	ESW26 EMI Test Receiver	1/20/2017	Annual	1/20/2018	101299
Rohde & Schwarz	FSV40	Signal Analyzer	12/23/2016	Annual	12/23/2017	101619
Rohde & Schwarz	HL562E	Bi-Log Antenna	1/19/2017	Annual	1/19/2018	100610
Rohde & Schwarz	OSP130	Open Switch and Control Unit	1/18/2017	Annual	1/18/2018	100970
Rohde & Schwarz	SFUNIT-RX	TS-SFUNIT SHIELDED FILTER UNIT	2/3/2017	Annual	2/3/2018	102131
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	2/3/2017	Annual	2/3/2018	101639
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	2/3/2017	Annual	2/3/2018	100052
Rohde & Schwarz	TS-PR8	Pre-amplifer (30MHz - 8GHz)	2/3/2017	Annual	2/3/2018	102325
Rohde & Schwarz	TC-TA18	CROSS POL. VIVALDI ANT	11/8/2016	Annual	11/8/2017	101056-AE
UTiFlex	TS9975/FSC40	40GHz Micro Coax Cable	4/1/2017	Biennial	10/1/2017	200200

Table 6-1. Annual Test Equipment Calibration Schedule

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of CO
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 12 01 63
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.

06/06/2017

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	<u>BCG-A1860</u>
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	Conducted ≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 7.7, 7.8
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.4.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 13 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

7.2 6dB Bandwidth Measurement §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 D01 v04 - Section 8.2 Option 2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 14 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2412	1	b	1	8.090	0.500	Pass
2437	6	b	1	8.069	0.500	Pass
2462	11	b	1	8.552	0.500	Pass
2412	1	g	6	15.63	0.500	Pass
2437	6	g	6	15.14	0.500	Pass
2462	11	g	6	16.30	0.500	Pass
2412	1	n	6.5/7.2 (MCS0)	15.70	0.500	Pass
2437	6	n	6.5/7.2 (MCS0)	15.33	0.500	Pass
2462	11	n	6.5/7.2 (MCS0)	16.67	0.500	Pass

Table 7-2. Conducted Bandwidth Measurements

Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 15 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 16 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Agilent Spectrum	Analyzer	- Occ	upied B	W										
LXXI RL	RF	50 Ω	DC	CORREC	n:Low	Center F Trig: Fre #Atten: 3	NSE:INT req: 2.41200 e Run 0 dB	00000 GHz Avg Hold	ALIGNAUTO : 100/100	01:3 Radio	4:00 Pl o Std: o Dev	MJun 24, 2017 None ice: BTS	Tra	ce/Detector
10 dB/div	Ref 2	5.00) dBm	n				1						
15.0 5.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(manuni)	หละเป็าหล	unAmm	montering	mm	harrow	lawand	۱	H .			Clear Write
-15.0	www										~~~	ᢦᠰᡊ᠕᠕		Average
-35.0 -45.0 -55.0														Max Hold
Center 2.41 #Res BW 1	2 GHz 00 kHz					VB	W 1 MHz			Swe	Spai ep	n 25 MHz 2.333 ms		Min Hold
Occupie	ed Ba	nd	widt	h	0.84		Total P	ower	32.6	dBr	n			
Transmit	Freq	Erre	٦c or	59.73	2 IVII 9.635 I	⊣Z ⟨Hz	OBW P	ower	99	.00 9	%		Auto	Detector Peak▶ <u>Man</u>
x dB Bar	ndwidt	h		1	5.63 N	1H z	x dB		-6.	00 dl	В			
MSG									STATUS					

Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 17 01 63
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

Agilent Spectrum Analyzer - Occupied BW							
LX/RL RF 50 Q DC	CORREC Center	ENSE:INT Freg: 2.462000000 GI	ALIGNAUTO	01:34:39 P Radio Std	M Jun 24, 2017 : None	Trac	e/Detector
	Trig: Fr	eeRun Avg 30.4B	Hold: 100/100	Padia Des	vice: BTS		
· '	FGain:Low FAcen.	00 GB		Radio Des	NCE. BTS		
10 dB/div Ref 25.00 dBm							
Log							
5.00	man man man have been a subman and	Jam marilana	monterm	hong		(Clear Write
-5.00 mmmmmmm				Www.	MARMANA .		
-15.0							
-25.0							Average
-35.0							
-45.0							
-55.0							Max Hold
-65.0						_	
Center 2.462 GHz				Spa	n 25 MHz		
#Res BW 100 kHz	VE	3W 1 MHz		Sweep	2.333 ms		Min Hold
Occupied Bandwidth		Total Power	32.7	dBm			
17	452 MHz						Detector
		0000	~~~	00.00			Peak▶
I ransmit Freq Error	-168.33 KHZ	OBW Power	99	.00 %		Auto	Man
x dB Bandwidth	16.30 MHz	x dB	-6.0	00 dB			
MSG			STATUS				

Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of CO
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 18 01 63
1	© 2017 PCTEST Engineering Laborat	orv. Inc.		V 6.6

06/06/2017

Agilent Spect	trum Analyzer - Oc	cupied BW										
LXI RL	RF 50 S	DC COF	REC	SEI Center F	NSE:INT reg: 2.43700	0000 GHz	ALIGN AUTO	01:33 Radio	3:05 P	M Jun 24, 2017 None	Trac	e/Detector
				Trig: Fre	e Run	Avg Hold	: 100/100	Dedia		ine BTC		
		#IF(Sain:Low	#Atten: 3				Radio	bDev	ice: DIS		
10 dB(div	Ref 25 (u dBm										
Log												
15.0		annahan	Lynnomm	montering	montion	harrow	Amentened	Imano				Clear Write
5.00				/	4							orear trines
-5.00	wordswar								- Jower	manne		
-15.0												Average
-25.0												Average
-35.0												
-45.0												
-55.0												Max Hold
-03.0												
Center 2	2.437 GHz								Spa	n 25 MHz		
#Res BW	/ 100 KHZ			VBI	W 1 WHZ			swe	ep	2.333 ms		Min Hold
Occu	pied Band	width			Total P	ower	32.6	i dBn	n			
		17 5		7								Detector
		17.0										Detector Peak▶
Trans	mit Freq Er	ror	3.920 k	Hz	OBW P	ower	99	0.00 %	6		Auto	<u>Man</u>
x dB l	Bandwidth		15.33 №	IHz	x dB		-6.	00 dE	В			
MSG							STATUS	6				

Plot 7-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 10 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 19 01 63
© 2017 PCTEST Engineering Laborat	orv. Inc.		V 6.6

06/06/2017

7.3 Output Power Measurement §15.247(b.3)

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 D01 v04 – Section 9.1.2 PKPM1 Peak Power Method KDB 558074 D01 v04 – Section 9.2.3.2 Method AVGPM-G

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

	PCTEST	FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT	Approved by:
FCC ID: BCG-A1860	V ENGINEERING LABORATORY, INC.	(CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Bago 20 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Fage 20 01 03
© 2017 PCTEST Engineering Laborat	ory Inc		V66

06/06/2017

7.3.1 Average Output Power Measurement §15.247(b.3)

			2.4GHz Conducted Power [dBm] IEEE Transmission Mode		
Freq [MHz]	Channel	Detector			
			802.11b	802.11g	802.11n
2412	1	AVG	19.42	19.01	19.35
2437	6	AVG	19.47	19.30	19.47
2457	10	AVG	19.21	19.25	19.45
2462	11	AVG	19.03	17.46	17.45
2467	12	AVG	19.20	15.48	15.45
2472	13	AVG	17.97	7.67	8.00

Table 7-3. Average Conducted Output Power Measurements

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of C0
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 21 01 63
© 2017 PCTEST Engineering Laborate	ory, Inc.		V 6.0

06/06/2017

7.3.2 Peak Output Power Measurement §15.247(b.3)

			2.4GHz Conducted Power [dBm] IEEE Transmission Mode		
Freq [MHz]	Channel	Detector			
			802.11b	802.11g	802.11n
2412	1	PEAK	21.99	24.01	24.10
2437	6	PEAK	21.84	24.82	24.82
2457	10	PEAK	21.57	23.14	23.14
2462	11	PEAK	21.47	22.75	22.70
2467	12	PEAK	21.61	22.45	22.43
2472	13	PEAK	20.47	15.82	15.90

Table 7-4. Peak Conducted Output Power Measurements

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 00
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 22 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

7.4 Power Spectral Density §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 D01 v04 - Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. Set the RBW to: $3kHz \le RBW \le 100kHz$
- 4. Set the VBW \geq 3 × RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 23 01 63
© 2017 PCTEST Engineering Laborat	ory. Inc.		V 6.6

06/06/2017

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	5.87	8.00	-2.13	Pass
2437	6	b	1	6.62	8.00	-1.38	Pass
2462	11	b	1	7.69	8.00	-0.31	Pass
2412	1	g	6	6.66	8.00	-1.34	Pass
2437	6	g	6	7.09	8.00	-0.91	Pass
2462	11	g	6	7.54	8.00	-0.46	Pass
2412	1	n	6.5/7.2 (MCS0)	7.58	8.00	-0.42	Pass
2437	6	n	6.5/7.2 (MCS0)	7.71	8.00	-0.29	Pass
2462	11	n	6.5/7.2 (MCS0)	7.85	8.00	-0.15	Pass

Table 7-5. Conducted Power Density Measurements

Plot 7-10. Power Spectral Density Plot (802.11b - Ch. 1)

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dage 04 of CO
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 24 01 63
Ĩ	© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

Plot 7-11. Power Spectral Density Plot (802.11b - Ch. 6)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage OF of CO	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 25 01 63	
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-13. Power Spectral Density Plot (802.11g - Ch. 1)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 00	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 26 01 63	
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Plot 7-15. Power Spectral Density Plot (802.11g - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Baga 07 of 62	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 27 01 63	
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-18. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 28 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

7.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, and 6.5/7.2Mbps for "n" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

KDB 558074 D01 v04 - Section 11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

None

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 29 01 63
© 2017 PCTEST Engineering Laborat	ory Inc.		V 6 6

06/06/2017

Plot 7-19. Band Edge Plot (802.11b - Ch. 1)

Plot 7-20. Band Edge Plot (802.11b - Ch. 11)

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of C2
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 30 01 63
Ĩ	© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

Plot 7-21. Band Edge Plot (802.11b - Ch. 12)

Plot 7-22. Band Edge Plot (802.11b - Ch. 13)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 31 01 03
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

Plot 7-23. Band Edge Plot (802.11g- Ch. 1)

Plot 7-24. Band Edge Plot (802.11g - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 32 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Plot 7-25. Band Edge Plot (802.11g - Ch. 12)

Plot 7-26. Band Edge Plot (802.11g - Ch. 13)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 33 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Plot 7-27. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

Plot 7-28. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 34 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

Plot 7-29. Band Edge Plot (802.11n (2.4GHz) - Ch. 12)

Plot 7-30. Band Edge Plot (802.11n (2.4GHz) - Ch. 13)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 35 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

7.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", and "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 D01 v04.

Test Procedure Used

KDB 558074 D01 v04 - Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 02
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 36 01 63
© 2017 PCTEST Engineering Laborat	ory. Inc.		V 6.6

06/06/2017

Plot 7-31. Conducted Spurious Plot (802.11b - Ch. 1)

Plot 7-32. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 37 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

Plot 7-33. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 7-34. Conducted Spurious Plot (802.11b - Ch. 6)

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
	Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of C2
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 38 01 63
Ĩ	© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

Plot 7-35. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-36. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 39 01 63
© 2017 PCTEST Engineering Laborat	orv. Inc.		V 6.6

06/06/2017

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-6 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-6. Radiated Limits

Test Procedures Used

KDB 558074 D01 v04 - Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 D01 v04

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01 v04

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 40 01 63
© 2017 PCTEST Engineering Laboratory, Inc. V 6			

06/06/2017

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-6. Test Instrument & Measurement Setup

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of CO		
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 41 of 63		
© 2017 PCTEST Engineering Laboratory, Inc.					

06/06/2017

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v04 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-6.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9. All modes were investigated but highest radiated spurious emissions are provided.

Sample Calculations

Determining Spurious Emissions Levels

- \circ Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

 The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of CO	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 42 of 63	
© 2017 PCTEST Engineering Laborat	ory Inc		VAA	

06/06/2017

7.7.1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Plot 7-37. Radiated Spurious Plot above 1GHz (802.11b - Ch. 1, Ant. Pol. H & V)

Plot 7-38. Radiated Spurious Plot above 1GHz (802.11b – Ch. 6, Ant. Pol. H & V)

Plot 7-39. Radiated Spurious Plot above 1GHz (802.11b – Ch. 11, Ant. Pol. H &V)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 60	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 43 0f 63	
© 2017 PCTEST Engineering Laborat	ory. Inc.		V 6.6	

v 6.6 06/06/2017

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

Date: 9.JUL.2017 08:02:03

Plot 7-40. Radiated Spurious Plot above 18GHz (802.11b - Ch. 6, Ant. Pol. H)

Spectrum									
Ref Level Att TDF	97.00 dBµV, 10	/m dB SWT :	● RE 34 ms ● VE	₩ 1 MHz ₩ 3 MHz	Mode Aut	o Sweep			
01Pk Max									
Limit C 90 dbj:V9nHL	heck gh Ereq PK	limit	РА РА	SS SS	M	1[1]		38.3 19.1	73 dBµV/m 32780 GHz
80 dBµV/m-									
High Freq PK	limit								
60 dBµV/m-									
50 dBµV/m-									
40 dBµV/m-	M1		and the second second	u des se fatte de la constante	The second second	an latita in a	ath han a saile and ha ka	ten Mandel a Million at an	telétika _{de} la cél tarak ak
30 dBµV/m-									a di di secono gi se di secono
20 dBµV/m-									
10 dBµV/m-									
0 dBµV/m Start 18.0	GHz			2000	1 pts			Stop	26.5 GHz
					Mea	suring (1XI	9.07.2017 00:52:22

Date: 9.JUL.2017 00:52:23

Plot 7-41. Radiated Spurious Plot above 18GHz (802.11b – Ch. 6, Ant. Pol. V)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of C2			
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 44 01 63			
© 2017 PCTEST Engineering Laboratory, Inc.						

06/06/2017

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	V	-	-	-76.86	0.33	30.47	53.98	-23.51
4824.00	Peak	V	-	-	-65.22	0.33	42.11	73.98	-31.87
12060.00	Avg	V	-	-	-77.66	14.12	43.46	53.98	-10.52
12060.00	Peak	V	-	-	-66.10	14.12	55.02	73.98	-18.96

Table 7-7. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	V	-	-	-77.07	0.71	30.64	53.98	-23.34
4874.00	Peak	V	-	-	-65.70	0.71	42.01	73.98	-31.97
7311.00	Avg	V	-	-	-78.31	5.48	34.17	53.98	-19.81
7311.00	Peak	V	-	-	-67.24	5.48	45.24	73.98	-28.74
12185.00	Avg	V	-	-	-78.24	14.33	43.09	53.98	-10.89
12185.00	Peak	V	-	-	-66.90	14.33	54.43	73.98	-19.55

Table 7-8. Radiated Measurements

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 60	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 45 01 63	
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6	

06/06/2017

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	V	100	0	-76.82	0.61	30.79	53.98	-23.19
4924.00	Peak	V	100	0	-64.73	0.61	42.88	73.98	-31.10
7386.00	Avg	V	-	-	-78.31	5.79	34.48	53.98	-19.50
7386.00	Peak	V	-	-	-66.58	5.79	46.21	73.98	-27.77
12310.00	Avg	V	-	-	-78.57	14.54	42.97	53.98	-11.01
12310.00	Peak	V	-	-	-66.27	14.54	55.27	73.98	-18.71

Table 7-9. Radiated Measurements

	FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
	Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 62	
	1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 46 01 63	
Ĩ	© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	

MultiView	Spectrum									
Ref Level 112 Att Input	.60 dBµV Offs 10 dB SW1 1 AC PS	et 5.60 dB • RI 1.01 ms • VI Off No	BW 1 MHz BW 3 MHz Mo otch Off	ode Auto Sweep	SGL Count 100/1	.00		Fre	equency	2.3700000 GH
1 Frequency St	weep								01	Pk View o2Rm Avg
110 dBikimit Che	ck		PAS	S					M4	[2] 37.26 dBj
Line FCC	PT 15C AVG		PAS	S						2.390000 GI
Line FCC	PT 15C PK		PAS	S					M1	[1] 91.76 dBj
100 dBµV										2.410640 Gł
									M1	
90 dBuV									M3	<u></u>
50 dbp1									1 m	
									1	
80 dBµV									(<i> </i>	— \}
								10		N
FCC PT 15C PK								//		
70 UBHV								//		
60 dBµV								/		
FCC PT 15C AVG										
					M2			Com P		1 Juny
50 dBµV	which when an Arab	Jan at the bullet of the second bull	Champer berger weathing	deline and a new second second	mark as markers bore	Advised the second	www			
								$\wedge \neg f$		
40 dBµV						M	1 1	~~		"hanny to
unichanan	warmen when	wellen marine	muneralistanticon	man moundary has	mounda	Je good ward and the second				
30 dBµV										
20 dBuV										
2.31 GHz			1001 pt	S		2.0 MHZ/				2.43 GH
2 Marker Table	2									
Type Ref	Trc	X-Value		Y-Value	Fun	ction		Fu	nction Res	sult
M1	1	2.41064 GH	z 9	1.76 dBµV						
M2	1	2.37262 GH	z 4	8.84 dBµV						
M3	2	2.41292 GH	z 8	8.72 dBµV						
M4	2	2.39 GH	z 3	7.26 dBµV						
					R	eadv 🔲		14.07	.2017	Att RBW
					ĸ			06:	31:51	

Date: 14.JUL.2017 06:31:51

Plot 7-42. Radiated Restricted Lower Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 62	
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 47 01 63	
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

17:24:24 28.07.2017

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 48 01 63
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2472MHz
Channel:	13

Date: 25.JUN.2017 00:18:20

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 49 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

				Ready	16.06.2017 Att	RBW
M3 M4	2	2.41627 GHz 2.39 GHz	85.64 dBµV 45.38 dBµV			
M1 M2	1	2.41412 GHz 2.39 GHz	94.25 dBµV 62.85 dBµV			
2 Marker Tab Type <u>Re</u>	f Trc	X-Value	Y-Value	Function	Function Result	
CF 2.37 GHz	1_	10	001 pts	12.0 MHz/	S	pan 120.0 MHz
20 dBµV						
30 dBµV						
	and the second	and and a second and a second s		an washing an angla an		
40 dBµV				the second secon		
manduhannahan	Huruban	moundurance	moundunturturturturt	the manufacture March		
50 dBµV				and the second s		
-60 dBμV FCC PT 15C AVG					wnt	and the second
				M2/		human
РСС РТ 15С РК 70 dBµV				, white		
					where the second s	my malker
80 dBµV						The last
90 dBµV					M3	
						m
Line FCC	; PT 15C PK		PASS		MILLI]	94.25 авру 2.414120 GHz
Line FCC	PT 15C AVG		PASS			2.390000 GHz
1 Frequency :	eck		PASS		M4[2]	ew ●2Rm Avg 45.38 dB⊔V
Input	1 AC PS	Off Notch (). Dtf			
■ Ref Level 11 ■ Att	10 <u>dB</u> µV Of 10 <u>dB</u>	fset 5.60 dB ⊂ RBW 1 M /T 1.01 ms <u>⊂ VBW 3 M</u>	Hz Mode Auto Sweep	SGL Count 100/100	Frequency 2.3	700000 GHz
MultiView	Spectrun		M2 🛧 🕹			
(Channel:					
(Operating F	- requency:	2412MHz			
l	Distance of	measurements:	3 Meters			
,		Maaaa	0 Matawa			
١	Worst Case	e Transfer Rate:	MCS0			
,	worst Case		802.110			
,	No		000 11.			

Plot 7-45. Radiated Restricted Lower Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 50 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2457MHz
Channel:	10

Plot 7-46. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 51 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Plot 7-47. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 52 01 63
© 2017 PCTEST Engineering Laborat	tory. Inc.		V 6.6

06/06/2017

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

Plot 7-48. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 60
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 53 01 63
© 2017 PCTEST Engineering Laborat	orv. Inc.		V 6.6

06/06/2017

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2472MHz
Channel:	13

Plot 7-49. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 54 of CO		
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 54 01 63		
© 2017 PCTEST Engineering Laboratory, Inc. V 6.6					

06/06/2017

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-10 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga EE at CO		
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 55 01 63		
© 2017 PCTEST Engineering Laboratory, Inc. V 6./					

06/06/2017

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-7. Radiated Test Setup < 30Mhz

Figure 7-8. Radiated Test Setup < 1GHz

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga EC of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 56 01 63
© 2017 PCTEST Engineering Laborat	ory. Inc.		V 6.6

06/06/2017

- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-10.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.
- 10. All modes were investigated but highest radiated spurious emissions are provided.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 57 of CO		
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 57 01 63		
© 2017 PCTEST Engineering Laboratory, Inc. V 6					

80₁ 70-60-FCC Part 15C 30MHz-1GHz 50 Level in dBµV/m 40 30 20 10 0 30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz Critical_Freqs PK+ FCC Part 15C 30M Hz-1GHz Preview Result1H-PK+ Preview Result1V-PK+ * ٠ Final_ResultQPK

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-50. Radiated Spurious Plot below 1GHz (802.11b – Ch. 6, Pol. H & V)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
34.81	Quasi-Peak	V	-	-	-62.86	-18.73	25.41	40.00	-14.59
230.33	Quasi-Peak	V	-	-	-69.84	-26.33	10.83	46.02	-35.20
383.09	Quasi-Peak	V	-	-	-70.53	-23.02	13.45	46.02	-32.57
482.51	Quasi-Peak	V	-	-	-70.80	-21.13	15.07	46.02	-30.96
722.75	Quasi-Peak	V	-	-	-72.30	-18.03	16.67	46.02	-29.35
877.94	Quasi-Peak	V	-	-	-72.33	-16.67	18.00	46.02	-28.02

Table 7-11. Radiated Spurious Emissions below 1GHz

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 60		
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 58 01 63		
© 2017 PCTEST Engineering Laboratory Inc.					

7.9 Line-Conducted Test Data §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission	Conducted Limit (dBµV)			
	Quasi-peak	Average		
0.15 – 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30	60	50		

Table 7-12. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 59 01 63
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga CO of CO
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 60 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

Preview Result 2-AVG
Critical_Freqs QPK
Final_Result QPK

Preview Result 1-QPK FCC Part 15 Class B Voltage on Mains QP Final_Result AVG Critical_Freqs AVG FCC Part 15 Class B Voltage on Mains AV

Final_Result AVG
Plot 7-51. Line Conducted Plot with 802.11b (L1)

Frequency MHz	Process State	QuasiPeak dBµV	Averaqe dBµV	Limit dBµV	Marqin dB	Bandwidth kHz	Line	PE
0.165750	FINAL	_	39.29	55.17	15.88	9.000	L1	GND
0.168000	FINAL	52.32	_	65.06	12.74	9.000	L1	GND
0.753000	FINAL		26.34	46.00	19.66	9.000	L1	GND
0.755250	FINAL	33.82	_	56.00	22.18	9.000	L1	GND
2.928750	FINAL	27.35	_	56.00	28.65	9.000	L1	GND
2.940000	FINAL	_	21.73	46.00	24.27	9.000	L1	GND
8.162250	FINAL	_	22.29	50.00	27.71	9.000	L1	GND
8.164500	FINAL	28.91	_	60.00	31.09	9.000	L1	GND
17.308500	FINAL	_	24.36	50.00	25.64	9.000	L1	GND
17.477250	FINAL	34.42	_	60.00	25.58	9.000	L1	GND
21.354000	FINAL	31.01		60.00	28.99	9.000	L1	GND
21.518250	FINAL	_	23.26	50.00	26.74	9.000	L1	GND

Table 7-13. Line Conducted Table with 802.11b (L1)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 61 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.6

06/06/2017

* ٠

Preview Result 1-QPK FCC Part 15 Class B Voltage on Mains QP Final_Result AVG

Plot 7-52. Line Conducted Plot with 802.11b (N)

٠

Frequency	Process State	QuasiPeak	Average	Limit	Marqin	Bandwidth	Line	PE
MHZ		αΒμν	αвμν	αΒμ∨	aв	кнz		
0.168000	FINAL		40.06	55.06	15.00	9.000	N	GND
0.168000	FINAL	53.73	_	65.06	11.33	9.000	N	GND
0.249000	FINAL	49.97	_	61.79	11.82	9.000	N	GND
0.251250	FINAL	—	35.68	51.72	16.03	9.000	N	GND
2.251500	FINAL	24.74	_	56.00	31.26	9.000	N	GND
2.251500	FINAL	—	16.40	46.00	29.60	9.000	N	GND
4.755750	FINAL	—	18.22	46.00	27.78	9.000	N	GND
4.841250	FINAL	26.58	_	56.00	29.42	9.000	N	GND
10.448250	FINAL	23.73	_	60.00	36.27	9.000	N	GND
10.448250	FINAL	—	17.74	50.00	32.26	9.000	N	GND
17.484000	FINAL	_	25.13	50.00	24.87	9.000	N	GND
17.666250	FINAL	31.17	_	60.00	28.83	9.000	N	GND

Table 7-14. Line Conducted Table with 802.11b (N)

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 62 of 62
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Fage 62 01 65
© 2017 PCTEST Engineering Laborat	ory, Inc.		V 6.6

06/06/2017

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Apple Watch FCC ID: BCG-A1860** is in compliance with Part 15C of the FCC Rules.

FCC ID: BCG-A1860		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C2 of C2
1C1706160002-60-04-R4.BCG	6/7-8/18/2017	Watch	Page 63 01 63
© 2017 PCTEST Engineering Laborat	tory, Inc.		V 6.

06/06/2017