

Inter**Lab**

FCC Measurement/Technical Report on

Bluetooth transceiver Jabra M5390 - Headset

Report Reference: MDE_GNNET_0805_FCCe

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT Nr: DE 203159652 TAX No. 147/5869/0385

Table of Contents

O	Sui	mmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adı	ministrative Data	6
1		Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Pro	oduct labelling	7
	2.1 2.2	FCC ID label Location of the label on the EUT	7 7
3	Tes	st object Data	8
3	3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	8 9 9 9 10
4	Tes	st Results	11
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Dwell time Channel separation Number of hopping frequencies	11 14 17 20 26 29 31 33
5	Tes	st Equipment	34
6	Pho	oto Report	37
7	Set	tup Drawings	39
8	An	nex measurement plots	40
8 8 8	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emissions Band edge compliance radiated Radiated emissions (f<30MHz) Dwell time Channel separation Number of hopping frequencies	40 46 52 64 66 68 74 76

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-07 Edition) and 15 (10-1-07 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000

Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2003 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Sul	opart C	§ 15.207	
Conducted emissi	ons (AC power line)		<u>-</u>
	t was performed accor	ding to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
	·	AC Port (power line)	N/A
FCC Part 15, Sul	opart C	§ 15.247 (a) (1)	
Occupied bandwid		3 1012 11 (1)	
	t was performed accor	ding to FCC § 15.31	10-1-07
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
op-mode o	Setup_bo1	remp ant.connector	passed
FCC Part 15, Sul		§ 15.247 (b) (1)	
Peak power outpu			
	t was performed accor	•	10-1-07
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
FCC Part 15, Sul	opart C	§ 15.247 (d)	
Spurious RF condu			
	t was performed accor	ding to FCC § 15.31	10-1-07
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
·	. –	•	•
FCC Part 15, Sul		§ 15.247 (d), § 15.3	35 (b), § 15.209
Spurious radiated		eding to ANCL C42 4	2003
	t was performed accor	•	
OP-Mode	Setup c01	Port	Final Result
op-mode 10	Setup_c01	Enclosure	passed
op-mode 1	Setup_a01	Enclosure	passed
op-mode 2	Setup_a01	Enclosure	passed
op-mode 3	Setup_a01	Enclosure	passed
op-mode 6	Setup_a01	Enclosure	passed
op-mode 7	Setup_a01	Enclosure	passed
op-mode 8	Setup_a01	Enclosure	passed

§ 15.247 (d) FCC Part 15, Subpart C Band edge compliance 10-1-07 / 2003 The measurement was performed according to FCC § 15.31 (10-1-07) / ANSI C63.4 (2003) **Final Result** Port Setup **OP-Mode** Temp ant.connector passed Setup_b01 op-mode 1 passed Temp ant.connector Setup_b01 op-mode 3 Enclosure passed Setup_a01 op-mode 3 passed op-mode 6 Setup_b01 Temp ant.connector Temp ant.connector passed Setup_b01 op-mode 8 Enclosure passed Setup_a01 op-mode 8 FCC Part 15, Subpart C § 15.247 (a) (1) (iii) Dwell time 10-1-07 The measurement was performed according to FCC § 15.31 **Final Result** Port **OP-Mode** Setup passed Setup_b01 Temp ant.connector op-mode 2 Temp ant.connector passed Setup_b01 op-mode 7 § 15.247 (a) (1) FCC Part 15, Subpart C Channel separation The measurement was performed according to FCC § 15.31 10-1-07 Setup Port Final Result OP-Mode passed op-mode 4 Setup_b01 Temp ant.connector Temp ant.connector passed Setup_b01 op-mode 9 § 15.247 (a) (iii) FCC Part 15, Subpart C Number of hopping frequencies The measurement was performed according to FCC § 15.31 10-1-07 **Final Result OP-Mode** Setup Port Temp ant.connector passed Setup_b01 op-mode 4

N/A not applicable (the EUT is not able to start transmission during charging)

This test report replaces the 7 layers test report "MDE_GNNet_0805_FCCb", dated 2008-07-22.

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

J. XJ4

Responsible for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11 40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:
- Deutscher Akkreditierungs Rat

DAR-Registration no. DAT-P-192/99-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz

Report Template Version: 2008-07-14

1.2 Project Data

Responsible for testing and report: Dr.-Ing. Michael Küppers

Date of Test(s): 2008-06-07 to 2008-06-23

Date of Report: 2008-08-25

1.3 Applicant Data

Company Name: GN Netcom A/S

Address: Lautrupbjerg 7

DK-2750 Ballerup

Denmark

Contact Person: Mr. Tom Ringtved

1.4 Manufacturer Data

Company Name: GN Netcom A/S

Address: Lautrupbjerg 7

DK-2750 Ballerup

Denmark

Contact Person: Mr. Tom Ringtved

2 Product labelling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test Bluetooth transceiver

Type Designation: Kind of Device:Jabra M5390
Bluetooth Headset

(optional)

Voltage Type: DC (internal battery)

Voltage level: 3.7 V

Modulation Type: GFSK, $\pi/4$ DQPSK

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 μ s. The maximum dwell time on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds.

The basic data rate of 1 Mbps uses GFSK modulation and the enhanced data rate uses PSK modulation. For the enhanced data rate of 2 Mbps $\pi/4$ DQPSK modulation is used.

Specific product description for the EUT:

The EUT is a base station and a headset which uses Bluetooth technology to have an audio connection between each other. The EUT is automatically switched off during charging.

The EUT provides the following ports:

Ports

Temp antenna connector Enclosure DC port (for charging)

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	Bluetooth	Jabra M5390	-	28-02193	21.A	2008-05-21
(Code:	transceiver	Headset				
CJ071o01)						
Remark: EUT	is equipped with	n a temporary an	tenna connecto	or and temporar	ry control conne	ector
EUT B	Bluetooth	Jabra M5390	-	28-02193	21.A	2008-05-21
(Code:	transceiver	Headset				
CJ071e03)						
Remark: EUT	is equipped with	n an integral ante	enna (gain= -1	.7 dBi) and tem	porary control	connector
EUT C	Bluetooth	Jabra M5390	-	28-02193	21.A	2008-05-21
(Code:	transceiver	Headset				
CJ071k01)						
Remark: EUT	is equipped with	n an integral ante	enna (gain= -1	.7 dBi).		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AE 1	AC Power Supply	-	-	-	-	-
AE 2	Base Station CJ070m01	Jabra M5390 Base Station	-	28-02193	21.A	-

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUT's	Description
Setup_a01	EUT B	setup for radiated measurements
Setup_b01	EUT A	setup for conducted measurements
Setup_c01	EUT C + AE 1 + AE 2	setup for measurements in op-mode 10

3.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	The EUT transmits on 2402 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 2	The EUT transmits on 2441 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 3	The EUT transmits on 2480 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 4	The EUT is in Hopping mode	The EUT is hopping on 79 channels,
		basic data rate 1 Mbps
op-mode 5	BT off, powered by Charger	BT scan mode
op-mode 6	The EUT transmits on 2402 MHz	Loopback mode, enhanced data rate, 2 Mbps
op-mode 7	The EUT transmits on 2441 MHz	Loopback mode, enhanced data rate, 2 Mbps
op-mode 8	The EUT transmits on 2480 MHz	Loopback mode, enhanced data rate, 2 Mbps
op-mode 9	The EUT is in Hopping mode	The EUT is hopping on 79 channels,
•		enhanced data rate 2 Mbps
op-mode 10	The EUT is connected to the Base	Bluetooth connection between Headset and
	Station	Base Station

4 Test Results

4.1 Occupied bandwidth

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.1.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 30 kHz.

The EUT was connected to the spectrum analyzer via a short coax cable.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

- 1. Under the provision that the system's operates with an output power no greater than 125 mW (21.0 dBm):
 - Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz
- 2. If the system's output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz.

4.1.3 Test Protocol

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
0.974	I

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
0.980	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp ant.connector

20 dB bandwidth	Remarks
MHz	
0.974	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 6	Setup_b01	Temp ant.connector	

20 dB bandwidth MHz	Remarks
1.288	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 7	Setup_b01	Temp ant.connector

20 dB bandwidth	Remarks
MHz	
1.288	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 8	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
1.294	T.

Remark: Please see annex for the measurement plot.

4.1.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C

:	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed

4.2 Peak power output

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The resolution bandwidth for measuring the output power was 3 MHz.

The reference level of the spectrum analyzer was set higher than the output power of the FUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (1)

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

==> Maximum Output Power: 30 dBm

4.2.3 Test Protocol

Temperature: 27°C Air Pressure: 1009hPa Humidity: 38%

Op. Mode Setup Port

op-mode 1 Setup_b01 Temp.ant.connector

Output power dBm	Remarks
5.55	The EIRP including antenna gain (-1.7 dBi) is 3.85 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_b01Temp.ant.connector

Output power dBm	Remarks
5.57	The EIRP including antenna gain (-1.7 dBi) is 3.87 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 3Setup_b01Temp.ant.connector

Output power dBm	Remarks
5.14	The FIRP including antenna gain (-1.7 dBi) is 3.44 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 6Setup_b01Temp.ant.connector

Output power dBm	Remarks
-1.31	The EIRP including antenna gain (-1.7 dBi) is -3.01 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 7Setup_b01Temp.ant.connector

Output power dBm	Remarks
-0.43	The EIRP including antenna gain (-1.7 dBi) is -2.13 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 8Setup_b01Temp.ant.connector

Output power dBm		Remarks
	-0.97	The EIRP including antenna gain (-1.7 dBi) is -2.67 dBm

Remark: Please see annex for the measurement plot.

Test report Reference: MDE_GNNET_0805_FCCe Page 15 of 76

4.2.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed

4.3 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.5). This value is used to calculate the 20 dBc limit.

4.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.3.3 Test Protocol

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_b01 Temp ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	5.52	-14.48	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
=	-	5.54	-14.46	=

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp ant.connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Delta to limit
MHz		dBm	dBm	dB
-	-	5.21	-14.79	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_b01	Temp ant.connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Delta to limit
MHz		dBm	dBm	dB
-	-	-2.10	-22.10	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 7	Setup_b01	Temp ant.connector

ſ	Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
Ī	-	-	-1.11	-21.11	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Test report Reference: MDE_GNNET_0805_FCCe Page 18 of 76

Op. Mode	Setup	Port
op-mode 8	Setup_b01	Temp ant.connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Delta to limit
MHz		dBm	dBm	dB
-	-	-1.58	-21.58	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

4.3.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed

4.4 Spurious radiated emissions

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: ANSI C 63.4, 2003

4.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0×2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μs (BT Timing 1.25 ms)

- Turntable angle range: -180 to 180°

- Turntable step size: 90°

Height variation range: 1 – 3m
Height variation step size: 2m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180 to 180°

- Turntable step size: 45°

Height variation range: 1 – 4mHeight variation step size: 0.5m

- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF – Bandwidth: 120 kHz - Measuring time: 100ms

- Turntable angle range: -22.5° to + 22.5° around the determined value

- Height variation range: -0.25m to + 0.25m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. EMI receiver settings:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+30dB
0.49 – 1.705	24000/F(kHz)	30	Limit (dBµV/m)+10dB
1.705 - 30	30	30	Limit (dBµV/m)+10dB

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.4.3 Test Protocol

Temperature: 25 °C Air Pressure: 1012 hPa Humidity: 36%

4.4.3.1 Measurement up to 30 MHz

Op. ModeSetupPortop-mode 10Setup_c01Enclosure

Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	-	-	-	-	-	-	-	-	-
90°	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed.

The found peak at 91.2 kHz is emission from loop antenna power supply.

4.4.3.2 Measurement above 30 MHz

Op. ModeSetupPortop-mode 1Setup_a01Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1601	-	49.06	39.66	-	74.00	54.00	24.94	14.34
Vertical + horizontal	4804	-	60.09	48.42	-	74.00	54.00	13.91	5.58
Vertical + horizontal	12010	-	51.10	37.55	-	74.00	54.00	22.90	16.45

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 2Setup_a01Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1603	-	48.45	39.36		74.00	54.00	25.55	14.64
Vertical + horizontal	1627	-	46.33	35.39	-	74.00	54.00	27.67	18.61
Vertical + horizontal	4882	ı	57.65	46.45	-	74.00	54.00	16.35	7.55
Vertical + horizontal	7323	ı	65.26	51.76	-	74.00	54.00	8.74	2.24
Vertical + horizontal	12205	-	49.82	35.82	-	74.00	54.00	24.18	18.18

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Test report Reference: MDE_GNNET_0805_FCCe Page 23 of 76

Op. ModeSetupPortop-mode 3Setup_a01Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1603	1	48.45	39.36	Ī	74.00	54.00	25.55	14.64
Vertical + horizontal	2484	-	57.39	37.37	-	74.00	54.00	16.61	16.63
Vertical + horizontal	4960	-	61.89	49.65	-	74.00	54.00	12.11	4.35
Vertical + horizontal	7440	ı	66.69	53.09	ı	74.00	54.00	7.31	0.91
Vertical + horizontal	12400	-	50.3	36.57	-	74.00	54.00	23.70	17.43

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 6Setup_a01Enclosure

Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1601	-	48.24	38.99	-	74.00	54.00	25.76	15.01

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 7Setup_a01Enclosure

Polari- sation	Frequency MHz		Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1603	-	48.77	39.26	-	74.00	54.00	25.23	14.74

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 8Setup_a01Enclosure

Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	1603	-	49.01	39.31	-	74.00	54.00	24.99	14.69

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Test report Reference: MDE_GNNET_0805_FCCe

4.4.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C

Result	
passed	
	passed passed passed passed passed

4.5 Band edge compliance

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: ANSI C 63.4, 2003

FCC §15.31, 10-1-07

4.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements: 1. Show compliance of the lower band edge by a conducted measurement and 2. show compliance of the higher band edge by a radiated and conducted measurement.

For the first measurement the EUT is set to transmit on the lowest channel (2402 MHz). The lower band edge is 2400 MHz.

Analyzer settings:

- Detector: Peak

- RBW= 100 kHz

- VBW= 300 kHz

For the second measurement the EUT is set to transmit on the highest channel (2480 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW= 100 kHz

- VBW= 300 kHz

Analyzer settings for radiated measurement:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

4.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

. . .

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the measurement of the **lower band edge** the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the measurement of the **higher band edge** the limit is "specified in Section 15.209(a)".

4.5.3 Test Protocol

4.5.3.1 Lower band edge Conducted measurement

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_b01 Temp ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2400.00	-38.65	5.52	-14.48	24.17

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 6Setup_b01Temp ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2402.00	-40.42	-2.10	-22.10	18.32

Remark: Please see annex for the measurement plot.

4.5.3.2 Higher band edge

Conducted measurement

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 3 Setup_b01 Temp ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2483.50	-42.46	5.21	-14.79	

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 8Setup_b01Temp ant.connector

Freque	•	Measured value	Reference value	Limit	Delta to limit
MHz		dBm	dBm	dBm	dB
2483.	50	-43.58	-1.58	-21.58	22.00

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 26 °C
Air Pressure: 1012 hPa
Humidity: 36 %

Op. Mode Setup Port

op-mode 3 Setup_a01 Enclosure

Frequency MHz	Polarisation	Correcte dBµ'	ed value V/m	Limit Peak	Limit AV	Delta to Peak	Delta to AV limit
		Peak	AV	dBμV/m	dBµV/m	limit/dB	dB
2483.50	Vertical + horizontal	57.39	37.37	74.00	54.00	16.61	16.63

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 8Setup_a01Enclosure

Frequency MHz	Polarisation		ed value V/m	Limit Peak	Limit AV	Delta to Peak	Delta to AV limit
		Peak	AV	dBµV/m	dBµV/m	limit/dB	dB
2483.50	Vertical + horizontal	49.11	37.15	74.00	54.00	24.89	16.85

Remark: Please see annex for the measurement plot.

4.5.4 Test result: Band edge compliance

 FCC Part 15, Subpart C
 Op. Mode
 Result

 op-mode 1
 passed

 op-mode 3
 passed

 op-mode 6
 passed

 op-mode 8
 passed

4.6 Dwell time

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.6.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The time slot length is measured for three different packet length which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate=1600 * 1/s for DH1 packets = 1600 s^{-1}

- hop rate=1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$

- hop rate=1600/5 * 1/s for DH5 packets = $320 s^{-1}$

- number of hopping channels = 79

- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s \star 79

The following shortcuts are used for the different packet types:

- Basic data rate, 1 Mbps: DH1, DH3, DH5

- Enhanced data rate, 3 Mbps: 3-DH1, 3-DH3, 3-DH5 - Enhanced data rate, 2 Mbps: 2-DH1, 2-DH3, 2-DH5

4.6.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

4.6.3 Test Protocol

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 2 Setup_b01 Temp ant.connector

Packet type	Time slot length	Dwell time	Dwell time
	ms		ms
DH1	0.401	time slot length *	256.64
		1600 /79 * 31.6	
DH3	1.663	time slot length *	354.77
		1600/3 /79 * 31.6	
DH5	2.906	time slot length *	371.97
		1600/5 /79 * 31.6	

Remark: Please see annex for the measurement plots.

Op. ModeSetupPortop-mode 7Setup_b01Temp ant.connector

Packet type	Time slot length	Dwell time	Dwell time
	ms		ms
2-DH1	0.421	time slot length *	269.44
		1600 /79 * 31.6	
2-DH3	1.663	time slot length *	354.77
		1600/3 /79 * 31.6	
2-DH5	2.926	time slot length *	374.53
		1600/5 /79 * 31.6	

Remark: Please see annex for the measurement plots.

4.6.4 Test result: Dwell time

FCC Part 15, Subpart C

Op. Mode		Result
op-mode 2	DH1	passed
op-mode 2	DH3	passed
op-mode 2	DH5	passed
op-mode 7	DH1	passed
op-mode 7	DH3	passed
op-mode 7	DH5	passed

4.7 Channel separation

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.7.1 Test Description

The Equipment Under Test (EUT) was set up to perform the channel separation measurements.

The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

- Detector: Peak-Maxhold

- Span: 3 MHz

- Centre Frequency: 2441 MHz

Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz

- Sweep Time: Coupled

4.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.7.3 Test Protocol

Temperature: 27 °C
Air Pressure: 1009 hPa
Humidity: 38 %

Op. Mode Setup Port

op-mode 4 Setup_b01 Temp ant.connector

	Channel separation MHz	Remarks
I	1.000	-

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 9Setup_b01Temp ant.connector

Channel separation MHz	Remarks
1.000	-

Remark: Please see annex for the measurement plot.

4.7.4 Test result: Channel separation

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed
	op-mode 9	passed

4.8 Number of hopping frequencies

Standard FCC Part 15, 10-1-07

Subpart C

The test was performed according to: FCC §15.31, 10-1-07

4.8.1 Test Description

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement.

The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

Detector: Peak-MaxholdStart frequency: 2402 MHzStop frequency: 2483.5 MHz

- Resolution Bandwidth (RBW): 30 kHz

- Video Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

4.8.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.8.3 Test Protocol

Temperature: 27 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode	Setup	Port	
op-mode 4	Setup_b01	Temp ant.connector	

Number of hopping channels	Remarks
79	-

Remark: Please see annex for the measurement plot.

4.8.4 Test result: Number of hopping frequencies

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Digital Radio	CMD 55	831050/020	Rohde & Schwarz	01.12.05	01.12.08
Communication Tester					
Signalling Unit for	PTW60	100004	Rohde & Schwarz	-	-
Bluetooth					
Universal Radio Communication Tester	CMU200	102366	Rohde & Schwarz	22.09.07	22.09.09

EMI Test System

Equipment	Type	Serial No.	Manufacturer	Cal data	Next cal
Comparison Noise Emitter	CNE III	99/016	York	-	-
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz	06.12.07	06.12.09
Signal Generator	SMR 20	846834/008	Rohde & Schwarz	05.12.07	05.12.09
AC Power Source	6404	64040000B04	Croma ATE INC.	01.06.08	N/A the parameters will be checked before testing

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel	-	-
Biconical dipole	VUBA	9117108	Schwarzbeck	02.07.03	02.10.08
	9117				
Broadband Amplifier	JS4-	849785	Miteq	06.02.08	06.10.08
18MHz-26GHz	18002600				
	-32				
Broadband Amplifier	JS4-	896037	Miteq	06.02.08	06.10.08
30MHz-18GHz	00101800				
	-35	(400/0		0/ 00 00	0/ 10 00
Broadband Amplifier 45MHz-27GHz	JS4-	619368	Miteq	06.02.08	06.10.08
45MHZ-27GHZ	00102600 -42				
Cable "ESI to EMI	EcoFlex10	W18.01-2	Kabel Kusch	06.02.08	06.10.08
Antenna"	ECOFIEX TO	W38.01-2	Rabel Ruscii	00.02.08	00.10.06
Cable "ESI to Horn	UFB311A	W18.02-2	Rosenberger-	06.02.08	06.10.08
Antenna"	UFB293C	W38.02-2	Microcoax	00.02.00	00.10.00
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz	12.05.06	12.10.08
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz	20.01.04	N/A – spare
					antenna
High Pass Filter	5HC3500/	200035008	Trilithic	06.02.08	06.10.08
	12750-				
11: 1 5 5:11	1.2-KK	0040040	T 1991 1	0/ 00 00	0/ 10 00
High Pass Filter	5HC2700/	9942012	Trilithic	06.02.08	06.10.08
	12750- 1.5-KK				
High Pass Filter	4HC1600/	9942011	Trilithic	06.02.08	06.10.08
rigit rass riitei	12750-	9942011	Trintriic	00.02.08	00.10.06
	1.5-KK				
Logper. Antenna	HL 562	830547/003	Rohde & Schwarz	17.05.06	17.05.09
20g. po. 7	Ultralog	0000177000			17100107
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz	19.08.02	N/A – only used for pre-testing
Pyramidal Horn	Model	9910-1184	EMCO	06.02.08	06.10.08
Antenna 26.5 GHz	3160-09				

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Cable "LISN to ESI"	RG214	W18.03+W48. 03	Huber+Suhner	06.02.08	06.10.08
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz	01.11.05	01.11.08
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz	-	-

Auxiliary Test Equipment – calibration not applicable; spare equipment

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Broadband Resist. Power Divider N	1506A / 93459	LM390	Weinschel	-	-
Broadband Resist. Power Divider SMA	1515 / 93459	LN673	Weinschel	-	-
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad	-	-
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad	-	-
Digital Oscilloscope	TDS 784C	B021311	Tektronix	-	-
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis	-	-
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis	-	-
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz	-	-
Notch Filter ultra stable	WRCA800 /960-6E	24	Wainwright	-	-
Spectrum Analyzer 9 kHz to 3 GHz	FSP3	838164/004	Rohde & Schwarz	-	-
Temperature Chamber	VT 4002	585660021500 10	Vötsch	-	-
Temperature Chamber	KWP 120/70	592260121900 10	Weiss	-	-
ThermoHygro Datalogger 03	Opus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH	-	-

Anechoic Chamber – calibration not applicable

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Air Compressor (pneumatic)			Atlas Copco	-	-
Controller	CO 2000	CO2000/328/1 2470406/L	Innco innovative constructions GmbH	-	-
EMC Camera	CE-CAM/1		CE-SYS	-	-
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi	-	-
Filter ISDN	B84312- C110-E1		Siemens & Matsushita	-	-
Filter telephone systems / modem	B84312- C40-B1		Siemens & Matsushita	-	-
Filter Universal 1A	B84312- C30-H3		Siemens & Matsushita	-	-
Fully/Semi AE Chamber	10.58x6.3 8x6		Frankonia	-	-
Turntable	DS 420S	420/573/99	HD GmbH, H.Deisel	-	-
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H.Deisel	-	-

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer	Cal data	Next cal
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz	22.08.07	22.08.08
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz	23.08.07	23.08.08
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz	23.08.07	23.08.08
Power Supply	E3632A	MY40003776	Agilent	-	-
Power Supply	PS-2403D	-	Conrad	-	-
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz	09.08.06	09.08.08
Rubidium Frequency Normal	MFS	002	Efratom	24.08.07	24.08.08
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz	23.08.07	23.08.09
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz	04.07.06	04.07.09
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz	04.07.06	04.07.09
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz	24.05.07	24.05.10
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz	-	-
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz	-	-
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz	-	-

6 Photo Report

Photo 1: Test setup for radiated measurements (Enclosure, Setup_c01, below 30 MHz)

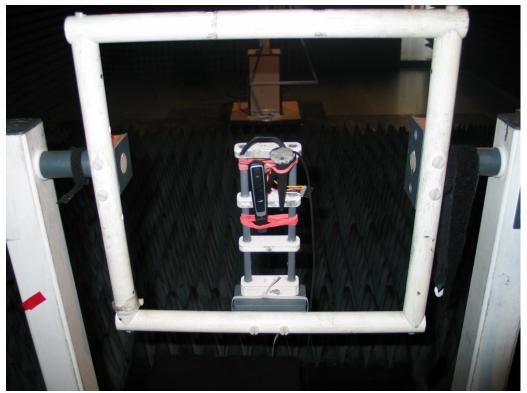


Photo 2: Test setup for radiated measurements (Enclosure)

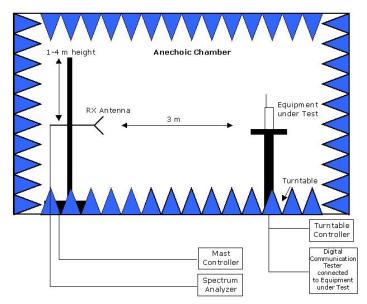
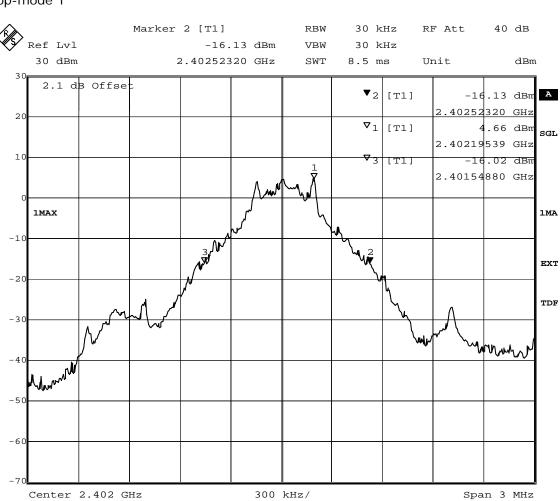

Photo 3: EUT (front side, with temporary control connector)

Photo 4: EUT (rear side, with temporary control connector)

7 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.


8 Annex measurement plots

8.1 Occupied bandwidth

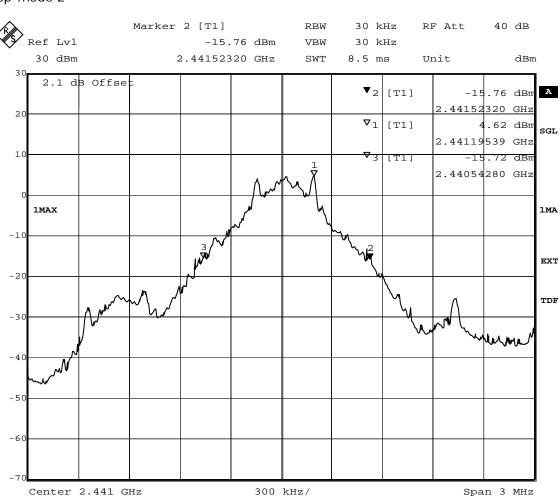
8.1.1 Occupied bandwidth operating mode 1

Op. Mode

op-mode 1

Title: 20dB Bandwidth

Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):974.4


Date: 23.JUN.2008 16:46:30

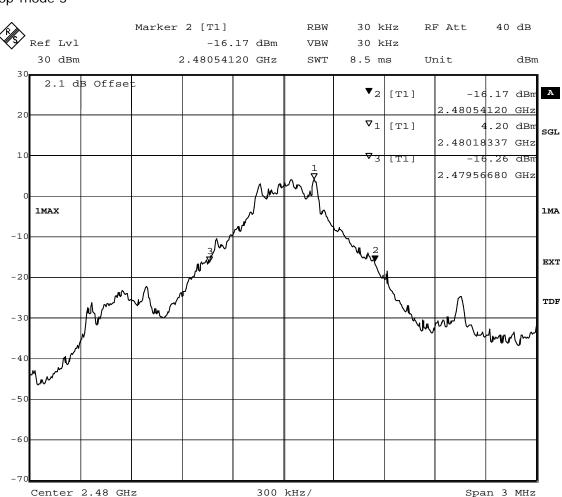
8.1.2 Occupied bandwidth operating mode 2

Op. Mode

op-mode 2

Title: 20dB Bandwidth

Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):980.4


Date: 23.JUN.2008 17:43:42

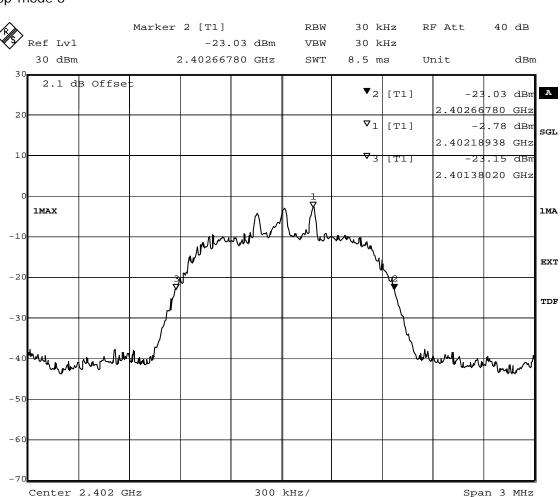
8.1.3 Occupied bandwidth operating mode 3

Op. Mode

op-mode 3

Title: 20dB Bandwidth

Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):974.4


Date: 23.JUN.2008 17:24:16

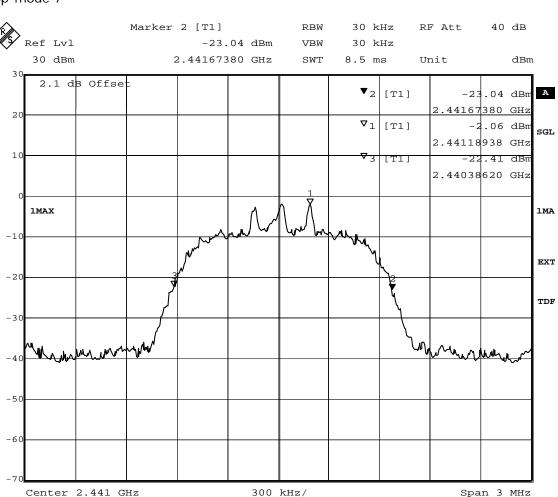
8.1.4 Occupied bandwidth operating mode 6

Op. Mode

op-mode 6

Title: 20dB Bandwidth

Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):1287.6


Date: 23.JUN.2008 18:31:06

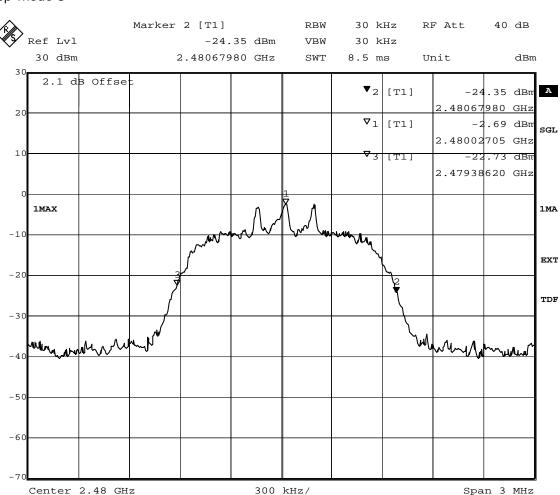
8.1.5 Occupied bandwidth operating mode 7

Op. Mode

op-mode 7

Title: 20dB Bandwidth

Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1287.6


Date: 23.JUN.2008 18:49:40

8.1.6 Occupied bandwidth operating mode 8

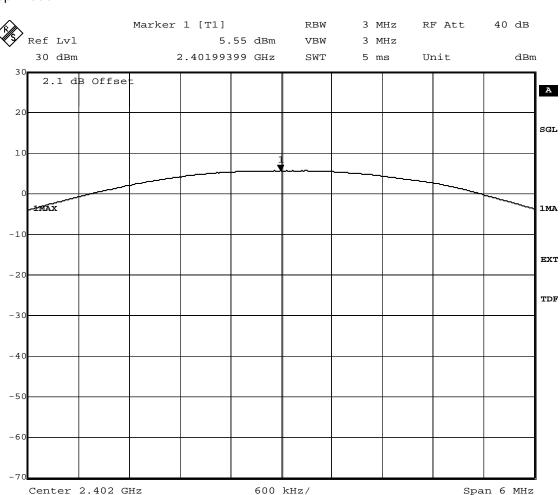
Op. Mode

op-mode 8

Title: 20dB Bandwidth

Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):1293.6

Date: 23.JUN.2008 19:18:10



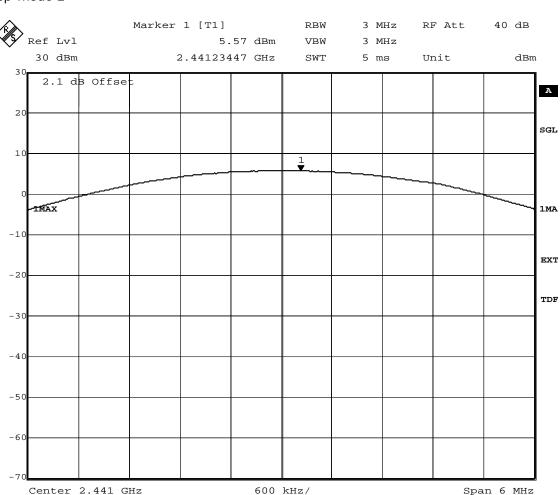
8.2 Peak power output

8.2.1 Peak power output operating mode 1

Op. Mode

op-mode 1

Title: Peak outputpower Power Comment A: CH B: 2402 MHz

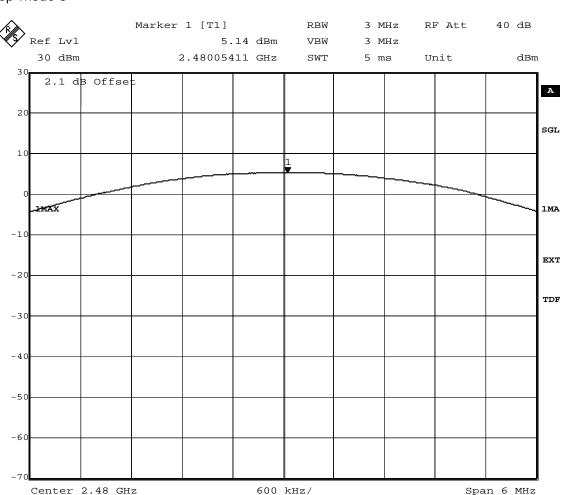

Date: 23.JUN.2008 16:46:58

8.2.2 Peak power output operating mode 2

Op. Mode

op-mode 2

Title: Peak outputpower Power


Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 17:44:08

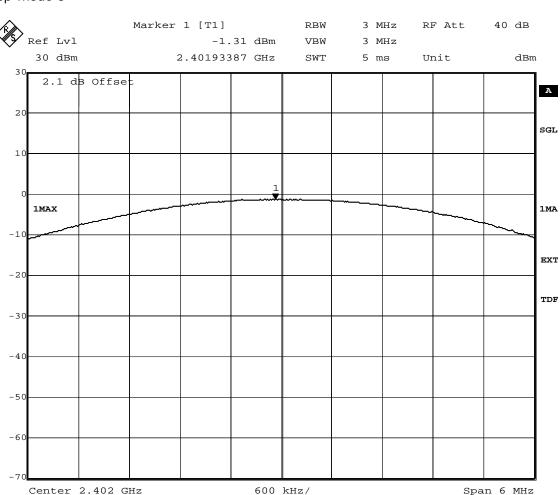
8.2.3 Peak power output operating mode 3

Op. Mode

op-mode 3

Title: Peak outputpower Power

Comment A: CH T: 2480 MHz


Date: 23.JUN.2008 17:24:42

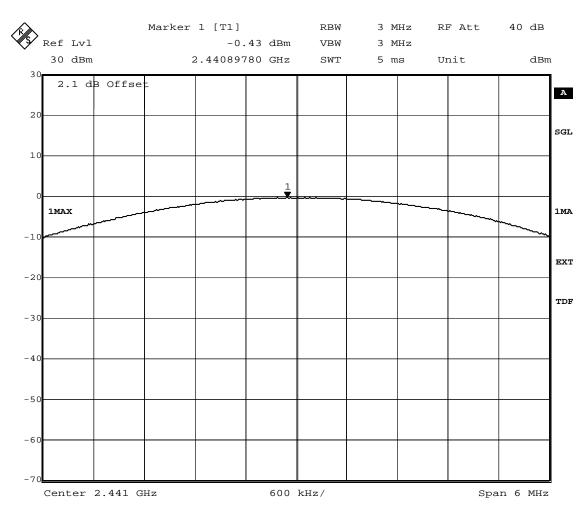
8.2.4 Peak power output operating mode 6

Op. Mode

op-mode 6

Title: Peak outputpower Power

Comment A: CH B: 2402 MHz

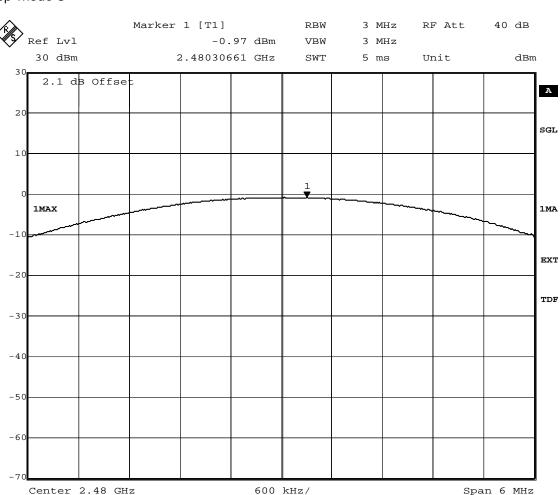

Date: 23.JUN.2008 18:31:32

8.2.5 Peak power output operating mode 7

Op. Mode

op-mode 7

Title: Peak outputpower Power


Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 18:50:07

8.2.6 Peak power output operating mode 8

Op. Mode

op-mode 8

Title: Peak outputpower Power

Comment A: CH T: 2480 MHz
Date: 23.JUN.2008 19:18:36

Test report Reference: MDE_GNNET_0805_FCCe

8.3 Band edge compliance conducted and Spurious RF conducted emissions

8.3.1 Band edge compliance conducted operating mode 1

Op. Mode

-60

op-mode 1 40 dB Marker 4 [T1] RBW 100 kHz RF Att Ref Lvl -38.65 dBm 300 kHz VBW 30 dBm 2.40000000 GHz SWT 5 ms Unit dBm 2.1 dB Offset ▼4 [T1] -38.65 dBm A 2.40000000 GHz 20 $\nabla_1|_{[T1]}$ 5.52 dBm sGL 2.40185772 GHz 10 ▼2 [T1] 5.52 dBm **X**401,85772 GHz 1MAX 1MA -10 -D1 -14.48 dBm EXT -20 TDF -30 in how brown who was a superior who will be the superior with the -5(

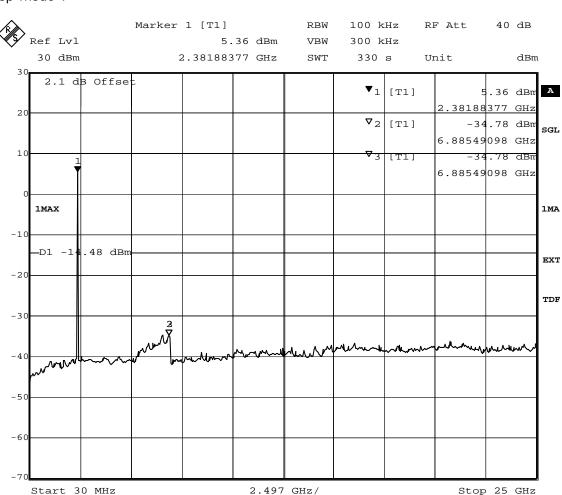
600 kHz/

Title: Band Edge Compliance
Comment A: CH B: 2402 MHz
Date: 23.JUN.2008 16:31:31

Start 2.397 GHz

(determination of reference value for spurious emissions measurement)

F2

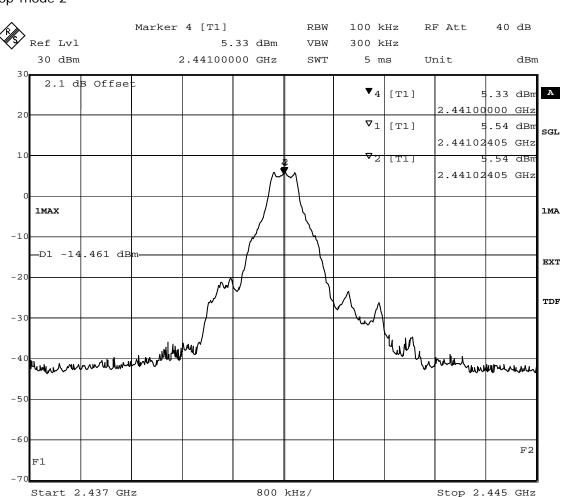

Stop 2.403 GHz

8.3.2 Spurious RF conducted emissions operating mode 1

Op. Mode

op-mode 1

Title: spurious emissions
Comment A: CH B: 2402 MHz
Date: 23.JUN.2008 16:43:08


(spurious emissions measurement)

8.3.3 Band edge compliance conducted operating mode 2

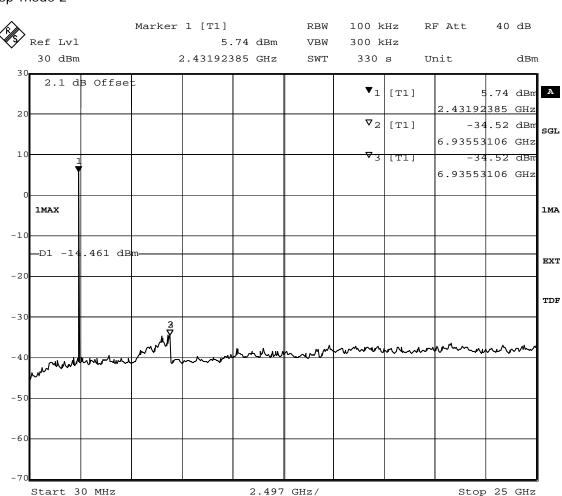
Op. Mode

op-mode 2

Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

Date: 23.JUN.2008 17:28:52


(determination of reference value for spurious emissions measurement)

8.4.4 Spurious RF conducted emissions operating mode 2

Op. Mode

op-mode 2

Title: spurious emissions
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 17:40:29

(spurious emissions measurement)

Band edge compliance conducted operating mode 3 8.3.4

Op. Mode

op-mode 3 RF Att 40 dB Marker 4 [T1] RBW 100 kHz -42.46 dBm VBW 300 kHz 30 dBm 2.48350000 GHz SWT 5 ms Unit dBm2.1 dB Offset **▼**₄|_[T1] -42.46 dBm A 2.48350000 GHz 20 ▼₁|[T1] 5.21 dBm 2.48004609 GHz 10 ▼2 | [T1] .21 dBn 2.48004609 GHz 1MAX 1MA 4.787 dB -D1 EXT TDF -30 -50 -60 F2 F1

600 kHz/

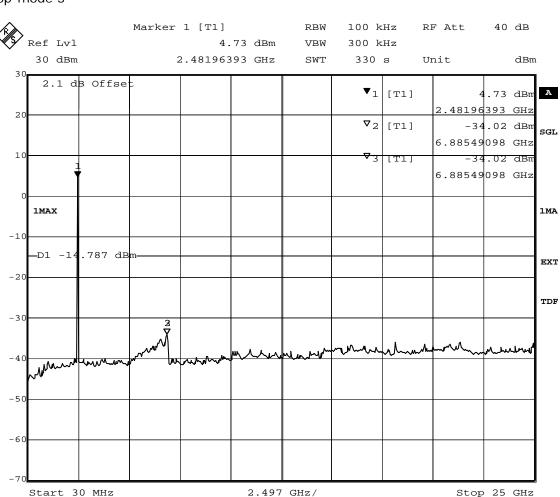
Band Edge Compliance Title:

Comment A: CH T: 2480 MHz

Start 2.479 GHz

23.JUN.2008 17:09:21

(determination of reference value for spurious emissions measurement)


Stop 2.485 GHz

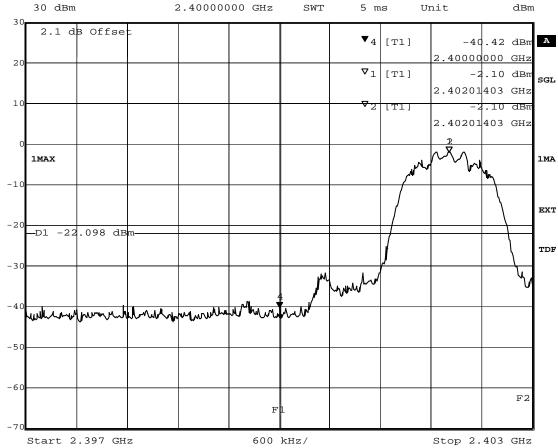
8.3.5 Spurious RF conducted emissions operating mode 3

Op. Mode

op-mode 3

Title: spurious emissions
Comment A: CH T: 2480 MHz
Date: 23.JUN.2008 17:20:59

(spurious emissions measurement)


8.3.6 Band edge compliance conducted operating mode 6

Op. Mode op-mode 6

Marker 4 [T1] RBW 100 kHz RF Att 40 dB

Ref Lvl -40.42 dBm VBW 300 kHz

30 dBm 2 40000000 GHz SWT 5 ms Unit dBm

Title: Band Edge Compliance

Comment A: CH B: 2402 MHz

Date: 23.JUN.2008 18:16:25

(determination of reference value for spurious emissions measurement)

8.3.7 Spurious RF conducted emissions operating mode 6

Op. Mode

op-mode 6


Title: spurious emissions
Comment A: CH B: 2402 MHz
Date: 23.JUN.2008 18:28:02

(spurious emissions measurement)

8.3.8 Band edge compliance conducted operating mode 7

Op. Mode

800 kHz/

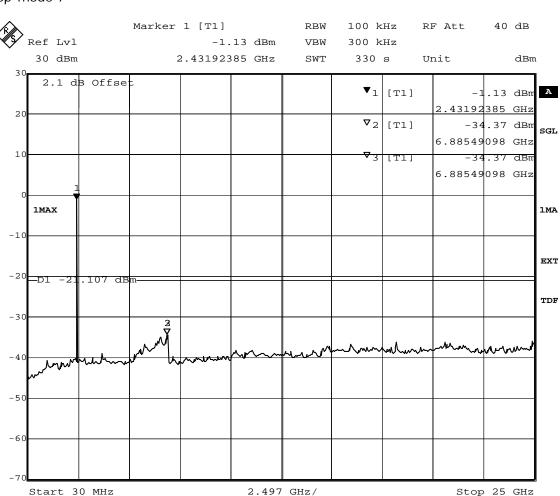
Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

Start 2.437 GHz

Date: 23.JUN.2008 18:35:08

(determination of reference value for spurious emissions measurement)


Stop 2.445 GHz

8.4.10 Spurious RF conducted emissions operating mode 7

Op. Mode

op-mode 7

Title: spurious emissions
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 18:46:45

(spurious emissions measurement)

8.3.9 Band edge compliance conducted operating mode 8

Op. Mode

op-mode 8 RF Att 40 dB Marker 4 [T1] RBW 100 kHz Ref Lvl -43.58 dBm VBW 300 kHz 30 dBm 2.48350000 GHz SWT 5 ms Unit dBm2.1 dB Offset ▼4 | [T1] -43.58 dBm A 2.48350000 GHz 20 ▼₁|[T1] -1.58 dBm 2.48001002 GHz 10 ▼2 | [T1] 1.58 dBn 2.48001002 GHz 1MAX 1MA -10 EXT -20 -21.58 dBm TDF -30 Www. Wh -50 -60 F2 F1

600 kHz/

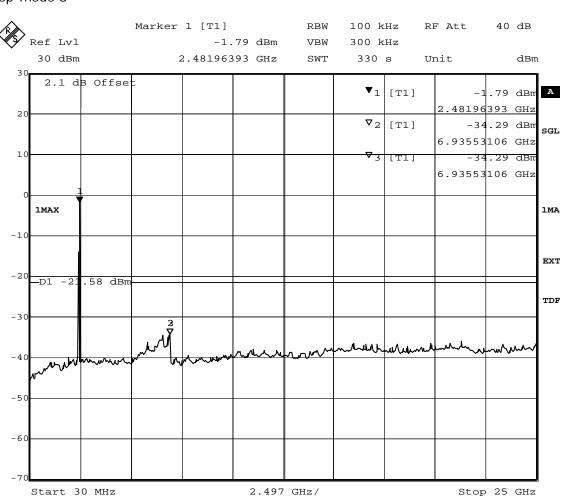
Title: Band Edge Compliance

Comment A: CH T: 2480 MHz

Start 2.479 GHz

Date: 23.JUN.2008 19:03:35

(determination of reference value for spurious emissions measurement)


Stop 2.485 GHz

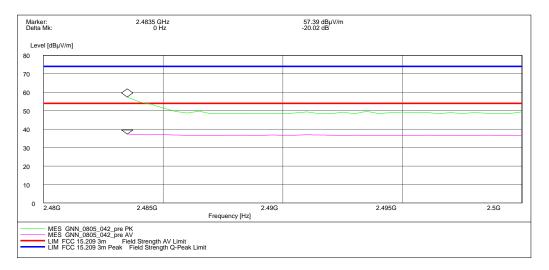
8.3.10 Spurious RF conducted emissions operating mode 8

Op. Mode

op-mode 8

Title: spurious emissions
Comment A: CH T: 2480 MHz
Date: 23.JUN.2008 19:15:11

(spurious emissions measurement)

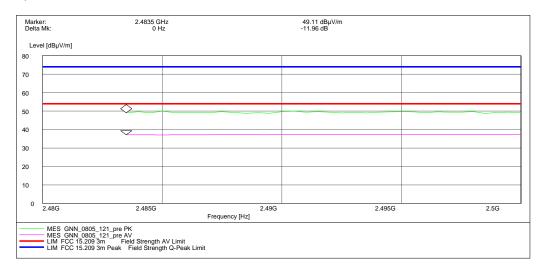


8.4 Band edge compliance radiated

8.4.1 Band edge compliance radiated operating mode 3

Op. Mode

op-mode 3

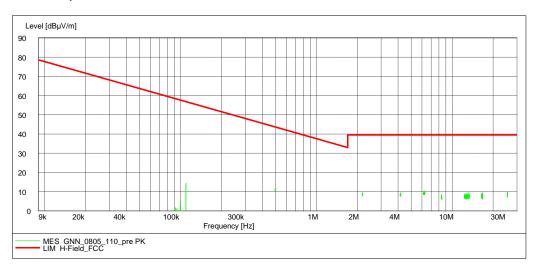

Radiated measurement (higher band edge)

8.4.2 Band edge compliance radiated operating mode 8

Op. Mode

op-mode 8

Radiated measurement (higher band edge)

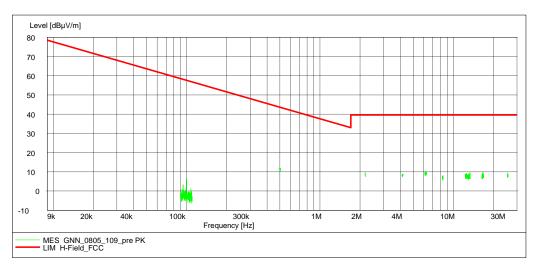


8.5 Radiated emissions (f<30MHz)

Op. Mode

op-mode 1

Antenna position 90°



Op. Mode

op-mode 1

Antenna position 0°

8.6 Dwell time

8.6.1 Dwell time operating mode 2 (DH1)

Op. Mode

Time slot measurement of a DH1 packet op-mode 2 Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB Ref Lvl ndB 6.00 dB VBW 1 MHz 30 dBm BW 400.801603 ****s SWT 10 ms Unit dBm 2.1 dB Offset **▼**1 | [T1] 5.40 dBm A 100.000000 ៀន 20 ndB 6.00 dB SGL 400.801603 ****s BW 10 **∀**T‡ 5.45 dBm TRG [T1] T11 T2 [T1] 44 dBm .723447 ls R -10EXT -20 TDF -30 humbal -50 -60 Center 2.441 GHz 1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 17:46:53

8.6.2 Dwell time operating mode 2 (DH3)

Op. Mode

op-mode 2 Time slot measurement of a DH3 packet Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB 6.00 dB Ref Lvl ndB VBW 1 MHz 30 dBm 1.663327 ms SWT 10 ms Unit dBm2.1 dB Offset ▼1 [T1] 5.40 dBm A 100.000000 ****s 20 6.00 dB ndB 1.663327 ms BW 10 5.41 dBm TRG [T1] ▼_T2 [T1] 5.39 dBm 1.624248 ms 1MA -10 EXT -20 TDF -30 Muhamyahanny March James March -50 -60 TR Center 2.441 GHz 1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 17:47:30

8.6.3 Dwell time operating mode 2 (DH5)

Op. Mode

op-mode 2 Time slot measurement of a DH5 packet Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB Ref Lvl ndB 6.00 dB VBW 1 MHz 30 dBm 2.905812 ms SWT 10 ms Unit dBm2.1 dB Offset ▼₁ | [T1] 5.39 dBm A 100.000000 ****s 20 6.00 dB ndB 2.905812 ms BW 10 5.41 dBm [T1] T2 **▽** ♥┰₺ 5.44 dBm [T1] 2.866733 ms 1MA -10 EXT -20 TDF -30 White was marked and the war of the contraction of -50 -60 TR

1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 17:48:02

Center 2.441 GHz

8.6.4 Dwell time operating mode 7 (DH1)

Op. Mode

op-mode 7 Time slot measurement of a DH1 packet Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB Ref Lvl ndB 6.00 dB VBW 1 MHz 30 dBm BW 420.841683 ****s SWT 10 ms Unit dBm 2.1 dB Offset ▼₁ | [T1] -1.18 dBm A 100.000000 ****s 20 6.00 dB ndB 420.841683 ****s BW 10 **∀**T‡ -1.15 dBm [T1] -39.078156 ****s **▽**_T½ [T1] -1.85 <u>dBm</u> 381.763527 Ns 1MA -10 EXT -20 TDF -30 mound Munch -50 -60 TR Center 2.441 GHz 1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 19:00:04

8.6.5 Dwell time operating mode 7 (DH3)

Op. Mode

op-mode 7 Time slot measurement of a DH3 packet Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB Ref Lvl ndB VBW 6.00 dB 1 MHz 30 dBm 1.663327 ms SWT 10 ms Unit dBm 2.1 dB Offset ▼₁ | [T1] -1.20 dBm A 100.000000 ****s 20 6.00 dB ndB 1.663327 ms BW 10 [T1] -1.17 dBm -39.078156 ****s ▼_T2 [T1] -1.25 dBm 1.624248 ms 1MA -10 EXT -20 TDF -30 your my my while Whylphround W -50 -60 TR Center 2.441 GHz 1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 19:01:04

8.6.6 Dwell time operating mode 7 (DH5)

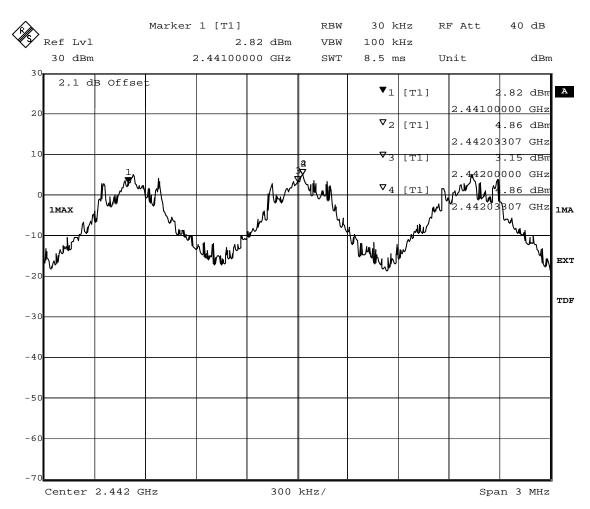
Op. Mode

op-mode 7 Time slot measurement of a DH5 packet Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB 6.00 dB Ref Lvl ndB VBW 1 MHz 30 dBm 2.925852 ms SWT 10 ms Unit dBm 2.1 dB Offset ▼₁ | [T1] -1.21 dBm A 100.000000 ****s 20 6.00 dB ndB 2.925852 ms BW 10 -1.15 dBm [T1] -39.078156 ****s **▽**_T½ [T1] -2.06 dBm 2.886774 ms 1MA -10 EXT -20 TDF -30 Lande Jack Committee and the c -50 -60 TR

1 ms/

Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 23.JUN.2008 19:01:35

Center 2.441 GHz



8.7 Channel separation

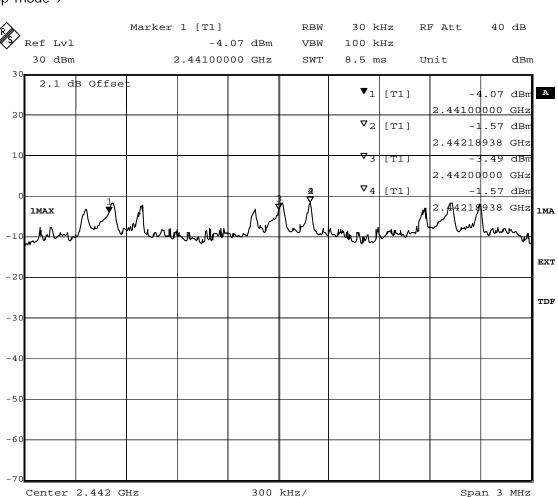
8.7.1 Channel separation operating mode 4

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping


Date: 23.JUN.2008 17:55:37

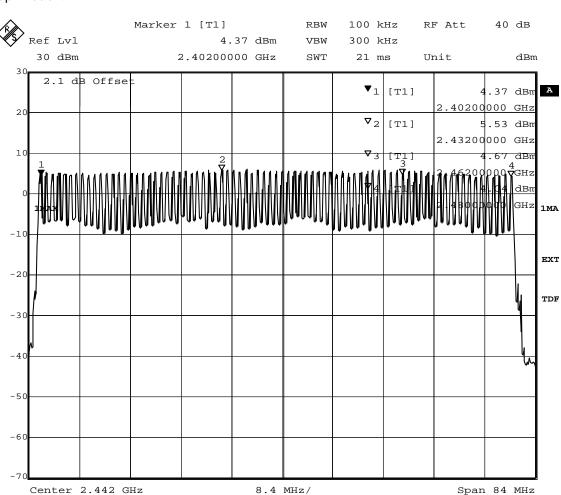
8.7.2 Channel separation operating mode 9

Op. Mode

op-mode 9

Title: Number of hopping frequencies

Comment A: CH H: Hopping


Date: 23.JUN.2008 18:07:35

8.8 Number of hopping frequencies

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping

Date: 23.JUN.2008 18:00:35