

Inter**Lab**

FCC Measurement/Technical Report on

Bluetooth Transceiver Jabra BT8030

Report Reference: MDE_GNNet_0702_FCCb

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sı	ummary	3
	0.1 0.2	Technical Report Summary Measurement Summary	3 4
1	A	dministrative Data	6
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Pr	oduct labelling	7
	2.1 2.2	FCC ID label Location of the label on the EUT	7 7
3	Τe	est object Data	8
	3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	8 9 9 10 10
4	Te	est Results	11
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Conducted emissions (AC power line) Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Dwell time Channel separation Number of hopping frequencies	11 13 15 17 19 24 27 29 30
5	Τe	est Equipment	31
6	Pł	noto Report	34
7	Se	etup Drawings	37
8	Aı	nnex measurement plots	38
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	AC Mains conducted Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emissions Band edge compliance radiated Radiated emissions (f<30MHz) Dwell time Channel separation Number of hopping frequencies	38 39 42 45 51 52 54 55 56

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-06 Edition) and 15 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15	5.201	Equipment	authorization	requirement
------	-------	-----------	---------------	-------------

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000

Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2003 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subj	oart C	§ 15.207				
Conducted emissions (AC power line)						
The measurement was performed according to ANSI C63.4 2003						
OP-Mode	Setup	Port	Final Result			
op-mode 5	Setup_01	AC Port (power line)	passed			
F00 Dawl 4F Cult		C 4E 247 (-) (4)				
FCC Part 15, Subj		§ 15.247 (a) (1)				
Occupied bandwidt		ling to FCC 5 1F 21	10 1 0/			
OP-Mode	was performed accord	Port	10-1-06 Final Result			
	Setup 02					
op-mode 1	Setup_02	Temp.ant.connector	passed			
op-mode 2	Setup_02	Temp.ant.connector	passed			
op-mode 3	Setup_02	Temp.ant.connector	passed			
FCC Part 15, Subj	oart C	§ 15.247 (b) (1)				
Peak power output						
The measurement	was performed accord	ling to FCC § 15.31	10-1-06			
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_02	Temp.ant.connector	passed			
op-mode 2	Setup_02	Temp.ant.connector	passed			
op-mode 3	Setup_02	Temp.ant.connector	passed			
·	ı –	•	1			
FCC Part 15, Subj		§ 15.247 (d)				
Spurious RF conduc			10.1.07			
	was performed accord	•	10-1-06			
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_02	Temp.ant.connector	passed			
op-mode 2	Setup_02	Temp.ant.connector	passed			
op-mode 3	Setup_02	Temp.ant.connector	passed			
FCC Part 15, Subj	oart C	§ 15.247 (d), § 15.3	35 (b), § 15.209			
Spurious radiated e		* * -				
The measurement	was performed accord	ling to ANSI C63.4	2003			
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_03	Enclosure	passed			
op-mode 2	Setup_03	Enclosure	passed			
op-mode 3	Setup_03	Enclosure	passed			
·	ı —		1			
FCC Part 15, Subpart C § 15.247 (d)						
Band edge complia			10.1.07.7.555			
	was performed accord	ling to FCC § 15.31	10-1-06 / 2003			
(10-1-06) / ANSI C						
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_02	Temp.ant.connector	passed			
op-mode 3	Setup_02	Temp.ant.connector	passed			
op-mode 3	Setup_03	Enclosure	passed			

FCC Part 15, Subpart C

§ 15.247 (a) (1) (iii)

Dwell time

The measurement was performed according to FCC § 15.31

10-1-06

OP-Mode op-mode 2 Setup Setup 02 Port Temp.ant.connector passed

Final Result

FCC Part 15, Subpart C

§ 15.247 (a) (1)

Channel separation

The measurement was performed according to FCC § 15.31

10-1-06

OP-Mode

Setup

Port

Final Result

op-mode 4

Setup 02

Temp.ant.connector passed

FCC Part 15, Subpart C

§ 15.247 (a) (iii)

Number of hopping frequencies

The measurement was performed according to FCC § 15.31

10-1-06

OP-Mode op-mode 4 Setup Setup_02 Port Temp.ant.connector passed

Final Result

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Accreditation Scope:

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the - Deutscher Akkreditierungs Rat	following accreditation organisation: DAR-Registration no. DAT-P-192/99-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell
Report Template Version:	2007-07-19
1.2 Project Data	
Responsible for testing and report:	DiplIng. Andreas Petz
Date of Test(s): Date of Report:	2007-05-10 to 2007-07-26 2007-08-14
1.3 Applicant Data	
Company Name:	GN Netcom A/S
Address:	Lautrupbjerg 7 DK-2750 Ballerup Denmark
Contact Person:	Mr. Tom Ringtved
1.4 Manufacturer Data	
Company Name:	please see applicant data
Address:	
Contact Person:	

2 Product labelling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test Bluetooth Transceiver

Type Designation: Jabra BT8030

Kind of Device: Headset, Mobile phone accessory

(optional)

Voltage Type: DC (internal battery) — AC / DC (AC adapter)

Voltage level: 3.7 V - 115 V / 5.0 V

Modulation Type: GFSK

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 µs. The maximum dwell time on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds.

Specific product description for the EUT:

The EUT is a headset/handsfree which uses Bluetooth technology to be connected to e.g. a mobile phone. Additionally, it can be used for music playback when it is connected via USB cable to a PC. It supports both, usage as headset worn at the ears and usage as external speaker, e.g. laying on a table.

The EUT provides the following ports:

Ports

Temporary antenna connector Enclosure AC Port (power line) USB port (Mini-USB connector) USB cable (length: 2.0 m)

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	Bluetooth	Jabra	00168FF21141	28-00521	21a	2007-05-02
(Code:	Headset	BT8030				
CJ020a01)						
Remark: EUT	A is equipped w	ith a temporary	antenna conector.			
EUT B	Bluetooth	Jabra	00168FF21099	28-00521	21a	2007-05-02
(Code:	Headset	BT8030				
CJ020c01)						
Remark: EUT	B is equipped w	ith an integral a	ntenna (applicant's	declaration: n	naximum ga	in= 0.0 dBi).
EUT C	Bluetooth	Jabra	00168FF2108F	28-00521	21a	2007-05-02
(Code:	Headset	BT8030				
CJ020d01)						

Remark: ÉUT C is equipped with an integral antenna (applicant's declaration: maximum gain= 0.0 dBi).

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	FCC ID
AE1 (Code: CJ020CHc1)	AC adapter PHIHONG	PSAA05A- 050 P/N:26- 01004	01 (Engi- neering Sample)	REV:01	-	-
AE2	Laptop	IBM 9467- 54G	L3-AA471	_	-	-
AE3	AC Adapter	Lenovo 92P1103	11S92P1103 Z1ZBEF716 1JH	REV 05	-	-
AE4	TFT Monitor	LG Flatron L1740BQ	509WANF1 W607	-	-	BEJL17NU
AE5	Mouse	Logitech M-BB48	LZC905054 78	_	-	-
AE6	Keyboard	CHERRY RS 6000 USB ON	G 0000273 2P28	-	-	-
AE7	USB cable	BizLink Technology Type B to Mini-B	_	_	_	_

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT B + AE1 + AE2 +	setup for the test "Conducted emissions (AC power line)"
	AE3 + AE4 + AE5 + AE6	
	+ AE7	
Setup_02	EUT A	setup for conducted tests
Setup_03	EUT C	setup for radiated tests

3.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	The EUT transmits on 2402 MHz	Loopback mode
op-mode 2	The EUT transmits on 2441 MHz	Loopback mode
op-mode 3	The EUT transmits on 2480 MHz	Loopback mode
op-mode 4	The EUT is in Hopping mode	The EUT is hopping on 79 channels
op-mode 5	Bluetooth scan mode, charging by AC	no radio link established, charging the internal
	adapter AE1, music playback via USB	battery

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF–Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

Detector: Quasi-PeakIF - Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz) QP Limit (dB μ V) AV Limit (dB μ V) 0.15 - 0.5 66 to 56 56 to 46 0.5 - 5 56 46 5 - 30 60 50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature: 26 °C Air Pressure: 1019 hPa Humidity: 44 %

Op. ModeSetupPortop-mode 5Setup_01AC Port (power line)

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
_	_	_	_	_

Remark: Please see annex for the measurement plot.

No spurious emissions found during the preliminary scan so no final measurement was performed.

4.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 5	passed

4.2 Occupied bandwidth

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 10 kHz.

The EUT was connected to the spectrum analyzer via a short coax cable.

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

- 1. Under the provision that the system's operates with an output power no greater than 125 mW (21.0 dBm):
 - Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz
- 2. If the system's output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz.

4.2.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_02 Temp.ant.connector

20 dB bandwidth MHz	Remarks
0.822	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_02	Temp.ant.connector

20 dB bandwidth MHz	Remarks
0.806	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_02	Temp.ant.connector

20 dB bandwidth MHz	Remarks
0.830	-

 $\label{lem:Remark: Please see annex for the measurement plot.}$

4.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.3 Peak power output

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.3.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The resolution bandwidth for measuring the output power was 1 MHz.

The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

4.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (1)

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

==> Maximum Output Power: 30 dBm

4.3.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_02 Temp.ant.connector

Output power dBm	Remarks
3.46	The EIRP including antenna gain (0.0 dBi) is 3.46 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_02Temp.ant.connector

Output po	ower	Remarks	
3.72		The EIRP including antenna gain (0.0 dBi) is 3.72 dBm	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_02	Temp.ant.connector

Output power dBm	Remarks	
3.11	The EIRP including antenna gain (0.0 dBi) is 3.11 dBm	

Remark: Please see annex for the measurement plot.

4.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.4 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.4.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.6). This value is used to calculate the 20 dBc limit.

4.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.4.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_02 Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6936	-35.75	3.52	-16.48	19.27
20797	-36.14	3.52	-16.48	19.66

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_02Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6936	-35.14	3.73	-16.27	18.87

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_02	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6885	-35.65	3.12	-16.88	18.77

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

4.4.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C Op. Mode

Op. Mode	Result
op-mode 1	passed
op-mode 2	passed
op-mode 3	passed

4.5 Spurious radiated emissions

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: ANSI C 63.4, 2003

4.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}$ in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHzIF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 μs

- Turntable angle range: -180 to 180 °

- Turntable step size: 90°

- Height variation range: 1 – 3m

- Height variation step size: 2m

- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: -180 to 180 °

- Turntable step size: 45°

Height variation range: 1 – 4mHeight variation step size: 0.5m

- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency the turntable azimuth and antenna height, which was determined in step 2, will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined in step 3. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: $-22.5\,^\circ$ to + 22.5 $^\circ$ around the value determined in step 2

- Height variation range: -0.25m to + 0.25m around the value determined in step 2

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1s

3. Measurement above 1GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. EMI receiver settings:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+30dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m)+10dB
1.705 - 30	30	30	Limit (dBµV/m)+10dB

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.5.3 Test Protocol

Temperature: 25 - 28 °C

Air Pressure: 1008 - 1017 hPa

Humidity: 37 - 42 %

4.5.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port	
op-mode 2	Setup_03	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	-	-	-	-	-	-	-	-	-
90°	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. The found peak at 99.5kHz is emission from loop antenna power supply.

4.5.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port	
op-mode 1	Setup_03	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port	
on-mode 2	Setup 03	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3	Setup_03	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	2483.5	-	49.22	36.53	-	74.0	54.0	24.78	17.47

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

4.5.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.6 Band edge compliance

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: ANSI C 63.4, 2003

FCC §15.31, 10-1-06

4.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements: 1. Show compliance of the lower band edge by a conducted measurement and 2. show compliance of the higher band edge by a radiated and conducted measurement.

For the first measurement the EUT is set to transmit on the lowest channel (2402 MHz). The lower band edge is 2400 MHz.

Analyzer settings:

- Detector: Peak
- RBW= 100 kHz
- VBW= 300 kHz

For the second measurement the EUT is set to transmit on the highest channel (2480 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW= 100 kHz
- VBW= 300 kHz

Analyzer settings for radiated measurement:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

4.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

. . .

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the measurement of the **lower band edge** the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the measurement of the **higher band edge** the limit is "specified in Section 15.209(a)".

4.6.3 Test Protocol

4.6.3.1 Lower band edge Conducted measurement

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 1 Setup_02 Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2400.00	-36.02	3.52	-16.48	19.54

Remark: Please see annex for the measurement plot.

4.6.3.2 Higher band edge Conducted measurement

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. ModeSetupPortop-mode 3Setup_02Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2483.50	-43.19	3.12	-16.88	

Radiated measurement

Temperature: 25 °C Air Pressure: 1008 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 3 Setup_03 Enclosure

Frequency MHz	Polarisation		ed value V/m	Limit Peak	Limit AV	Delta to Peak	Delta to AV limit
		Peak	AV	dBμV/m	dBμV/m	limit/dB	dB
2483.50	Vertical + horizontal	49.22	36.53	74.00	54.00	24.78	17.47

Remark: Please see annex for the measurement plot.

4.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 3	passed

4.7 Dwell time

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.7.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the dwell time measurements and was connected to the spectrum analyzer via a short coax cable. Bluetooth technology defines DH1, DH3 and DH5 packets. The time slot length is only measured for the longest packet type that is supported by the EUT (worst case). The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$
- hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$
- hop rate = 1600/5 * 1/s for DH5 packets = $320 s^{-1}$
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

4.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

4.7.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 2 Setup_02 Temp.ant.connector

Packet type	Time slot length	Dwell time	Dwell time
	ms		ms
DH5	2.966	time slot length * 1600/5 /79 * 31.6	380

Remark: Please see annex for the measurement plots.

4.7.4 Test result: Dwell time

FCC Part 15, Subpart C	Op. Mode		Result
	op-mode 2	DH5	passed

4.8 Channel separation

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.8.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the channel separation measurements. The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

- Detector: Peak-Maxhold

- Span: 3 MHz

- Centre Frequency: 2441 MHz

Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz

- Sweep Time: Coupled

4.8.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.8.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. ModeSetupPortop-mode 4Setup_02Temp.ant.connector

Channel separation	Remarks
MHz	
1.0	-

Remark: Please see annex for the measurement plot.

4.8.4 Test result: Channel separation

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

4.9 Number of hopping frequencies

Standard FCC Part 15, 10-1-06

Subpart C

The test was performed according to: FCC §15.31, 10-1-06

4.9.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the number of hopping frequencies measurement.

The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

Detector: Peak-MaxholdStart frequency: 2400 MHzStop frequency: 2484 MHz

Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

4.9.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.9.3 Test Protocol

Temperature: 26 °C Air Pressure: 1018 hPa Humidity: 38 %

Op. Mode	Setup	Port
op-mode 4	Setup 02	Temp.ant.connector

Number of hopping channels	Remarks
79	-

Remark: Please see annex for the measurement plot.

4.9.4 Test result: Number of hopping frequencies

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 4	passed	

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for	PTW60	100004	Rohde & Schwarz
Bluetooth Spurious			
Emissions			
Universal Radio	CMU 200	102366	Rohde & Schwarz
Communication Tester			

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32	849785	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35	896037	Miteq
Broadband Amplifier 45MHz-27GHz	JS4-00102600-42	619368	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link	FO RS232 Link	182-018	Pontis
Transceiver			
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz
Generator			
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz
kHz to 3 GHz			
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro	Opus10 THI (8152.00)	7482	Lufft Mess- und
Datalogger 03			Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	CO 2000	CO2000/328/12470406 /L	Innco innovative constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for	CCD-400E	0005033	Mitsubishi
observation of EUT			
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems	B84312-C40-B1		Siemens&Matsushita
/ modem			
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

6 Photo Report

Photo 1: Test setup for radiated measurements (above 1 GHz)

Photo 2: Test setup for radiated measurements (30 MHz up to 1 GHz)

Photo 3: Test setup for radiated measurements (below 30 MHz)

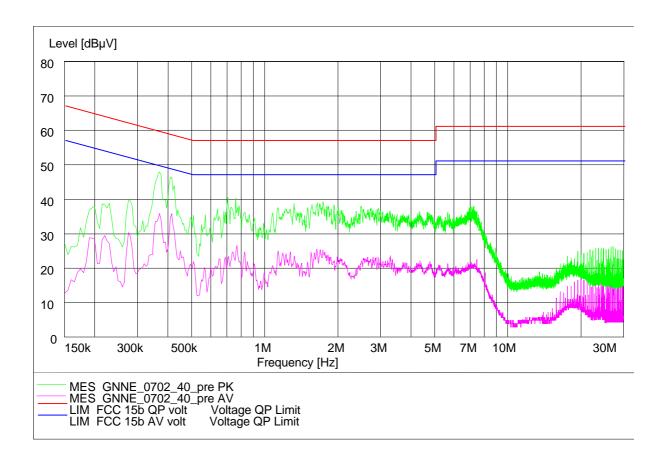
Photo 4: Test setup for conducted measurements

Photo 5: EUT (front side)

Photo 6: AC adapter

7 Setup Drawings

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

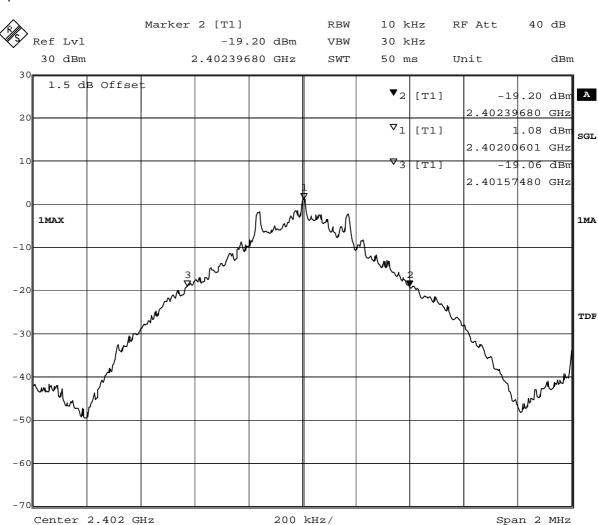


8 Annex measurement plots

8.1 AC Mains conducted

Op. Mode

op-mode 5



8.2 Occupied bandwidth

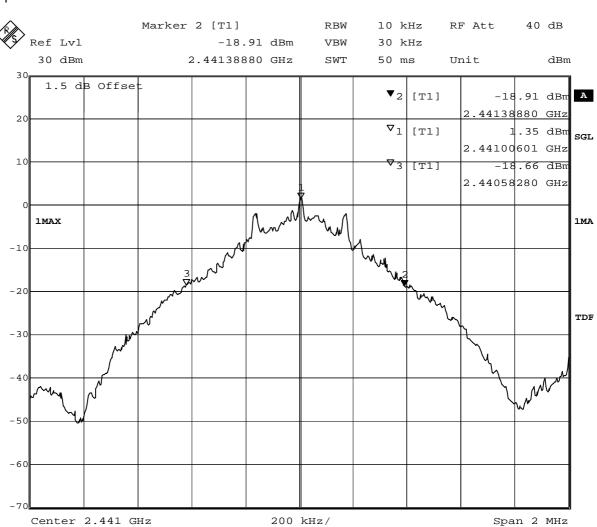
8.2.1 Occupied bandwidth operating mode 1

Op. Mode

op-mode 1

Title: 20dB Bandwidth

Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):822


Date: 10.MAY.2007 10:32:35

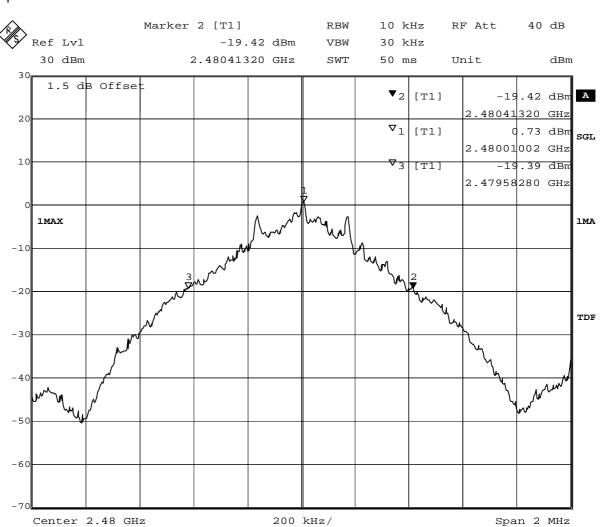
8.2.2 Occupied bandwidth operating mode 2

Op. Mode

op-mode 2

Title: 20dB Bandwidth

Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):806


Date: 10.MAY.2007 11:59:14

8.2.3 Occupied bandwidth operating mode 3

Op. Mode

op-mode 3

Title: 20dB Bandwidth

Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):830.4

Date: 10.MAY.2007 11:36:43

8.3 Peak power output

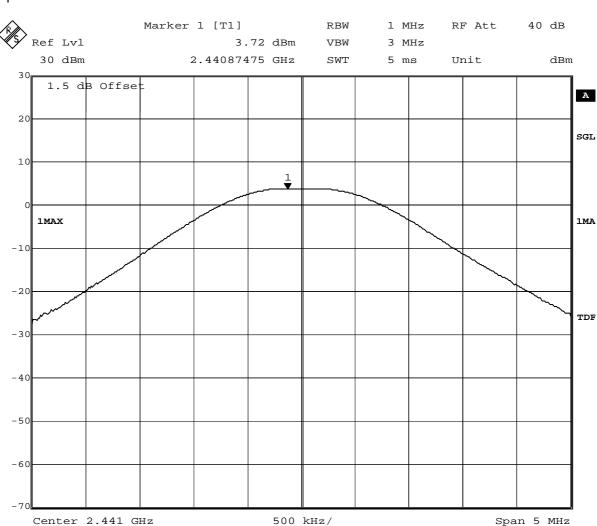
8.3.1 Peak power output operating mode 1

Op. Mode

op-mode 1

Title: Peak outputpower Power

Comment A: CH B: 2402 MHz


Date: 10.MAY.2007 10:33:02

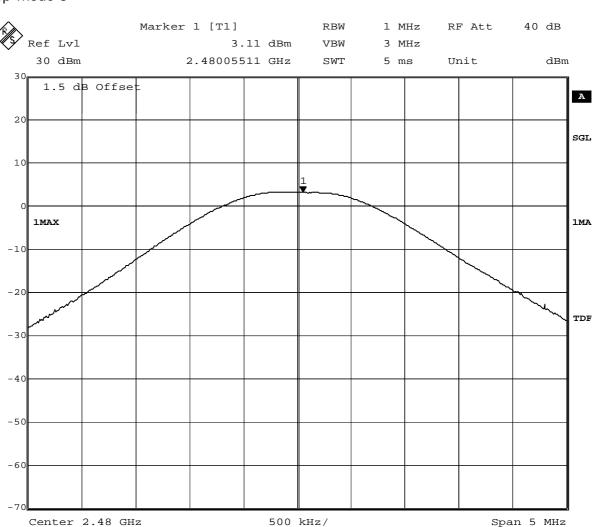
8.3.2 Peak power output operating mode 2

Op. Mode

op-mode 2

Title: Peak outputpower Power

Comment A: CH M: 2441 MHz


Date: 10.MAY.2007 11:59:40

8.3.3 Peak power output operating mode 3

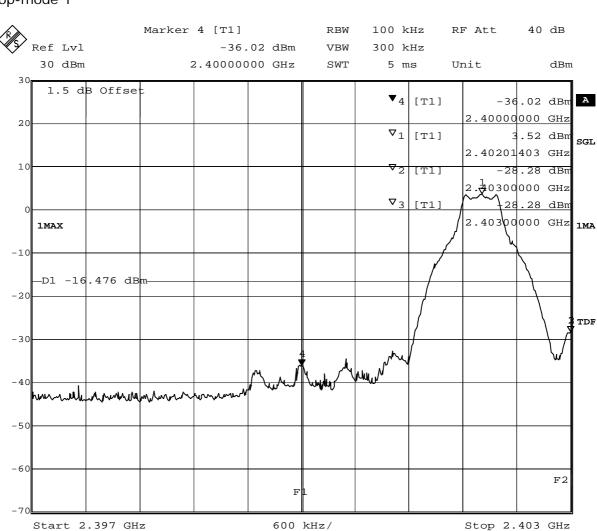
Op. Mode

op-mode 3

Title: Peak outputpower Power

Comment A: CH T: 2480 MHz

Date: 10.MAY.2007 11:37:09



8.4 Band edge compliance conducted and Spurious RF conducted emissions

8.4.1 Band edge compliance conducted operating mode 1

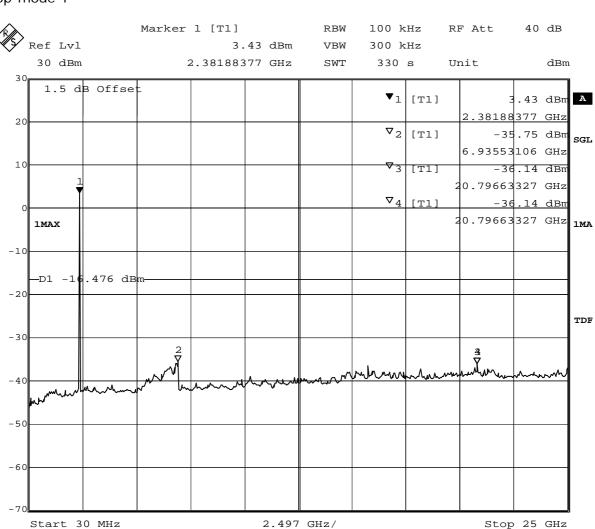
Op. Mode

op-mode 1

Title: Band Edge Compliance

Comment A: CH B: 2402 MHz

Date: 10.MAY.2007 10:17:14

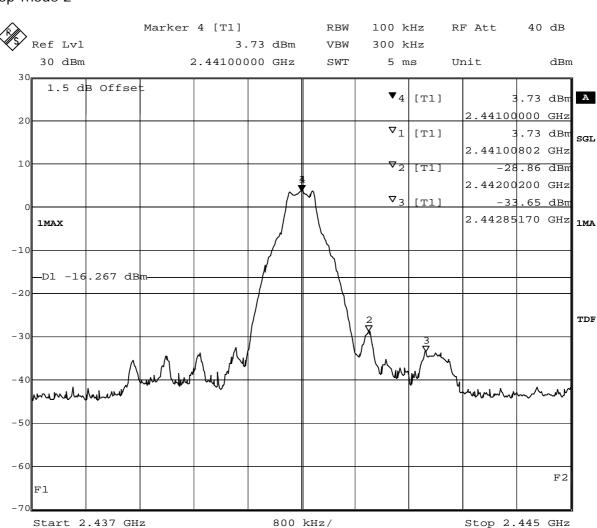

(determination of reference value for spurious emissions measurement)

8.4.2 Spurious RF conducted emissions operating mode 1

Op. Mode

op-mode 1

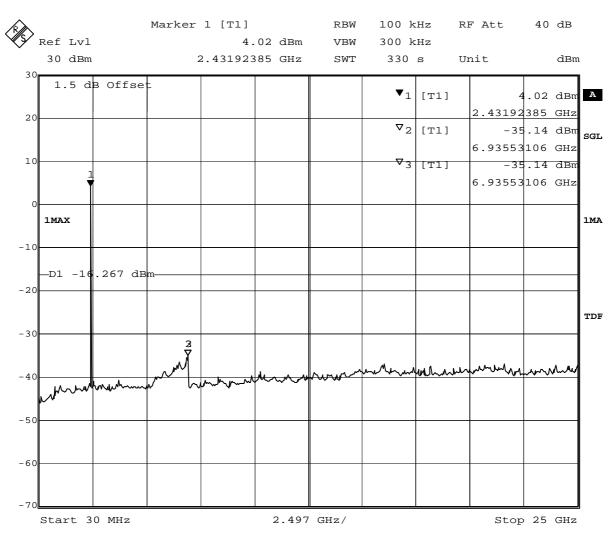
Title: spurious emissions
Comment A: CH B: 2402 MHz
Date: 10.MAY.2007 10:28:51


(spurious emissions measurement)

8.4.3 Spurious RF conducted emissions operating mode 2

Op. Mode

op-mode 2

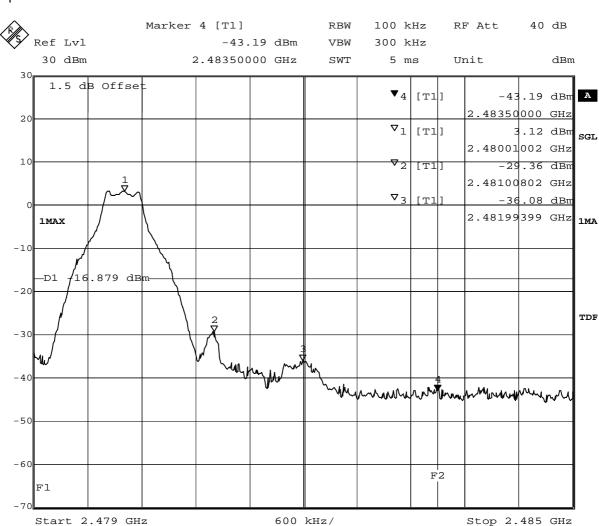

Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

Date: 10.MAY.2007 11:43:58

(determination of reference value for spurious emissions measurement)

Title: spurious emissions
Comment A: CH M: 2441 MHz
Date: 10.MAY.2007 11:55:35


(spurious emissions measurement)

8.4.4 Band edge compliance conducted operating mode 3

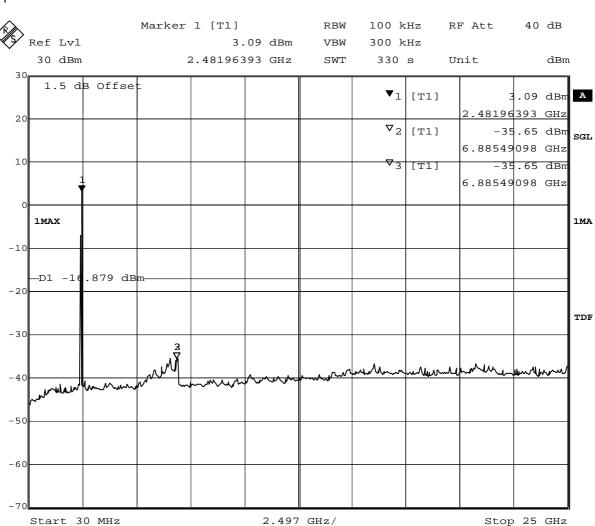
Op. Mode

op-mode 3

Title: Band Edge Compliance

Comment A: CH T: 2480 MHz

Date: 10.MAY.2007 11:21:22


(determination of reference value for spurious emissions measurement)

8.4.5 Spurious RF conducted emissions operating mode 3

Op. Mode

op-mode 3

Title: spurious emissions Comment A: CH T: 2480 MHz

Date: 10.MAY.2007 11:32:59

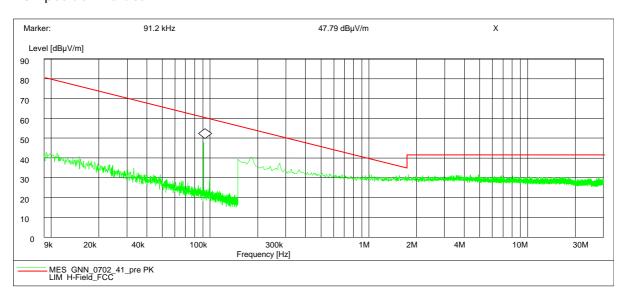
(spurious emissions measurement)

8.5 Band edge compliance radiated

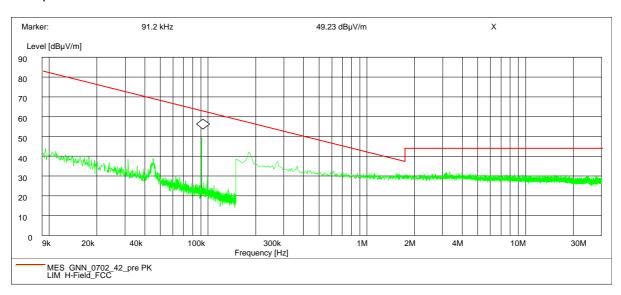
Op. Mode

op-mode 3

Radiated measurement (higher band edge)



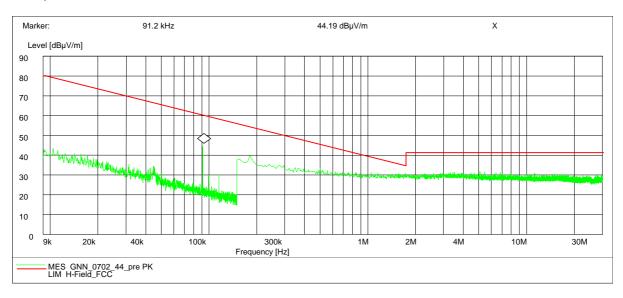
8.6 Radiated emissions (f<30MHz)

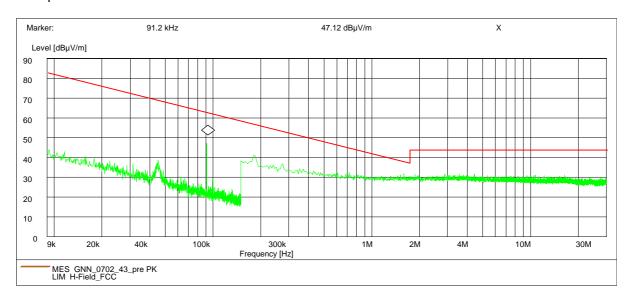

Op. Mode

op-mode 1

Antenna position 0° EUT position vertical

Antenna position 90° EUT position vertical




Op. Mode

op-mode 1

Antenna position 0° EUT position horizontal

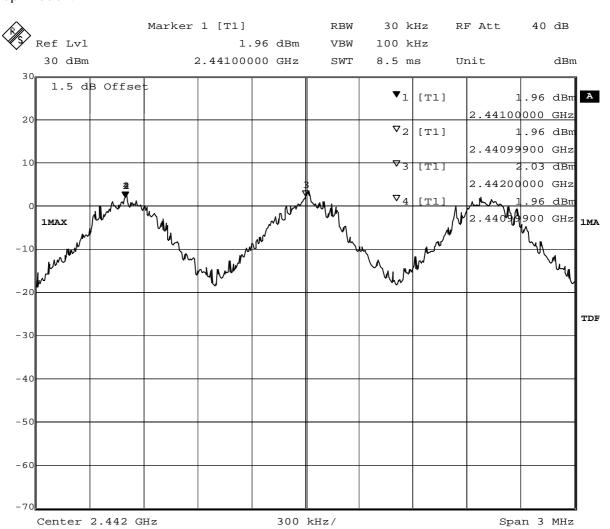
Antenna position 90° EUT position horizontal

8.7 Dwell time

8.7.1 Dwell time operating mode 2 (longest supported packet type)

Op. Mode

Time slot measurement op-mode 2 Marker 1 [T1 ndB] RBW 1 MHz RF Att 40 dB Ref Lvl ndB 6.00 dB VBW 1 MHz 30 dBm BW 2.965932 ms SWT 10 ms Unit dBm 1.5 dB Offset **▼**1 [T1] 3.45 dBm 100.000000 **y**s 20 6.00 dB ndB SGT. 2.965932 ms BW 10 -0.18 dBm TRG ▼_T1 [T1] Т2 59.118236 **y**s ▼_T≱ [T1] 3.36 dBm 2.906814 ms 1MA -10 -20 TDF -30 When when the property has here -50 -60 TR Center 2.441 GHz 1 ms/


Title: Dwell time
Comment A: CH M: 2441 MHz
Date: 10.MAY.2007 12:49:41

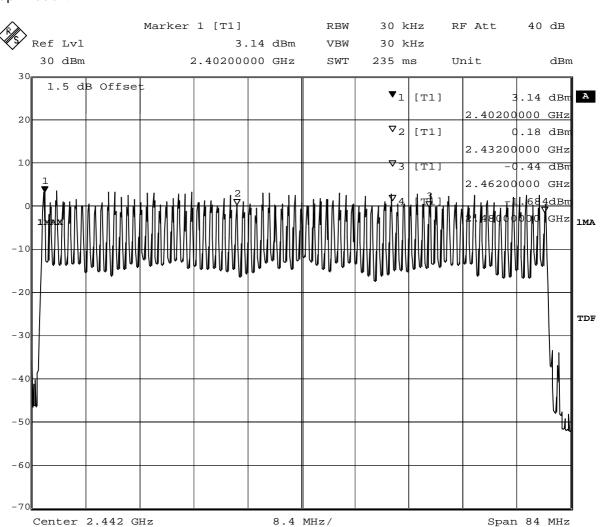
8.8 Channel separation

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping


Date: 10.MAY.2007 13:08:15

8.9 Number of hopping frequencies

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping

Date: 10.MAY.2007 13:22:13