

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

WIRELESS EARPHONE

MODEL NUMBER: A1763

FCC ID: BCG-A1763 IC: 579C-A1763

REPORT NUMBER: 16U23788-E1V2

ISSUE DATE: DECEMBER 15, 2016

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	12/14/2016	Initial Issue	Mengistu Mekuria
V2	12/15/2016	Address TCB's Question	Chin Pang

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 60

TABLE OF CONTENTS

1. /	ATTESTATION OF TEST RESULTS
2. 1	EST METHODOLOGY6
3. F	ACILITIES AND ACCREDITATION
4. (CALIBRATION AND UNCERTAINTY
4.1	. MEASURING INSTRUMENT CALIBRATION
4.2	. SAMPLE CALCULATION
4.3	MEASUREMENT UNCERTAINTY
5. E	EQUIPMENT UNDER TEST
5.1	. DESCRIPTION OF EUT
5.2	. MAXIMUM OUTPUT POWER
5.3	DESCRIPTION OF AVAILABLE ANTENNAS
5.4	SOFTWARE AND FIRMWARE
5.5	WORST-CASE CONFIGURATION AND MODE
5.6	DESCRIPTION OF TEST SETUP10
6. 1	EST AND MEASUREMENT EQUIPMENT16
7.	ANTENNA PORT TEST RESULTS
7.1	. MEASUREMENT METHODS17
7.2	. ON TIME, DUTY CYCLE
7.3	6 dB BANDWIDTH20
7.4	. 99% BANDWIDTH23
7.5	AVERAGE POWER
7.6	OUTPUT POWER
7.7	28 POWER SPECTRAL DENSITY
7.8	CONDUCTED SPURIOUS EMISSIONS
8. F	ADIATED TEST RESULTS
8.1	. LIMITS AND PROCEDURE
8.2	. TRANSMITTER ABOVE 1 GHz
3	3.2.1. RESTRICTED BANDEDGE
83	WORST-CASE BELOW 1 CHz
د.ن م و	40 WORST-CASE 18 to 26 GHz
0.4	40 WONGT-OAGE TO LO 20 GHZ40
9. /	AC POWER LINE CONDUCTED EMISSIONS
9.1	. EUT POWERED BY AC/DC ADAPTER VIA USB CABLE
	RIFICATION SERVICES INC. FORM NO: CCSUP47011

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

10. SETUP PHOTOS	
9.2. EUT POWERED BY HOST PC VIA USB CABLE	53
FCC ID: BCG-A1763	IC: 579C-A1763
REPORT NO: 16U23788-E1V2	DATE: DECEMBER 15, 2016

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 4 of 60

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE, INC.
	1 INFINITE LOOP
	CUPERTINO, CA 95014, U.S.A.

- EUT DESCRIPTION: WIRELESS EARPHONE
- MODEL: A1763

SERIAL NUMBER: (Radiated) FTRSQ01YH18V, FTRSQ01ZH18V, FTRSQ01SH18V, FTRSQ01TH18V, (Conducted) FTRSQ00GH18V, FTRSQ009H18V, FTRSQ003H18V

DATE TESTED: NOVEMBER 30, 2016 – DECEMBER 03, 2016

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	Pass				
INDUSTRY CANADA RSS-247 Issue 1	Pass				
INDUSTRY CANADA RSS-GEN Issue 4	Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

321 mekenne

MENGISTU MEKURIA SENIOR ENGINEER UL VERIFICATION SERVICES INC. Prepared By:

ERIC YU EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 60

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558074 D01 v03r05, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	Chamber G
	🛛 Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 6 of 60

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 9KHz to 0.15 MHz	± 3.84dB
Conducted Disturbance, 0.15 to 30 MHz	± 3.65 dB
Radiated Disturbance, 9KHz to 30 MHz	± 3.15 dB
Radiated Disturbance, 30 to 1000 MHz	± 5.36 dB
Radiated Disturbance,1000 to 18000 MHz	± 4.32 dB
Radiated Disturbance, 18000 to 26000 MHz	± 4.45 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 60

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a wireless earphone. It has an integral battery, microphone and antenna. It can play music from a Bluetooth audio source. It has a Lightning port for charging. It has 4 buttons, power, vol up, vol down, and play/pause.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	BLE	10.69	11.72

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Band (GHz)	Antenna Gain (dBi)	
2.4	-2.50	

5.4. SOFTWARE AND FIRMWARE

The software installed in the EUT during testing was Version 6.5.6.

Page 8 of 60

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case mode and channel used for 30-1000 MHz radiated emissions and AC line conducted emission were including AC/DC charger, mode and channel with the highest output power. EUT is transmitting while in charging mode

Above 1G radiated emission were performed with low, middle and high channels. And above 18GHz radiated emission were performed with the EUT only set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X (Flatbed), Y (Landscape) and Z (Portrait), it was determined that Z orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Z orientation.

Data rate tested:

BLE: 1 Mbps.

Page 9 of 60

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop AC/DC adapter	Apple	A1424	NSW25679	N/A			
Laptop	Apple	MacBook AIR	C02P41R2G086	N/A			
USB	Apple	N/A	N/A	N/A			
AC/DC Adapter	Apple	A1385	D292365A20FDHLHCW	N/A			

I/O CABLES (CONDUCTED TEST)

I/O Cable List								
Cable No	CablePort# of identical portsConnectorCable TypeCable Length (m)Remark							
1	Antenna	1	SMA	Un-Shielded	0.2	To spectrum Analyzer		
2	USB	1	USB	Shielded	1	N/A		
3	AC	1	AC	Un-shielded	2	N/A		

I/O CABLES (RADIATED ABOVE 1 GHZ)

I/O Cable List								
Cable No	Cable NoPort # of identical portsConnector 							
None Used								

I/O CABLES (RADAITED BELOW 1 GHZ)

I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	1	AC	Un-shielded	2	N/A

I/O CABLES (AC LINE CONDUCTED: AC/DC ADAPTER)

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	1	AC/DC Adapter	Un-shielded	2	N/A	

Page 10 of 60

TEST SETUP- CONDUCTED PORT

The EUT was tested connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.

SETUP DIAGRAM

Page 11 of 60

TEST SETUP- RADIATED-ABOVE 1 GHZ

The EUT was powered battery. Test software exercised the EUT.

SETUP DIAGRAM

Page 12 of 60

TEST SETUP- BELOW 1GHz

The EUT was tested with earphone connected and powered by AC adapter. Test software exercised the EUT.

SETUP DIAGRAM

Page 13 of 60

TEST SETUP- AC LINE CONDUCTED: AC/DC ADAPTER

The EUT was tested with earphone connected and powered by AC/DC adapter via USB cable. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 14 of 60

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

The EUT was tested with earphone connected and powered by host PC via USB cable. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 15 of 60

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	T Number	Cal Due			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	Т339	9/22/2017			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	T341	10/25/2017			
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T344	2/22/2017			
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	Т900	5/3/2017			
Amplifier, 1 - 18GHz	Miteq	AFS42- 00101800-25-S- 42	T863	4/26/2017			
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	T835	6/18/2017			
EMI Reciever	Rohde & Schwarz	ESR-EMI	1436	12/19/16			
LISN	FISCHER	LISN-50/250-25-	1310	06/08/17			
Power Meter, P-series single channel	Agilent	N1911A	T1271	7/8/2017			
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent	N1921A	T1228	6/20/2017			
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826	T447	6/16/2017			
Spectrum Analyzer, 40 GHz	Agilent	8564E	T106	9/7/2017			
Amplifier, 1 to 26.5GHz, 23.5dB Gain minimum	Keysight	8449B	T402	7/5/2017			
	AC Line Co	nducted					
EMI Test Receiver 9Khz-7GHz	Rohde & Schwarz	ESCI7	100935	9/13/2017			
LISN for Conducted Emissions CISPR-16	Fischer	50/250-25-2	161124	9/16/2017			
Power Cable, Line Conducted Emissions	UL	PG1	T861	9/1/2017			
	UL SOFT	WARE					
* Radiated Software	UL	UL EMC	Ver 9.5, June	24, 2015			
* Conducted Software	UL	UL EMC	Ver 4.0, Janua	ry 11, 2016			
* AC Line Conducted Software	UL	ULEMC	Ver 9.5, May	26, 2015			

Note: * indicates automation software version used in the compliance certification testing

7. ANTENNA PORT TEST RESULTS

7.1. MEASUREMENT METHODS

<u>6 dB BW</u>: KDB 558074 D01 v03r05, Section 8.1.

Output Power: KDB 558074 D01 v03r05, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r05, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.1.

Band-edge: KDB 558074 D01 v03r05, Section 12.1.

Page 17 of 60

7.2. ON TIME, DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	1.000	1.000	1.000	100.00%	0.00	0.010

Page 18 of 60

DUTY CYCLE PLOTS

Agilent Spect	rum Analyzer - APv5.7(11	2916),39316, Conduc	ted F	ALICALALITO	10-05-05 MM D-+ 00, 0010	10
	KF 50 52 DC	DNO: East inter	Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE WWWWWW	Frequency
		IFGain:Low	Atten: 26 dB		DET P NNNN	Auto Tune
0 dB/div	Ref Offset 10.7 dB Ref 25.00 dBm					
						Center Fred
15.0						2.440000000 GHz
5.00						Start Fred
5.00						2.440000000 GH
15.0						Stop Fred
25.0						2.440000000 GHz
×-0						CF Step
45.0						8.000000 MHz <u>Auto</u> Mar
-5.0						Erea Offset
55.0						0 Hz
65.0						
enter 2.	440000000 GHz				Span 0 Hz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 60

7.3. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-247 (5.2) (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.690	0.5
Middle	2440	0.688	0.5
High	2480	0.704	0.5

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 20 of 60

6 dB BANDWIDTH

Page 21 of 60

Page 22 of 60

7.4. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0369
Middle	2440	1.0361
High	2480	1.0391

Page 23 of 60

99% BANDWIDTH

	12916),39516, Collect 0 GHz #IFGain:Low	Center Freq: 2.40? Trig: Free Run #Atten: 20 dB	ALI 2000000 GHz Avg Hold: 20	IGN AUTO	12:16:13 M Radio Std: Radio Dev	M Dec 02, 2016 : None rice: BTS	Frequency
Ref Offset 10.7 dB/div Ref 20.00 dE	dB 3m						
	uteres and a second			Mang	lower and the second	Internation	Center Freq 2.402000000 GHz
enter 2.402 GHz Res BW 18 kHz		#VBW 56	kHz		Sp #Sweej	an 2 MHz o 100 ms	CF Step 200.000 kHz
Occupied Bandwic 1 Transmit Freq Error	Ith .0369 MH -10.496 F	Total - Z <hz obw<="" td=""><td>Power / Power</td><td>10.3 9§</td><td>; dBm 9.00 %</td><td></td><td>Freq Offset</td></hz>	Power / Power	10.3 9§	; dBm 9.00 %		Freq Offset
x dB Bandwidth	1.266 M	lHz xdB		-26.0	00 dB		

Page 24 of 60

Page 25 of 60

7.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

ID: 43573 Date: 12/2/16

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	10.00
Middle	2440	9.86
High	2480	9.96

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 26 of 60

7.6. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b)

IC RSS-247 (5.4) (4)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.69	30	-19.310
Middle	2440	10.42	30	-19.580
High	2480	10.61	30	-19.390

Page 27 of 60

7.7. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-247 (5.2) (2)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-4.87	8	-12.87
Middle	2440	-5.21	8	-13.21
High	2480	-4.98	8	-12.98

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 28 of 60

POWER SPECTRAL DENSITY

Page 29 of 60

Page 30 of 60

7.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-247 (5.5)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 31 of 60

SPURIOUS EMISSIONS, LOW CHANNEL

Page 32 of 60

SPURIOUS EMISSIONS, MID CHANNEL

Page 33 of 60

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 34 of 60

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

Frequency Range	Field Strength Limit	Measurement distance (meters)
(MHz)	(microvolts/meter)	
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 3MHz video bandwidth with average detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 35 of 60

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. RESTRICTED BANDEDGE

<u>DATA</u>

Mark er	Frequen cy (GHz)	Meter Readin g (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl/Fltr/ Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimut h (Degs)	Heigh t (cm)	Polarit Y
4	* 2.381	29.3	RMS	31.9	-19.6	41.6	54	-12.4	-	-	6	315	н
2	* 2.389	40.14	Pk	31.9	-19.6	52.44	-	-	74	-21.56	6	315	н
1	* 2.39	36.98	Pk	31.9	-19.6	49.28	-	-	74	-24.72	6	315	н
3	* 2.39	27.3	RMS	31.9	-19.6	39.6	54	-14.4	-	-	6	315	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 36 of 60

<u>DATA</u>

Mark	Frequen	Meter	Det	AF T120	Amp/Cbl/Fltr/	Corrected	Average	Margin	Peak Limit	РК	Azimut	Heigh	Polarit
er	су	Readin		(dB/m)	Pad (dB)	Reading	Limit	(dB)	(dBuV/m)	Margin	h	t	У
	(GHz)	g				(dBuV/m)	(dBuV/m)			(dB)	(Degs)	(cm)	
		(dBuV)											
1	* 2.39	38.91	Pk	31.9	-19.6	51.21	-	-	74	-22.79	191	252	v
2	* 2.389	40.17	Pk	31.9	-19.6	52.47	-	-	74	-21.53	191	252	v
3	* 2.39	27.26	RMS	31.9	-19.6	39.56	54	-14.44	-	-	191	252	v
4	* 2.379	29.16	RMS	31.9	-19.6	41.46	54	-12.54	-	-	191	252	v

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 37 of 60

DATA

Mark	Frequen	Meter	Det	AF T120	Amp/Cbl/Fltr/	Corrected	Average	Margin	Peak Limit	PK	Azimut	Heigh	Polarit
er	су	Readin		(dB/m)	Pad (dB)	Reading	Limit	(dB)	(dBuV/m)	Margin	h	t	У
	(GHz)	g				(dBuV/m)	(dBuV/m)			(dB)	(Degs)	(cm)	
		(dBuV)											
1	* 2.484	38.44	Pk	32.2	-19.5	51.14	-	-	74	-22.86	244	124	н
3	* 2.484	30.24	RMS	32.2	-19.5	42.94	54	-11.06	-	-	244	124	н
4	* 2.484	30.13	RMS	32.2	-19.6	42.73	54	-11.27	-	-	244	124	н
2	2.536	40.47	Pk	32.2	-19.4	53.27	-	-	74	-20.73	244	124	н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 38 of 60

<u>DATA</u>

Mark	Frequen	Meter	Det	AF T120	Amp/Cbl/Fltr/	Corrected	Average	Margin	Peak	PK Margin	Azimut	Heigh	Polarit
er	су	Readin		(dB/m)	Pad (dB)	Reading	Limit	(dB)	Limit	(dB)	h	t	У
	(GHz)	g				(dBuV/m)	(dBuV/m)		(dBuV/m)		(Degs)	(cm)	
		(dBuV)											
1	* 2.484	39.75	Pk	32.2	-19.5	52.45	-	-	74	-21.55	125	102	v
3	* 2.484	28.74	RMS	32.2	-19.5	41.44	54	-12.56	-	-	125	102	v
2	2.512	40.47	Pk	32.2	-19.5	53.17	-	-	74	-20.83	125	102	v
4	2.562	29.44	RMS	32.2	-19.4	42.24	54	-11.76	-	-	125	102	v

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

RMS - RMS detection

 Page 39 of 60

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP47011

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

7173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8.2.2. HARMONICS AND SPURIOUS EMISSIONS

Page 40 of 60

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl/Fltr/P	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading			ad (dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
1	* 2.362	39.26	PK2	31.8	-19.7	51.36	-	-	74	-22.64	15	200	н
	* 2.362	24.02	MAv1	31.8	-19.7	36.12	54	-17.88	-	-	15	200	Н
4	* 2.244	38.34	PK2	31.6	-20.1	49.84	-	-	74	-24.16	284	173	V
	* 2.244	22.62	MAv1	31.6	-20.1	34.12	54	-19.88	-	-	284	173	V
2	* 3.603	45.65	PK2	34.9	-35.6	44.95	-	-	74	-29.05	334	103	н
	* 3.603	37.56	MAv1	34.9	-35.6	36.86	54	-17.14	-	-	334	103	н
5	* 7.638	40.06	PK2	35.8	-30.1	45.76	-	-	74	-28.24	194	191	V
	* 7.637	28.66	MAv1	35.8	-30.2	34.26	54	-19.74	-	-	194	191	V
3	9.609	43.88	PK2	37	-29.1	51.78	-	-	-	-	337	192	н
6	9.609	41.12	PK2	37	-29.1	49.02	-	-	-	-	146	141	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 41 of 60

Page 42 of 60

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading			(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
1	* 3.663	47.73	PK2	34.9	-35.8	46.83	-	-	74	-27.17	256	100	Н
	* 3.663	41.01	MAv1	34.9	-35.8	40.11	54	-13.89	-	-	256	100	Н
2	* 4.884	45.52	PK2	34	-34.8	44.72	-	-	74	-29.28	201	100	Н
	* 4.884	36.24	MAv1	34	-34.8	35.44	54	-18.56	-	-	201	100	Н
3	* 8.355	39.46	PK2	35.8	-29.9	45.36	-	-	74	-28.64	267	190	н
	* 8.354	28.37	MAv1	35.8	-29.9	34.27	54	-19.73	-	-	267	190	н
4	9.767	41.19	PK2	37.3	-29.2	49.29	-	-	-	-	201	100	Н
5	9.982	38.96	PK2	37.6	-28.1	48.46	-	-	-	-	227	225	Н
6	15.039	36.52	PK2	40.1	-24.1	52.52	-	-	-	-	63	204	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 43 of 60

Page 44 of 60

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T120	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
2	* 3.72	47.37	PK2	34.7	-35.9	46.17	-	-	74	-27.83	14	122	н
	* 3.72	39.09	MAv1	34.7	-35.9	37.89	54	-16.11	-	-	14	122	Н
3	* 4.959	45.12	PK2	34	-34.3	44.82	-	-	74	-29.18	286	116	Н
	* 4.96	34.26	MAv1	34	-34.3	33.96	54	-20.04	-		286	116	Н
6	* 10.746	38.44	PK2	38.1	-28	48.54	-	-	74	-25.46	129	116	V
	* 10.745	27.56	MAv1	38.1	-28.1	37.56	54	-16.44	-	-	129	116	V
4	7.788	28.92	MAv1	35.8	-30.8	33.92	-	-	-	-	212	109	V
	7.789	39.56	PK2	35.8	-30.8	44.56	-	-	-	-	212	109	V
3	9.919	44.4	PK2	37.5	-29	52.9	-	-	-	-	295	195	н
5	9.919	43.17	PK2	37.5	-29	51.67	-	-	-	-	256	100	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 60

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 46 of 60

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T407	Amp/Cbl (dB)	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
2	* 121.3325	29.64	Pk	17.8	-30.3	17.14	43.52	-26.38	0-360	201	н
1	31.785	28.82	Pk	24	-31.3	21.52	40	-18.48	0-360	201	н
4	43.855	33.97	Pk	15	-31.1	17.87	40	-22.13	0-360	100	V
5	105.48	30.97	Pk	15.6	-30.5	16.07	43.52	-27.45	0-360	100	V
6	866.7	30.34	Pk	25.8	-26.8	29.34	46.02	-16.68	0-360	399	V
3	932	30.37	Pk	26.1	-26.1	30.37	46.02	-15.65	0-360	399	н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Page 47 of 60

8.4. WORST-CASE 18 to 26 GHz

SPURIOUS EMISSIONS 18 to 26 GHz (WORST-CASE CONFIGURATION)

	RF Emissions
95	Project Number: 16/23788 Configuration: UII Only Mode: BLE_Above 186Hz Tested by / SN 14578
35	
75 Peak Limit (dBuV/m)	
65	
Avg Limit (dBuV/m)	
45	3
1	
mound and any many and	and a start and the second and the second and the start and the second and the second and the second s
35	and a start of the second and a second and a start and a start and a start of the second second second second s
35	and an and a specific
35	
35	
35 25 15	
18	Frequency (GHz)

15 CL EMC										1 0)ec 28	316 2	23:42:8
						RF	Emissi	ions					
95						Pr Co Mo	oject Numb nfiguratio de:BLE_Abo	er:16U2370 n:EUT Only ve 18GHz SN:43578	38 J				
35							seed by s	0.0010					
75 <mark>- Peak Li</mark>	mit (dBuV/n	ı)											
5													
Avg Lim	it (dBuV/m)												
										6			
15 mbrune		warmen	4 Internation	5 mm	find unberliefe	www.	www.www.w	www.esepth	Advanter advan	Anderson	mahalla	monthan	*****
15	····												
:5													
5													
18					Freque	ncy (GHz)							
Range (6Hz)	RBM/UBM Ref/	'Attn Det/	Sxeep	Pts #Swps/	Node Label	Ronge (GHz) 2:18-26	RBM/UBM 1M(-3dB)/3M	Ref/Attn De 97/8 Pf	rt/ IAK/ -	Sweep Auto	Pts 1282	#Swps/Mode MAXH	Label Vertical

Page 48 of 60

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading	Det	AF T449 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
		(dBuV)					(dBuVolts)				
1	18.726	41.3	Pk	32.4	-24.7	-9.5	39.5	54	-14.5	74	-34.5
2	22.763	41.97	Pk	33.4	-24.7	-9.5	41.17	54	-12.83	74	-32.83
3	23.902	43.23	Pk	34	-23.9	-9.5	43.83	54	-10.17	74	-30.17
4	19.838	43.57	Pk	32.6	-25	-9.5	41.67	54	-12.33	74	-32.33
5	20.738	41.43	Pk	33	-25.1	-9.5	39.83	54	-14.17	74	-34.17
6	23.975	43.87	Pk	34	-24.2	-9.5	44.17	54	-9.83	74	-29.83

Pk - Peak detector

Page 49 of 60

9. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Page 50 of 60

9.1. EUT POWERED BY AC/DC ADAPTER VIA USB CABLE

LINE 1 RESULTS

WORST EMISSIONS

Range 1: Line-L1 .15 - 30MHz

Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			1&3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
1	.168	32.81	Qp	0	0	10.1	42.91	65.06	-22.15	-	-
2	.17025	16.82	Ca	0	0	10.1	26.92	-	-	54.95	-28.03
3	.19725	27.68	Qp	0	0	10.1	37.78	63.73	-25.95	-	-
4	.19725	12.66	Ca	0	0	10.1	22.76	-	-	53.73	-30.97
5	.25238	28.14	Qp	0	0	10.1	38.24	61.68	-23.44	-	-
6	.2535	13.91	Ca	0	0	10.1	24.01	-	-	51.64	-27.63
7	.33675	25	Qp	0	0	10.1	35.1	59.28	-24.18	-	-
8	.339	11.93	Ca	0	0	10.1	22.03	-	-	49.23	-27.2
9	.42	20.3	Qp	0	0	10.1	30.4	57.45	-27.05	-	-
10	.42225	8.23	Ca	0	0	10.1	18.33	-	-	47.4	-29.07
11	.78225	29.72	Qp	0	0	10.1	39.82	56	-16.18	-	-
12	.78225	20.66	Ca	0	0	10.1	30.76	-	-	46	-15.24

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 51 of 60

LINE 2 RESULTS

WORST EMISSIONS

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	LISN L2	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			2&3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
13	.17025	30.28	Qp	0	0	10.1	40.38	64.95	-24.57	-	-
14	.17025	13.4	Ca	0	0	10.1	23.5	-	-	54.95	-31.45
15	.195	25.79	Qp	0	0	10.1	35.89	63.82	-27.93	-	-
16	.195	9.96	Ca	0	0	10.1	20.06	-	-	53.82	-33.76
17	.2535	24.78	Qp	0	0	10.1	34.88	61.64	-26.76	-	-
18	.2535	7.95	Ca	0	0	10.1	18.05	-	-	51.64	-33.59
19	.339	20.1	Qp	0	0	10.1	30.2	59.23	-29.03	-	-
20	.339	4.45	Ca	0	0	10.1	14.55	-	-	49.23	-34.68
21	.42225	13.78	Qp	0	0	10.1	23.88	57.4	-33.52	-	-
22	.42225	2.13	Ca	0	0	10.1	12.23	-	-	47.4	-35.17
23	.78	27.66	Qp	0	0	10.1	37.76	56	-18.24	-	-
24	.78	17.61	Ca	0	0	10.1	27.71	-	-	46	-18.29

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 52 of 60

9.2. EUT POWERED BY HOST PC VIA USB CABLE

LINE 1 RESULTS

WORST EMISSIONS

Range 1: Line-L1 .15 - 30MHz

Marker	Frequency	Meter	Det	LISN	LC Cables	Limiter (dB)	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading		L1	1&3		Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
1	.3165	28.15	Qp	0	0	10.1	38.25	59.8	-21.55	-	-
2	.27938	15.32	Ca	0	0	10.1	25.42	-	-	50.83	-25.41
3	.5685	27.67	Qp	0	0	10.1	37.77	56	-18.23	-	-
4	.5685	8.54	Ca	0	0	10.1	18.64	-	-	46	-27.36
5	.85425	25.7	Qp	0	0	10.1	35.8	56	-20.2	-	-
6	.8565	7.19	Ca	0	0	10.1	17.29	-	-	46	-28.71
7	1.14	24.61	Qp	0	0	10.1	34.71	56	-21.29	-	-
8	1.194	7.78	Ca	0	.1	10.1	17.98	-	-	46	-28.02
9	6.6345	18.44	Qp	0	.1	10.2	28.74	60	-31.26	-	-
10	6.56025	12.93	Ca	0	.1	10.2	23.23	-	-	50	-26.77
11	10.04325	17.54	Qp	0	.2	10.2	27.94	60	-32.06	-	-
12	10.02188	12.31	Ca	0	.2	10.2	22.71	-	-	50	-27.29

Qp - Quasi-Peak detector

Ca - CISPR average detection

LINE 2 RESULTS

WORST EMISSIONS

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	LISN L2	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			2&3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
13	.312	27.01	Qp	0	0	10.1	37.11	59.92	-22.81	-	-
14	.31425	9.21	Ca	0	0	10.1	19.31	-	-	49.86	-30.55
15	.47287	24.75	Qp	0	0	10.1	34.85	56.46	-21.61	-	-
16	.47175	12.9	Ca	0	0	10.1	23	-	-	46.48	-23.48
17	.8565	22.15	Qp	0	0	10.1	32.25	56	-23.75	-	-
18	.8835	10.76	Ca	0	0	10.1	20.86	-	-	46	-25.14
19	5.35425	20.21	Qp	0	.1	10.1	30.41	60	-29.59	-	-
20	5.35425	15.26	Ca	0	.1	10.1	25.46	-	-	50	-24.54
21	9.65625	17.98	Qp	0	.1	10.2	28.28	60	-31.72	-	-
22	9.65625	12.64	Ca	0	.1	10.2	22.94	-	-	50	-27.06
23	16.84725	21.57	Qp	0	.2	10.3	32.07	60	-27.93	-	-
24	16.84613	15.04	Ca	0	.2	10.3	25.54	-	-	50	-24.46

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 54 of 60