Test of: GN Netcom A/S A7010 Bluetooth Hub

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1094	Digital Camera	Sony	MVC - FD81	125805	-	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1182	Handset Positioner	Schmid & Partners	V3.0	None	-	-
A1184	Data Acquisition Electronics	Schmid & Partner	DAE3	394	19 May 2006	12 months
A1185	Probe	Schmid & Partner	ET3 DV6	1528	12 July 2006	12 months
A1238	SAM Phantom	Schmid & Partners	001	001	Calibrated before use	-
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	04 January 2005	24 months
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
C1144	Cable	Rosenberger MICRO-COAX	FA147AF001 503030	41842-1	Calibrated as part of system	-
C1145	Cable	Rosenberger MICRO-COAX	FA147AF003 003030	41843-1	Calibrated as part of system	-

Test Report

Serial No: RFI/SARE2/RP48143JD05B Page: 18 of 42 Issue Date: 07 November 2006

Test of: GN Netcom A/S A7010 Bluetooth Hub

To: OET Bulletin 65 Supplement C: (2001-01)

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval
C1146	Cable	Rosenberger MICRO-COAX	FA147AF030 003030	41752-1	Calibrated as part of system	-
G051	Signal Generator	Gigatronics	7100/.01-20	749472	01 November 2005	12 months
G0528	Robot Power Supply	Schmid & Partner	DASY	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	-	-
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065	19 June 2006	12 months
M053	HP 8594A Spectrum Analyser	HP	8594A	3108U00205	23 February 2006	12 months
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	19 September 2006	12 months
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/ A/01	Calibrated before use	-
M1069	Diode Power Sensor	Rohde & Schwarz	NRV-Z2	838824/010	05 April 2006	12 months
M1129	Power Sensor	Rohde & Schwarz	URY-Z2	890242/16	Calibrated as part of system	-
M1150	Compact Data Logger with Interface and Probe	Testo	175-T2	37503417 / 301	-	-
M136	Temperature/Humidity /Pressure Meter	RS Components	None	None	Internal Calibration	-
M509	Thermometer	Testo	110	40378800433	20 March 2006	12 months
S256	Site 56	RFI	N/A	N/A	Calibrated before use	-

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Test of: GN Netcom A/S A7010 Bluetooth Hub

To: OET Bulletin 65 Supplement C: (2001-01)

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, these are not included in the total number of pages for this report.

A1322

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

SWISS

Client

RFI

Certificate No: D2450V2-725_Jan05

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 7	25	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	January 04 , 200	5	
Condition of the calibrated item	In Tolerance		
		onal standards, which realize the physical units or robability are given on the following pages and are	
All calibrations have been conduc	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E442	GB37480704	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Power sensor HP 8481A	US37292783	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-04 (METAS, No 251-00402)	Aug-05
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-04 (METAS, No 251-00402)	Aug-05
Reference Probe ES3DV2	SN 3025	29-Oct-04 (SPEAG, No. ES3-3025_Oct04)	Oct-05
DAE4	SN 601	22-Jul-04 (SPEAG, No. DAE4-601_Jul04)	Jul-05
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-03)	In house check: Oct-05
RF generator R&S SML-03	100698	27-Mar-02 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov-05
	Name	Function	Signature
Calibrated by:	Judith Müller	Laboratory Technician	Charles and the second second second second
			Mullia
Approved by:	Katja Pokovic		Alon's Matta
			Issued: January 13, 2005

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(23.0 ± 0.2) °C	39.0 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature during test	(23.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.9 mW / g
SAR normalized	normalized to 1W	55.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	54.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.31 mW / g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.5 mW / g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	52.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 7.2 jΩ
Return Loss	- 22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 7.5 jΩ			
Return Loss	- 22.2 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	October 16, 2002				

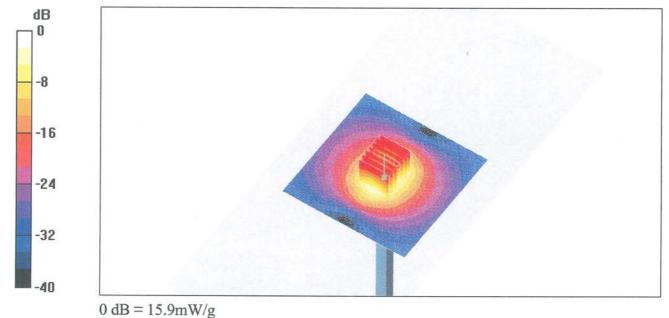
DASY4 Validation Report for Head TSL

Date/Time: 01/04/05 12:12:12

Test Laboratory: SPEAG, Zurich, Switzerland

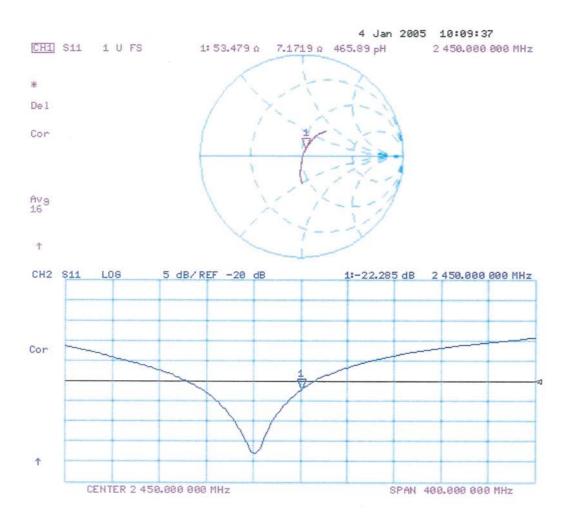
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN725

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz; Medium parameters used: f = 2450 MHz; σ = 1.88 mho/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 9; Postprocessing SW: SEMCAD, V1.8 Build 133

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.8 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.31 mW/gMaximum value of SAR (measured) = 15.9 mW/g

Impedance Measurement Plot for Head TSL

.

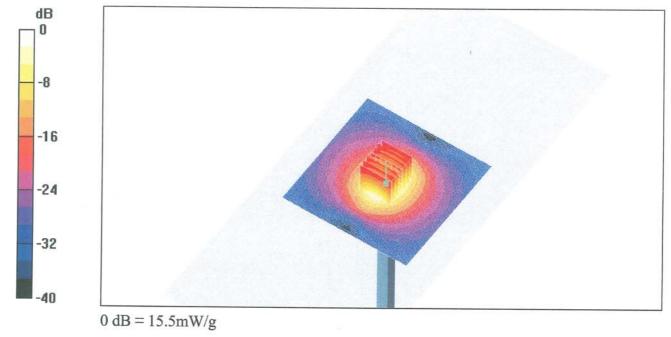
DASY4 Validation Report for Body TSL

Date/Time: 01/04/05 15:59:47

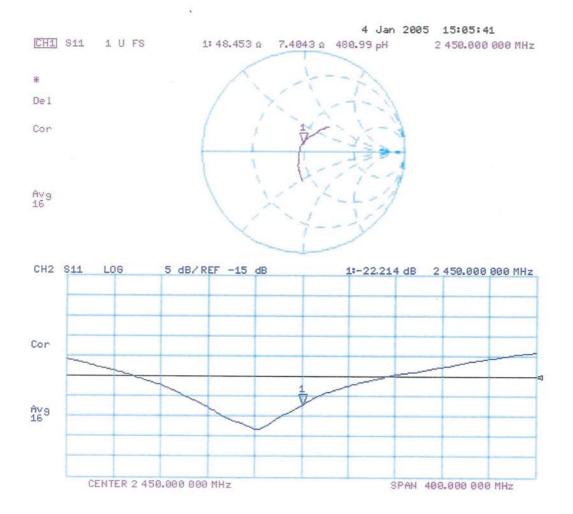
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN725

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.13, 4.13, 4.13); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 9; Postprocessing SW: SEMCAD, V1.8 Build 133


Pin = 250 mW; d = 10 mm 2/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.6 mW/g

Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.25 mW/gMaximum value of SAR (measured) = 15.5 mW/g

Impedance Measurement Plot for Body TSL

AII85 Modi 19/07/06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: ET3-1528 Jul06

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RFI

CALIBRATION CERTIFICATE ET3DV6 - SN:1528 Object QA CAL-01.v5 and QA CAL-12.v4 Calibration procedure(s) Calibration procedure for dosimetric E-field probes July 12, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID # Cal Date (Calibrated by, Certificate No.) Apr-07 Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Aug-06 Reference 3 dB Attenuator SN: S5054 (3c) 11-Aug-05 (METAS, No. 251-00499) Apr-07 Reference 20 dB Attenuator SN: S5086 (20b) 4-Apr-06 (METAS, No. 251-00558)

Reference 30 dB Attenuator SN: S5129 (30b) 11-Aug-05 (METAS, No. 251-00500) Aug-06 Reference Probe ES3DV2 SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) Jan-07 DAE4 SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 Scheduled Check Secondary Standards ID # Check Date (in house) US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 RF generator HP 8648C In house check: Nov 06 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) Name Function Signature Calibrated by: Katja Pokovic **Technical Manager** Approved by: Niels Kuster Quality Manager Issued: July 12, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1528_Jul06

July 12, 2006

Probe ET3DV6

SN:1528

Manufactured: Last calibrated: Recalibrated: March 21, 2000 July 13, 2005 July 12, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1528

DASY - Parameters of Probe: ET3DV6 SN:1528

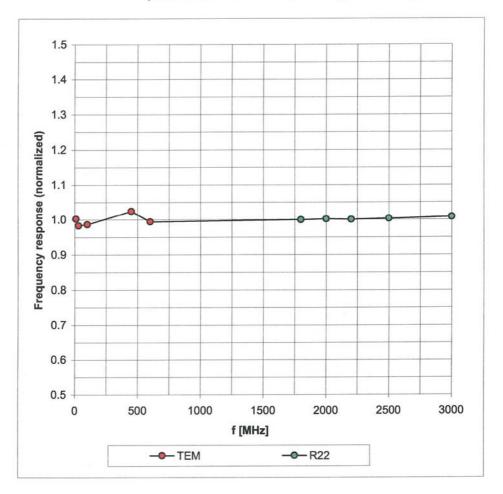
Sensitivity in Free	Diode Compression ^B			
NormX	1.53 ± 10.1%	μV/(V/m) ²	DCP X	91 mV
NormY	1.83 ± 10.1%	μ V/(V/m) ²	DCP Y	94 mV
NormZ	1.57 ± 10.1%	μ V/(V/m) ²	DCP Z	101 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

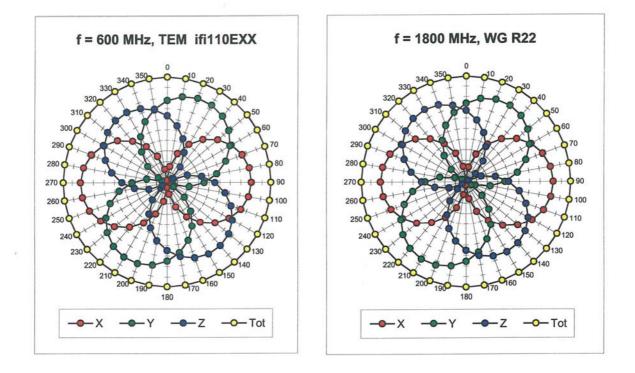
Please see Page 8.

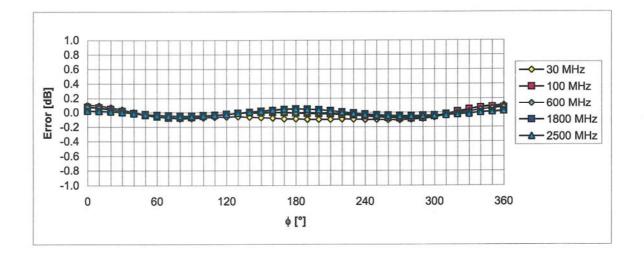
Boundary Effect

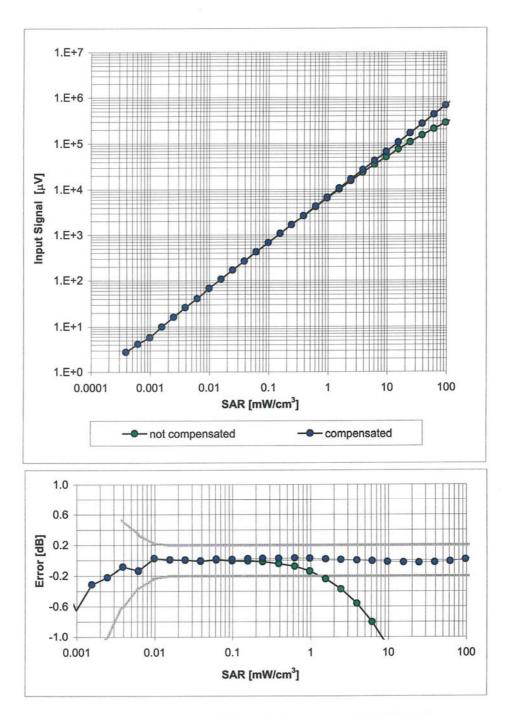
TSL	9	00 MHz	Typical SAR gradient: 5 %	b per mm	
	Sensor Cente	r to Phante	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	8.9	4.7
	SAR _{be} [%]	With C	orrection Algorithm	0.1	0.2
TSL 1750 MHz Typical SAR gradient: 1				% per mm	
	Sensor Cente	r to Phante	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	10.1	5.9
	SAR _{be} [%]	With C	orrection Algorithm	0.3	0.6
Sens	or Offset				
	Probe Tip to S	Sensor Ce	nter	2.7 mm	


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

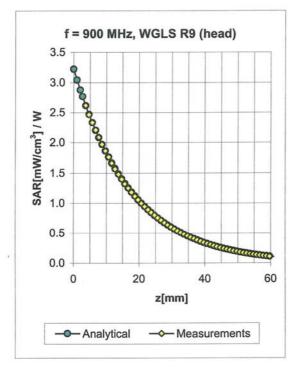
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

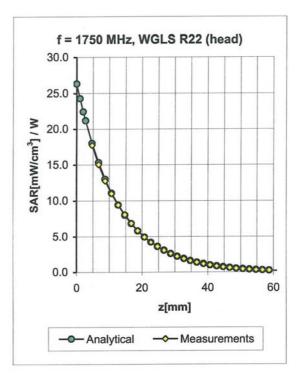

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

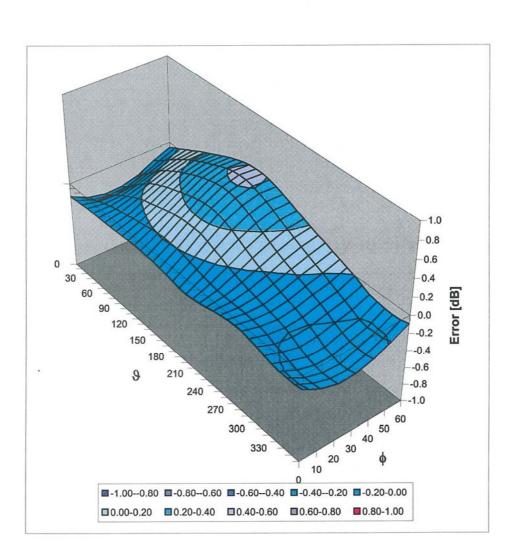


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.38	1.92	7.16 ± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.64	1.78	6.44 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.63	1.81	6.28 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.60	2.36	5.30 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	2.43	5.09 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.98	1.57	4.59 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.32	1.96	7.72 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.58	1.93	6.29 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.53	2.06	6.08 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.80	2.25	4.65 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.37	4.55 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.80	1.90	4.27 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1528

Deviation from Isotropy in HSL Error (\u00f3, \u0093), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)