The Testcenter facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-01. # Report # Dosimetric Assessment of the Portable Device Jabra Pro 90 (FCC ID: BCE-WHB005HS) (IC 2386C-WHB005HS) # According to the FCC Requirements November 25, 2013 # **IMST GmbH** Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort # Customer GN Netcom A/S Lautrupbjerg 7 DK-2750 Ballerup Denmark This revised version of the report supersedes all previous versions. The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory. # **Executive Summary** The Pro 90 is a new cordless Bluetooth headset (Portable Device) from Jabra operating in the 2450 MHz frequency range. The device has an integrated antenna. The objective of the measurements done by IMST was the dosimetric assessment of one headset Pro 90 in GFSK modulation with basic rate DH5 packets. The measurements are conducted in the flat part of the SAM phantom using head simulating liquid with a separation distance of 0 mm between DUT and flat phantom. For establishing a connection with the DUT a CMU 200 was used to set the device to one specific channel at maximum output power. The examinations have been carried out with the dosimetric assessment system "DASY4". The measurements were made according to the 47 CFR § 2.1093 [47CFR] for evaluating compliance of mobile and portable devices with FCC limits for human exposure (general population) to radiofrequency emissions, IEEE 1528-2003 [IEEE1528-2003] and IC RSS 102 Issue 4. Additional information and guidelines given by the following FCC documents were used: - SAR Measurement Requirements for 100 MHz to 6 GHz [KDB 865664 D01 v01r01] - Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies [KDB 447498 D01 v05r01] All measurements have been performed in accordance to the recommendations given by SPEAG. # Dasy_Report_FCC_DECT_1900_1.1.doc/22.05.2006/CH # **Compliance Statement** The device Jabra Pro 90 (FCC ID: BCE-WHB005HS, IC: 2386C-WHB005HS) is in compliance with the following standards for uncontrolled exposure: - 47 CFR § 2.1093 [47CFR] - IC RSS 102 Issue 4 [RSS 102], - IEEE Std. C95.1 1999 [C95.1-1999], - IEEE Std. C95.3 2002 [C95.3-2002], - IEEE 1528-2003 [IEEE 1528-2003], - The latest version of all relevant FCC OET KDB Procedures SAR assessment was conducted in the flat part of the phantom using head simulation liquid. | Band | Mode | Frequency
[MHz] | СН | Test
Position | Figure
No. | Highest
Measured
SAR _{1g} [W/kg] | Highest
Reported
SAR _{1g} [W/kg] | |------|----------|--------------------|----|------------------|---------------|---|---| | ВТ | Standard | 2480 | 78 | Pos. 2 | 14 | 0.017 | 0.019 | prepared by: .. Alexander Rahn test engineer reviewed by: U.ol. Box8 André van den Bosch quality assurance engineer # **Table of Contents** | 1 | SUE | JECT OF INVESTIGATION | 5 | |---|---------|--|----| | 2 | THE | EIEEE STANDARD C95.1-1999 AND THE FCC EXPOSURE CRITERIA | 5 | | | 2.1 | DISTINCTION BETWEEN EXPOSED POPULATION, DURATION OF EXPOSURE AND FREQUENCIES | 6 | | | 2.2 | DISTINCTION BETWEEN MAXIMUM PERMISSIBLE EXPOSURE AND SAR LIMITS | 6 | | | 2.3 | SAR LIMIT | 6 | | 3 | THE | FCC MEASUREMENT PROCEDURE | 7 | | | 3.1 | GENERAL REQUIREMENTS | 7 | | | 3.2 | DEVICE OPERATING NEXT TO A PERSON'S EAR | 8 | | 4 | THE | MEASUREMENT SYSTEM | 11 | | | 4.1 | PHANTOMS | 13 | | | 4.2 | E-FIELD-PROBES | 14 | | | 4.3 | MEASUREMENT PROCEDURE | 15 | | | 4.4 | UNCERTAINTY ASSESSMENT | 16 | | 5 | OUT | PUT POWER VALUES AND TUNE UP INFORMATION | 17 | | _ | CAF | R RESULTS | 40 | | 6 | SAF | R RESULTS | 10 | | 7 | EVA | LUATION | 19 | | 8 | APF | PENDIX | 20 | | | 8.1 | ADMINISTRATIVE DATA | 20 | | | 8.2 | DEVICE UNDER TEST AND TEST CONDITIONS | 20 | | | 8.3 | TISSUE RECIPES | 20 | | | 8.4 | MATERIAL PARAMETERS | 21 | | | 8.5 | SIMPLIFIED PERFORMANCE CHECKING | 21 | | | 8.6 | ENVIRONMENT | 24 | | | 8.7 | TEST EQUIPMENT | 24 | | | 8.8 | CERTIFICATES OF CONFORMITY | 26 | | | 8.9 | PICTURES OF THE DEVICE UNDER TEST | 28 | | | 8.10 | TEST POSITIONS FOR THE DEVICE UNDER TEST | 29 | | | FIG. 14 | : Position 2 | 29 | | | 8.11 | PICTURES TO DEMONSTRATE THE REQUIRED LIQUID DEPTH | 30 | | ۵ | DE | EDENCES | 21 | # 1 Subject of Investigation The Pro 90 is a new cordless Bluetooth headset (Portable Device) from Jabra operating in the 2450 MHz frequency range. The device has an integrated antenna. The objective of the measurements done by IMST was the dosimetric assessment of one headset Pro 90 in GFSK modulation with basic rate DH5 packets. Fig. 1: Pictures of the device under test. The measurements are conducted in the flat part of the SAM phantom using head simulating liquid with a separation distance of 0 mm between DUT and flat phantom. For establishing a connection with the DUT a CMU 200 was used to set the device to one specific channel at maximum output power. The examinations have been carried out with the dosimetric assessment system "DASY4". # 2 The IEEE Standard C95.1-1999 and the FCC Exposure Criteria In the USA the FCC exposure criteria [KDB 865664] are based on the withdrawn IEEE Standard C95.1-1999 [IEEE C95.1-1999]. This version was replaced by the IEEE Standard C95.1-2005 [IEEE C95.1-2005] in October, 2005. Both IEEE standards sets limits for human exposure to radio frequency electromagnetic fields in the frequency range 3 kHz to 300 GHz. One of the major differences in the newly revised C95.1 is the change in the basic restrictions for localized exposure, from 1.6 W/kg averaged over 1 g tissue to 2.0 W/kg averaged over 10 g tissue, which is now identical to the ICNIRP guidelines [ICNIRP 1998]. # 2.1 Distinction Between Exposed Population, Duration of Exposure and Frequencies The American Standard [IEEE C95.1-1999] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible. In addition the duration of exposure is considered. Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency. ### 2.2 Distinction between Maximum Permissible Exposure and SAR Limits The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue: $$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$ The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy. As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric *E* and magnetic field strength *H* and power density *S*, derived from the SAR limits. The limits for *E*, *H* and *S* have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded. For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits. ### 2.3 SAR Limit In this report the comparison between the FCC exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded. Having in mind a worst case consideration, the SAR limit is valid for uncontrolled environment and mobile respectively portable transmitters. According to Table 1 the SAR values have to be averaged over a mass of 1 g (SAR_{1q}) with the shape of a cube. | Standard | Status | SAR limit [W/kg] | |-----------------|----------|------------------| | IEEE C95.1-1999 | Replaced | 1.6 | Table 1: Relevant spatial peak SAR limit averaged over a mass of 1 g. ### 3 The FCC Measurement Procedure The Federal Communications Commission (FCC) has published a report and order on the 1st of August 1996 [FCC 96-326], which requires routine dosimetric assessment of mobile telecommunications devices, either by laboratory measurement techniques or by computational modeling, prior to equipment authorization or use. In 2001 the Commission's Office of Engineering and Technology has released Edition 01-01 of Supplement C to OET Bulletin 65. This revised edition, which replaces Edition 97-01, provides additional guidance and information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions [OET 65]. In 2013 the FCC has published a Notice of Proposed Rule Making [FCC 03-137] that discontinued the Supplement C to OET Bulletin 65 and reference will be made to KDB publications in 2.1093 (d)(3) of 47 CFR [47 CFR]. # 3.1 General Requirements The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. ## 3.2 Device Operating Next to a Person's Ear ## 3.2.1 Phantom Requirements The phantom is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues. The physical characteristics of the phantom model shall resemble the head and the neck of a user since the shape is a dominant parameter for exposure. ### 3.2.2 Test Positions As it cannot be expected that the user will hold the mobile phone exactly in one well defined position, different operational conditions shall be tested. The IEEE 1528 – 2003 [IEEE 1528] requires two test positions. For an exact description helpful geometrical definitions are introduced and shown in Fig. 2 - 3. There are two imaginary lines on the mobile, the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width w_t of the handset at the level of the acoustic output (point A on Fig. 2), and the midpoint of the width w_b of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Fig. 2). The two lines intersect at point A. Fig. 2: Handset vertical and horizontal reference lines. Fig. 3: Phantom reference points. According to Fig. 3 the human head position is given by means of the following three reference points: auditory canal opening of both ears (RE and LE) and the center of the closed mouth (M). The ear reference points are 15-17 mm above the entrance to the ear canal along the BM line (back-mouth), as shown in Fig. 3. The plane passing through the two ear canals and M is defined as the reference plane. The line NF (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the reference pivoting line. Line BM is perpendicular to the NF line. With this definitions the test positions are given by ### Cheek position (see Fig. 4): Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Fig. 3), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane). Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear. Fig. 4: The cheek position. ## Tilted position (see Fig. 5): Fig. 5: The tilted position. While maintaining the orientation of the phone retract the phone parallel to the reference plane far enough to enable a rotation of the phone by 15°. Rotate the phone around the horizontal line by 15°. While maintaining the orientation of the phone, move the phone parallel to the reference plane until any part of the phone touches the head. In this position, point A will be located on the line RE-LE. ### 3.2.3 Test to be Performed The SAR test shall be performed with both phone positions described above, on the left and right side of the phantom. The device shall be measured for all modes operating when the device is next to the ear, even if the different modes operate in the same frequency band. For devices with retractable antenna the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device, or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional. ## 3.2.4 Measurement Variability According KDB 865664 SAR measurement variability was assessed for each frequency band which was determined by the SAR probe calibration point and tissue equivalent medium, used for the device measurement. When both head and body tissue equivalent media were required for SAR measurements in a frequency band, the variability measurement procedure were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue equivalent medium in a frequency band. The test device was returned to ambient conditions with the battery fully charged before it was remounted on the device holder for the repeated measurements to minimize any unexpected variations in the repeated results. Repeated measurement is not required when the original measured highest SAR is < 0.8 W/kg. # 4 The Measurement System DASY is an abbreviation of "<u>D</u>osimetric <u>A</u>ssessment <u>Sy</u>stem" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 6. Additional Fig: 7 shows the equipment, similar to the installations in other laboratories. - Fully compliant with all current measurement standards as stated in Figure 10 - High precision robot with controller - Measurement server (for surveillance of the robot operation and signal filtering) - Data acquisition electronics DAE (for signal amplification and filtering) - Field probes calibrated for use in liquids - Electro-optical converter EOC (conversion from the optical into a digital signal) - Light beam (improving of the absolute probe positioning accuracy) - Two SAM phantoms filled with tissue simulating liquid - DASY4 software - SEMCAD Fig. 6: The DASY4 measurement system. Fig. 7: The measurement set-up with two SAM phantoms containing tissue simulating liquid. The mobile phone operating at the maximum power level is placed by a non metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing. The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube. The measurement time takes about 20 minutes. ### 4.1 Phantoms | Twin SAM Phantom V4.0 | | | | | |--|---|--|--|--| | Address of the second s | Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delivered by Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 11. | | | | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | | | | Dimensions | Length: 1000 mm; Width: 500 mm
Height: adjustable feet | | | | | Filling Volume | approx. 25 liters | | | | # 4.2 E-Field-Probes For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC [OET 65] and IEEE [IEEE 1528-2003] recommendations annually by Schmid & Partner Engineering AG. | | ET3DV6R | | | | | | |-------------------|---|--|--|--|--|--| | Construction | Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | | | | | Dimensions | Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm | | | | | | | Frequency | 10 MHz to 2.3 GHz
Linearity: ± 0.2 dB (30 MHz to 2.3 GHz) | | | | | | | Directivity | Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis) | | | | | | | Dynamic Range | 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB | | | | | | | Calibration Range | 450 MHz / 750 MHz / 900 MHz / 1750 MHz / 1900 MHz / 1950 MHz for head and body simulating liquid | | | | | | | | EX3DV4 | | | | | |-------------------|---|--|--|--|--| | Construction | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | | | | Frequency | 10 MHz to > 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | | | | | | Directivity | Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis) | | | | | | Dynamic Range | 10 μ W/g to > 100 mW/g
Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) | | | | | | Calibration Range | 1950 MHz / 2450 MHz / 2600 MHz / 3500 MHz / 5200 MHz / 5300 MHz / 5600 MHz / 5800 MHz for head and body simulating liquid | | | | | ### 4.3 Measurement Procedure The following steps are used for each test position: - Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface. - Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 2. - The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4]. - Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB. | | | | ≤ 3 GHz | ≥ 3 GHz | | |---|---|--|---------------------------------|--|--| | Maximum distance | | osest measurement point (geometric ohantom surface | 5 ± 1 mm | ½·δ·ln(2) ± 0.5 mm | | | Maximum probe at the measurement | | probe axis to phantom surface normal | 30° ± 1° | 20° ± 1° | | | | | | ≤ 2 GHz: ≤ 15 mm | 3 - 4 GHz: ≤ 12 mm | | | | | | 2 - 3 GHz: ≤ 12 mm | 4 - 6 GHz: ≤ 10 mm | | | Maximum area so | When the x or y dimension of the test device, measurement plane orientation, is smaller than the the measurement resolution must be \leq the correspondence or y dimension of the test device with at least measurement point on the test device. | | | n, is smaller than the above,
nust be ≤ the corresponding x
t device with at least one | | | Maximum zoom scan spatial resolution: AX - AY - | | ≤ 2 GHz: ≤ 8 mm | 3 - 4 GHz: ≤ 5 mm* | | | | Maximum 200m s | imum zoom scan spatial resolution: ΔX _{Zoom} , ΔY _{Zoom} | | 2 - 3 GHz: ≤ 5 mm* | 4 - 6 GHz: ≤ 4 mm* | | | | | | | 3 - 4 GHz: ≤ 4 mm | | | | Uniform of | grid: ΔZ _{Zoom} (n) | ≤ 5 mm | 4 - 5 GHz: ≤ 3 mm | | | Maximum zoom scan spatial | | 25011() | | 5 - 6 GHz: ≤ 2 mm | | | resolution, | | | | 3 - 4 GHz: ≤ 3 mm | | | normal to phantom | graded | $\Delta Z_{Zoom}(1)$: between 1 st two points closest to phantom surface | ≤ 4 mm | 4 - 5 GHz: ≤ 2.5 mm | | | surface | graded | closest to phantom surface | | 5 - 6 GHz: ≤ 2 mm | | | | ΔZ _{Zoom} (n>1): between subsequent points | | ≤ 1.5· ΔZ _{Zoom} (n-1) | | | | Minimum zoom | | | | 3 - 4 GHz: ≥ 28 mm | | | scan volume | x, y, z | | ≥ 30 mm | 4 - 5 GHz: ≥ 25 mm | | | Scall Volulle | , ,, | | | 5 - 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE P1528-2011 for details. Table 2: Parameters for SAR scan procedures. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz # 4.4 Uncertainty Assessment Table 3 includes the worst case uncertainty budget suggested by the [IEEE 1528-2003] and determined by Schmid & Partner Engineering AG. The expanded uncertainty (K=2) is assessed to be \pm 21.7% and is valid up to 3.0 GHz. | Error Sources | Uncertainty
Value | Probability
Distribution | Divisor | c _i | Standard
Uncertainty | v _i ² or
v _{eff} | |------------------------------|----------------------|-----------------------------|---------|----------------|-------------------------|---| | Measurement System | | | | | | | | Probe calibration | ± 5.9 % | Normal | 1 | 1 | ± 5.9 % | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √3 | 0.7 | ± 1.9 % | ∞ | | Hemispherical isotropy | ± 9.6 % | Rectangular | √3 | 0.7 | ± 3.9 % | ∞ | | Boundary effects | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Linearity | ± 4.7 % | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | System detection limit | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Readout electronics | ± 1.0 % | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 % | Rectangular | √3 | 1 | ± 0.5 % | ∞ | | Integration time | ± 2.6% | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF ambient conditions | ± 3.0 % | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe positioner | ± 0.4 % | Rectangular | √3 | 1 | ± 0.2 % | ∞ | | Probe positioning | ± 2.9 % | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithm for max SAR eval. | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Test Sample Related | | | | | | | | Device positioning | ± 2.9 % | Normal | 1 | 1 | ± 2.9 % | 145 | | Device holder | ± 3.6 % | Normal | 1 | 1 | ± 3.6 % | 5 | | Power drift | ± 5.0 % | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | Phantom and Set-up | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (target) | ± 5.0 % | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | Liquid conductivity (meas.) | ± 2.5 % | Normal | 1 | 0.64 | ± 1.6 % | ∞ | | Liquid permittivity (target) | ± 5.0 % | Rectangular | √3 | 0.6 | ± 1.7 % | 8 | | Liquid permittivity (meas.) | ± 2.5 % | Normal | 1 | 0.6 | ± 1.5 % | 8 | | Combined Uncertainty | | | | | ± 10.8 % | | Table 3: Uncertainty budget of DASY4. # Dasy_Report_FCC_DECT_1900_1.1.doc/22.05.2006/CH # **5 Output Power Values and Tune up information** | Band | Mode | Frequency
[MHz] | Channel | Tune up tolerance [dB] | MEASURED
OUTPUT POWER [dBm] | |------|---------------------|--------------------|---------|------------------------|--------------------------------| | | | 2402 | 0 | | 14.71 | | | GFSK DH5 | 2441 | 39 | 0.5 | 15.31 | | | | 2480 | 78 | | 15.38 | | | π/4 DQPSK
8 DPSK | 2402 | 0 | | 8.84 | | ВТ | | 2441 | 39 | 0.5 | 9.93 | | | | 2480 | 78 | | 10.00 | | | | 2402 | 0 | | 8.90 | | | | 2441 | 39 | 0.5 | 9.91 | | | | 2480 | 78 | | 9.88 | Table 4: Measured output power and tune-up information for the Jabra Pro 90. ### 6 SAR Results The tables below contain the measured SAR values averaged over a mass of 1 g. SAR assessment was conducted in the worst case configuration with output power values according Table 4. According KDB 447498 D01 V05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / RF power (mW) Reported SAR = measured SAR * scaling factor Furthermore, testing of other required channels within the operating mode of frequency band is not required when the reported SAR for the mid-band or highest output power channel is ≤ 0.4 W/kg for transmission band ≥ 200 MHz. | Band | Frequency
[MHz] | Channel | Test Position | Figure No. | Measured
SAR _{¹g} [W/kg] | Power Drift
[dBm] | Tune-Up
Limit [dBm] | Output Power
[dBm] | Scaling
Factor | Reported
SAR ₁₉ [W/kg] | Plot No. | |------|--------------------|---------|---------------|------------|--------------------------------------|----------------------|------------------------|-----------------------|-------------------|--------------------------------------|----------| | | 2402 | 0 | | | 0.004 | -0.082 | 15.21 | 14.71 | 1.122 | 0.004 | 1 | | | 2441 | 39 | Position 1 | 13 | 0.006 | -0.111 | 15.81 | 15.31 | 1.122 | 0.007 | 2 | | | 2480 | 78 | | | 0.005 | 0.070 | 15.88 | 15.38 | 1.122 | 0.006 | 3 | | ВТ | 2402 | 0 | | | 0.010 | 0.057 | 15.21 | 14.71 | 1.122 | 0.011 | 4 | | | 2441 | 39 | Position 2 14 | 14 | 0.010 | 0.137 | 15.81 | 15.31 | 1.122 | 0.011 | 5 | | | 2480 | 78 | | | 0.017 | -0.171 | 15.88 | 15.38 | 1.122 | 0.019 | 6 | Table 5: Measurement results for the Jabra Pro 90 in two configurations against the flat phantom with 0 mm distance. To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Drift[dB]). This ensures that the power drift during one measurement is within 5%. Since the measured max SAR is < 0.8 W/kg measurement variability assessment according KDB 865664 is not applicable. # 7 Evaluation In figure 8 the SAR results given in table 5 are summarized and compared to the limit. Fig. 8: The reported SAR values for the Jabra Pro 90 for the US BT standard in comparison to the FCC exposure limit. # Dasy Report FCC_DECT_1900_1.1.doc/22.05.2006/CH # 8 Appendix ### 8.1 Administrative Data Date of validation: November 21, 2013 November 21, 2013 November 21, 2013 Data stored: 7layers_60320_6130418 Contact: IMST GmbH Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort, Germany Tel.: +49- 2842-981 378 Fax: +49- 2842-981 399 email: vandenBosch@imst.de ### 8.2 Device under Test and Test Conditions MTE: Jabra Pro 90, production line unit Date of receipt: November 19, 2013 FCC ID: BCE-WHB005HS IC: 2386C-WHB005HS Equipment class: Portable device RF exposure environment: General Population/ Uncontrolled Power supply: External battery Antenna: Integrated Measured Standards: Bluetooth (GFSK modulation, DH5) Method to establish a call: Internal software Crest Factor: 1 TX range: BT: 2402 MHz – 2480 MHz RX range: BT: 2402 MHz – 2480 MHz Used TX Channels: BT: low: ch 0 center: ch 39, high: ch 78 Used Phantom: SAM Twin Phantom V4.0, as defined by the IEEE SCC-34/SC2 group and delivered by Schmid & Partner Engineering AG ## 8.3 Tissue Recipes The following recipes are provided in percentage by weight. 2450 MHz, Head: 45.65% Diethylenglykol-monobutylether 54.00% De-Ionized Water ### 8.4 Material Parameters For the measurement of the following parameters the HP 85070B dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure. The measured values should be within \pm 5% of the recommended values given by the FCC. | Frequency | | ϵ_{r} | σ [S/m] | |---------------|---------------------------------------|----------------|-------------| | | Recommended Value | 39.20 ± 2.00 | 1.80 ± 0.09 | | | Measured Value (Validation, 2450 MHz) | 40.40 | 1.82 | | 2450 MHz Head | Measured Value (CH 0, 2402 MHz) | 40.70 | 1.73 | | | Measured Value (CH 39, 2441 MHz) | 40.40 | 1.80 | | | Measured Value (CH 78, 2480 MHz) | 40.50 | 1.88 | Table 6: Parameters of the tissue simulating liquids. # 8.5 Simplified Performance Checking The simplified performance check was realized using the dipole validation kits. The input power of the dipole antennas were 250 mW (cw signal) and they were placed under the flat part of the SAM phantom. The target and measured results are listed in the Table 7 - 8 and shown in Figure 9. The target values were adopted from the calibration certificates which are attached in the appendix. Table 9 includes the uncertainty assessment for the system performance checking which was suggested by the [IEEE 1528-2003] and determined by Schmid & Partner Engineering AG. The expanded uncertainty (K=2) is assessed to be \pm 16.8%. | Available Dipoles | | SAR _{1g} [W/kg] | € _r | σ [S/m] | |--------------------|-----------------------|--------------------------|----------------|---------| | 2450 MHz, SN: #709 | Target
Values Head | 13.80 | 39.70 | 1.81 | Table 7: Dipole target results as given by the manufactures calibration certificates. | | | 0.4.5 | | | Tempe | erature | |--------------------|-------------------------|-----------------------------|----------------|------------------------|------------------|-----------| | Used Dipoles | | SAR _{1g}
[W/kg] | ε _r | ε _r σ [S/m] | Ambient
[° C] | Liquid [° | | 2450 MHz, SN: #709 | Measured
Values Head | 13.70 | 40.40 | 1.82 | 21.4 | 21.1 | Table 8: Measured dipole validation results. Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 211113 y 3860.da4 DUT: Dipole 2450 MHz SN: 709; Type: D2450V2; Serial: D2450V2 - SN:709 Program Name: System Performance Check at 2450 MHz Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.82 mho/m; ε_r = 40.4; ρ = 1000 kg/m³ Phantom section: Flat Section ### DASY4 Configuration: - Probe: EX3DV4 SN3860; ConvF(7.38, 7.38, 7.38); Calibrated: 29.07.2013 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn631; Calibrated: 23.09.2013 - Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.3 mW/g d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.8 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.09 mW/g Maximum value of SAR (measured) = 15.5 mW/g Fig. 9 Validation measurement 2450 MHz Head (November 21, 2013). | Error Sources | Uncertainty
Value | Probability
Distribution | Divisor | C i | Standard
Uncertainty | V _i ²
or
V _{eff} | |--------------------------------|----------------------|-----------------------------|---------|------------|-------------------------|---| | Measurement System | | | | | | | | Probe calibration | ± 4.8 % | Normal | 1 | 1 | ± 4.8 % | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 0 % | Rectangular | √3 | 1 | ± 0 % | ∞ | | Boundary effects | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Linearity | ± 4.7 % | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | System detection limit | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Readout electronics | ± 1.0 % | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0 % | Rectangular | √3 | 1 | ± 0 % | ∞ | | Integration time | ± 0% | Rectangular | √3 | 1 | ± 0 % | ∞ | | RF ambient conditions | ± 3.0 % | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe positioner | ± 0.4 % | Rectangular | √3 | 1 | ± 0.2 % | ∞ | | Probe positioning | ± 2.9 % | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for max SAR eval. | ± 1.0 % | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Dipole | | | | | | | | Dipole Axis to Liquid Distance | ± 2.0 % | Rectangular | 1 | 1 | ± 1.2 % | ∞ | | Input power and SAR drift mea. | ± 4.7 % | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Phantom and Set-up | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (target) | ± 5.0 % | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | Liquid conductivity (meas.) | ± 2.5 % | Normal | 1 | 0.64 | ± 1.6 % | ∞ | | Liquid permittivity (target) | ± 5.0 % | Rectangular | √3 | 0.6 | ± 1.7 % | ∞ | | Liquid permittivity (meas.) | ± 2.5 % | Normal | 1 | 0.6 | ± 1.5 % | 8 | | Combined Uncertainty | | | | | ± 8.4 % | | Table 9: Uncertainty budget for the system performance check. # 8.6 Environment To comply with the required noise level (less than 12 mW/kg) periodically measurements without a DUT were conducted. Humidity: 40% \pm 5 % # 8.7 Test Equipment | Test Equipment | Model | Serial Number | Last
Calibration | Next
Calibration | |------------------------------|----------|---------------|---------------------|---------------------| | DASY4 Systems | | | | | | Software Versions DASY4 | V4.7 | N/A | N/A | N/A | | Software Versions SEMCAD | V1.8 | N/A | N/A | N/A | | Dosimetric E-Field Probe | EX3DV4 | 3860 | 07/2013 | 07/2014 | | Data Acquisition Electronics | DAE 4 | 631 | 09/2013 | 09/2014 | | Phantom | SAM | 1059 | N/A | N/A | | Phantom | SAM | 1176 | N/A | N/A | | Phantom | SAM | 1340 | N/A | N/A | | Phantom | SAM | 1341 | N/A | N/A | | Dipoles | | | | | | Validation Dipole | D2450V2 | 709 | 09/2013 | 09/2015 | | Material Measurement | | | | | | Network Analyzer | E5071C | MY46103220 | 07/2013 | 07/2015 | | Dielectric Probe Kit | HP85070B | US33020263 | N/A | N/A | Table 10: SAR Equipment. | Test Equipment | Model | Serial Number | Last
Calibration | Next
Calibration | |-----------------------|---------|---------------|---------------------|---------------------| | Power Meters | | | | | | Power Meter, Agilent | E4416A | GB41050414 | 12/2012 | 12/2014 | | Power Meter, Agilent | E4417A | GB41050441 | 12/2012 | 12/2014 | | Power Meter, Anritsu | ML2487A | 6K00002319 | 02/2012 | 02/2014 | | Power Meter, Anritsu | ML2488A | 6K00002078 | 02/2012 | 02/2014 | | Power Sensors | | | | | | Power Sensor, Agilent | E9301H | US40010212 | 12/2012 | 12/2014 | | Power Sensor, Agilent | E9301A | MY41495584 | 12/2012 | 12/2014 | | Power Sensor, Anritsu | MA2481B | 031600 | 02/2012 | 02/2014 | | Power Sensor, Anritsu | MA2490A | 031565 | 02/2012 | 02/2014 | | RF Sources | | | | | | Network Analyzer | E5071C | MY46103220 | 07/2013 | 07/2015 | | Rohde & Schwarz | SME300 | 100142 | N/A | N/A | | Amplifiers | | | | | | Mini Circuits | ZHL-42 | D012296 | N/A | N/A | | Mini Circuits | ZHL-42 | D031104#01 | N/A | N/A | | Mini Circuits | ZVE-8G | D031004 | N/A | N/A | | Radio Tester | | | | | | Rohde & Schwarz | CMU200 | 835305/050 | N/A | N/A | Table 11: Test equipment, General. # Dasy_Report_FCC_DECT_1900_1.1.doc/22.05.2006/CH ## 8.8 Certificates of Conformity Schmid & Partner Engineering AG a q Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700. Fax +41 44 245 9779 info@speag.com, http://www.speag.com Certificate of conformity | Item | Dosimetric Assessment System DASY4 | |-----------------------|---| | Type No | SD 000 401A, SD 000 402A | | Software Version No | DASY 4.7 | | Manufacturer / Origin | Schmid & Partner Engineering AG Zeughausstrasse 43, CH-8004 Zürich, Switzerland | - IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - EN 50361:2001, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001 - [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - IEC 62209 2, Draft Version 0.9, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and - multiple transmitters", December 2004 OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01 - ANSI-C63.19-2006, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", June 2006 - ANSI-C63.19-2007, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", June 2007 We certify that this system is designed to be fully compliant with the standards [1 - 7] for RF emission tests of wireless devices. The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook. The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user): - the system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG, - the probe and validation dipoles have been calibrated for the relevant frequency bands and media within the requested period, - the DAE has been calibrated within the requested period, - the "minimum distance" between probe sensor and inner phantom shell and the radiation source is selected properly, - the system performance check has been successful, - the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms, - if applicable, the probe modulation factor is evaluated and applied according to field level, modulation and frequency, - the dielectric parameters of the liquid are conformant with the standard requirement, - the DUT has been positioned as described in the manual. - the uncertainty values from the calibration certificates, and the laboratory and measurement 10) equipment dependent uncertainties, are updated by end user accordingly. 18 miles Date 24.4.2008 Signature / Stamp Page 1 (1) Doc No 880 - SD00040XA-Standards 0804 - F Fig. 10: Certificate of conformity for the used DASY4 system. # Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79 ### Certificate of conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 | |-----------------------|---| | Type No | QD 000 P40 BA | | Series No | TP-1002 and higher | | Manufacturer / Origin | Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland | ### Tests The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples). | Test | Requirement | Details | Units tested | |------------------------|---|--|--------------------------------| | Shape | Compliance with the geometry according to the CAD model. | IT'IS CAD File (*) | First article,
Samples | | Material thickness | Compliant with the requirements according to the standards | 2mm +/- 0.2mm in specific areas | First article,
Samples | | Material
parameters | Dielectric parameters for required frequencies | 200 MHz – 3 GHz
Relative permittivity < 5
Loss tangent < 0.05. | Material
sample
TP 104-5 | | Material resistivity | The material has been tested to be compatible with the liquids defined in the standards | Liquid type HSL 1800 and others according to the standard. | Pre-series,
First article | ### Standards - [1] CENELEC EN 50361 - [2] IEEE P1528-200x draft 6.5 - [3] IEC PT 62209 draft 0.9 - (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3]. ### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3]. Signature / Stamp Schmid & Partner For Boulult Engineering AG Zeughausstrasse 43, CH-8004 Zurlch Tel. +41 1 245 97 79 Doc No 881 - QD 000 P40 BA - B Page 1 (1) Fig. 11: Certificate of conformity for the used SAM phantom. # Dasy_Report_FCC_DECT_1900_1.1.doc/22.05.2006/CH # 8.9 Pictures of the Device under Test Figure 12 shows the device under test. Fig. 12: Pictures of the Jabra Pro 90. # 8.10 Test Positions for the Device under Test Figure 13 – Figure 14 show the test positions for the SAR measurements. Fig. 13: Position 1. Fig. 14: Position 2. # Dasy_Report_FCC_DECT_1900_1.1.doc/22.05.2006/CH # 8.11 Pictures to Demonstrate the Required Liquid Depth Figure 15 shows the liquid depth in the used SAM phantom. Fig. 15: Liquid depth for 2450 MHz, flat part of the SAM phantom using head simulating liquid. # 9 References [OET 65] Federal Communications Commission: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, 2001. [IEEE C95.1-1999] IEEE Std C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Inst. of Electrical and Electronics Engineers, Inc., 1999. [IEEE C95.1-2005] IEEE Std C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Inst. of Electrical and Electronics Engineers, Inc., 2005. [ICNIRP 1998] ICNIRP: Guidelines for Limiting Exposure to Time-varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz), In: Health Physics, Vol. 74, No. 4, 494-522, 1998. [IEEE 1528-2003] IEEE Std 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. 1528-2003, December 19, 2003, The Institute of Electrical and Electronics Engineers. [NIST 1994] NIST: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Technical Note 1297 (TN1297), United States Department of Commerce Technology Administration, National Institute of Standards and Technology, 1994. [DASY4] Schmid & Partner Engineering AG: DASY4 Manual. April 2008 [FCC 96-326] FCC 96-326, ET Docket No. 93-62, Report and Order, August 1, 1996 [KDB 447498] 447498 D01 General RF Exposure Guidance v05, October 24, 2012 [KDB 865664] 865664 D01 SAR measurement 100 MHz to 6 GHz v01, October 24, 2012