

A RADIO TEST REPORT

FOR

GN NETCOM A/S

ON

JABRA PRO 9400 SERIES HEADSET

DOCUMENT NO. TRA-028647-01-47-01A

TRaC Wireless Test Report	: TRA-028647-01-47-01A
Applicant	: GN NETCOM A/S
Apparatus	: JABRA PRO 9700 SERIES HEADSET
Specification(s)	: CFR47 Part 15D
Purpose of Test	: Certification
FCCID	: BCE-9400HSA
Authorised by	:
Issue Date	: Department Manager - Radio :13 th January 2016
Authorised Copy Number	: PDF

Contents

Section	1.1 1.2 1.3 1.4	Introduction General Tests Requested By Manufacturer Apparatus Assessed Test Result Summary Notes Relating To The Assessment Deviations from Test Standards	5 5 6 6 7 9 9
Section	2: 2.1	Measurement Uncertainty Measurement Uncertainty Values	10 10
Section	3:	Modifications	11
	3.1	Modifications Performed During Assessment	11
Section	4.1 4.2	General Test Procedures Radiated Test Setup and Procedures AC Powerline Conducted Emissions Test Setup and Procedures Antenna Port Conducted Emissions Power Supply Variation Thermal Variation Time Domain Measurements	12 12 13 13 14 14 14
Append		Formal Emission Test Results	15
	A1	Cross Reference To Subpart B	16
	A2	Labelling Information	16
	A3	Antenna Requirements	16
	A4	Modulation Techniques	16
	A5	Radio Frequency Radiation Exposure	16
	A6	Transmitter Emission Bandwidth	17
	A7	Peak Transmit Power	18
	A8	Power Spectral Density	19
	A9	Antenna Gain	20
	A10	Automatic Discontinuation of Transmissions	21
	A11	Monitoring Thresholds	22
	A12	Monitoring of Intended Transmit Window & Maximum Reaction Time	e23
	A13	Monitoring Bandwidth & Antenna	24
	A14	Power Accuracy	25
	A15	Segment Occupancy	26
	A16	Duration Of Transmission	27
	A17	Connection Acknowledgement	28
	A18	Least Interfered Channel (LIC) Procedure	29
	A19	Selected Channel Confirmation	30
	A20	Duplex Connections	31
	A21	Alternative Monitoring Interval For Co-Located Devices	32
	A22	Fair Access To Spectrum	33
	A23	Emissions Inside and Outside the Sub-Band - Conducted	34
	A24	Emissions Inside and Outside the Sub-Band - Radiated	36
	A25	Frame Repetition Stability	39
		Frequency Stability	40
	A27	Unintentional Radiated Emissions	41

Appendix B:	Supporting Graphical Data	43
Appendix C:	Additional Test and Sample Details	56
Appendix D:	Additional Information	62
Appendix E:	Photographs and Figures	63

Section 1:

Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by:	Element Hull Unit E South Orbital Tra Hedon Road Hull, HU9 1NJ. United Kingdom.	-	[]
	Telephone: Fax:	+44 (0) 1482 801801 +44 (0) 1482 801806	
	Element Skelme Unit 1 Pendle Place Skelmersdale West Lancashire United Kingdom		[X]
	Telephone: Fax:	+44 (0) 1695 556666 +44 (0) 1695 577077	
Tests performed by:	D Winstanley		
Report author:	D Winstanley		

This report must not be reproduced except in full without prior written permission from Element Material Technology.

1.2 Tests Requested By

This testing in this report was requested by :

GN Netcom A/S Lautrupbjerg 7 Ballerup 2750 Denmark

1.3 Manufacturer

As Above

1.4 Apparatus Assessed

The following apparatus was assessed between 16th November – 24th December 2015

Jabra Pro 9400 Series Headset

The System is made up of two parts, a fixed part and a portable part. The portable part is a cordless headset device. The portable part is capable of operating on a maximum of 60 channels (time / spectrum windows). The fixed part is a desktop transmitter connected to a communication device (telephone / PC).

The system operates in the 1920MHz – 1930MHz band. The system uses 5 different frequency channels 1.728 MHz apart using MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

The system employs a 10ms frame, divided into 24 equal time slots numbered 0-23. The base station always transits in the first half of the frame and the portable part always transmits on the duplex mate in the second half of the frame. A physical bearer is composed of a transmit time slot and a receive time slot. The two halves of a given bearer are always exactly half a frame (5ms, 12 slots) apart.

This report cover operation of the fixed part the portable part is covered under Element Materials Technology Test Report TRA-028647-01-47-01A

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The table overleaf summarises the results of the assessment.

Abbreviations used in the overleaf table:

CFR	: Code of Federal Regulations	ANSI	: American National Standards Institution
RSS	: Radio Standards Specification	PLCE	: Power Line Conducted Emissions

TEST/EXAMINATION	Part 15	RSS-213	Result
Cross reference to Subpart B	15.309 (b)	N/A	-
Labelling Requirements	15.311 15.19 (a)(3)	RSP-100 3	-
Measurement Procedures	15.313	3.1	-
Antenna Requirement	15.317 15.203	RSS-GEN 6.7	-
Modulation Techniques	15.319 (b)	5.1	-
Conducted AC Powerline	15.315 15.207	4.2	Pass (Note 2)
Emission Bandwidth	15.323 (a)	5.5	Pass
Peak Transmit Power	15.319 (c)	5.6	Pass
Power Spectral Density	15.319 (d)	5.7	Pass
Antenna Gain	15.319 (e)	5.6	Pass
Automatic Discontinuation of Transmission	15.319 (f)	5.2	Pass
Radio Frequency Radiation Exposure	15.319 (i)	RSS-102	Pass
Monitoring Thresholds	15.323 (c)(2) 15.323 (c)(9)	5.2 (2) 5.2 (9)	Pass
Monitoring of Intended Transmit Window and Maximum Reaction Time	15.323 (c)(1)	5.2 (1)	Pass
Monitoring Bandwidth	15.323 (c)(7)	5.2 (7)	Pass
Access Criteria Functional Test	15.323 (c)(6)	5.2 (6)	N/A Note 3
Duration of Transmission	15.323 (c)(3)	5.2 (3)	Pass
Connection Acknowledgement	15.323 (c)(4)	5.2 (4)	Pass
Lower threshold Selected Channel, Power Accuracy, Segment Occupancy	15.323 (c)(5)	5.2 (5)	Pass
Monitoring Antenna	15.323 (c)(8)	5.2 (8)	Pass
Duplex Connections	15.323 (c)(10)	5.2 (10)	Pass
Alternative Monitoring Interval for Co-located Devices	15.323 (c)(11)	5.2 (11)	N/A (Note 5)
Fair Access to Spectrum Related to (c)(10) & (c)(11)	15.323 (c)(12)	5.2 (12)	Pass
Emission Inside and Outside the Sub-band	15.323 (d)	5.8	Pass
Frame Period	15.323 (e)	5.2 (13)	Pass
Frequency Stability	15.323 (f)	5.2 (13)	Pass

Note: 1. The portable part is battery powered that is charged by mounting on the base.

The portable part connects indirectly via the fixed part.
 The EUT does not transmit control and signalling information.

4. Not utilized by this EUT as devices will not be co-located within 1m of each other.

5. The EUT does not use the provisions of 15.323(c)(11) or 5.2 (11)

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature	: 17 to 23 °C
Humidity	: 45 to 75 %
Barometric Pressure	: 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Measurement Uncertainty Values

For the test data recorded 2.1 the following measurement uncertainty was calculated:

Section 3:

Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Section 4

General Test Procedures

4.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst case determined for function, operation, orientation etc for both vertical and horizontal polarisations

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

For devices with intentional emissions below 30 MHz, a shielded loop antenna is used as the test antenna. It is placed at a 1 meter receive height and appropriate low frequency magnetic field extrapolation to the regulatory limit distance is employed. The EUT is rotated through 360° in the azimuth.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360° in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Where regulations allow for direct measurement of field strength, power values measured on the test receiver / analyzer are converted to dBuV/m at the regulatory distance, using:

FS = PR + AF + CL - PA + KG + DC - CF (dBuV/m)

Where:

PR is the power recorded on receiver / spectrum analyzer (dBuV),

AF is the test antenna factor in dB/m,

CL is the cable loss in dB,

PA is the pre-amplifier gain dB (when applicable),

DC is duty correction factor (when applicable) in dB, and

CF is a distance correction (employed only for measurements at alternate distance to limit) in dB.

This field strength value is then compared with the regulatory limit.

If effective radiated power (ERP) or effective isotropic radiated power (EIRP) is required, it is computed as per ANSI C63.10

$$P = \frac{(\text{Ed})^2}{30\text{G}}$$

Where

P is the power, in W E is the measured peak field strength, in V/m d is the distance at which the measurement was made, in m G is the numeric gain of the radiating element

If the gain of the radiating element is not known, then either the effective radiated power (ERP) or the effective isotropic radiated power (EIRP) may be calculated from the measured peak field strength, by using either G = 1.64 or G = 1, respectively.

4.2 AC Powerline Conducted Emissions Test Setup and Procedures

AC Powerline Conducted Emissions from the EUT are checked first by preview scans with Peak and average detectors covering both live and neutral lines. A spectrum analyser is used to determine if any periodic emissions are present. Preview scans are performed in standby or receive mode if the device is subject to these requirements. For transmit mode of operation the device is set to one of the following modes.

- Transmitting operating at full power (single mode device)
- Transmitting at freq / modulation that gives highest output power (multi mode device)
- Transmitter operating in normal TX mode (e.g. FHSS, TDMA etc)

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans.

Battery Power devices are not subject to power line conducted emissions measurements when it is powered solely by its internal battery.

4.3 Antenna Port Conducted Emissions

Antenna port conducted emissions can include, but are not limited to, Carrier power, Power Spectral Density, Occupied bandwidth and spurious emission.

Spurious Emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked to identify frequencies to perform formal measurements on.

Formal measurements are made on frequencies identified from the preview scans and fundamental emission(s). Measurements are made using the correct instrumentation (inc. power meter, receiver, spectrum analyser) that operate with the required detector(s) and bandwidth.

Care is taken to ensure the measurement instrument is not overloaded by the presence of the transmitted signal by use of external attenuation and filtering where required.

Measured levels are corrected for cables, attenuators, and filters. If applicable, for the specific measurement, antenna gain is also taken into account.

4.4 **Power Supply Variation**

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a lead-acid battery power source, the extreme test voltages are evaluated between 90% and 130% of the nominal battery voltage declared by the manufacturer.

For float charge applications using gel-cell type batteries, extreme test voltages are evaluated between 85% and 115% of the nominal battery voltage declared.

For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

4.5 Thermal Variation

Tests at extreme temperatures are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

Tests are performed at the upper and lower extremes as required and typically at 10° steps between.

Before any temperature measurements are made, the equipment is allowed to reach a thermal balance in the test chamber.

4.6 Time Domain Measurements

Time domain measurements are made for (but not limited to) use in duty cycle correction, to ensure compliance with time restrictions on certain types of devices.

If measurements of a transmitter's on time are required these are performed with a spectrum analyser in the time domain or with an oscilloscope and RF detector. If time on a specific frequency is required (e.g. FHSS timing) the measurement can only be made with a spectrum analyser.

The triggering, timescale and amplitude settings are adjusted according to the signal to be measured on a case by case basis.

For devices with sharp rise/fall times measurements are made between RF reaching full power (T_{on}) and RF dropping to the measurement instrument noise floor (T_{off}). For longer rise times measurements are made for T_{on} and T_{off} at the RF level required by the occupied bandwidth measurement (e.g. 6 dB, 20 dB etc).

Appendix A:

Formal Emission Test Results

Abbreviations used in the tables in this appendix:

Spec Mod	: Specification : Modification	ALSR OATS ATS	: Absorber Lined Screened Room : Open Area Test Site : Alternative Test Site
EUT SE	: Equipment Under Test : Support Equipment	Ref	: Reference
0L		Freq	: Frequency
L	: Live Power Line		Maggurement Distance
N E	: Neutral Power Line : Earth Power Line	MD SD	: Measurement Distance : Spec Distance
-		00	
Pk	: Peak Detector	Pol	: Polarisation
QP Av	: Quasi-Peak Detector : Average Detector	H V	: Horizontal Polarisation : Vertical Polarisation
ΛV	. Average Delector	v	. Venicai Folansallon

CDN : Coupling & decoupling network

A1 Cross Reference To Subpart B

CFR 47 Part 15.309(b)

The unit contains digital circuitry, which is not directly related to the radio transmitter. See emissions outside the subband for results.

A2 Labelling Information

CFR 47 Part 15.311 & 15.19(a)(3) & RSP-100 3

This information is contained in a separate document. See attached exhibit.

A3 Antenna Requirements

CFR 47 Part 15.317 & 15.203 & RSS-GEN 6.7

The unit employs an integral antenna arrangement.

A4 Modulation Techniques

CFR 47 Part 15.139(b) & RSS-213 - 5.1

The GN NETCOM A/S JABRA PRO 9700 SERIES HEADSET is an isochronous device operating in the 1920 MHz – 1930 MHz frequency band.

The GN NETCOM A/S JABRA PRO 9700 SERIES HEADSET modulation technique is based on DECT technology as described in European standards EN 300 175-2 and EN 300 175-3.

The GN NETCOM A/S JABRA PRO 9700 SERIES HEADSET modulation techniques are MC/TDMA/TDD (Multi Carrier / Time Division Multiple Access / Time Division Duplex) using QPSK modulation.

A5 Radio Frequency Radiation Exposure

CFR 47 Part 15.319(i) & RSS102

This information is contained is a separate document

Test Details:		
Regulation	CFR 47 Part 15.323(a) & RSS-213 – 5.5	
Measurement standard ANSI C63.17 sub-clause 6.1.3		
EUT sample number	S30	
Modification state	0	
SE in test environment	S18, S24	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A6 Transmitter Emission Bandwidth

Test Details: f _i = 1921.536 MHz					
$\Delta P (dBc)$ fl (MHz) fh (MHz) $\Delta f (MHz)$ Limit					
-26	1920.838885	1922.241128	1.402	50kHz> ∆f > 2.5MHz	
-12	1920.902987	1922.161000	1.258	N/A	
-6	1921.351705	1921.768372	0.417	N/A	

Test Details: f _c = 1924.992 MHz					
$\Delta P (dBc)$ fl (MHz) fh (MHz) $\Delta f (MHz)$ Limit					
-26	1924.294885	1925.697128	1.402	50kHz> ∆f > 2.5MHz	
-12	1924.358987	1925.608987	1.250	N/A	
-6	1924.815718	1925.160269	0.345	N/A	

Test Details: f _h = 1928.448 MHz					
$\Delta P (dBc)$ fl (MHz) fh (MHz) $\Delta f (MHz)$ Limit					
-26	1927.750885	1929.153128	1.402	50kHz> ∆f > 2.5MHz	
-12	1927.814987	1929.064987	1.250	N/A	
-6	1928.263705	1928.616269	0.353	N/A	

A7 Peak Transmit Power

Test Details:			
Regulation	CFR 47 Part 15.319(c) & RSS-213 – 5.6		
Measurement standard	ANSI C63.17 sub-clause 6.1.2		
EUT sample number S30			
Modification state	0		
SE in test environment	S18, S24		
SE isolated from EUT	Laptop		
EUT set up	Refer to Appendix C		

Frequency (MHz)	Peak Tran (dE	Limit	
	Antenna 0	Antenna 1	(dBm)
1921.536	19.57	19.09	20.73
1924.992	19.46	19.01	20.73
1928.448	19.35	18.94	20.73

Note: 1. Permanent antenna was replaced with temporary antenna connector to enable conducted measurement.

2. Antenna gain < 3dBi and so correction of the limit is not required.

3. See Annex E for Peak Transmit Power Plots.

4. Transmit path for Antenna 0 and Antenna 1 are declared as Identical,.

Conducted testing performed on Antenna with highest output power.

Limit

The limit for Peak Transmit Power (PTP) is calculated using the following formula:

 $PTP = 5 Log_{10} EBW - 10 dBm$

This limit must be corrected to take into account any gain of the antenna greater than 3dBi. Where: EBW is the transmitter emission bandwidth in Hz as determined in the previous test.

EBW = 1.402 MHzPTP = $5 \text{ Log}_{10} 1.402 - 10 \text{ dBm}$ PTP = 20.73 dBm

Test Details:			
Regulation CFR 47 Part 15.319(d) & RSS-213 – 5.7			
Measurement standard	ANSI C63.17 sub-clause 6.1.2		
EUT sample number	number S30		
Modification state	0		
SE in test environment	S18, S24		
SE isolated from EUT	Laptop		
EUT set up	Refer to Appendix C		

A8 Power Spectral Density

Frequency (MHz)	Power Spectral Density (mW/3kHz)	Limit (mW/3kHz)
1921.536	1.14	3
1924.992	1.17	3
1928.448	1.10	3

Note:

Permanent antenna was replaced with temporary antenna connector to enable conducted measurement.
 Antenna gain < 3dBi and so correction of the limit is not required.

Antenna gain < 3dBi and so correction of the limit is not required.
 See Annex E for Power Spectral Density plots

Limit

The power spectral density shall not exceed 3mW in any 3 kHz bandwidth as measured with a spectrum analyser having a resolution bandwidth of 3 kHz.

A9 Antenna Gain

CFR 47 Part 15.319(e) & RSS-213 - 4.1(e)

Any directional gain of the antenna exceeding 3dBi has an effect on the limit applied to the measurements taken for the peak transmit power test. If the directional gain of the antenna is less than 3dBi it is not required to be taken into account.

Maximum Antenna Gain	Exceeds 3dBi by
+1.5 dBi	N/A

Test Details:		
Regulation	CFR 47 Part 15.319(f) & RSS-213 – 5.2	
Measurement standard	ANSI C63.17 sub-clause 6.1.2	
EUT sample number S30		
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A10 Automatic Discontinuation of Transmissions

Automatic discontinuation of transmission means break off of transmissions that are not control and signalling information.

The JABRA PRO 9700 SERIES HEADSET is a Portable part and as such does not transmit control and signalling information the counter part device is a fixed part device and does transmit control and signalling information.

Part	Transmits Control and Signalling Information	Equipment Under Test
Fixed Part	Х	
Portable Part		Х

Results

The following tests were performed after a connection had been established with the counter part device

Number	Test	Reaction of EUT	Pass / Fail
1	Power Removed Form EUT	С	Pass
2	EUT powered Down	С	Pass
3	Power Removed From Companion Device	A	Pass
4	Companion Device Powered Down	N/A	Pass
5	EUT Mounted on Companion Device	С	Pass

A – Connection breakdown, Cease of all transmissions.

B - Connection breakdown, EUT transmits control and signalling information.

C – Connection breakdown, Counterpart transmits control and signalling information.

Test Details:			
Regulation	CFR 47 Part 15.323(c)(2) & (c)(9) & RSS-213 - 5.2 (2)(9		
Measurement standard - Calculation	ANSI C63.17 sub-clause 7.2.1		
Calculations	As laid out in ANSI C63.17 sub-clauses 4.3.3 and 4.3.4		
Measurement standard	ANSI C63.17 sub-clause 7.3		
EUT sample number	S30		
Modification state	0		
SE in test environment	S15, S26		
SE isolated from EUT	Laptop		
EUT set up	Refer to Appendix C		

A11 Monitoring Thresholds

В

M∟

Calculation of monitoring threshold limits for isochronous devices:

 $T_L = -174 + 10Log_{10}B + M_U + P_{MAX} - P_{EUT} (dBm)$

 $T_U = -174 + 10Log_{10}B + M_U + P_{MAX} - P_{EUT} (dBm)$

Where:

= Emission bandwidth (Hz) = dBs the threshold may exceed thermal noise (30 for $T_L \& 50$ for T_U)

P_{MAX} = Output Power Limit (dBm)

 P_{EUT} = Transmitted power (dBm)

Monitor Threshold	B (MHz)	M∟ (dB)	P _{MAX} (dBm)	P _{EUT} (dBm)	Threshold (dBm)
TL	1.402	30.00	20.73	19.57	-81.37
Τυ	1.402	50.00	20.73	19.57	-61.37

Note: 1. Threshold levels rounded up/down to nearest whole number

The threshold level was determined following the procedure as laid out in ANSI C63.17 sub-clause 7.3.2 (a) Frequency administration was used to allow operation on the carrier closest to the centre of the band.

Limits

The EUT must not transmit until the interference level is less than or equal to:

Measured Threshold Level $\leq T_U + U_M$

Where:

 T_U = Calculated Upper threshold level T_L = Calculated Lower threshold level

 U_{M} = Margin of uncertainty in threshold measurements (6dB)

Measured Threshold Level

This result is recorded for information only.

Test Details:			
Regulation CFR 47 Part 15.323(c)(1) & RSS-213 – 5.2(1)			
Measurement standard	ANSI C63.17 sub-clause 7.5		
EUT sample number	S30		
Modification state	0		
SE in test environment	S15, S26		
SE isolated from EUT	Laptop		
EUT set up	Refer to Appendix C		

A12 Monitoring of Intended Transmit Window & Maximum Reaction Time

The EUT was frequency administered to only one operating frequency channel and only one of the interference generators in the test setup was utilized. The interference generator was fed pulses from the function generator to produce a pulsed carrier of the specified time length and the output of the interference generator was set to the required level. The pulse generator and companion device were synchronized so the position of the pulses corresponded to the time-slot pattern in the frame of the EUT. The test is performed with the unit frequency administered to operate only on middle frequency.

For each of the required tests the pulse width and interference level are as below:

Test c)

With the interference generator output set at the relevant calculated threshold level plus measurement uncertainty (U_M) and the width of the pulse interference exceeds the largest of 50µs and 50 $\sqrt{1.25/B}$ µs verify that the EUT does not establish a connection.

Test d)

With the interference generator output set at 6dB above the relevant calculated threshold level plus measurement uncertainty (U_M) and the width of the pulse interference exceeds the largest of 35µs and $35\sqrt{1.25/B}$ µs verify that the EUT does not establish a connection.

Where B = Emission bandwidth of the EUT in MHz

Results

Test Equation (μs)	Pulse Width (μs)	f ₁ Interferer Level (dBm)	f ₂ Interferer Level (dBm)	EUT transmission Frequency	Pass/Fail
$50\sqrt{1.25/B}$	50µs	$T_L + U_m$	ΤL	f ₂	Pass
$35\sqrt{1.25/B}$	35µs	T _L + U _m + 6	ΤL	f ₂	Pass

Notes:

1. T_L is the calculated Lower threshold.

2. U_M is Margin of uncertainty in threshold measurements (6dB).

A13 Monitoring Bandwidth & Antenna

Monitoring Bandwidth - CFR 47 Part 15.323(c)(7) & RSS-213 - 5.2 (7)

The monitoring bandwidth test was carried out in accordance with ANSI C63.17 sub-clause 7.4.

ANSI C63.17 sub-clause 7.4 states that if the monitoring is made through the radio receiver used by the EUT for communication the intended bandwidth requirements for the monitoring system are met.

As declared by the manufacturer the EUT uses the radio receiver used for communication for monitoring therefore the intended bandwidth requirements for the monitoring system are met of ANSI C63.17 subclause 7.4 are met.

Monitoring Antenna – CFR 47 Part 15.323(c)(8) & RSS-213 - 5.2 (8)

The antenna of the EUT used for transmitting is the same antenna that is used for monitoring.

A14 Power Accuracy

CFR 47 Part 15.323(c)(5) & RSS-213 - 5.2 (5)

The power measurement resolution for the previous comparison must be accurate to within 6dB.

The monitoring threshold test covered in Part 15.323 (c)(2) and RSS-213 5.2(2) automatically proves that this requirement is met.

A15 Segment Occupancy

CFR 47 Part 15.323(c)(5) & RSS-213 - - 5.2 (5)

This section is not applicable as no units will be located within 1 metre of each other.

Test Details:		
Regulation CFR 47 Part 15.323(c)(3) & RSS-213 - 5.2(3)		
Measurement standard	ANSI C63.17 sub-clause 8.2.2	
EUT sample number	S30	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A16 Duration Of Transmission

The Duration of transmission testing was carried out in accordance with ANS C63.17 Sub-clause 8.2.2

The time /spectrum window occupied by the connection was monitored using a spectrum analyser. The spectrum analyser was set trigger when the RF for the communications channel was present. It was set to a 1 hour sweep period, counters and markers were used to determine the duration of transmission.

Result

Repetition of	Maximum	Maximum Transmission	Pass/Fail
Access Criteria	Transmission Time	Time Limit	
Period	3:15:52	<8 Hours	Pass

Note: 1. The portable part is the intiating device that repeats the access criteria

Test Details:		
Regulation CFR 47 Part 15.323(c)(4) & RSS-213 - 5.2 (4)		
Measurement standard	ANSI C63.17 sub-clause 8.2.1	
EUT sample number	S30	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A17 **Connection Acknowledgement**

The test was carried out in two parts. The first was to verify that with the companion device off the EUT does not transmit on the same time/spectrum window for more than the limit. The second was to verify that after a connection is broken the EUT terminates its transmission on the current communication channel within 30 seconds or less.

Result

Test	Time Taken (seconds)	Limit (seconds)	Pass/Fail
Transmission on communications channel no acknowledgement received (note 1)	0.45497	1	Pass
Established communication channel termination, acknowledgements blocked during communication (note 1)	5.022 seconds	30	Pass

The companion device transmits a beacon signal when acknowledgements are blocked. 1.

The EUT does not transmit a control channel. 2.

3. See Appendix B for Acknowledgement plots.

A18 Least Interfered Channel (LIC) Procedure

Test Details:		
Regulation	CFR 47 Part 15.323(c)(5) & RSS-213 – 5.2 (5)	
Measurement standard	ANSI C63.17 sub-clause 7.3.3	
EUT sample number	S30	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

The EUT utilizes more than 20 channels; therefore the least interfered channel testing is applicable.

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

Test b)

Interference on f1 was set at $T_L + U_M + 7dB$ and at $T_L + U_M$ on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test c)

Interference on f1 was set at $T_L + U_M$ and at $T_L + U_M + 7dB$ on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

Test d)

Interference on f1 was set at $T_L + U_M + 1dB$ and at $T_L + U_M - 6dB$ on f2. Initiate communication. The EUT should transmit on f2. Repeat 5 times. If the EUT transmits on f1 the test is failed.

Test e)

Interference on f1 was set at $T_L + U_M - 6dB$ and at $T_L + U_M + 7dB$ on f2. Initiate communication. The EUT should transmit on f1. Repeat 5 times. If the EUT transmits on f2 the test is failed.

Result

Test	Transmit on f1	Transmit on f2	Wanted Transmit Channel	Pass/Fail	
b	No	Yes	f2	Pass	
с	Yes	No	f1	Pass	
d	No	Yes	f2	Pass	
е	Yes	No	f1	Pass	

Note:

1. All tests were repeated 5 times.

Test Details:		
Regulation CFR 47 Part 15.323(c)(1) & (c)(5) & RSS-213 - 5.2(5)		
Measurement standard	ANSI C63.17 sub-clause 7.3.4	
EUT sample number	630	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A19 Selected Channel Confirmation

The test is to ensure the EUT monitors the time/spectrum window immediately prior to transmission.

The EUT was frequency administered to operating on two frequencies only, f1 and f2.

Test a)

Interference is applied on f1 at a level of $T_U + U_M$. Verify a connection is established on f2.

Any connection is terminated.

Test b)

Interference is applied on f2 at a level of $T_U + U_M$ and immediately removed from f1 and the EUT is immediately caused to attempt transmission. In this case the EUT should transmit on f1

The test is applied in both single and long slot configurations.

Result

Test	Transmit on f1	Transmit on f2	Wanted Transmit Channel	Pass/Fail
а	No	Yes	f2	Pass
b	Yes	No	f1	Pass

Note: 1. Results in the above table are applicable for both single and long slot configurations.

Test Details:		
Regulation CFR 47 Part 15.323(c)(10) & RSS-213 - 5.2(10)		
Measurement standard	ANSI C63.17 sub-clause 8.3.2	
EUT sample number	S30	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A20 Duplex Connections

Before all tests are carried out any connection is terminated.

Test b)

The system is restricted to operation on one frequency (1924.992 MHz) using administration. Verify that a connection between the EUT and its companion device can be made.

Test c) & d)

Apply interference at a level $T_L + U_M$ to all transmit time slots except one which has interference at least 10dB below T_L . Apply interference at a level $T_L + U_M + 7dB$ to all receive time slots except one which has interference at least 10dB below T_L . The interference free receive timeslot should not be the duplex mate of the interference free transmit timeslot. The EUT should establish a connection on the interference free receive slot and its duplex mate.

Test e) & f)

Apply interference at a level $T_L + U_M$ to all receive time slots except one which has interference at least 10dB below T_L . Apply interference at a level $T_L + U_M + 7dB$ to all transmit time slots except one which has interference at least 10dB below T_L . The interference free transmit timeslot should not be the duplex mate of the interference free receive timeslot. The EUT should establish a connection on the interference free transmit slot and its duplex mate.

Result

Test	Interference Free Receive Slot	Interference Free Transmit Slot	Requirement	Connection Made	Time Slot Selected	Pass/Fail
b	All	All	Connection Established	Yes	Any	Pass
c & d	7	18	Interference Free RX Slot	Yes	7	Pass
e & f	7	18	Interference Free TX Slot	Yes	18	Pass

This requirement applies to the initiating device, the PP is the initiating device results are recorded based on the PP time slot allocation and are for information only.

Slots number 0-23 (PP RX slots 0-11, TX slots 12-23)

Test Details:		
Regulation CFR 47 Part 15.323(c)(11) & RSS-213 - 5.2(11)		
Measurement standard	ANSI C63.17 sub-clause 8.4.	
EUT sample number	S30	
Modification state	0	
SE in test environment	S15, S26	
SE isolated from EUT	Laptop	
EUT set up	Refer to Appendix C	

A21 Alternative Monitoring Interval For Co-Located Devices

Manufacturer declares this provision is not utilised by the EUT.

A22 Fair Access To Spectrum

CFR 47 Part 15.323(c)(12) & RSS-213 - 5.2(12)

The provisions of (10) & (11) shall not be used to extend the range of spectrum occupied over space or time for the purposes of denying fair access to the spectrum to other devices.

The manufacturer declares that this device does not work in a mode, which denies fair access to the spectrum to others.

- (10) Relates to part 15.323(c)(10) and 5.2(10)
- (11) Relates to part 15.323(c)(11) and 5.2(11)

Test Details:						
Regulation CFR 47 Part 15.323(d) & RSS-213 - 5.8						
Measurement standard	surement standard ANSI C63.17 sub-clause 6.1.6.					
EUT sample number S30						
Modification state	0					
SE in test environment	S15, S26					
SE isolated from EUT	Laptop					
EUT set up	Refer to Appendix C					

Lowest Carrier Defined by the EUT								
Out-of-Band Emissions from UPCS bandedge	FREQ. (MHz)	LIMIT (dBm)						
> - 2.5MHz		Note 9						
- 1.25 MHz – 2.5 MHz		No significant Emissions						
- 1.25 MHz	1919.961	-9.5						
+ 1.25 MHz	No significant Emissions -29.5							
+ 1.25 MHz – 2.5 MHz								
> + 2.5MHz	Note 9							

Highest Carrier Defined by the EUT							
Out-of-Band Emissions from UPCS bandedge	FREQ. (MHz)	LIMIT (dBm)					
> - 2.5MHz	Note 9						
- 1.25 MHz – 2.5 MHz		No significant Emissions					
- 1.25 MHz							
+ 1.25 MHz	1930.173	-9.5					
+ 1.25 MHz – 2.5 MHz		-29.5					
> + 2.5MHz	Note 9						

	Out-of-Band Emissions From UPCS bandedge	Attenuation (dB) required below Reference power of 112mW		
	± 1.25MHz	30		
	±1.25 MHz – 2.5 MHz	50		
Limits	> ±2.5MHz	60		
Linits	In band Emissions from centre of emission bandwidth	Attenuation (dB) required below permitted peak power for the EUT		
	1B – 2B	30		
	2B – 3B	50		
	3B – UPCS band edge	60		

Notes:

1 EUT fitted with temporary antenna connector.

2 New / Fully Charged batteries used for battery powered products.

3 See Appendix B for out of band emissions compliance plots, offsets <2.5 MHz

4 See Appendix B for in band emissions compliance plots.

5 Resolution bandwidth approximately 1% of emissions bandwidth.

6 Video bandwidth 3 x Resolution bandwidth.

7 Receiver detector = Peak detector, Max Hold Enabled.

8 Only emissions within 20 dB of the limit are recorded.

9 EUT utilises integral antenna, radiated emission at offset >2.5MHz

Test Method:

1 The EUT was connected to a spectrum analyser via suitable attenuation or filter.

2 The Spectrum analyser was tuned to upper and lower offsets in turn.

3 Any emissions found were measured with the required analyser settings.

Test Details:					
Regulation CFR 47 Part 15.323(d) & RSS-213 - 5.8					
Measurement standard ANSI C63.17 sub-clause 6.1.6.					
EUT sample number S30					
Modification state	0				
SE in test environment	None				
SE isolated from EUT	None				
EUT set up	Refer to Appendix C				

A24 Emissions Inside and Outside the Sub-Band - Radiated

	Antenna 0 - Lowest Carrier Defined by the EUT									
Detector	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (μV/m)	LIMIT (µV/m)	
Pk	3857.37	59.31	4.10	32.10	35.70	59.81	0.00	978.36	5012	
Av	3857.37	36.24	4.10	32.10	35.70	36.74	0.00	68.71	500	
Pk	5784.76	63.51	5.60	34.60	36.17	67.54	0.00	2382.32	5012	
Av	5784.76	37.29	5.60	34.60	36.17	41.32	0.00	116.41	500	

	Antenna 1 - Lowest Carrier Defined by the EUT									
Detector	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (μV/m)	LIMIT (µV/m)	
Pk	3857.37	62.00	4.10	32.10	35.70	62.50	0.00	1333.52	5012	
Av	3857.37	38.67	4.10	32.10	35.70	39.17	0.00	90.89	500	
Pk	5784.76	58.54	5.60	34.60	36.17	62.57	0.00	1344.31	5012	
Av	5784.76	35.48	5.60	34.60	36.17	39.51	0.00	94.51	500	

	Antenna 0 - Highest Carrier Defined by the EUT									
Detector	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (μV/m)	LIMIT (µV/m)	
Pk	3842.92	60.54	4.10	32.10	35.72	61.02	0.00	1124.60	5012	
Av	3842.92	37.85	4.10	32.10	35.72	38.33	0.00	82.51	500	
Pk	5763.93	64.89	5.70	34.60	36.16	69.03	0.00	2828.13	5012	
Av	5763.93	38.54	5.70	34.60	36.16	42.68	0.00	136.14	500	

	Antenna 1 - Highest Carrier Defined by the EUT									
Detector	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (μV/m)	LIMIT (µV/m)	
Pk	3842.92	61.17	4.10	32.10	35.72	61.65	0.00	1209.21	5012	
Av	3842.92	38.19	4.10	32.10	35.72	38.67	0.00	85.80	500	
Pk	5763.93	55.94	5.70	34.60	36.16	60.08	0.00	1009.25	5012	
Av	5763.93	34.47	5.70	34.60	36.16	38.61	0.00	85.21	500	

Notes:

- 1 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1 For emissions below 30MHz the cable losses are assumed to be negligible.
- 2 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 3 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 4 For Frequencies below 1 GHz, RBW= 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak	RBW=VBW= 1MHz
Average	RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR 15:2008 Clause 15.33(a) and 15.33(a)(1).

Frequency of emission (MHz)	Field strength μ V/m	Measurement Distance m	Field strength $dB\mu V/m$
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

Radiated emission limits 47 CFR 15: Clause 15.209 for all emissions:

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) = $20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)	
Effect of EUT operating mode on emission levels	\checkmark	\checkmark	\checkmark	\checkmark	
Effect of EUT internal configuration on emission levels	\checkmark	\checkmark	\checkmark	\checkmark	
Effect of Position of EUT cables & samples on emission levels	\checkmark	\checkmark	\checkmark	\checkmark	
 (i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D 					

Test Details:				
Regulation	CFR 47 Part 15.323(e) & RSS-213 - 4.3.4(c)			
Measurement standard	ANSI C63.17 sub-clause 6.2.2 & 6.2.3			
EUT sample number	S30			
Modification state	0			
SE in test environment	S18, S24			
SE isolated from EUT	Laptop			
EUT set up	Refer to Appendix C			

A25 Frame Repetition Stability

Frame Repetition Stability

This is the mean value of the frame repetition rate recorded over 1000 samples. For devices that divide access in time the repetition rate shall not exceed 10ppm.

Result

Frame Repetition Stability (ppm)	Limit (ppm)	Pass/Fail	
-0.03	±10ppm	PASS	

Frame Period and Jitter

Jitter is the difference in time between the rising edges of consecutive pulses.

Result

Maximum Jitter	3xSD Jitter	Frame period	Lir (µ	Pace/Fail	
(µs)	(µs)	(ms)	Frame Period (ms)	Jitter (µs)	Pass/Fail
0.91	2.73	10.00273	2 or 10/X	12.5	Pass

Notes: 1. See Annex K for frame period plot.

A26 Frequency Stability

Test Details:					
Regulation	CFR 47 Part 15.323(f) & RSS-213 – 6.2				
Measurement standard	ANSI C63.17 sub-clause 6.2.1				
EUT sample number	S30				
Modification state	0				
SE in test environment	S18, S24				
SE isolated from EUT	Laptop				
EUT set up	Refer to Appendix C				

This testing is carried out with the following conditions over 5000 samples.

Results

Temperature (°C)	Voltage (Vdc)	Fc (MHz)	offset (kHz)	offset (ppm)	Limit (ppm)
+20	Vnom	1924.992	-1	0.52	±10
-20	Vnom	1924.992	-2	1.04	±10
+55	Vnom	1924.992	-2	1.04	±10

Note: 1. The EUT is battery powered therefore voltage variations are not required.

A27 Unintentional Radiated Emissions

Preliminary scans were performed using a peak detector with the RBW = 100kHz. The radiated electric filed emission test applies to all spurious emissions on directly related to the transmitter. The maximum permitted field strength is listed in Section 15.109. The EUT was set to operate in a transmit standby / receive mode.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site :

3m alternative test site :

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details:				
Regulation	CFR 47 Part 15.323(d) & RSS-213 - 4.3.3			
Measurement standard	ANSI C63.17 sub-clause 6.1.6.			
EUT sample number	S30			
Modification state	0			
SE in test environment	None			
SE isolated from EUT	None			
EUT set up	Refer to Appendix C			

The worst case radiated emission measurements for spurious emissions are listed below:

R	lef No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (µV/m)	LIMIT (µV/m)
	No Significant Emissions Within 20 dB of The Limit									

Notes:

- 5 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1 For emissions below 30MHz the cable losses are assumed to be negligible.
- 6 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 7 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 8 For Frequencies below 1 GHz, RBW = 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak	RBW=VBW= 1MHz
Average	RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:2008 Clause 15.33(a) and 15.33(a)(1).

Frequency of emission (MHz)	Field strength μ V/m	Measurement Distance m	Field strength $dB\mu V/m$
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

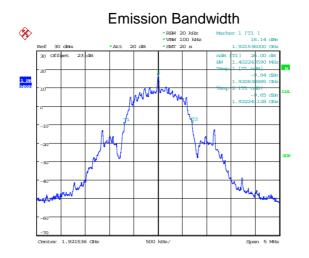
Radiated emission limits 47 CFR Part 15: Clause 15.209 for all emissions:

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) = $20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$

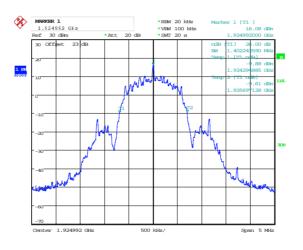
- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels	\checkmark	\checkmark	\checkmark	\checkmark
Effect of EUT internal configuration on emission levels		\checkmark	\checkmark	\checkmark
Effect of Position of EUT cables & samples on emission levels		\checkmark	\checkmark	\checkmark
 (i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D 				

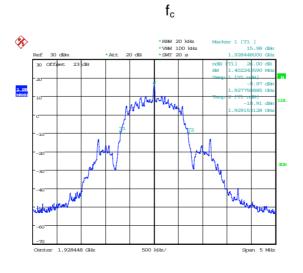

Appendix B:

Supporting Graphical Data

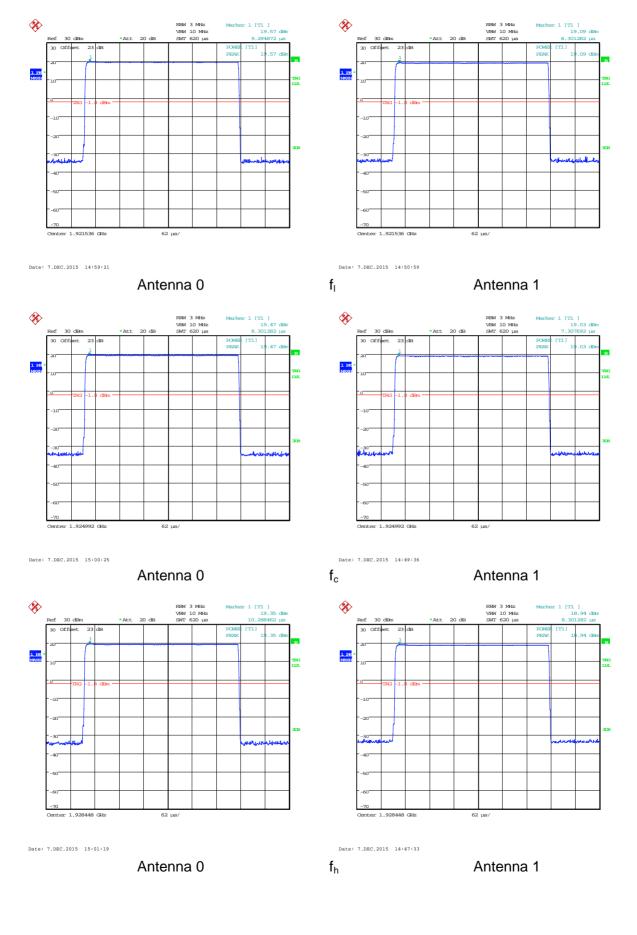
This appendix contains graphical data obtained during testing.


Notes:

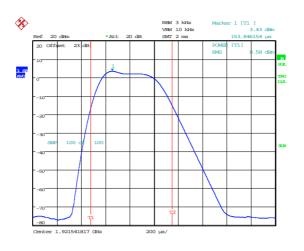
- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.



Date: 7.DEC.2015 12:55:56

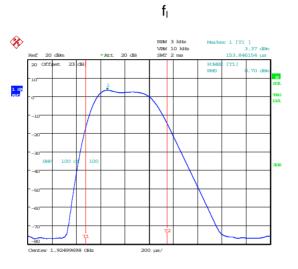


Date: 7.DEC.2015 14:06:53

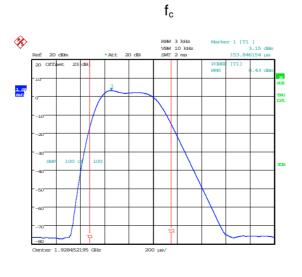


Date: 7.DEC.2015 14:17:47

 \mathbf{f}_{h}

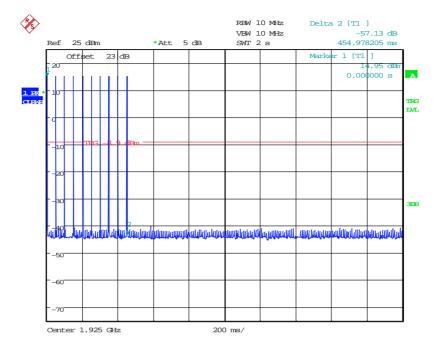


Peak Transmit Power



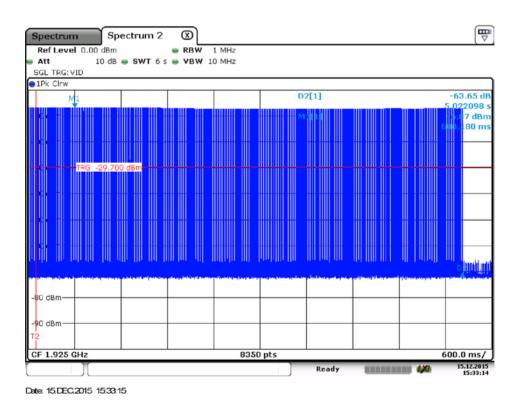
Power Spectral Density

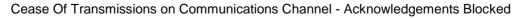
Date: 7.DEC.2015 15:14:17

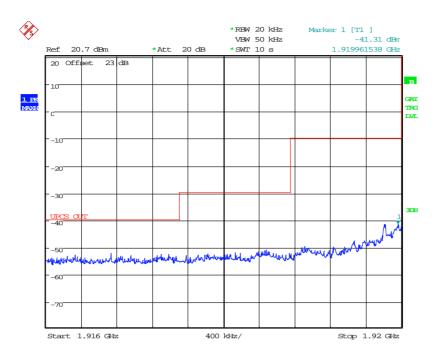


Date: 7.DEC.2015 15:10:37

Date: 7.DEC.2015 15:07:20

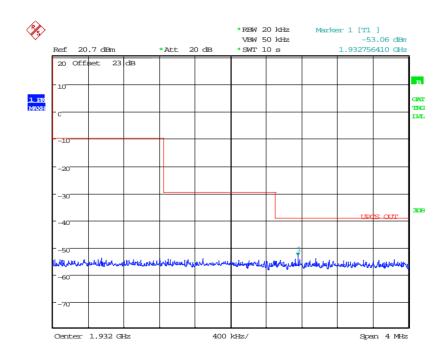

 \mathbf{f}_{h}

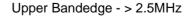


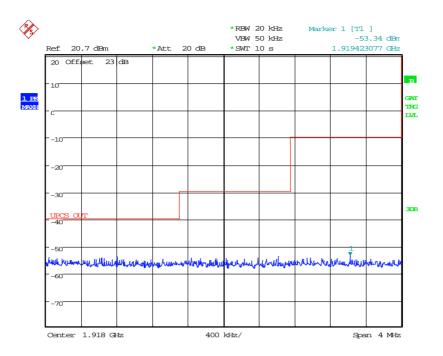

Acknowledgements

Date: 22.DEC.2015 14:25:18

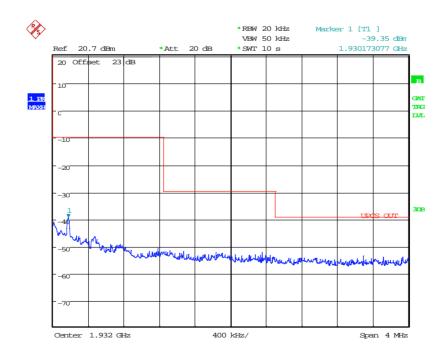
Transmissions on Communications Channel - Initial Acknowledgement Not Received



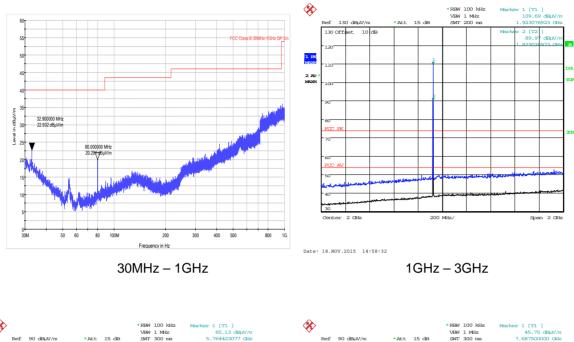

Conducted Emissions outside the Sub-Band RF carrier set to the lowest carrier defined by the EUT

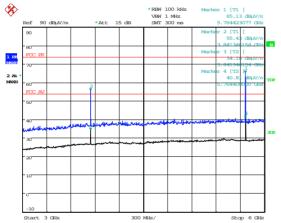

Date: 7.DEC.2015 16:21:34

Date: 7.DEC.2015 16:45:38



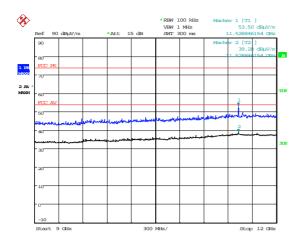
Conducted Emissions outside the Sub-Band RF carrier set to the highest carrier defined by the EUT

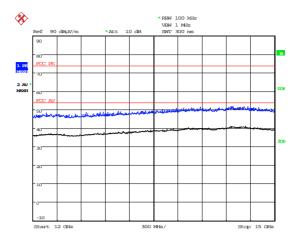

Date: 7.DEC.2015 16:31:24



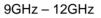
Upper Bandedge - > 2.5MHz

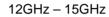
Radiated Emissions outside the Sub-Band RF carrier set to the lowest carrier defined by the EUT

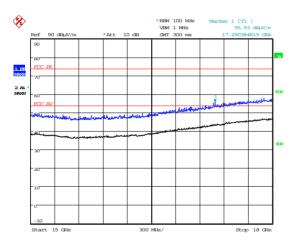

 au
 <


Date: 18.NOV.2015 15:06:16

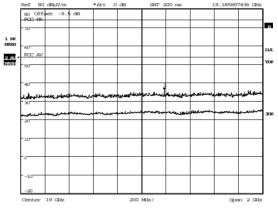
3GHz – 6GHz

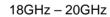

6GHz – 9GHz


Date: 18.NOV.2015 15:08:58



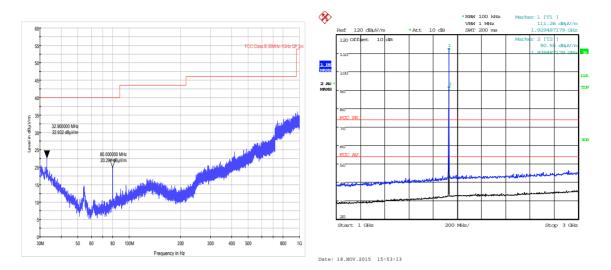
Date: 18.NOV.2015 15:12:16

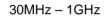



arker 1 [T1]

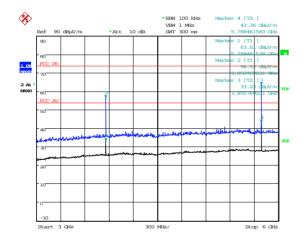
Date: 18.NOV.2015 14:12:33

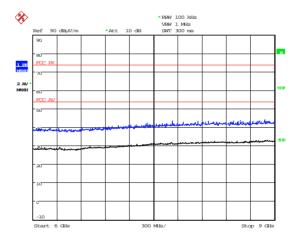
15GHz – 18GHz



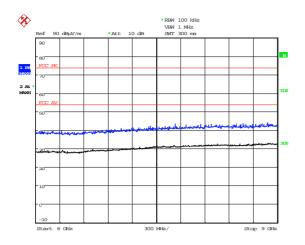

Þ

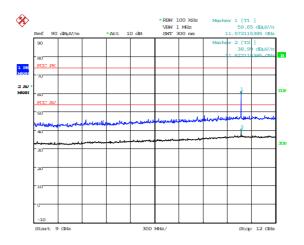
Date: 18.NOV.2015 14:09:31


Date: 11.DEC.2015 12:09:25

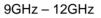


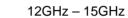
Radiated Emissions outside the Sub-Band RF carrier set to the highest carrier defined by the EUT

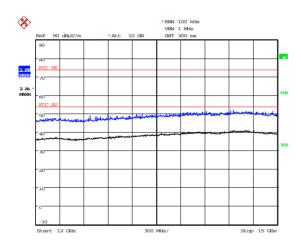



Date: 18.NOV.2015 16:05:50

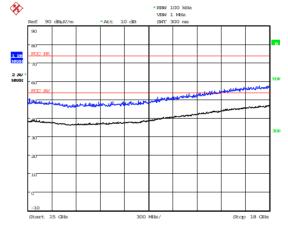
3GHz – 6GHz


6GHz – 9GHz

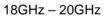

Date: 18.NOV.2015 13:28:01

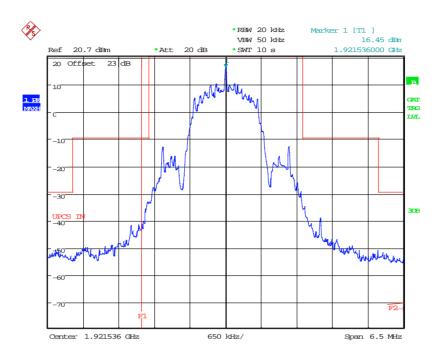


Date: 18.NOV.2015 13:28:01

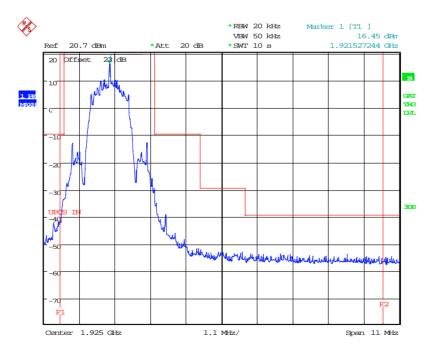


Date: 18.NOV.2015 13:37:46

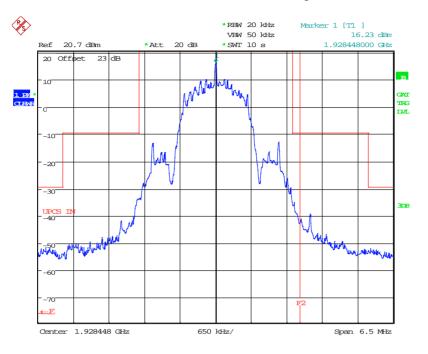

15GHz – 18GHz



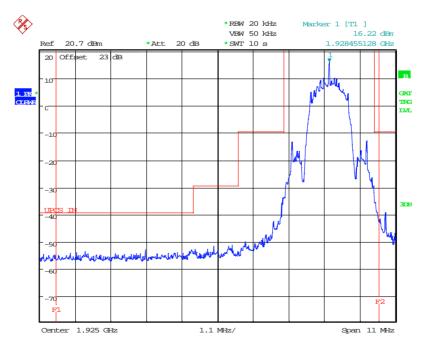
Date: 18.NOV.2015 16:10:55



Emissions inside the Sub-Band RF carrier set to the highest carrier defined by the EUT


Date: 7.DEC.2015 16:10:17

Centred On lowest carrier


Date: 7.DEC.2015 15:55:46

Emissions inside the Sub-Band RF carrier set to the highest carrier defined by the EUT

Date: 7.DEC.2015 15:43:28

Centred On lowest carrier

Date: 7.DEC.2015 15:48:43

Full band

Appendix C:

Additional Test and Sample Details

This appendix contains details of:

- 1. The samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No:	Sxx Mod w

where:

хх	= sample number	eg. S01
W	= modification number	eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

C1) Test samples

The following samples of the apparatus were submitted by the client for testing:

Sample No.	Description	Identification
S08	Jabra 9400 Series headset (Radiated Sample)	None Available
S30	Jabra 9400 Series headset (Conducted Sample)	ORDH02083GA

The following samples of apparatus were submitted by the client as host, support or drive equipment (auxiliary equipment):

Sample No.	Description	Identification
S07	Power Supply	None Available
S26	Power Supply	None Available
S15	Jabra 9470 (companion for Conducted Measurements)	None Available
S06	Jabra 9470	None Available
S18	USB – UART Adaptor	None Available
	USB Cable	None Available

The following samples of apparatus were supplied by Element Skelmersdale as support or drive equipment (auxiliary equipment):

Identification	Description
IT-0146	Test laptop

C2) EUT Operating Mode During Testing.

Test	Description of Operating Mode:
RF Parameter Testing Conduced	The EUT was set to transmit on the required channel using the DECT commander software. A communications type channel was activated. The unit was transmitting a burst pulse with timings typical of normal use in the 10ms time frame. Commands channel were as per Dolphin test instructions version 4.0 section 4 (ie channel 0 – 1928.448MHz; Antenna Selection as per customer instructions Ant 10 instead of Ant 0 and Ant 11 instead of Ant 1. Carrier power was measured from each antenna Full RF parameter testing was on the antenna which produced the highest carrier power

During testing, the EUT was exercised as described in the following tables :

Test	Description of Operating Mode:
RF Parameter Testing Radiated	 The EUT was set to transmit on the required channel using GN Protocol Manager software to send commands to active a communications type channel via the base unit. The unit was transmitting a burst pulse with timings typical of normal use in the 10ms time frame. Preview scans were performed using the Antenna which produced the highest carrier power Frequencies determined from preview scans were measured using both Antenna 0 and Antenna 1 The Headset has no populated ports in normal use.

Test	Description of Operating Mode:
Etiquette	The EUT was transmitting using a communication link with a companion device as required. The unit (or companion) was frequency administered as required to the number of frequencies defined in the specific test. Etiquette testing was performed using the antenna which produced the highest carrier power.

Test	Description of Operating Mode:
PLCE	EUT was Mounted on the Base unit and is covered under test results in test report TRA-028647-01-47-00A

Test	Description of Operating Mode:
Unintentional radiated emissions	During the RF Parameter Testing Radiated any frequency determined not to be directly associated with the radio transmitter were subjected to the requirements for unintentional radiators

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The tables below describe the termination of EUT ports:

Sample : S30 Tests : Conducted

Port	Description of Cable Attached	Cable length	Equipment Connected
Antenna 0 / 1	Coaxial or 50 ohm Load	>1m	Measurement System
Power	2 wire	>1m	PSU
UART (Temporary)	None	N/A	USB – Serial converter PCB
Base Mount	3 wire	10cm	Headset when required

Sample : S08

Tests

: Radiated Emissions

Port	Description of Cable Attached	Cable length	Equipment Connected
None	No Port in normal use		

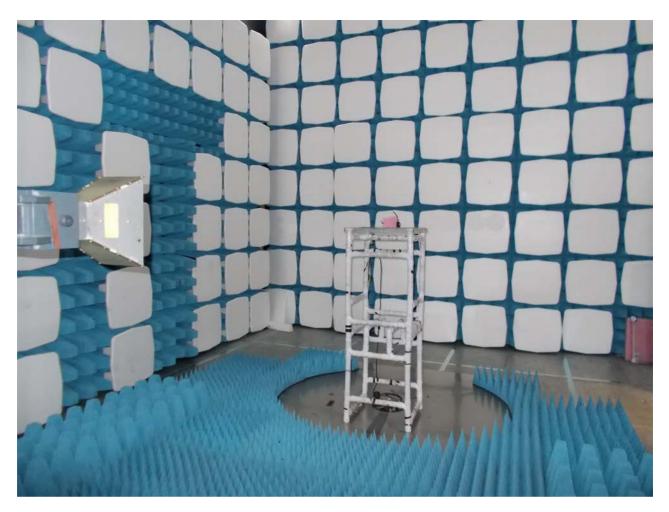
* Only connected during setup.

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U003	ESHS10	Receiver	R&S	25/06/2016	12	25/06/2017
U004	ESVS10	Receiver	R&S	24/03/2015	12	24/03/2016
U191	CBL611/A	Bilog	Chase	26/02/2015	24	26/02/2017
U195	ESH3-Z5.831.5	Lisn	R&S	04/06/2015	12	04/06/2016
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
U387	ATS	Chamber 1	Rainford EMC	06/09/2014	24	06/09/2016
U387	ATS	IC Reg - Chamber 1	Rainford EMC	19/11/2014	36	19/11/2017
U388	ATS	Chamber 2	Rainford EMC	05/09/2014	24	05/09/2016
U388	ATS	IC Reg Chamber 2	Rainford EMC	19/11/2014	36	19/11/2017
U396	ENV216	Lisn	R&S	01/07/2015	12	01/07/2016
U405	FSU26	Spectrum Analyser	R&S	11/05/2015	12	11/05/2016
U420	CBL6112	Bilog	Chase	25/07/2014	24	25/07/2016
U456	ESR7	EMI Receiver	R&S	22/04/2015	12	22/04/2016
U489	ESR26	EMI Receiver	R&S	21/04/2015	12	21/04/2016
L139	3115	1-18GHz Horn	EMCO	25/09/2015	24	25/09/2017
L300	20240-20	Horn 18-26GHz (&U330)	Flann	10/02/2014	24	10/02/2016
L317	ESVS10	Receiver	R&S	26/02/2015	12	26/02/2016
L352	ESVS10	Receiver	R&S	07/08/2015	12	07/08/2016
L426	52 Series II	Temperature Indicator	Fluke	30/05/2015	12	30/05/2016
L572	8449B	Pre Amp	Agilent	10/02/2015	12	10/02/2016
RFG441	D-3000A	Singal Generator	Agilent	08/10/2014	24	08/10/2016
RFG449	33120A	Arbitary Waveform Gen	HP	26/02/2014	24	26/02/2016
REF844	E4438C	Singal Generator	Agilent	14/04/2015	12	14/04/2016
REF909	FSU26	Spectrum Analyser	R&S	13/02/2015	12	13/02/2016
REF910	FSU46	Spectrum Analyser	R&S	28/05/2015	12	28/05/2016
REF940	ATS	Radio Chamber - PP	Rainford EMC	08/09/2014	24	08/09/2016
REF940	ATS	IC Reg Radio Chamber - PP	Rainford EMC	19/11/2014	36	19/11/2017
REF976	34405a	Multimeter	Agilent	03/06/2015	12	03/06/2016
REF977	SH4141	High Pass Filter	BSC	25/02/2015	24	25/02/2017
RFG433	CMD 60	Radiocommunication Tester	R&S	01/04/2012	12	01/04/2016

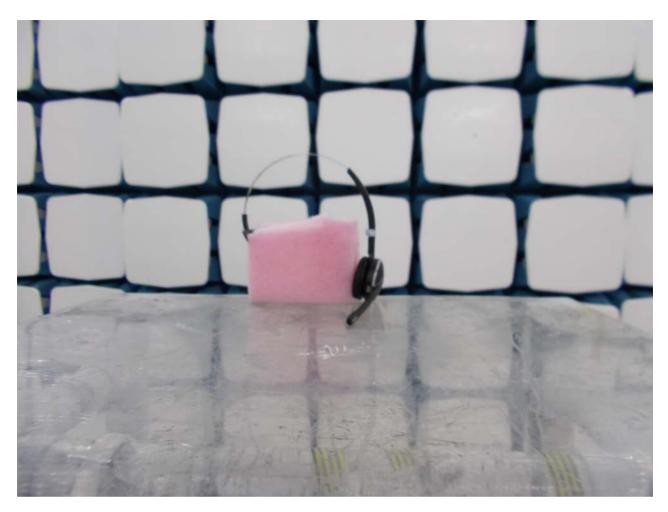
C5 Details of Equipment Used

Appendix D:

Additional Information


No additional information is included within this test report.

Appendix E:


Photographs and Figures

The following photographs were taken of the test samples:

- 1. Radiated electric field emissions arrangement: Overview
- 2. Radiated electric field emissions arrangement: close up.

Photograph 1

Photograph 2

