

FCC/IC - TEST REPORT

TÜV SÜD HONG KONG LTD. is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025. TÜV SÜD HONG KONG LTD. reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations TÜV SÜD HONG KONG LTD. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD HONG KONG LTD. This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1		Table of Contents	2
2		Details about the Test Laboratory	3
3		Description of the Equipment Under Test	4
4		Summary of Test Standards	5
5		Summary of Test Results	6
6		General Remarks	7
7		Test Setups	8
8		Systems test configuration	9
9		Technical Requirement	10
	9.1	1 Conducted Emission	10
	9.2	2 Conducted peak output power	13
	9.3	3 20 dB bandwidth and 99% Occupied Bandwidth	19
	9.4	4 Carrier Frequency Separation	26
	9.5	.5 Number of hopping frequencies	29
	9.6	.6 Dwell Time	31
	9.7	7 Spurious RF conducted emissions	34
	9.8	8 Band edge testing	
	9.9	9 Spurious radiated emissions for transmitter	45
10		Test Equipment List	50
11		System Measurement Uncertainty	51
12		Radiofrequency radiation exposure evaluation	52

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Hong Kong Ltd.
	3/F, West Wing, Lakeside 2,
	10 Science Park West Avenue,
	Science Park, Shatin, Hong Kong

Test Site 2 Company name:

mpany name: Hong Kong Productivity Council LG1, HKPC Building, 78 Tat Chee Avenue, Kowloon, Hong Kong

FCC Registration Number: 90656

IC Registration Number:4780A

3 Description of the Equipment Under Test

Product:	Bluetooth headset
Model no.:	OTE28
Options and accessories:	Nil
Rating:	DC3.7V Supplied by Li-ion Rechargeable Battery DC5.0V Charged by the mini-USB port
RF Transmission	2402MHz-2480MHz
No. of Operated Channel:	79
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PIFA
Antenna Gain:	2dBi
Description of the EUT:	The Equipment Under Test (EUT) is a Bluetooth headset operated at 2.4GHz

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2015 Edition	Subpart C - Intentional Radiators			
RSS-247	Digital Transmission Systems (DTSs), Frequency Hopping Systems			
Issue 1 2015	(FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices			
RSS-Gen Issue 4	General Requirements and Information for the Certification of			
November 2014	Radio Apparatus			

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements								
FCC Part 15 Subpart C/RSS-247 Issue 1/RSS-Gen Issue 4								
Test Condition		Pages	Test Result	Test Site				
§15.207	RSS-GEN 8.8	Conducted emission AC power port	10	Pass	Site 2			
§15.247(b)(1)	RSS-247 Clause 5.4(2)	Conducted peak output power	19	Pass	Site 2			
§15.247(e)	RSS-247 Clause 5.2(2)	Power spectral density*		N/A				
§15.247(a)(2)	RSS-247 Clause 5.2(1)	6dB bandwidth		N/A				
§15.247(a)(1)	RSS-247 Clause 5.1(1)	20dB bandwidth and 99% Occupied Bandwidth	26	Pass	Site 2			
§15.247(a)(1)	RSS-247 Clause 5.1(2)	Carrier frequency separation	29	Pass	Site 2			
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(4)	Number of hopping frequencies	31	Pass	Site 2			
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(4)	Dwell Time	34	Pass	Site 2			
§15.247(d)	RSS-247 Clause 5.5	Spurious RF conducted emissions	38	Pass	Site 2			
§15.247(d)	RSS-247 Clause 5.5	Band edge	45	Pass	Site 2			
§15.247(d) & §15.209 &	RSS-247 Clause 5.5 & RSS-GEN 6.13	Spurious radiated emissions for transmitter and receiver	39	Pass	Site 2			
§15.203	RSS-GEN 8.3	Antenna requirement	See note 1	Pass				

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a patch antenna, which gain is 2dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID:BCE-OTE28, IC: 2386C-OTE28 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C, RSS-247 Issue 1 and RSS-Gen Issue 4 rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: January 18, 2016

Testing Start Date: January 18, 2016

Testing End Date: February 26, 2016

- TÜV SÜD HONG KONG LTD. -

Reviewed by:

Cookies Bu EMC Project Manager

Prepared by:

Felis. Li

Felix Li EMC Project Engineer

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
PC	lenovo	X220	

Test software: Blue test 3.0, which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50
Doorooging lingarly with	logarithm of the free	lionau

Decreasing linearly with logarithm of the frequency

Conducted Emission

:	Bluetooth headset
:	OTE28
:	Charging & BT
:	Live
:	AC 120V/60Hz
	:

150 kHz

Trace	Frequenc	;y	Level (dBµV)	Detector	Delta Limit/dB
1	154.000000000	kHz	52.91	Quasi Peak	-12.87
2	154.000000000	kHz	35.79	Average	-19.99
1	170.00000000	kHz	50.34	Quasi Peak	-14.62
2	174.000000000	kHz	33.68	Average	-21.09
1	190.00000000	kHz	46.09	Quasi Peak	-17.95
2	190.00000000	kHz	31.29	Average	-22.75
1	210.00000000	kHz	42.93	Quasi Peak	-20.28
2	210.00000000	kHz	28.74	Average	-24.47
2	230.00000000	kHz	25.65	Average	-26.80
2	258.000000000	kHz	22.40	Average	-29.10
2	478.000000000	kHz	30.90	Average	-15.47
1	482.000000000	kHz	36.51	Quasi Peak	-19.79
1	3.714000000	MHz	31.48	Quasi Peak	-24.52
1	3.782000000	MHz	31.41	Quasi Peak	-24.59
2	3.782000000	MHz	19.57	Average	-26.43
2	3.814000000	MHz	19.58	Average	-26.42
1	3.890000000	MHz	31.73	Quasi Peak	-24.27
1	3.950000000	MHz	31.60	Quasi Peak	-24.40
2	3.950000000	MHz	19.84	Average	-26.16
1	4.062000000	MHz	30.36	Quasi Peak	-25.64

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206 30 MHz

Conducted Emission

Product Type M/N Operating Conditio Test Specification Comment	: Bluetooth head : OTE28 on : Charging & BT : Neutral : AC 120V/60Hz	dset		
		RBW MT	9 kHz 1 c	
		Att 0 dB AUTO PREA	MP OFF	
dBµV	80	1 MHz	10	MHz
	70			
1 PK				
CARACTER	FCC15_QP			
2 AV	-60			
MAXH	Resis AV			105
			in the second	(DB
				IL AN AC
	- 30 X 10 X			
	I I I I I I I I I I I I I I I I I I I		™″ ₩¶ <u>"₩</u>	
			Mon Line	
	20 ^]] W]		│ ×┤ │ ╄╙∖ <mark>┍╺┦</mark> ᠕┉	
	10			
	0			
	150 kHz			30 MHz
Trace	e Frequency	Level (dBµV)	Detector	Delta Limit/dB
1	158.00000000 kH	Iz 53.58	Quasi Peak	-11.99
2	158.00000000 kH	Iz 35.17	Average	-20.40
1	178.00000000 kH	Iz 49.60	Quasi Peak	-14.98
2	186.000000000 kH	Iz 32.29	Average	-21.93
1	202.000000000 kH	IZ 45.62	Ouasi Peak	-17.90
2	206.00000000 kH	Iz 29.07	Average	-24.30
1	218.00000000 kH	iz 42.10	Quasi Peak	-20.80
2	218.00000000 kH	lz 26.93	Average	-25.97
1	238.00000000 kH	Iz 40.23	Quasi Peak	-21.94
2	290.00000000 ki	12 22.99 Iz 19.89	Average	-29.45
1	474.00000000 kH	Iz 36.07	Quasi Peak	-20.38
2	478.00000000 kH	Iz 30.94	Average	-15.44
1	2.586000000 MH	z 27.90	Quasi Peak	-28.10
1	2.726000000 MH	z 27.98	Quasi Peak	-28.02
1	2.866000000 MH	z 27.20	Quasi Peak	-28.80
1	3.886000000 MH	z 31.42	Quasi Peak	-24.58
2	3.894000000 MH	z 19.70	Average	-26.30

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

Bluetooth Mode GFSK modulation Test Result						
Frequenc MHz	сy	Outp	deted Pe out Powe dBm	er	Resu	lt
Low channel 24	102MHz		-0.10		Pass	3
Middle channel 2	2441MHz		3.95		Pass	6
High channel 24	480MHz		3.53		Pass	
	Low cha	annel 240	2MHz			
						- 🍫
Spectrum						
Ref Level 10.00 dBm Offset 0 Att 25 dB SWT	.50 dB 👄 RBW 1 1 ms 👄 VBW 3	LMHz 3 MHz Mode /	Auto Sweep			
●1Pk Max						
		M1	M1[1]		2.402	-0.10 dBm 16640 GHz
0 dBm			-			
-10 dBm						
-20 dBm						
-30 dBm						~
-40 dBm						
-50 dBm						
60 d0m						
-00 0811						
-70 dBm						
-80 dBm						
CF 2.402 GHz		691 pts			Spa	n 5.0 MHz
			Measuri	ng 🚺		

Date: 19.FEB.2016 14:21:57

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

Middle channel 2441MHz

Date: 19.FEB.2016 14:21:24

High channel 2480MHz

Date: 19.FEB.2016 14:22:18

EMC_SZ_FR_21.00FCC Release 2014-03-20

Bluetooth Mode π/4-DQPSK modulation Test Result Conducted Peak

Frequency	Output Power	Result
MHz	dBm	
Low channel 2402MHz	0.22	Pass
Middle channel 2441MHz	3.52	Pass
High channel 2480MHz	3.21	Pass

Low channel 2402MHz

Date: 19.FEB.2016 14:26:08

Middle channel 2441MHz

Spectrum Offset 0.50 dB 👄 RBW 1 MHz Ref Level 10.00 dBm Att 25 dB SWT 1 ms 👄 VBW 3 MHz Mode Auto Sweep 1Pk Max M1[1] 3.52 dBr M1 2.44084080 GH 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm 70 dBm 80 dBm CF 2.441 GH Span 5.0 MHz 691 pts Measuring...

Date: 19.FEB.2016 14:25:19

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

High channel 2480MHz

Date: 19.FEB.2016 14:23:27

Bluetooth Mode 8DPSK modulation Test Result Conducted Peak

Frequency	Output Power	Result
MHz	dBm	
Low channel 2402MHz	0.53	Pass
Middle channel 2441MHz	4.10	Pass
High channel 2480MHz	3.75	Pass
Low chan	nel 2402MHz	

Date: 19.FEB.2016 14:27:39

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

Middle channel 2441MHz

Date: 19.FEB.2016 14:28:36

High channel 2480MHz

Date: 19.FEB.2016 14:29:08

EMC_SZ_FR_21.00FCC Release 2014-03-20

9.3 20 dB bandwidth and 99% Occupied Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit [kHz]

N/A

20 dB bandwidth and 99% Occupied Bandwidth

Bluetooth Mode GFSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	933.4	855.8		Pass
2441	890.0	850.9		Pass
2480	890.0	850.9		Pass
		2402MHz		

Date: 19.FEB.2016 14:42:35

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206 Page 20 of 53

2441MHz

Date: 19.FEB.2016 14:41:41

2480MHz

Date: 19.FEB.2016 14:40:33

EMC_SZ_FR_21.00FCC Release 2014-03-20

20 dB bandwidth and 99% Occupied Bandwidth

Bluetooth Mode π /4-DQPSK Modulation test result

-requency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	MHz kHz		kHz	
2402	1202.6	1163.53		Pass
2441	1220.0	1167.87		Pass
2480	1220.0	1167.87		Pass
		2402MH7		
				~~~
Sp	ectrum			
Re	f Level 10.00 dBm Offset 0.50 dB	RBW 30 kHz     Mode Auto SST		
● 1P	k Max	WBW 100 KH2 MODE AUTO FFT		
		D1[1]	1.2	-0.57 dB
0 d8	Bm	Occ Bw	1.16353	1114 MHz
			-2 2.4013	1.90 dBm 9650 GHz
-10	dBm	And the many		
-20	dBm	¥	1	
	D2 -22.360 dBm			
-30	dBm			
-40	dBm		MA	~~~~
ph				,
-50	dBm			
-60	dBm			
-70	dBm			
-80	dBm			
CF	2.402 GHz	691 pts	Span	3.0 MHz
		Measur	ing 🚺 🚺 🚧	111

Date: 19.FEB.2016 14:35:20



2441MHz



Date: 19.FEB.2016 14:39:08

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

Page 23 of 53



# 20 dB bandwidth and 99% Occupied Bandwidth

Bluetooth Mode 8DPSK Modulation test result

requency MHz	20 dB Bandwidth 99% Bandwidth kHz kHz kHz		Limit kHz	Result
2402	1206.9	1150.6		Pass
2441	1211.3	1146.2		Pass
2480	1211.3	1150.1		Pass
		2/02MHz		
Sp	ectrum			
Ref	Level 10.00 dBm Offset 0.50 dB 25 dB SWT 63.2 µs	8 <b>e RBW</b> 30 kHz 5 <b>e VBW</b> 100 kHz Mode Auto FFT		
● 1P	k Max			
		D1[1]	1.2	-0.67 dB 0690 MHz
0 de	D1 -2.360 dBm	OCC BW M1[1]	-2	6512 MHz 2.11 dBm
-10	dBm		2.4014	10960 GHz
	T1A	when I alout		
-20	D2 -22.360 dBm			
-30	dBm			
-40	dBm		- mm	~~~
-50	dBm			
	10			
-60	uBin			
-70	dBm			
-80	dBm-			
CF	2.402 GHz	691 pts	Spar	3.0 MHz

Date: 19.FEB.2016 14:34:05







2480MHz



Date: 19.FEB.2016 14:31:04

EMC_SZ_FR_21.00FCC Release 2014-03-20

Page 25 of 53

# 9.4 Carrier Frequency Separation

# **Test Method**

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

# Limit

Limit kHz

≥25KHz or 2/3 of the 20 dB bandwidth which is greater

# GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	622.27
2441	593.33
2480	593.33





# **Carrier Frequency Separation**

Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

# GFSK Modulation test result

Frequency MHz	Carrier Frequency Separation kHz	Result
2402	1000.0	Pass
2441	1000.0	Pass
2480	1000.0	Pass

Low Channel



Date: 19.FEB.2016 15:11:23



# Middle channel



Date: 19.FEB.2016 15:12:10

#### Spectrum Offset 0.50 dB ● RBW 100 kHz SWT 19 µs ● VBW 300 kHz Ref Level 10.00 dBm Att 25 dB Mode Auto FFT ⊖1Pk Ma -0.11 dB -1.00000 MHz 3.15 dBm 2.48000000 GHz D1[1] D1 0 dB M1[1] -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Span 3.0 MHz CF 2.48 GHz 691 pts Measuring... D . Date: 19.FEB.2016 15:13:25

High Channel

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206



# 9.5 Number of hopping frequencies

# **Test Method**

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

# Limit

Limit number ≥ 15



# Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.



Date: 19.FEB.2016 15:10:35



# 9.6 Dwell Time

# **Test Method**

- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

#### Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.



#### **Dwell Time**

#### Dwell time

The maximum dwell time shall be 0.4 s.

According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];The burst width, which is directly measured, refers to the duration on one channel hop. The maximum number of hopping channels in 31.6s for DH5=1600 / 6 / 79 *31.6=106.67

# Test Result

Modulation	Mode	Reading (us)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	DH5	2884.1	106.67	307.65	< 400	Pass
π/4-DQPSK	2DH5	2898.6	106.67	309.19	< 400	Pass
8-DPSK	3DH5	2913.0	106.67	310.73	< 400	Pass

DH5

**GFSK Modulation** 



EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206



# $\pi/4$ -DQPSK Modulation

8-DPSK Modulation



2DH5





EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206 Page 33 of 53



# 9.7 Spurious RF conducted emissions

# **Test Method**

- 1. Use the following spectrum analyzer settings:
- Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

# Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20



# **Spurious RF conducted emissions**

Only the worse case (which is subject to the maximum EIRP, 8-DPSK mode) test result is listed in the report.

BT3.0 8-DPSK Modulation: 2402MHz

Spectrum	<u>, )</u>								( III )
Ref Level	10.00 dBm	Offset (	).50 dB 👄 RE	3W 100 kHz					(
Att	25 dB	SWT	9.7 ms 😑 ۷	3W 300 kHz	Mode A	uto Sweep			
1PK Max					м	1[1]			61 70 db
						1[1]			969.80 MF
) dBm									
10 dBm									
20 dBm	D1 -20.830	dBm							<u> </u>
30 dBm									
40 dBm									
50 dBm									
									MI
50 dBm						Sector Sector		and the state of t	Line .
un multube	workharmouth	wrynam	whether the second	whether	Lungalous	and the second	and the second s	da Aran Brit mart	
70 dBm									
80 dBm									
tart 30.0	MHz			691	pts			Sto	p 1.0 GH
e: 19.FEB.:	2016 14:47:1	5							-
te: 19.FEB.: Spectrum Ref Level	2016 14:47:1	5 Offset	).50 dB 🗮 RE	3W 100 kHz	I				
te: 19.FEB.: Gpectrun Ref Level Att	2016 14:47:1 n 10.00 dBm 25 dB	5 Offset 0 SWT	1.50 dB 👄 RE 240 ms 👄 VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			
te: 19.FEB.: Spectrum Ref Level Att 1Pk Max	2016 14:47:1	5 Offset C SWT	).50 dB 👄 RE 240 ms 👄 VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			
te: 19.FEB.: Spectrun Ref Level Att 1Pk Max	2016 14:47:1 n 10.00 dBm 25 dB	5 Offset 0 SWT	0.50 dB 👄 RE 240 ms 👄 VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB.: Spectrum Ref Level Att 1Pk Max M1 dBm	2016 14:47:1 2010 dBm 25 dB	5 Offset C SWT	0.50 dB 👄 RE 240 ms 🖷 VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB. Spectrun Ref Level Att IPk Max dBmy	2016 14:47:1 10.00 dBm 25 dB	5 Offset C SWT	0.50 dB <b>e Re</b> 240 ms <b>e Vi</b>	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB 2.4070 G
e: 19.FEB. Spectrun Ref Level Att dBm M1 dBm 10 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB <b>e Re</b> 240 ms <b>e VI</b>	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB 2.4070 G
e: 19.FEB. Spectrun Ref Level Att 1Pk Max dBm 10 dBm 10 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB • RE 240 ms • VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB 2.4070 G
te: 19.FEB. Spectrun Ref Level Att 1Pk Max dBm 10 dBm 20 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB • RE	3W 100 kHz 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB. Spectrun Ref Level Att 1Pk Max dBm 10 dBm 20 dBm	2016 14:47:1	5 Offset 0 SWT :	0.50 dB  RE 240 ms VI	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB 2.4070 GI
te: 19,FEB Spectrun Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 30 dBm	2016 14:47:1	5 Offset 0 SWT :	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB Spectrum Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 30 dBm	2016 14:47:1	5 Offset 0 SWT 1	0.50 dB <b>e RE</b> 240 ms <b>e VI</b>	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB. Spectrum Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 40 dBm 40 dBm	2016 14:47:1	5 Offset 0 SWT	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB
te: 19.FEB. Spectrum Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 30 dBm 40 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A	uto Sweep			-0.83 dB 2.4070 G
te: 19.FEB. Spectrun Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 40 dBm 50 dBm 40 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB 👄 RE 240 ms 👄 VI	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep			-0.83 dB
te: 19,FEB. Spectrun Ref Level Att IPK Max dBm 10 dBm 20 dBm 40 dBm 40 dBm 40 dBm 40 dBm	2016 14:47:1	5 Offset C SWT	0.50 dB • RE 240 ms • VI	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]			-0.83 dB
te: 19,FEB. Spectrun Ref Level Att JPk Max dBm 10 dBm 20 dBm 40 dBm 50 dBm 50 dBm 50 dBm	2016 14:47:1	dBm	0.50 dB • RE 240 ms • VI	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]			-0.83 dB 2.4070 G
te: 19.FEB. Spectrun Ref Level Att JPk Max dBm 10 dBm 20 dBm 40 dBm 50 dBm 50 dBm 50 dBm	2016 14:47:1	dBm	0.50 dB  RE 240 ms VI	3W 100 kHz	Mode A M	uto Sweep 1[1]			-0.83 dB 2.4070 Gł
te:         19.FEB.           Spectrun         Ref Level           Att         10           JPk Max         10           J0 dBm         10           20 dBm         10           50 dBm         10           50 dBm         10           70 dBm         70	2016 14:47:1	offset c swr : dBm	0.50 dB • RE	3W 100 kHz	Mode A M	uto Sweep 1[1]	March March		-0.83 dB 2.4070 GF
te:         19.FEB.           Spectrun         Ref Level           Att         10           10         dBm           20         dBm           40         dBm           50         dBm           50         dBm           70         dBm	2016 14:47:1	offset c swr	0.50 dB • RE 240 ms • VI	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]			-0.83 dB 2.4070 GF
te: 19,FEB Spectrun Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 40 dBm 50 dBm 50 dBm 50 dBm 50 dBm 80 dBm	2016 14:47:1	offset c swr	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]	*8/www.up/~		-0.83 dB 2.4070 G
te: 19,FEB. Spectrum Ref Level Att 1Pk Max dBm 10 dBm 20 dBm 40 dBm 50 dBm 50 dBm 70 dBm 30 dBm 30 dBm	2016 14:47:1	dBm	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]	Mohuman Marine	Maran Maran	-0.83 dB 2.4070 G
te: 19,FEB. Spectrun Ref Level Att 1Pk Max dBm 10 dBm 30 dBm 40 dBm 50 dBm 50 dBm 30 dBm 30 dBm 30 dBm 40 dBm	2016 14:47:1 10.00 dBm 25 dB D1 -20.830 D1 -20.830	dBm	0.50 dB • RE	3W 100 kHz 3W 300 kHz	Mode A M	uto Sweep 1[1]		Stop	-0.83 dB 2.4070 G

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206

# 2441MHz



Date: 19.FEB.2016 14:48:54

Spectrum							₩
Ref Level 10.00 dBm	Offset 0.50 dB 👄 RB	W 100 kHz					
Att 25 dB	SWT 240 ms 👄 VB	W 300 kHz	Mode Aut	o Sweep			
●1Pk Max							
M1			M1[	[1]		2	3.35 dBm .4410 GHz
0 dBm							
-10 dBm							
-20 dBm	lm						
-30 dB n							
-40 dBm							
-50 dBm							
-60 dBr	- Judy		A state of the	workh W	name da	4	م و و د و و و
-70 dBm	Lawrence and March and the	ward and		· · · · · · · · · · · · · · · · · · ·		U	- more and
-80 dBm							
Start 1.0 GHz		691 pt	s			Stop	25.0 GHz
				Measurin	ng 🔳		

Date: 19.FEB.2016 14:48:28

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206 Page 36 of 53

# 2480MHz



Date: 19.FEB.2016 14:51:18

Spectrum									Ē
									( 🗟
Ref Level	10.00 dBm	Offset	0.50 dB 👄 RE	3W 100 kHz					
Att	25 dB	SWT	240 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep			
IPK Max					M	1[1]			2 12 dBp
M1									2.4760 GH
J dBm									
-10 dBm									
		I							
-20 dBm	D1 -17.870	dBm							
-30 dBm									
-40 dBm									
-50 dBm —									
11									
-60 d <b>em</b>	1. 104 415-	on hom							<u> </u>
when the the	,	LAN	when we have the second	unional	water	to marine	margine and	mun	Montelleras
-70 dBm—									
-80 dBm									
start 1.0 G	HZ			691	pts			Stop	) 25.0 GHz

Date: 19.FEB.2016 14:50:58

EMC_SZ_FR_21.00FCC Release 2014-03-20



~



# 9.8 Band edge testing

#### **Test Method**

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW  $\ge$  RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

#### Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

#### **Band edge testing**

BT3.0 GFSK Modulation Test Result: Hopping on mode:



Date: 19.FEB.2016 14:55:07

EMC_SZ_FR_21.00FCC Release 2014-03-20

# Hopping off mode:

	_							
Spectrum								
Ref Level	10.00 de	m Offset 0.5	) dB 😑	RBW 100 kHz				
Att	25	dB SWT 1.:	l ms 😑	VBW 300 kHz /	lode Auto Swi	eep		
1Pk Max								
					M1[1]			-0.78 dBm
							2.4	H02180 GHz
Jubin					M2[1]			-46.98 dBm
							2.4	400000 GH2
								1 1
20 dBm	1 -20 7							
	51 -20.7							1 11
-30 dBm								
								1 = 1.
-40 dBm								1
-50 dBm —								<u>┼─</u> ┟ <mark>ᠮ</mark> ──
								J
-60 dBm						-	M.R.	1981
munnin	mound	methodown	ment	monterstor	nounderhouse	havenen	menters	
-70 dBm							-	+
-80 dBm								
Start 2.31 (	GHz			691 pts			Stop	2.405 GHz
1arker								
Type   Ref	Trc	X-value		Y-value	Function	Fu	nction Result	t
M1	1	2.40218	GHz	-0.78 dBm				
M2	1	2.4	GHz	-46.98 dBm				
M3	1	2.39	GHz	-63.37 dBm				

Date: 19.FEB.2016 15:03:16



Date: 19.FEB.2016 14:53:13

EMC_SZ_FR_21.00FCC Release 2014-03-20





# BT3.0 $\pi$ /4-DQPSK Modulation Test Result: Hopping on mode:



Date: 19.FEB.2016 17:21:29

EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 41 of 53

# Hopping off mode:



Date: 19.FEB.2016 17:23:52

								Ŕ
Spectrun	n							Ē
Ref Level	13.50 dB	m Offset 0.5	0 dB 😑 RI	<b>BW</b> 100 kHz				
Att	30 d	B SWT 1.	1 ms 😑 🗸	BW 300 kHz	Mode	Auto Swe	ер	
1Pk Max								
10 dBm					N	41[1]		3.55 dBn
10 MU								2.480010 GH
					N	42[1]		-55.63 dBn
U UBNI								2.483500 GH
-10 d8m-								
-10 050								
of dam	D1 -16.49	50 dBm						
-20 ubiii-								
20 40								
-30 uBin								
M J								
-40 aBm—								
-50 dBm 📊	2							
		N	43	λΛ.			. I w.	
-60 dBm	Constraint, de la come ou		التقاريبين وتوضيقان	there are the first	aladada in Cara India.	10-1- CC	And the second	
-70 dBm								
-80 dBm								
Start 0.47	7 CH2			601	nte			Stop 2 55 CHz
Mankon	7 3112			091	pes			atop 2.00 GHZ
marker	6   Tun	¥	1	N	1 5		<b>F</b>	-ti Dit
	I I I I I	x-value	1.045	T-value	Fun	ction	Fur	iction Result
M2	1	2.4800.		-55 62 dB	m			
M3	1	2.4033	5 GHz	-60.17 dB	m			
	1 -	20		55.1. db			-	10.02.2016
					Me	asuring		17:22:35

Date: 19.FEB.2016 17:22:35

EMC_SZ_FR_21.00FCC Release 2014-03-20





# BT3.0 8-DPSK Modulation Test Result: Hopping on mode:



Date: 19.FEB.2016 14:57:42

EMC_SZ_FR_21.00FCC Release 2014-03-20 Page 43 of 53

# Hopping off mode:



Date: 19.FEB.2016 15:01:54

											<u>v</u>
Spect	rum										
Ref Le	vel 1	0.00 dBm	Offset 0.	50 dB 👄	<b>RBW</b> 10	JO kHz					
Att		25 dB	SWT 75	5.9 µs 👄	<b>VBW</b> 30	)O kHz	Mode A	uto FFT			
1Pk M	ax										
	M1						M	1[1]			1.83 dBr
	X.									2.47	98420 GH
0 dBm—	71						M	2[1]		-	58.63 dBi
	£ Ŋ									2.48	35000 GH
-10 dBm											
	Цh	1 -18 17	0 dBm		_						
-20 dBm	ΠŤ	10.17									
-30 d <del>a</del> n	1	UA									
AAL.		~									
140 dBr	+	1.									
		Un.									
-50 dBr	די	И.	40								
co. 10			N.								
-60 dBn	די		The same	A.4. 1					мв	M1	
			Mariana .	manne	rynn	map	wwww	wann	mun	monor	y warden a
-70 dBm	<del>ا</del> _ر										
00 Jp-											
-80 aBri											
Start 2	.477	GHz				691 pi	ts			Stop	2.51 GHz
Marker											
Туре	Ref	Trc	X-value		Y-va	lue	Func	tion	Fun	ction Result	
M1		1	2.4798	12 GHz	1	.83 dBm					
M2		1	2.483	35 GHz	-58	.63 dBm					
MЗ		1	2	5 GHz	-65	.84 dBm					
								Measu	ring		1
		11						,			_

Date: 19.FEB.2016 14:56:26

EMC_SZ_FR_21.00FCC Release 2014-03-20





# 9.9 Spurious radiated emissions for transmitter

# **Test Method**

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference - receiving antenna, which was mounted on the top of a variable - height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

#### For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW  $\ge$  RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW ≥ RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

# Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.



# Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBµV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK. Tel: +852-2776 1323 Fax: +852-2776 1206



# Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

#### Transmitting spurious emission test result as below:

BT3.0 GFSK Modulation 2402MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.23	Н	43.5	QP	9.27	Pass
1000MHz	152	31.52	V	43.5	QP	11.98	Pass
	*4804	40.10	Н	74	PK	33.9	Pass
1000-	*7206	36.11	Н	74	PK	37.89	Pass
25000MHz	*4804	35.98	V	74	PK	38.02	Pass
	*7206	37.00	V	74	PK	37	Pass

# BT3.0 GFSK Modulation 2441MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.27	Н	43.5	QP	9.23	Pass
1000MHz	152	31.62	V	43.5	QP	11.88	Pass
	*4882	44.35	Н	74	PK	29.65	Pass
1000-	*7324	40.27	Н	74	PK	33.73	Pass
25000MHz	*4882	38.25	V	74	PK	35.75	Pass
	*7324	37.33	V	74	PK	36.67	Pass

#### BT3.0 GFSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.73	Н	43.5	QP	8.77	Pass
1000MHz	152	31.63	V	43.5	QP	11.87	Pass
	*4960	41.45	Н	74	PK	32.55	Pass
1000-	*7440	36.89	Н	74	PK	37.11	Pass
25000MHz	*4960	42.56	V	74	PK	31.44	Pass
	*7440	38.05	V	74	PK	35.95	Pass

EMC_SZ_FR_21.00FCC Release 2014-03-20



# BT3.0 π/4-DQPSK Modulation 2402MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Banu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.26	Н	43.5	QP	9.24	Pass
1000MHz	152	31.43	V	43.5	QP	12.07	Pass
	*4804	40.78	Н	74	PK	33.22	Pass
1000-	*7206	36.78	Н	74	PK	37.22	Pass
25000MHz	*4804	36.49	V	74	PK	37.51	Pass
	*7206	37.24	V	74	PK	36.76	Pass

# BT3.0 $\pi$ /4-DQPSK Modulation 2441MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.66	Н	43.5	QP	8.84	Pass
1000MHz	152	31.53	V	43.5	QP	11.97	Pass
	*4882	44.29	Н	74	PK	29.71	Pass
1000-	*7324	39.83	Н	74	PK	34.17	Pass
25000MHz	*4882	38.24	V	74	PK	35.76	Pass
	*7324	36.87	V	74	PK	37.13	Pass

# BT3.0 π/4-DQPSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.34	Н	43.5	QP	9.16	Pass
1000MHz	152	31.25	V	43.5	QP	12.25	Pass
1000- 25000MHz	*4960	40.14	Н	74	PK	33.86	Pass
	*7440	36.02	Н	74	PK	37.98	Pass
	*4960	41.45	V	74	PK	32.55	Pass
	*7440	38.42	V	74	PK	35.58	Pass



Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.38	Н	43.5	QP	9.12	Pass
1000MHz	152	31.60	V	43.5	QP	11.9	Pass
	*4804	41.53	Н	74	PK	32.47	Pass
1000-	*7286	37.84	Н	74	PK	36.16	Pass
25000MHz	*4804	36.74	V	74	PK	37.26	Pass
	*7275	37.34	V	74	PK	36.66	Pass

# BT3.0 8-DPSK Modulation 2441MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Ballu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.38	Н	43.5	QP	9.12	Pass
1000MHz	152	31.60	V	43.5	QP	11.9	Pass
	*4881.5	44.95	Н	74	PK	29.05	Pass
1000-	*7323	40.84	Н	74	PK	33.16	Pass
25000MHz	*4881.5	38.95	V	74	PK	35.05	Pass
	*7323.5	38.25	V	74	PK	35.75	Pass

# BT3.0 8-DPSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	
30-	152	34.38	Н	43.5	QP	9.12	Pass
1000MHz	152	31.60	V	43.5	QP	11.9	Pass
	*4960	43.34	Н	74	PK	30.66	Pass
1000-	*7440	38.51	Н	74	PK	35.49	Pass
25000MHz	*4959	41.35	V	74	PK	32.65	Pass
	*7476	39.12	V	74	PK	34.88	Pass

Remark:

(1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.



# **10 Test Equipment List**

#### Site 2:

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Test Receiver	R&S	ESU26	100050	12-Feb-2017
Bi-conical Antenna	R&S	HK116	100242	07-Dec-2016
Log Periodic Antenna	R&S	HL223	841516/020	01-Sep-2017
Coaxial cable (50ohm)	Rosenberger	RTK081-05S- 05S-10m	LA2-001-10M / 001	01-Sep-2017
Microwave amplifier (0.5-26.5GHz, 25dB gain)	HP	83017A	3123A00437	10-Jun-2016
High Pass Filter (cutoff freq. =1000MHz)	Trilithic	23042	9829213	17-Jul-2016
Horn Antenna	EMCO	3115	9002-3351	28-Oct-2017
Active Loop Antenna	EMCO	6502	9107-2651	26-Aug-2017
RF Voltage Probe	Schwarzbeck	TK9416	None	10-Feb-2017
LISN	R&S	ESH3-Z5	849876/027	15-Jun-2016
Double Shield Cable	Radiall	RG142	Nil	14-Sep-2017
Pulse Limiter	R&S	ESH3-Z2	Nil	04-Jun-2016



# **11 System Measurement Uncertainty**

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty						
Items	Extended Uncertainty					
Radiated Emissions	Level accuracy 30 to 200 MHz 200 to 1000 MHz 1000 to 25000 MHz	±4.68 dB ±5.73 dB ±5.57 dB				
Conducted Emissions	Level accuracy 9 kHz to 30 MHz	±3.16 dB				
Conducted RF Test	≤ 1 dB					



# 12 <u>Radiofrequency radiation exposure evaluation</u>

#### FCC -Radiofrequency radiation exposure evaluation

According to§15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 Mobile Portable RF Exposure v05r01, no SAR required if power is lower than the flowing threshold:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [ $\sqrt{f(GHz)}$ ]  $\leq 3.0$  for 1-g SAR and  $\leq 7.5$  for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation25
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is  $\leq$  50 mm and for transmission frequencies between 100 MHz and 6 GHz.

Calculation method: [(max. power of` channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f}(GHz)] \le 3.0$ 

Conducted Power + tune up tolerance =4.1dBm= 2.57mW Distance =10 mm f = 2.441 GHz

[2.57/10] * SQRT (2.441) = 0.40.4  $\leq$  3.0, therefore, excluded from SAR testing.



#### IC -Radiofrequency radiation exposure evaluation

According to RSS-102 § (2.5.1), SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in below Table:

Frequency	Exemption Limits (mW)					
(MHz)	At separation	At separation	At separation	At separation	At separation	
	distance of	distance of	distance of	distance of	distance of	
	<b>≤5 mm</b>	10 mm	15 mm	20 mm	25 mm	
≤300	71 mW	101 mW	132 mW	162 mW	193 mW	
450	52 mW	70 mW	88 mW	106 mW	123 mW	
835	17 mW	30 mW	42 mW	55 mW	67 mW	
1900	7 mW	10 mW	18 mW	34 mW	60 mW	
2450	4 mW	7 mW	15 mW	30 mW	52 mW	
3500	2 mW	6 mW	16 mW	32 mW	55 mW	
5800	1 mW	6 mW	15 mW	27 mW	41 mW	

#### Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation	At separation	At separation	At separation		
	distance of	distance of	distance of	distance of	distance of		
	30 mm	35 mm	40 mm	45 mm	≥50 mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

Calculation method: Maximum radiated power of the EUT is 4.07mW (EIRP= Conducted Power +Antenna gain=4.10dBm+2dBi=6.10dBm), and the specified separation distance defined by the client is at least 10mm by measuring. According to the above table 1, the output power level is less than 7mw meet Exemption from Routine Evaluation Limits – RF Exposure Evaluation, so SAR evaluation is not necessary.