

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 Bluetooth (Low Energy)

Applicant Name: Apple Inc. 1 Infinite Loop Cupertino, CA 95014 United States Date of Testing: 6/7-8/18/2017 Test Site/Location: PCTEST Lab., Morgan Hill, CA, USA Test Report Serial No.: 1C1706160002-60-05-R4.BCG

FCC ID:	BCG-A1860
APPLICANT:	Apple Inc.
Application Type:	Certification
Model:	A1860, A1957
EUT Type:	Watch
Max. RF Output Power:	92.045 mW (19.64 dBm) Peak Conducted
Frequency Range:	2402 - 2480 MHz
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
Test Procedure(s):	KDB 558074 D01 v04, KDB 648474 D03 v01r04, KDB 414788 D01 Radiated Test Site v01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01 v04. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C1706160002-60-05-R4.BCG) supersedes and replaces the previously issued test report (S/N: 1C1706160002-60-05-R3.BCG) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 1 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 1 of 57	
© 2017 PCTEST Engineering Labora	2017 PCTEST Engineering Laboratory. Inc.			

v 6.6 06/06/2017

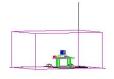


TABLE OF CONTENTS

FCC P	ART 1	5.247 MEASUREMENT REPORT	3
1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PRC	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Antenna Description	5
	2.4	Test Support	5
	2.5	Test Configuration	6
	2.6	Software and Firmware	6
	2.7	EMI Suppression Device(s)/Modifications	6
3.0	DES	CRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANT	ENNA REQUIREMENTS	9
5.0	MEA	SUREMENT UNCERTAINTY	.10
6.0	TES	T EQUIPMENT CALIBRATION DATA	.11
7.0	TES	T RESULTS	.12
	7.1	Summary	.12
	7.2	6dB Bandwidth Measurement – Bluetooth (LE)	.13
	7.3	Output Power Measurement – Bluetooth (LE)	.18
	7.3.1	Peak Output Power Measurement - Bluetooth (LE)	.20
	7.3.2	Average Output Power Measurement - Bluetooth (LE)	.21
	7.4	Power Spectral Density – Bluetooth (LE)	.25
	7.5	Conducted Emissions at the Band Edge	. 30
	7.6	Conducted Spurious Emissions	. 33
	7.7	Radiated Spurious Emission Measurements – Above 1GHz	. 38
	7.8	Radiated Restricted Band Edge Measurements	.45
	7.9	Radiated Spurious Emissions Measurements – Below 1GHz	.49
	7.10	Line-Conducted Test Data	. 53
8.0	CON	ICLUSION	.57

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 2 01 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	Apple Inc.			
APPLICANT ADDRESS:	1 Infinite Loop			
	Cupertino, CA 95014, United	States		
TEST SITE:	PCTEST ENGINEERING LA	BORATORY, INC) .	
TEST SITE ADDRESS:	18855 Adams Court, Morgan	Hill, CA 95037 L	ISA	
FCC RULE PART(S):	Part 15.247			
BASE MODEL:	A1860, A1957			
FCC ID:	BCG-A1860			
FCC CLASSIFICATION:	Digital Transmission System	(DTS)		
Test Device Serial No.:	FH7TL01WJ2GQ	Production	Pre-Production	Engineering
DATE(S) OF TEST:	6/7-8/18/2017			
TEST REPORT S/N:	1C1706160002-60-05-R4.BC	G		

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Morgan Hill, CA 95037, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 3 of 57	
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory. Inc.			

v 6.6 06/06/2017

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 18855 Adams Court, Morgan Hill, CA 95037.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 4 of 57	
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Watch FCC ID: BCG-A1860**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are "advertising channels". When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a "hopper" as defined in 15.247(a)(iii) which states that a "frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels." As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application. The EUT operates in two power schemes per modulation. The power schemes are Internal Pre Amplifier (iPA) and External Pre Amplifier (ePA). According to the manufacturer, models A1860 and A1957 are electrically identical. Model A1860 was used for final testing.

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE), NFC

2.3 Antenna Description

Following antenna was used for the testing.

Frequency	Antenna Gain	
(GHz)	(dBi)	
2.4	-13.39	

Table 2-1. Antenna Peak Gain

2.4 Test Support

Apple MacBook	Model:	A1502	S/N:	C02NQ01YG465
w/ AC/DC Adapter	Model:	A1435	S/N:	C04325505K1F288BG
Apple USB Cable	Model:	Kanzi	S/N:	20153D
w/ Charging Dock	Model:	FAPS61	S/N:	6304000736
w/ Dock	Model:	X241	S/N:	SJH3002AP2AS
USB Cable	Model:	N/A	S/N:	N/A
		Shielded USB Cable		
w/ AC Adapter	Model:	B353	S/N:	N/A
Test Pathfinder Board	Model:	X988	S/N:	FGH7648700BDHMV323
Wireless Charging Pad (WCP)	Model:	A1598	FCC ID:	BCGA1598
	w/ AC/DC Adapter Apple USB Cable w/ Charging Dock w/ Dock USB Cable USB Cable w/ AC Adapter Test Pathfinder Board	w/ AC/DC Adapter Model: Apple USB Cable Model: w/ Charging Dock Model: w/ Dock Model: USB Cable Model: w/ AC Adapter Model: Test Pathfinder Board Model:	w/ AC/DC Adapter Model: A1435 Apple USB Cable Model: Kanzi w/ Charging Dock Model: FAPS61 w/ Dock Model: X241 USB Cable Model: N/A uv Dock Model: N/A uv AC Adapter Model: B353 Test Pathfinder Board Model: X988	w/ AC/DC Adapter Model: A1435 S/N: Apple USB Cable Model: Kanzi S/N: w/ Charging Dock Model: FAPS61 S/N: w/ Dock Model: X241 S/N: USB Cable Model: N/A S/N: w/ Dock Model: N/A S/N: USB Cable Model: N/A S/N: w/ AC Adapter Model: B353 S/N: Test Pathfinder Board Model: X988 S/N:

Table 2-2. Test Support Equipment Used

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E of E7
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 5 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			

V 6.6 06/06/2017

2.5 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups. Additional radiated spurious emissions measurements were performed with the EUT on a certified wireless charging pad (WCP) while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

The worst case configuration was investigated for all combinations of the three materials, aluminum, ceramic, and stainless steel, and various types of wristbands, metal and non-metal wrist bands. The store display sample was investigated with the three types of EUTs. The EUT was also investigated with and without wireless charger.

The worst case configuration found was used for all testing. The worst case material was aluminum. The worst case accessory was metal wristband but no significant difference was found between various types of wrist bands.

The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report. The worst orientation was found to be X-orientation (flatbed).

For AC line conducted and radiated test below 1GHz, following configuration were investigated and EUT powered by AC/DC was the worst case.

- EUT powered by AC/DC adaptor via USB cable with wireless charger

- EUT powered by host PC via USB cable with wireless charger

2.6 Software and Firmware

The test was conducted with firmware version 15R328 installed on the EUT.

For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego C of E7
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 6 of 57
© 2017 PCTEST Engineering Laboration	tory, Inc.		V 6.6

V 6.6 06/06/2017

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v04 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.10. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.20.01.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 7 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm high Styrodur Plastic Test Table is placed on top of the turntable. For measurements above 1GHz, another Styrodur Plastic Test Table of 70cm height is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 8 of 57
© 2017 PCTEST Engineering Labora	tory. Inc.		V 6.6

V 6.6 06/06/2017

^{© 2017} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 9 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 10 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	ACLC Conducted	ACLC Emissions Cable Set	3/17/2017	Biennial	10/1/2017	CAACLC1
-	AM WN25	WLAN Cable Set	3/17/2017	Annual	3/17/2018	AM WN25
-	EMI 3117-ESW1	Radiated Cable Set	3/1/2017	Biennial	3/1/2018	N/A
-	EMI HL562E-ESW1	Radiated Cable Set	2/28/2017	Biennial	2/28/2018	N/A
Anritsu	MA2411B	Pulse Power Sensor	10/14/2015	Biennial	10/14/2017	1027293
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
Rohde & Schwarz	180-442AKF	20dB Nominal Gain Horn Antenna	2/24/2017	Annual	2/24/2018	T058701-03
COM-POWER	LIN-120A	LISN	2/22/2017	Annual	2/22/2018	241296
Keysight Technologies	N9030A	3Hz-44Ghz PXA Signal Analyzer	3/13/2017	Annual	3/13/2018	MY49430244
Rohde & Schwarz	ERTS.2	Loop Antenna Cable Set	3/17/2017	Biennial	3/17/2018	AM Loop1
Rohde & Schwarz	ESW26	ESW26 EMI Test Receiver	1/20/2017	Annual	1/20/2018	101299
Rohde & Schwarz	FSV40	Signal Analyzer	12/23/2016	Annual	12/23/2017	101619
Rohde & Schwarz	HL562E	Bi-Log Antenna	1/19/2017	Annual	1/19/2018	100610
Rohde & Schwarz	OSP130	Open Switch and Control Unit	1/18/2017	Annual	1/18/2018	100970
Rohde & Schwarz	SFUNIT-RX	TS-SFUNIT SHIELDED FILTER UNIT	2/3/2017	Annual	2/3/2018	102131
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	2/3/2017	Annual	2/3/2018	101639
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	2/3/2017	Annual	2/3/2018	100052
Rohde & Schwarz	TS-PR8	Pre-amplifer (30MHz - 8GHz)	2/3/2017	Annual	2/3/2018	102325
Rohde & Schwarz	TC-TA18	CROSS POL. VIVALDI ANT	11/8/2016	Annual	11/8/2017	101056-AE
UTiFlex	TS9975/FSC40	40GHz Micro Coax Cable	4/1/2017	Biennial	10/1/2017	200200

Table 6-1. Annual Test Equipment Calibration Schedule

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 11 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCG-A1860
FCC Classification:	Digital Transmission System (DTS)
Number of Channels:	<u>40</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	Transmitter Output Power < 1 Watt			PASS	Sections 7.3
15.247(e)	Transmitter Power Spectral Density	no Edge /		PASS	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions			PASS	Sections 7.5, 7.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 7.7, 7.8, 7.9
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.10

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Bluetooth LE Automation," Version 3.0.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 10 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 12 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6 06/06/2017

7.2 6dB Bandwidth Measurement – Bluetooth (LE) §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 D01 v04 - Section 8.2 Option 2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

None

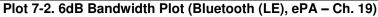
FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 13 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

V 6.6 06/06/2017

Frequency [MHz]	Modulation	Power Scheme	Channel No.	Bluetooth Mode	Measured Bandwidth [kHz]	Minimum Bandwidth [kHz]	Pass / Fail
2402	GFSK	ePA	0	LE	712.3	500	Pass
2441	GFSK	ePA	19	LE	717.2	500	Pass
2480	GFSK	ePA	39	LE	716.6	500	Pass
2402	GFSK	iPA	0	LE	709.9	500	Pass
2441	GFSK	iPA	19	LE	714.3	500	Pass
2480	GFSK	iPA	39	LE	719.5	500	Pass

 Table 7-2. Conducted Bandwidth Measurements

RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO		M Jul 13, 2017	Trace/De	etector
	Trig: F	r Freq: 2.402000000 GHz Tree Run Avg Hol h: 36 dB	d: 100/100	Radio Std: Radio Dev		Trace/De	stector
0 dB/div Ref 25.00 dBm							
						Clea	ar Wri
.00							
5.0						A	vera
5.0							ax Ho
5.0						IVI	ахпо
enter 2.402 GHz Res BW 100 kHz	#	VBW 300 kHz			an 2 MHz ep 1 ms	м	lin Ho
Occupied Bandwidth		Total Power	23.3	3 dBm			
1.0	0387 MHz					D	etect Pea
Transmit Freq Error	-5.699 kHz	OBW Power	99	9.00 %		Auto	M
x dB Bandwidth	712.3 kHz	x dB	-6.	00 dB	ĺ		
3			STATUS	j.			

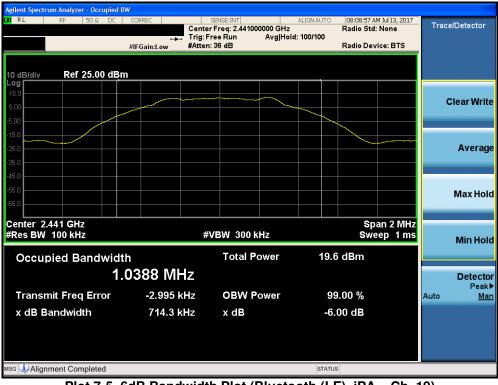

Plot 7-1. 6dB Bandwidth Plot (Bluetooth (LE), ePA - Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 14 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

v 6.6 06/06/2017

Agilent Spectrum Analyzer - Occupied B							
L <mark>X/</mark> RL RF 50Ω DC	CORREC	SENSE:INT Center Freg: 2.4410		IAUTO 07:49:31 A Radio Std	M Jul 13, 2017 I: None	Trace	/Detector
	+++	-·	Avg Hold: 100/	100 Radio De	vice: BTS		
	#IFGain:Low	#Atten: 36 dB		Radio De	vice. BTS		
10 dB/div Ref 25.00 dBr	n						
Log							
15.0						с	lear Write
5.00							
-5.00							
-15.0							A
-25.0							Average
-35.0							
-45.0							
-55.0							Max Hold
-65.0							
Center 2.441 GHz					an 2 MHz		
#Res BW 100 kHz		#VBW 300	kHz	Sw	eep 1 ms		Min Hold
Occupied Bandwid	th	Total F	ower	26.0 dBm			
l.	.0397 MH	IZ					Detector Peak▶
Transmit Freq Error	-6.746 k	Hz OBW F	Power	99.00 %		Auto	Man
x dB Bandwidth	717.2 k	Hz xdB		-6.00 dB			
мsg 🗼 Alignment Completed				STATUS			


Plot 7-3. 6dB Bandwidth Plot (Bluetooth (LE), ePA – Ch. 39)


FCC ID: BCG-A1860	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 15 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017

Agilent Spectrum Analyzer - Occupied	BW						
L <mark>X/</mark> RL RF 50Ω DC	CORREC	SENSE:INT Center Freg: 2.402000	ALIGNAU	JTO 08:01:45 A Radio Std:	M Jul 13, 2017 None	Trace	e/Detector
		Trig: Free Run	Avg Hold: 100/10	0			
	#IFGain:Low	#Atten: 36 dB		Radio Dev	ice: BTS		
10 dB/div Ref 25.00 dB Log	m						
15.0							
5.00						C	lear Write
-5.00							
-15.0							
-25.0							Average
-35.0							
-45.0							
-55.0							
-65.0							Max Hold
Center 2.402 GHz					an 2 MHz		
#Res BW 100 kHz		#VBW 300 k	HZ	SWe	ep 1 ms		Min Hold
Occupied Bandwid	th	Total Po	ower 1	19.5 dBm			
	 .0377 MH	-					
		Ζ					Detector Peak▶
Transmit Freq Error	-2.671 ki	Hz OBW Po	ower	99.00 %		Auto	Man
x dB Bandwidth	709.9 kl	-lz xdB		-6.00 dB			
	10010 1						
MSG			s	TATUS			

Plot 7-5. 6dB Bandwidth Plot (Bluetooth (LE), iPA – Ch. 19)

FCC ID: BCG-A1860	<u>PCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 16 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017

Agilent Spectrum Analyzer - Occupied E	SW .						
IX RL RF 50Ω DC	CORREC	SENSE:INT Center Freq: 2.48000	00000 GHz	Radio Std	M Jul 13, 2017 : None	Trace	/Detector
	++- #IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold: 100/	100 Radio Dev	vice: BTS		
10 dB/div Ref 25.00 dBr	n						
15.0							
5.00						C	lear Write
-5.00							
-15.0							
-25.0							Average
-35.0							
-45.0							
-55.0							Max Hold
-00.0							
Center 2.48 GHz #Res BW 100 kHz		#VBW 3001	/LI=		an 2 MHz		
#Res DW 100 KHZ		#VBW 3001	λΠZ	SW	eep 1 ms		Min Hold
Occupied Bandwidt	:h	Total P	ower	19.0 dBm			
1.	0374 MH	z					Detector
Transmit Freq Error	-3.613 k	Hz OBW P	lowor	99.00 %		Auto	Peak▶ Man
	-3.015 k		Ower			Auto	IVIAII
x dB Bandwidth	719.5 K	Hz xdB		-6.00 dB			
MSG				STATUS			

Plot 7-6. 6dB Bandwidth Plot (Bluetooth (LE), iPA - Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 17 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

7.3 Output Power Measurement – Bluetooth (LE) §15.247(b.3)

Test Overview and Limits

The transmitter antenna terminal of the EUT is connected to the input of a spectrum analyzer. Measurements are made while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 D01 v04 – Section 9.1.1 KDB 558074 D01 v04 – Section 9.2.3.2 Method AVGPM-G

Test Settings

Method 1 (Peak Power Measurement)

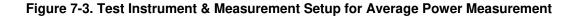
- 1. RBW = 3MHz
- 2. VBW = 50MHz
- 3. Span \ge 3 x RBW
- 4. Sweep = auto couple
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 18 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017



The EUT and measurement equipment were set up as shown in the diagram below.

C and house Managing the				
Carl Law Law Law			_	
	and any summer of the second s	and the second s		

Figure 7-2. Test Instrument & Measurement Setup for Peak Power Measurement

Test Notes

None

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 19 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

7.3.1 Peak Output Power Measurement - Bluetooth (LE) §15.247(b.3)

Frequency	· · · Modulation	Power Channe	Channel	Bluetooth	Peak Conducted Power		
[MHz]		Scheme	No.	Mode	[dBm]	[mW]	
2402	GFSK	ePA	0	LE	16.95	49.545	
2441	GFSK	ePA	19	LE	19.64	92.045	
2480	GFSK	ePA	39	LE	17.62	57.810	
2402	GFSK	iPA	0	LE	13.14	20.606	
2441	GFSK	iPA	19	LE	13.25	21.125	
2480	GFSK	iPA	39	LE	12.59	18.155	

Table 7-3. Peak Conducted Output Power Measurements (Bluetooth (LE)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 20 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017

7.3.2 Average Output Power Measurement - Bluetooth (LE) §15.247(b.3)

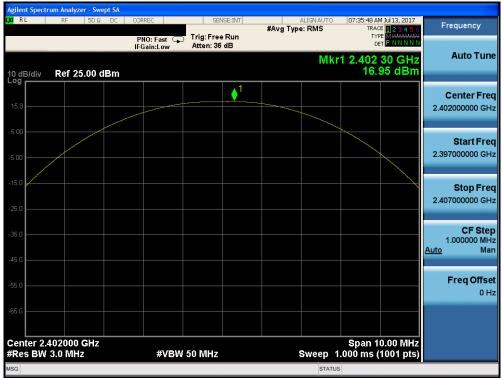
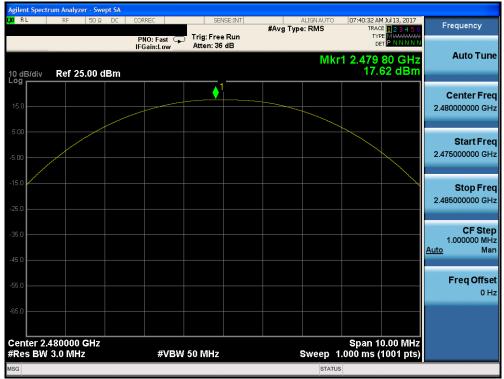

Frequency	requency Modulation		Channel Bluet	Bluetooth	Average Conducted Power		
[MHz]	wooulation	Scheme	Scheme No.		[dBm]	[mW]	
2402	GFSK	ePA	0	LE	16.92	49.204	
2441	GFSK	ePA	19	LE	18.95	78.524	
2480	GFSK	ePA	39	LE	17.45	55.590	
2402	GFSK	iPA	0	LE	12.82	19.143	
2441	GFSK	iPA	19	LE	12.98	19.861	
2480	GFSK	iPA	39	LE	12.43	17.498	

Table 7-4. Average Conducted Output Power Measurements (Bluetooth (LE)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 21 01 57
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017


Plot 7-7. Peak Power Plot (Bluetooth (LE), ePA - Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 22 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			

Plot 7-9. Peak Power Plot (Bluetooth (LE), ePA - Ch. 39)

Plot 7-10. Peak Power Plot (Bluetooth (LE), iPA – Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 00 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 23 of 57	
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.			

V 6.6 06/06/2017

Plot 7-11. Peak Power Plot (Bluetooth (LE), iPA - Ch. 19)

Plot 7-12. Peak Power Plot (Bluetooth (LE), iPA - Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 04 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 24 of 57	
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.			

7.4 Power Spectral Density – Bluetooth (LE) §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 D01 v04 - Section 10.2 Method PKPSD

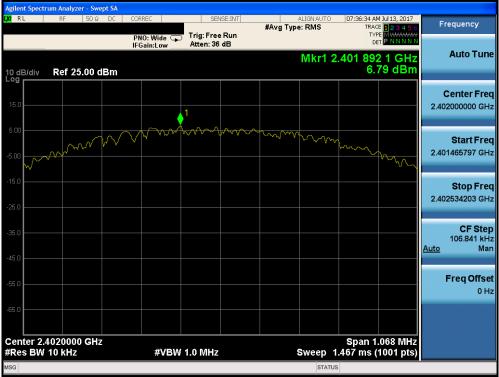
Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

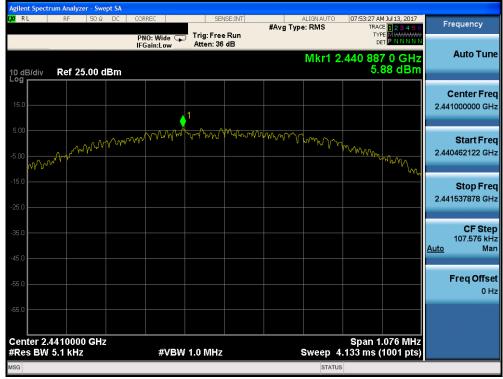
Test Notes


None

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 05 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 25 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

Frequency [MHz]	Modulation	Power Scheme	Channel No.	Bluetooth Mode	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]
2402	GFSK	ePA	0	LE	6.79	8.0	-1.21
2441	GFSK	ePA	19	LE	5.88	8.0	-2.12
2480	GFSK	ePA	39	LE	7.34	8.0	-0.66
2402	GFSK	iPA	0	LE	2.99	8.0	-5.01
2441	GFSK	iPA	19	LE	3.01	8.0	-4.99
2480	GFSK	iPA	39	LE	2.44	8.0	-5.56

 Table 7-5. Conducted Power Density Measurements



Plot 7-13. Power Spectral Density Plot (Bluetooth (LE), ePA – Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 00 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 26 of 57	
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.			

v 6.6 06/06/2017

Plot 7-15. Power Spectral Density Plot (Bluetooth (LE), ePA - Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 57	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 27 of 57	
© 2017 PCTEST Engineering Laboration	© 2017 PCTEST Engineering Laboratory, Inc.			

Plot 7-16. Power Spectral Density Plot (Bluetooth (LE), iPA - Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 28 of 57
© 2017 PCTEST Engineering Labora	V 6.6		

Plot 7-18. Power Spectral Density Plot (Bluetooth (LE), iPA - Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 29 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

7.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

For the following out of band conducted spurious emissions plots at the band edge, the EUT was set to transmit at maximum power with the largest packet size available. These settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth.

Test Procedure Used

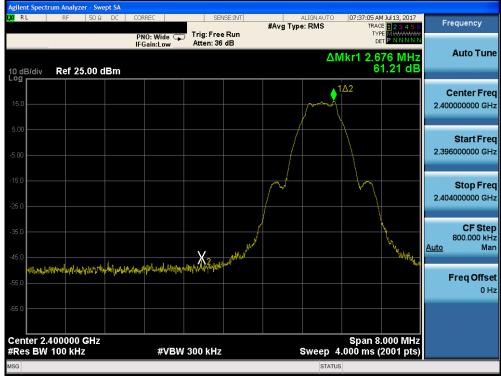
KDB 558074 D01 v04 - Section 11.3

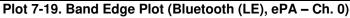
Test Settings

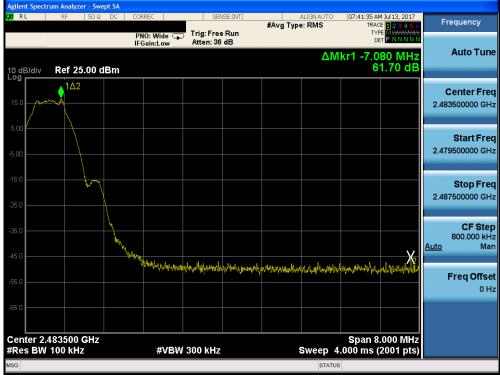
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

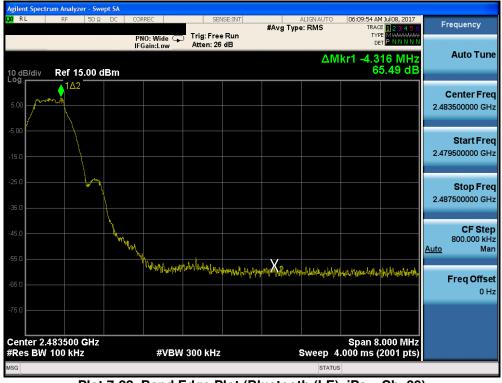

Test Notes


None


FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 30 01 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

V 6.6 06/06/2017




Plot 7-20. Band Edge Plot (Bluetooth (LE), ePa – Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 31 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

Plot 7-21. Band Edge Plot (Bluetooth (LE), iPA - Ch. 0)

Plot 7-22. Band Edge Plot (Bluetooth (LE), iPa - Ch. 39)

FCC ID: BCG-A1860	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 32 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

V 6.6 06/06/2017

7.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

For the following out of band conducted spurious emissions plots, the EUT was set to transmit at maximum power with the largest packet size available. The worst case spurious emissions were found in this configuration.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 D01 v04.

Test Procedure Used

KDB 558074 D01 v04 - Section 11.3

Test Settings

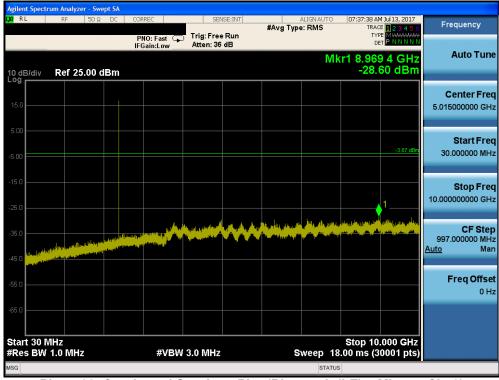
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

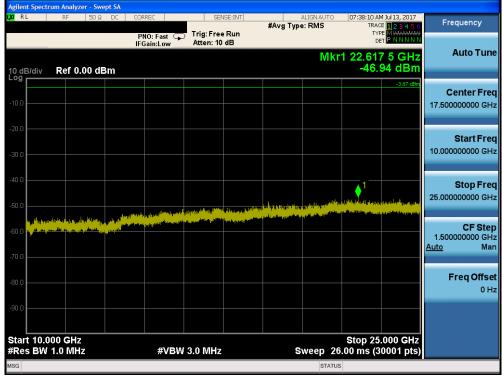
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-6. Test Instrument & Measurement Setup

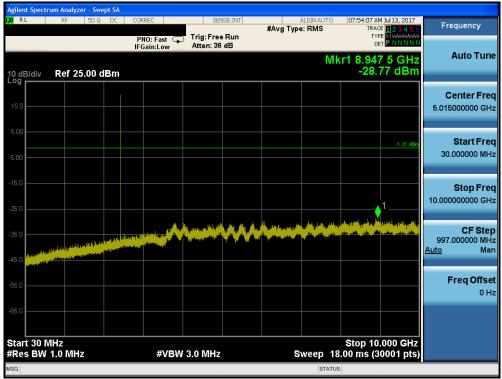
FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	
© 2017 PCTEST Engineering Laboratory. Inc.			V 6.6

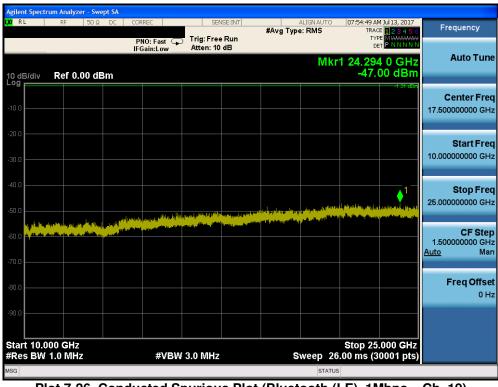

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.


FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 04 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 34 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

06/06/2017


Plot 7-23. Conducted Spurious Plot (Bluetooth (LE), 1Mbps – Ch. 0)


Plot 7-24. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 0)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 35 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

Plot 7-25. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 19)



Plot 7-26. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 19)


FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 36 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

V 6.6 06/06/2017

Plot 7-27. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 39)

Plot 7-28. Conducted Spurious Plot (Bluetooth (LE), 1Mbps - Ch. 39)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 27 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 37 of 57
© 2017 PCTEST Engineering Laboration	V 6.6		

7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.205 §15.209 §15.247(d)

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-6 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]		
Above 960.0 MHz	500	3		

Table 7-6. Radiated Limits

Test Procedures Used

KDB 558074 D01 v04 - Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 D01 v04

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01 v04

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 57		
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 38 of 57		
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017

^{© 2017} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Frequency	RBW					
9 – 150kHz	200 – 300Hz					
0.15 – 30MHz	9 – 10kHz					
30 – 1000MHz	100 – 120kHz					
> 1000MHz	1MHz					
Table 7-7 DBW as a Eurotion of Frequency						

Table 7-7. RBW as a Function of Frequency

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

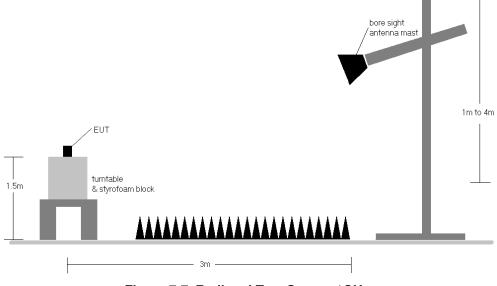


Figure 7-7. Radiated Test Setup >1GHz

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 39 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v04 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-8.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Average measurements were recorded using a VBW of 3kHz, per Section 12.2.5.3 of KDB 558074 D01 v04, since 1/T is equal to just under 3kHz. This method was used because the EUT could not be configured to operate with a duty cycle > 98%. Both average and peak measurements were made using a peak detector
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. No significant radiated band edge emissions were found in the 2310 2390MHz restricted band.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

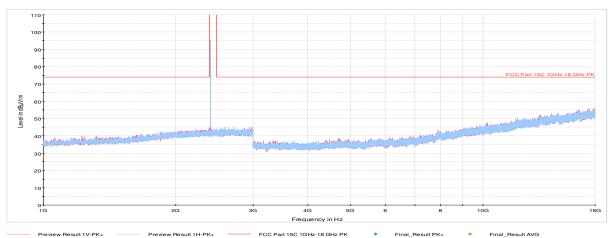
Sample Calculations

Determining Spurious Emissions Levels

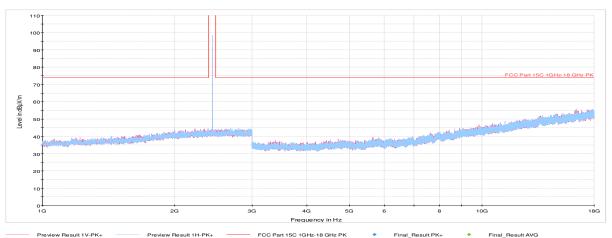
- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad Margin_{[dB]} = Field Strength Level_{[dB_{\mu}V/m]} Limit_{[dB_{\mu}V/m]}$

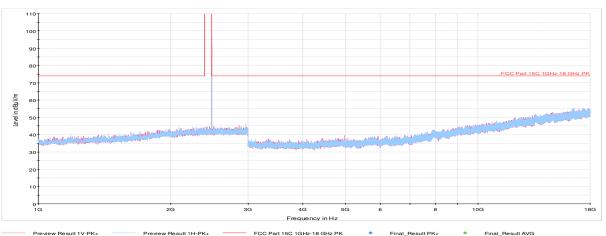
Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.8 was calculated using the formula:


Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

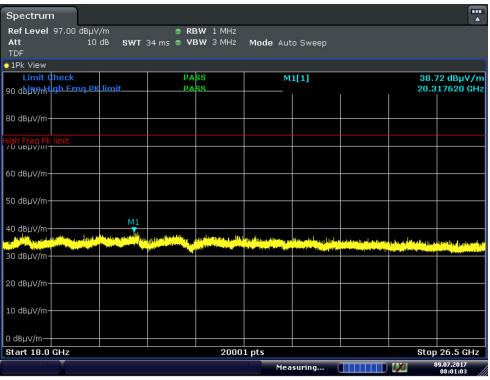
FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 40 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 40 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6


V 6.6 06/06/2017

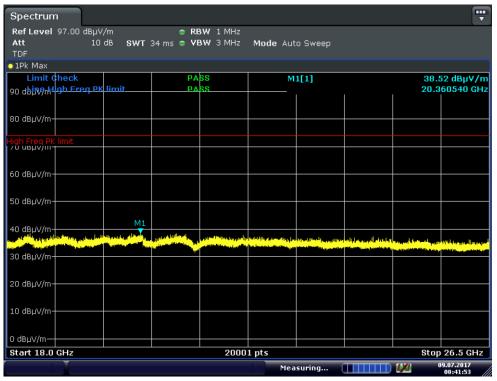

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247 (d)

Plot 7-29. Radiated Spurious Plot above 1GHz (GFSK ePA – Ch. 0, Ant. Pol. H & V)

Plot 7-30. Radiated Spurious Plot above 1GHz (GFSK ePA – Ch. 39, Ant. Pol. H & V)


Plot 7-31. Radiated Spurious Plot above 1GHz (GFSK ePA – Ch. 78. Ant. Pol. H & V)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 57			
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 41 01 57			
© 2017 PCTEST Engineering Laboratory, Inc. V 6.6						


v 6.6 06/06/2017

Radiated Spurious Emissions Measurements (Above 18GHz) <u>§15.209</u>

Plot 7-32. Radiated Spurious Plot above 18GHz (GFSK ePA, Pol. H)

Plot 7-33. Radiated Spurious Plot above 18GHz (GFSK ePA, Pol. V)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 42 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d)

Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	V	-	-	-76.45	0.08	30.63	53.98	-23.34
4804.00	Peak	V	-	-	-64.97	0.08	42.11	73.98	-31.86
12010.00	Avg	V	-	-	-77.99	14.07	43.08	53.98	-10.90
12010.00	Peak	V	-	-	-66.66	14.07	54.41	73.98	-19.57

Table 7-9. Radiated Measurements @ 3 meters

Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2441MHz
Channel:	19

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Avg	V	-	-	-76.62	0.73	31.11	53.98	-22.87
4882.00	Peak	V	-	-	-65.34	0.73	42.39	73.98	-31.59
7323.00	Avg	V	-	-	-77.92	5.54	34.62	53.98	-19.36
7323.00	Peak	V	-	-	-66.78	5.54	45.76	73.98	-28.22
12205.00	Avg	V	-	-	-78.11	14.29	43.18	53.98	-10.80
12205.00	Peak	V	-	-	-66.67	14.29	54.62	73.98	-19.36

Table 7-10. Radiated Measurements @ 3 meters

FCC ID: BCG-A1860	<u>PCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 43 of 57
© 2017 PCTEST Engineering Laboratory, Inc. V 6			V 6.6

v 6.6 06/06/2017

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d)

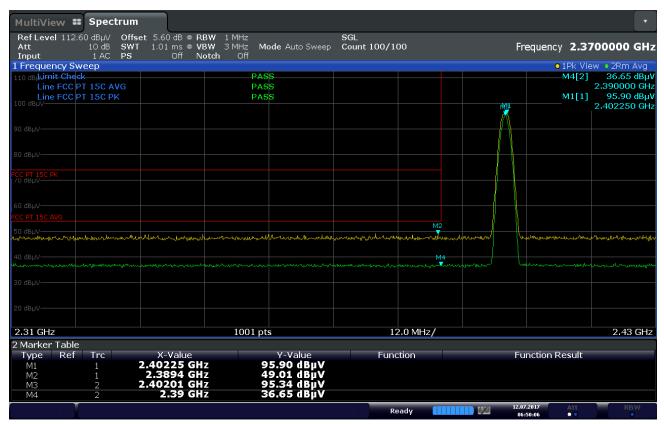
Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	V	-	-	-76.36	0.39	31.03	53.98	-22.95
4960.00	Peak	V	-	-	-65.04	0.39	42.35	73.98	-31.63
7440.00	Avg	V	-	-	-77.87	5.67	34.80	53.98	-19.18
7440.00	Peak	V	-	-	-66.85	5.67	45.82	73.98	-28.16
12400.00	Avg	V	-	-	-78.10	14.85	43.75	53.98	-10.23
12400.00	Peak	V	-	-	-67.12	14.85	54.73	73.98	-19.25

Table 7-11. Radiated Measurements @ 3 meters

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 44 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 44 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

V 6.6 06/06/2017


7.8 Radiated Restricted Band Edge Measurements §15.205 §15.209

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	ePA
Measurement Distance:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Date: 12.JUL.2017 06:50:06

Plot 7-34. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860	<u>PCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 45 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 45 of 57
			V 6.6 06/06/2017

Radiated Restricted Band Edge Measurements §15.205 §15.209

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain

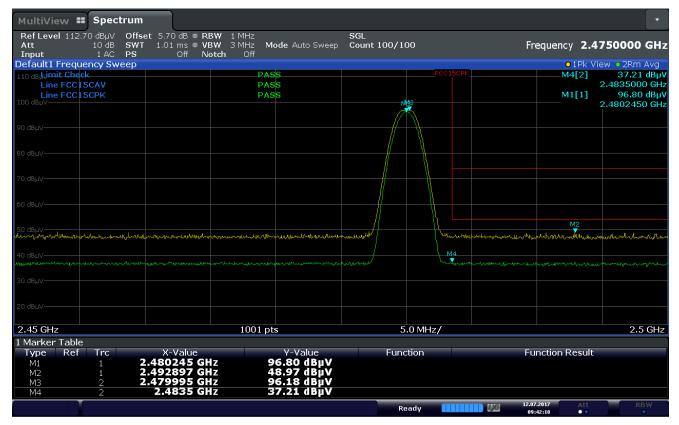
Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	iPA
Measurement Distance:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

MultiView # Spectrum					•
Ref Level 112.60 dBµV Offse Att 10 dB SWT Input 1 AC PS	t 5.60 dB • RBW 1 MHz 1.01 ms • VBW 3 MHz Off Notch Off	Mode Auto Sweep	SGL Count 100/100	Frequency	2.3700000 GH
1 Frequency Sweep				0	1Pk View • 2Rm Avg
110 dB山imit Check		PASS			M4[2] 36.87 dBµ
Line FCC PT 15C AVG		PASS			2.390000 GH
Line FCC PT 15C PK		PASS			M1[1] 91.82 dBµ
				.held	2.402250 GH
				MB	
				<u>/ </u>	
СС РТ 15С РК /U dBµV					
50 dBµV					
			M2		
50 dBUV-	manula way way and a second	www.www.www.	www.www.uph.www.www.www.	unpower underver	withingthe water and
			M4		
www.www.www.www.www.www.	with a ship with the second of	and man and a start of the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-monum approved	when many marine
2.31 GHz	1.00)1 pts	12.0 MHz/		2,43 GH
2.31 GHZ 2 Marker Table	100		12:0 Mi 12/		2110 011
Type Ref Trc	X-Value	Y-Value	Function	Function R	esult
	2.40225 GHz	91.82 dBuV			oount
M1 1 2					
M2 1 2	2.37142 GHz	49.21 dBµV			
M2 1 2 M3 2 2	2.40201 GHz	91.17 dBµV			
M2 1 2				12.07.2017	

Date: 12.JUL.2017 07:12:16

Plot 7-35. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 40 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 46 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6



Radiated Restricted Band Edge Measurements §15.205 §15.209

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain

Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	ePA
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Plot 7-36. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 47 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6

V 6.6 06/06/2017

Radiated Restricted Band Edge Measurements §15.205 §15.209

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain

Bluetooth Mode:	LE
Modulation:	GFSK
Power Scheme:	iPA
Measurement Distance:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

MultiView # Spectrum			•
	RBW 1 MHz VBW 3 MHz Mode Auto Sweep Notch Off	SGL Count 100/100	Frequency 2.4750000 GHz
Default1 Frequency Sweep			o1Pk View o2Rm Avg
110 dBibimit Check	PASS	FCC15CPK	M4[2] 37.18 dBµV
Line FCC15CAV	PASS		2.4835000 GHz
Line FCC15CPK	PASS		M1[1] 91.18 dBµ\
		Maa	2.4797450 GH
		M2	
50 dBpV- Annandran alman and an annandration and an annandration and a start and a start and a start and a start and a st Annandration and a start and		mound when when we	her and the second s
40 dBpV-	where we and the second s	M4	where the second s
2.45 GHz	1001 pts	5.0 MHz/	2.5 GHz
1 Marker Table			
Type Ref Trc X-Value M1 1 2.479745 M2 1 2.484049 M3 2 2.480045 M4 2 2.4835	GHz 91.18 dBμV GHz 48.28 dBμV GHz 90.68 dBμV	Function	Function Result
		Ready 🚺	12.07.2017 Att RBW 09:49:00 • •

Plot 7-37. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 48 of 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

7.9 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-12 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-12. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 57			
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 49 of 57			
© 2017 PCTEST Engineering Labora	2017 PCTEST Engineering Laboratory, Inc.					

v 6.6 06/06/2017

^{© 2017} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

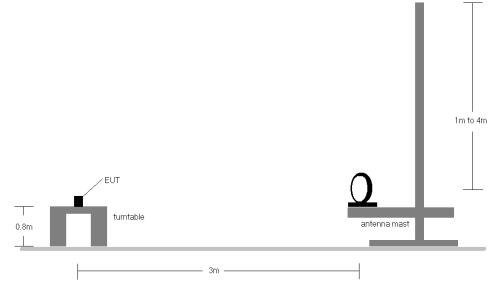
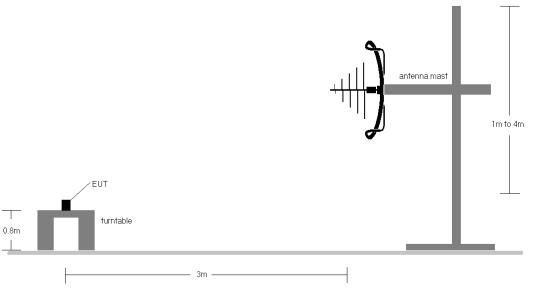
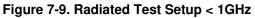
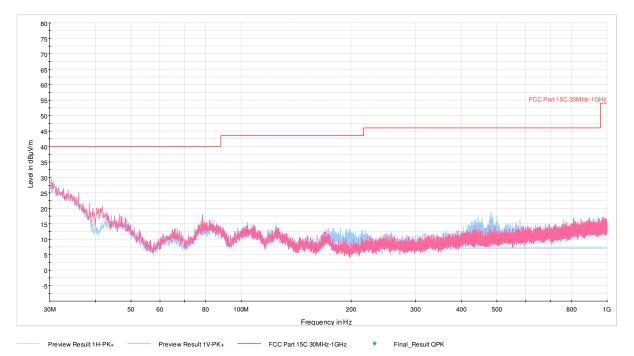




Figure 7-8. Radiated Test Setup < 30Mhz

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga E0 of E7			
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 50 of 57			
© 2017 PCTEST Engineering Labora	2017 PCTEST Engineering Laboratory, Inc.					

V 6.6 06/06/2017


- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-12.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.
- 10. The unit was tested with all possible mode and power schemes and only the highest emission is reported.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 51 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 51 of 57
© 2017 PCTEST Engineering Labora	tory. Inc.		V 6.6

06/06/2017

^{© 2017} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTESTLAB.COM.

Plot 7-38. Radiated Spurious Plot below 1GHz (GFSK ePA, Pol. H & V)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
33.39	Quasi-Peak	V	-	-	-60.55	-16.87	29.58	40.00	-10.42
41.14	Quasi-Peak	V	-	-	-60.81	-25.63	20.56	46.02	-25.46
78.94	Quasi-Peak	V	-	-	-63.23	-21.78	21.99	46.02	-24.03
181.65	Quasi-Peak	Н	-	-	-65.69	-19.72	21.59	46.02	-24.43
453.95	Quasi-Peak	Н	-	-	-66.96	-17.92	22.12	46.02	-23.90
478.18	Quasi-Peak	Н	-	-	-66.18	-16.30	24.52	46.02	-21.50

Table 7-13. Radiated Spurious Emissions Below 1GHz

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 52 01 57
© 2017 PCTEST Engineering Labora	tory, Inc.		V 6.6

06/06/2017

7.10 Line-Conducted Test Data §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per 15.207.

Frequency of emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30	60	50			

Table 7-14. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

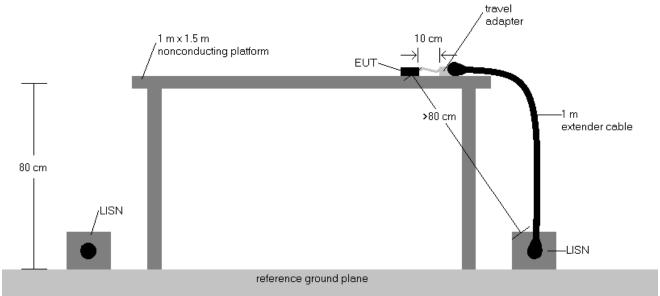
Test Settings

Quasi-Peak Field Strength Measurements

- 7. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 8. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 9. Detector = quasi-peak
- 10. Sweep time = auto couple
- 11. Trace mode = max hold
- 12. Trace was allowed to stabilize

Average Field Strength Measurements

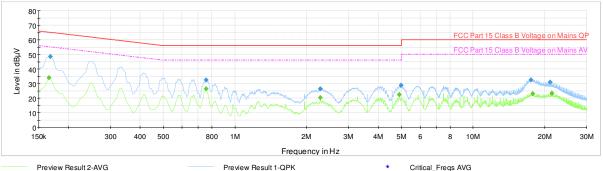
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege 52 of 57		
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 53 of 57		
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory, Inc.				

V 6.6 06/06/2017

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Test Notes

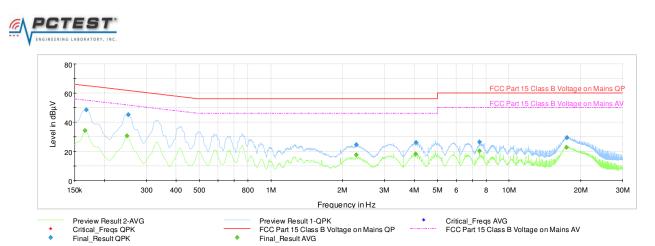
- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: BCG-A1860	<u>PCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dega E4 of E7			
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 54 of 57			
© 2017 PCTEST Engineering Labora	© 2017 PCTEST Engineering Laboratory. Inc.					

V 6.6 06/06/2017

* Critical_Freqs QPK Final_Result QPK ÷

Critical_Freqs AVG FCC Part 15 Class B Voltage on Mains AV


Plot 7-39. Line Conducted Plot with Bluetooth LE (GFSK ePA, L1)

Frequency	Process State	QuasiPeak	Averaqe	Limit	Marqin	Bandwidth	Line	PE
MHz		dBµV	dBµV	dBµV	dB	kHz		
0.165750	FINAL		33.80	55.17	21.37	9.000	L1	GND
0.168000	FINAL	48.38	—	65.06	16.68	9.000	 L1	GND
0.755250	FINAL	_	26.44	46.00	19.56	9.000	L1	GND
0.755250	FINAL	32.56	—	56.00	23.44	9.000	L1	GND
2.285250	FINAL	—	20.19	46.00	25.81	9.000	L1	GND
2.285250	FINAL	26.45	_	56.00	29.55	9.000	L1	GND
4.895250	FINAL	—	22.36	46.00	23.64	9.000	L1	GND
4.992000	FINAL	28.66	_	56.00	27.34	9.000	L1	GND
17.468250	FINAL	32.57	—	60.00	27.43	9.000	L1	GND
17.794500	FINAL	—	22.94	50.00	27.06	9.000	L1	GND
21.061500	FINAL	30.94	_	60.00	29.06	9.000	L1	GND
21.387750	FINAL	_	23.24	50.00	26.76	9.000	L1	GND

Table 7-15. Line Conducted Table with Bluetooth LE (GFSK ePA, L1)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege EE of E7	
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 55 of 57	
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Plot 7-40. Line Conducted Plot with Bluetooth LE (GFSK ePA, N)

Frequency MHz	Process State	QuasiPeak dBµV	A∨eraqe dBµV	Limit dBµV	Marqin dB	Bandwidth kHz	Line	PE
0.165750	FINAL		34.36	55.17	20.81	9.000	N	GND
0.168000	FINAL	48.46		65.06	16.59	9.000	N	GND
0.249000	FINAL	—	30.75	51.79	21.04	9.000	N	GND
0.251250	FINAL	45.17	_	61.72	16.54	9.000	N	GND
2.285250	FINAL	—	17.73	46.00	28.27	9.000	N	GND
2.285250	FINAL	24.65	_	56.00	31.35	9.000	N	GND
4.058250	FINAL	—	18.21	46.00	27.79	9.000	N	GND
4.067250	FINAL	26.17	_	56.00	29.83	9.000	N	GND
7.509750	FINAL	26.51	_	60.00	33.49	9.000	N	GND
7.509750	FINAL		20.26	50.00	29.74	9.000	N	GND
17.418750	FINAL	_	22.61	50.00	27.39	9.000	N	GND
17.468250	FINAL	29.49		60.00	30.51	9.000	N	GND

Table 7-16. Line Conducted Table with Bluetooth LE (GFSK ePA, N)

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 56 01 57
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Apple Watch FCC ID: BCG-A1860** is in compliance with Part 15C of the FCC Rules.

FCC ID: BCG-A1860		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 57 of 57
1C1706160002-60-05-R4.BCG	6/7-8/18/2017	Watch	Page 57 of 57
© 2017 PCTEST Engineering Laboratory, Inc.			

06/06/2017