	BUREA VERITA		
	FCC Test Report		
Report No.:	RF180115C15-1		
FCC ID:	BCE-OTE060		
Test Model:	OTE060		
Received Date:	Jan. 15, 2018		
Test Date:	Jan. 30, 2018 ~ Feb. 06, 2018		
Issued Date:	Feb. 09, 2018		
Annlinente			
	GN Audio A/S		
Address:	Lautrupbjerg 7 DK-2750 Ballerup Denmark		
-	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch		
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)		
Test Location:	No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.		
FCC Registration /			
Designation Number:	788550 / TW0003		
	strumper and a second		
	AC-MRA		
	Testing Laboratory 2021		
ly with our prior written permission. Th	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permit is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in		
oort are not indicative or representativ ess specifically and expressly noted.	e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical proc Our report includes all of the tests requested by you and the results thereof based upon the information that date of issuance of this report to notify us of any material error or omission caused by our negligence, provid		
vever, that such notice shall be in writ all constitute your unqualified acceptan	ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed ince of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification.		

Table of Contents

Re	eleas	e Control Record	4	
1	Cer	tificate of Conformity	5	
2	Sun	nmary of Test Results	6	
		-		
n			s 5 y. 6 y. 6 y. 7 UT 7 s. 8 bility and Tested Channel Detail 9 inits 10 nits 11 system under Test 11 oplied Standards 11 sundedge Measurement 12 Emission and Bandedge Measurement 12 t Standard 14 nditions 16 nditions 16 d Emission Measurement 21 ut Standard 21 t Standard 22 nditions 26 st Standard 22 nditions 25 Standard 25 Standard 25 Standard 25 Standard 26 asurement 27 st Standard 27 st Standard 27 st Standard 27 d Output Pow	
ა				
	3.2			
	<u>。</u> 。			
	0.1			
	3.5			
4	Test	4.4.1 Test Setup.274.4.2 Test Instruments274.4.3 Test Procedure274.4.4 Deviation From Test Standard274.4.5 EUT Operating Conditions274.4.6 Test Results285 Conducted Output Power Measurement294.5.1 Limits of Conducted Output Power Measurement294.5.2 Test Setup294.5.3 Test Instruments294.5.4 Test Procedures294.5.5 Deviation from Test Standard29		
•				
	4.1	A 1.1 Limits of Redisted Emission and Randedge Measurement	12	
		4.1.5 Test Set Up	15	
		4.1.6 EUT Operating Conditions	16	
	4.2			
		4.2.6 EUT Operating Conditions	22	
	4.3			
		•		
	4.4			
	4.5	Conducted Output Power Measurement	29	
		4.5.6 EUT Operating Conditions		
		4.5.7 Test Results		

4	1.6	Power Spectral Density Measurement	30
		4.6.1 Limits of Power Spectral Density Measurement	30
		4.6.2 Test Setup	30
		4.6.3 Test Instruments	30
		4.6.4 Test Procedure	30
		4.6.5 Deviation from Test Standard	30
		4.6.6 EUT Operating Condition	30
		4.6.7 Test Results	31
2	1.7	Conducted Out of Band Emission Measurement	32
		4.7.1 Limits of Conducted Out of Band Emission Measurement	32
		4.7.2 Test Setup	32
		4.7.3 Test Instruments	32
		4.7.4 Test Procedure	
		4.7.5 Deviation from Test Standard	32
		4.7.6 EUT Operating Condition	32
		4.7.7 TEST RESULTS	33
	י-:ר		05
D I	JOI	tures of Test Arrangements	30
Apr	ben	dix – Information on the Testing Laboratories	36
		-	

Release Control Record Issue No. Description **Date Issued** Original Release Feb. 09, 2018 RF180115C15-1

Certificate of Conformity 1

Product:	Bluetooth Headset	
Brand:	Jabra	
Test Model:	OTE060	
Sample Status: Production Unit		
Applicant:	GN Audio A/S	
Test Date:	Jan. 30, 2018 ~ Feb. 06, 2018	
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247	
	ANSI C63.10:2013	

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

バれるしいん , Date: Feb. 09, 2018

Date: Feb. 09, 2018

Gina Liu / Specialist

Approved by :

Dylan Chiou / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks						
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.07 dB at 0.44410 MHz.						
15.205 & 209	15.205 & 209 Radiated Emissions		Meet the requirement of limit. Minimum passing margin is -5.4 dB a 30.00 MHz.						
15.247(d)	5.247(d) Band Edge Measurement		Meet the requirement of limit.						
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.						
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.						
	Occupied Bandwidth Measurement	Pass	Reference only						
15.247(b) Conducted power		Pass	Meet the requirement of limit.						
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.						
15.203 Antenna Requirement		Pass	No antenna connector is used.						

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Padiated Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.93 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
naulaleu Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Bluetooth Headset		
Brand	Jabra		
Test Model	OTE060		
Status of EUT	Production Unit		
Dowor Supply Dating	3.7 Vdc (Battery)		
Power Supply Rating	5.0 Vdc (Host equipment)		
Modulation Type GFSK			
Transfer Rate	1 Mbps		
Operating Frequency	2402 ~ 2480 MHz		
Number of Channel	40		
Output Power	8.995 mW		
Antenna Type Chip antenna with -4.5 dBi gain			
Antenna Connector N/A			
Accessory Device Refer to Note as below			
Data Cable Supplied Refer to Note as below			

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Battery	VDL	71330	3.7 Vdc, 120 mAh
USB Cable	LianGang	USB / MICRO USB 300mm 1C1S*4	0.3 m shielded cable w/o core

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To	Description			
Mode	RE≥1G	RE<1G	PLC	APCM	Description		
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
Where RE≥1G: Radiated Emission above 1 GHz RE<1G: Radiated Emission below 1 GHz							

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**. **Note:** "-"means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)	
-	0 to 39	0, 19, 39	GFSK	1	

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	19	GFSK	1

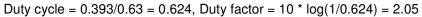
Power Line Conducted Emission Test:

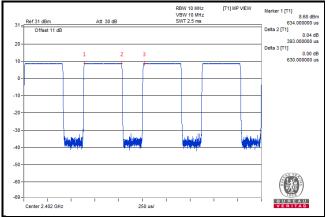
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode		Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
	-	0 to 39	19	GFSK	1

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.


EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1


Test Condition:

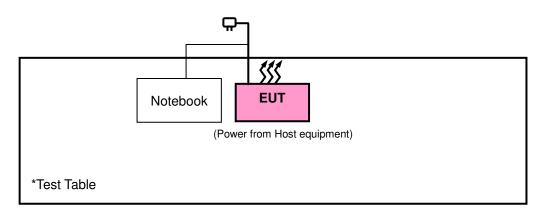
Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G 25 deg. C, 65 % RH		120 Vac, 60 Hz	James Yang
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	James Yang
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Greg Lin
АРСМ	25 deg. C, 65 % RH	3.7 Vdc	Wayne Lin

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Notebook	Lenovo	81A4	YD02TWF5	PPD-QCNFA435

No.	Signal Cable Description Of The Above Support Units
1.	0.2m

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver KEYSIGHT	N9038A	MY55420137	Mar. 27, 2017	Mar. 26, 2018
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	May 11, 2017	May 10, 2018
BILOG Antenna SCHWARZBECK	VULB9168	9168-148	Dec. 11, 2017	Dec. 10, 2018
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Dec. 12, 2017	Dec. 11, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Dec. 01, 2017	Nov. 30, 2018
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Aug. 08, 2017	Aug. 07, 2018
Preamplifier Agilent (Above 1GHz)	8449B	3008A01638	Feb. 22, 2017	Feb. 21, 2018
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	Jan. 15, 2018	Jan. 14, 2019
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	Aug. 08, 2017	Aug. 07, 2018
RF signal cable Woken	8D-FB	Cable-CH9-01	Aug. 01, 2017	Jul. 31, 2018
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
High Speed Peak Power Meter	ML2495A	0824012	Aug. 18, 2017	Aug. 17, 2018
Power Sensor Bluetooth Tester	MA2411B CBT	0738171 100946	Aug. 18, 2017 Jul. 29, 2016	Aug. 17, 2018 Jul. 28, 2018

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

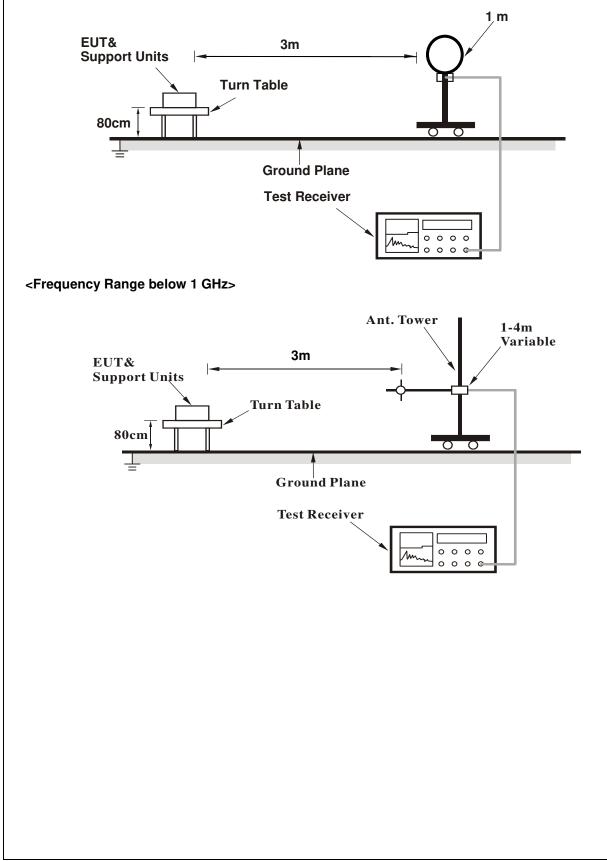
2. The test was performed in HwaYa Chamber 9.

- 3. The FCC Designation Number is TW0003. The number will be varied with the Lab location and scope as attached.
- 4. The IC Site Registration No. is IC 7450F-9.

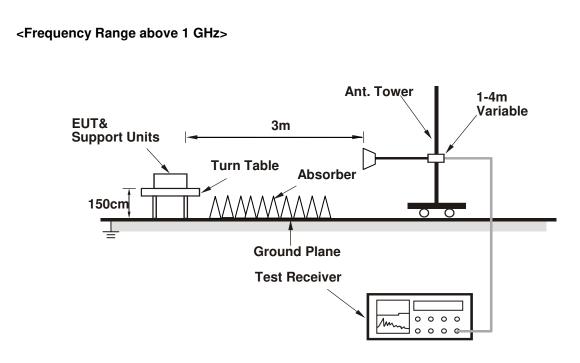
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for Average (Duty cycle < 98 %) detection at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

BT_LE-GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	56.4 PK	74.0	-17.6	2.66 H	47	24.2	32.2
2	2390.00	44.7 AV	54.0	-9.3	2.66 H	47	12.5	32.2
3	*2402.00	101.6 PK			2.64 H	51	69.4	32.2
4	*2402.00	97.2 AV			2.64 H	51	65.0	32.2
5	4804.00	50.4 PK	74.0	-23.6	1.36 H	162	48.7	1.7
6	4804.00	42.6 AV	54.0	-11.4	1.36 H	162	40.9	1.7
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	55.9 PK	74.0	-18.1	1.14 V	203	23.7	32.2
2	2390.00	44.6 AV	54.0	-9.4	1.14 V	203	12.4	32.2
3	*2402.00	96.6 PK			1.17 V	205	64.4	32.2
4	*2402.00	92.3 AV			1.17 V	205	60.1	32.2

REMARKS:

4804.00

4804.00

5

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-24.6

-13.4

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) 3. The other emission levels were very low against the limit.

1.56 V

1.56 V

179

179

47.7

38.9

1.7

1.7

4. Margin value = Emission Level - Limit value

74.0

54.0

5. " * ": Fundamental frequency.

49.4 PK

40.6 AV

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	102.8 PK			2.91 H	53	70.8	32.0
2	*2440.00	98.2 AV			2.91 H	53	66.2	32.0
3	4880.00	49.9 PK	74.0	-24.1	1.10 H	161	48.0	1.9
4	4880.00	41.8 AV	54.0	-12.2	1.10 H	161	39.9	1.9
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	98.6 PK			1.00 V	206	66.6	32.0
2	*2440.00	94.4 AV			1.00 V	206	62.4	32.0
3	4880.00	49.0 PK	74.0	-25.0	2.32 V	163	47.1	1.9
4	4880.00	40.7 AV	54.0	-13.3	2.32 V	163	38.8	1.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	102.3 PK			3.43 H	54	70.2	32.1	
2	*2480.00	97.6 AV			3.43 H	54	65.5	32.1	
3	2483.50	59.0 PK	74.0	-15.0	3.43 H	56	26.9	32.1	
4	2483.50	48.5 AV	54.0	-5.5	3.43 H	56	16.4	32.1	
5	4960.00	50.2 PK	74.0	-23.8	1.16 H	156	47.8	2.4	
6	4960.00	41.9 AV	54.0	-12.1	1.16 H	156	39.5	2.4	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	98.6 PK			1.00 V	211	66.5	32.1	
2	*2480.00	94.4 AV			1.00 V	211	62.3	32.1	
3	2483.50	57.2 PK	74.0	-16.8	1.06 V	210	25.1	32.1	
4	2483.50	46.7 AV	54.0	-7.3	1.06 V	210	14.6	32.1	
5	4960.00	48.3 PK	74.0	-25.7	2.53 V	178	45.9	2.4	
6	4960.00	39.2 AV	54.0	-14.8	2.53 V	178	36.8	2.4	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

CHANNEL	RX Channel 0	DETECTOR	
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	30.00	34.6 QP	40.0	-5.4	1.99 H	6	49.7	-15.1
2	138.64	28.2 QP	43.5	-15.3	1.00 H	226	42.3	-14.1
3	274.44	29.2 QP	46.0	-16.8	1.00 H	293	42.1	-12.9
4	335.55	28.6 QP	46.0	-17.4	1.00 H	4	40.3	-11.7
5	527.61	37.8 QP	46.0	-8.2	1.49 H	32	46.7	-8.9
6	925.31	28.3 QP	46.0	-17.7	1.99 H	336	30.4	-2.1
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	43.41	29.2 QP	40.0	-10.8	1.00 V	336	42.9	-13.7
2	152.22	25.9 QP	43.5	-17.6	1.01 V	3	39.1	-13.2
3	350.10	29.8 QP	46.0	-16.2	1.01 V	159	41.5	-11.7
4	527.61	33.7 QP	46.0	-12.3	1.01 V	80	42.6	-8.9
5	712.88	33.9 QP	46.0	-12.1	2.00 V	114	39.5	-5.6
6	893.30	32.0 QP	46.0	-14.0	2.00 V	244	34.6	-2.6

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

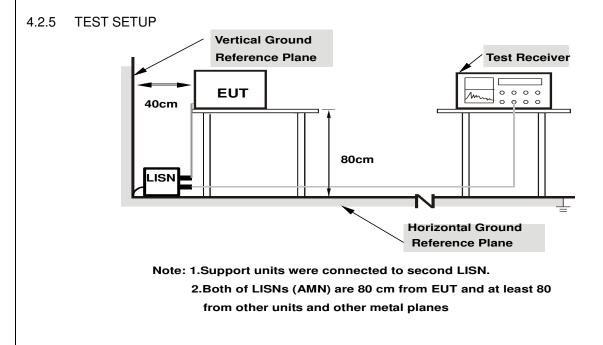
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 23, 2017	Nov. 22, 2018
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Sep. 05, 2017	Sep. 04, 2018
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 10, 2017	Mar. 09, 2018
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 15, 2017	Aug. 14, 2018
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-2040.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

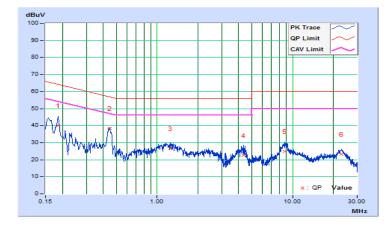
4.2.4 Deviation from Test Standard

No deviation.

- 4.2.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

CONDUCTED WORST-CASE DATA

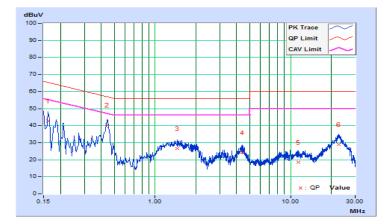

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 75%RH
Tested by	Greg Lin	Test Date	2018/1/30

	Phase Of Power : Line (L)										
	Frequency	Correction	Reading Value		Emission Level		Limit		Mai	rgin	
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18600	10.45	29.76	17.05	40.21	27.50	64.21	54.21	-24.00	-26.71	
2	0.44600	10.49	27.88	21.56	38.37	32.05	56.95	46.95	-18.58	-14.90	
3	1.25398	10.47	16.27	10.09	26.74	20.56	56.00	46.00	-29.26	-25.44	
4	4.33000	10.63	12.05	3.39	22.68	14.02	56.00	46.00	-33.32	-31.98	
5	8.78600	10.83	13.95	7.73	24.78	18.56	60.00	50.00	-35.22	-31.44	
6	23.05000	11.51	11.59	7.07	23.10	18.58	60.00	50.00	-36.90	-31.42	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 75%RH
Tested by	Greg Lin	Test Date	2018/1/30

	Phase Of Power : Neutral (N)											
	Frequency Correction Reading Value		Emission Level		Limit		Margin					
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.16200	10.20	32.48	16.87	42.68	27.07	65.36	55.36	-22.68	-28.29		
2	0.44410	10.25	30.07	23.66	40.32	33.91	56.98	46.98	-16.66	-13.07		
3	1.46600	10.27	16.48	10.32	26.75	20.59	56.00	46.00	-29.25	-25.41		
4	4.39800	10.42	13.77	5.24	24.19	15.66	56.00	46.00	-31.81	-30.34		
5	11.38600	10.69	7.94	2.56	18.63	13.25	60.00	50.00	-41.37	-36.75		
6	22.74600	11.11	17.68	12.30	28.79	23.41	60.00	50.00	-31.21	-26.59		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6 dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

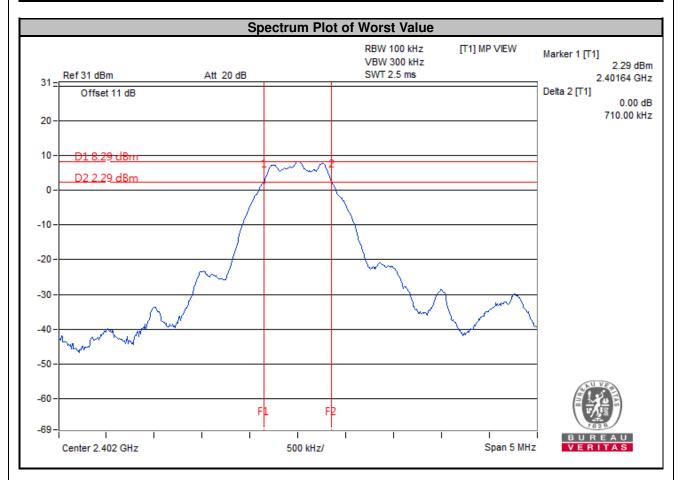
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.71	0.5	Pass
19	2440	0.70	0.5	Pass
39	2480	0.70	0.5	Pass

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

4.4.2 Test Instruments

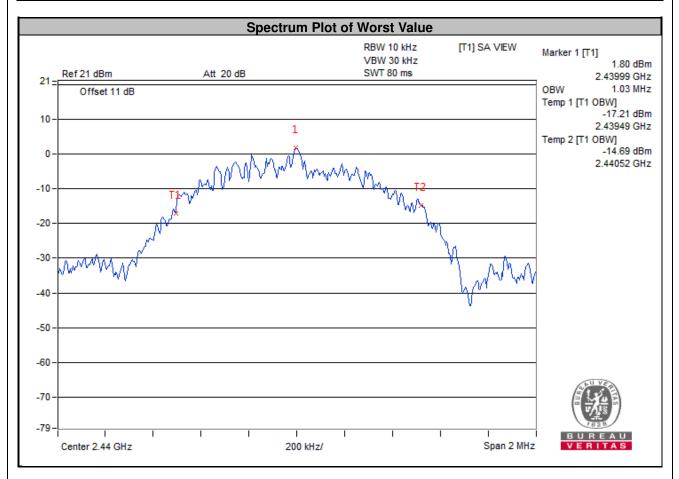
Refer to section 4.1.2 to get information of above instrument.

4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.4.4 Deviation From Test Standard

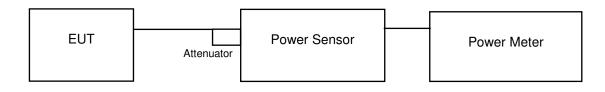
No deviation.


4.4.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.6 Test Results

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)	Pass / Fail
0	2402	1.02	Pass
19	2440	1.03	Pass
39	2480	1.03	Pass



4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	7.112	8.52	30	Pass
19	2440	8.299	9.19	30	Pass
39	2480	8.995	9.54	30	Pass

4.6 Power Spectral Density Measurement

4.6.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm.

4.6.2 Test Setup

4.6.3 Test Instruments

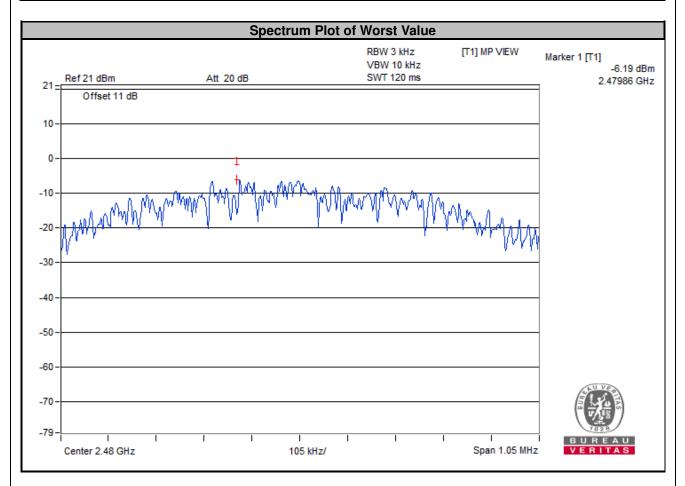
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.6.5 Deviation from Test Standard

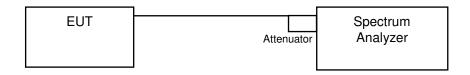
No deviation.


4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Pass / Fail
0	2402	-7.38	8	Pass
19	2440	-6.52	8	Pass
39	2480	-6.19	8	Pass



4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

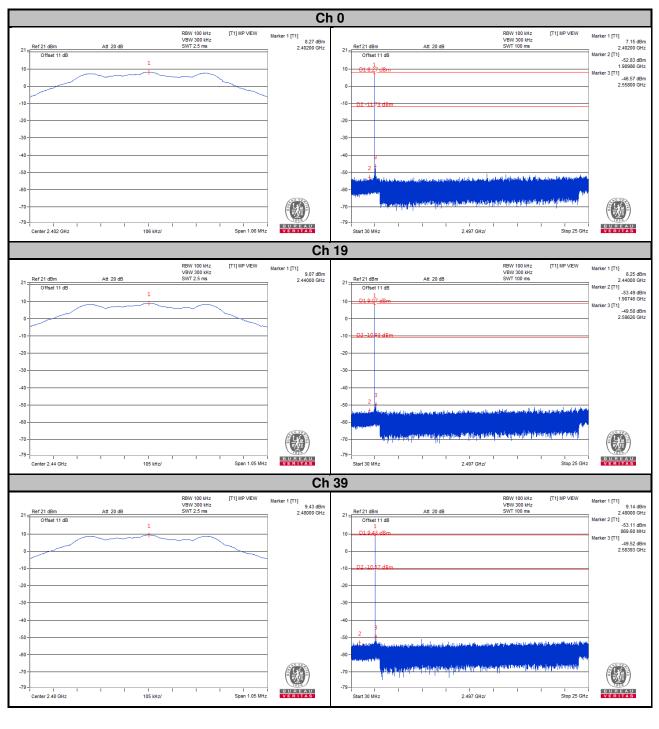
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.7.5 Deviation from Test Standard


No deviation.

4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

Ch 0 Band Edge			Ch 39 Band Edge			
Ref 21 dBm Att 20 dB Offset 11 dB		V Marker 1 [71] 8.42 dBm 2.40216 GHz Marker 2 [71] 1 41.56 dBm 2.4000 GHz Marker 3 [71] -39.65 dBm 2.39933 GHz Marker 4 [71] -51.70 dBm 2.33000 GHz	21 - Ref 21 dBm 0 ftset 11 dB 10 - D1 9.4 3 dBm 0	Att 20 dB	RBW 100 MH2 [T1] MP VEW VBW 200 MH2 SWT 10 ms	Marker 1 [71] 9.59 2.47996 Marker 2 [71] -51.55 Marker 3 [71] -51.55 Marker 3 [71] -51.55 Marker 4 [71] -2.4336 Marker 4 [71] -2.50000
	F2 F		-70 - FL FL	2		

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---