

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

BLUETOOTH WATCH

MODEL NUMBER: GB-6900B/GB-X6900B/GB-5600B

FCC ID: BBQW001 IC: 2388B-W001

REPORT NUMBER: 13J15120-1, Revision B

ISSUE DATE: June 21, 2013

Prepared for CASIO COMPUTER CO., LTD. 2-1 SAKAECHO 3-CHOME, HAMURA-SHI, TOKYO 205-8555, JAPAN

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	06/06/2013	Initial Issue	G. QUIZON
A	06/14/2013	Radiated Spurious and Harmonic Emissions - Include average detector measurements.	G. QUIZON
В	06/21/2013	Removed MPE and updated Clause 5.3 Peak Output power	G. QUIZON

Page 2 of 53

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	СА	LIBRATION AND UNCERTAINTY	6
4.	1.	MEASURING INSTRUMENT CALIBRATION	6
4.	2.	SAMPLE CALCULATION	6
4.	3.	MEASUREMENT UNCERTAINTY	6
5.	EQ	UIPMENT UNDER TEST	7
5.	1.	DESCRIPTION OF EUT	7
5.	2.	DESCRIPTION OF MODELS DIFFERENCES	7
5.	3.	MAXIMUM OUTPUT POWER	7
5.	4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.	5.	SOFTWARE AND FIRMWARE	7
5.	6.	WORST-CASE CONFIGURATION AND MODE	7
5.	7.	DESCRIPTION OF TEST SETUP	8
6.	TE	ST AND MEASUREMENT EQUIPMENT1	0
7.	ON	TIME, DUTY CYCLE AND MEASUREMENT METHODS 1	1
7.	1.	ON TIME AND DUTY CYCLE RESULTS 1	11
7.	2.	MEASUREMENT METHOD FOR POWER AND PPSD 1	11
7.	3.	MEASUREMENT METHOD FOR AVE SPURIOUS EMISSIONS ABOVE 1 GHz	11
7.	4.	DUTY CYCLE PLOTS	12
8.	AN	TENNA PORT TEST RESULTS – LE (LOW ENERGY) MODULATION 1	3
8.	1.	6 dB BANDWIDTH	13
8.	2.	99% BANDWIDTH 1	16
8.	3.	AVERAGE POWER 1	19
8.	4.	OUTPUT POWER	20
8.	5.	POWER SPECTRAL DENSITY	23
8.	6.	CONDUCTED SPURIOUS EMISSIONS	?6
9.	RA	DIATED TEST RESULTS	30
9.	1.	LIMITS AND PROCEDURE	30
9.	2.	TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND. 3	31

REPOR ^T	T NO: 13J15120-1B	DATE: JUNE 21, 2013
EUT: BL	LUETOOTH WATCH	FCC ID: BBQW001
9.3.	WORST-CASE BELOW 1 GHz	

10.	SETUP PHOTOS

Page 4 of 53

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	JUNE 06, 2013
SERIAL NUMBER:	N/A
MODEL:	GB-X6900B / GB-6900B / GB-5600B
EUT DESCRIPTION:	BLUETOOTH WATCH
COMPANY NAME:	CASIO COMPUTER CO., LTD. 2-1 SAKAECHO 3-CHOME, HAMURA-SHI, TOKYO 205-8555, JAPAN

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

William

George Quizon WISE PROJECT LEAD UL VERIFICATION SERVICES INC.

Charles Vergonio EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 53

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is Bluetooth watch.

5.2. DESCRIPTION OF MODELS DIFFERENCES

There are 3 family models, GB-X6900B, GB-6900B and GB-5600B. The EUT model GB-5600B was chosen as a representative of these 3 models for testing since it represents the worst-case scenario. All 3 models contain an identical Bluetooth 4.0 Low Energy radio and are identical in all other regards, with the exception of minor LCD and button differences

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency	Mode	Output Power	Output Power
Range		(dBm)	(mW)
2402 - 2480	BT LE	1.43	1.39

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes chip antenna, with a maximum gain of -1 dBi.

5.5. SOFTWARE AND FIRMWARE

The test utility software used during testing was Engineering Sample Software Ver0.9.

5.6. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, and Z for the three available models covered in this report. It was determined that Model GB-5600B in Y-orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Page 7 of 53

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
DC Power Supply	Sorensen	XT15-4	1319A02780			

I/O CABLES

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	DC	1	N/A - bare	Unshielded	0.6			
			wire					
2	AC	1	3-prong	Unshielded	1.7			

TEST SETUP

The EUT is a stand-alone unit that was tested in the worst case orientation and configuration, where applicable, during the tests. Test software exercised the Bluetooth.

Page 8 of 53

SETUP DIAGRAM FOR TESTS

Page 9 of 53

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Antenna, Biconolog, 30MHz-1 GH	Sunol Sciences	JB1	C01011	03/23/12	03/28/14	
Antenna, Horn, 18 GHz	ETS	3117	C01006	12/11/12	12/11/13	
Antenna, Horn, 25.5 GHz	ARA	MWH-1826/B	C00980	11/14/12	11/14/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	01/28/13	01/28/14	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/12	10/22/13	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	10/21/12	10/21/13	
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/12	12/13/13	
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	N02684	CNR	CNR	

Page 10 of 53

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
2.4GHz	В		х	Cycle	Correction Factor	Minimum VBW
	(maga)	((1:	(0/)	(JD)	(1.1.1.)
	(msec)	(msec)	(linear)	(%)	(ab)	(KHZ)

7.2. MEASUREMENT METHOD FOR POWER AND PPSD

The Duty Cycle is less than 98% and consistent therefore KDB 789033 Method SA-2 is used.

7.3. MEASUREMENT METHOD FOR AVE SPURIOUS EMISSIONS ABOVE 1 GHz

The Duty Cycle is less than 98% and consistent, KDB 789033 Method AD with Power RMS Averaging and duty cycle correction is used.

Page 11 of 53

7.4. DUTY CYCLE PLOTS

Page 12 of 53

8. ANTENNA PORT TEST RESULTS – LE (LOW ENERGY) MODULATION

8.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW $>= 3 \times RBW$, peak detector and max hold.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.5799	0.5
Mid	2440	0.5838	0.5
High	2480	0.6079	0.5

Page 13 of 53

6 dB BANDWIDTH

Page 14 of 53

Page 15 of 53

8.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0310
Middle	2440	1.0382
High	2480	1.0424

Page 16 of 53

99% BANDWIDTH

Page 17 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 18 of 53

8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	0.02
Middle	2440	0.02
High	2480	0.02

Page 19 of 53

8.4. OUTPUT POWER

LIMITS

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Channel	Frequency	Peak Power Reading (dBm)	Limit	Margin (dB)
Low	2402	1.410	30	-28.590
Middle	2440	1.430	30	-28.570
High	2480	1.310	30	-28.690

Page 20 of 53

OUTPUT POWER

Page 21 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 53

8.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247

IC RSS-210 A8.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-9.78	8	-17.78
Middle	2440	-8.56	8	-16.56
High	2480	-8.40	8	-16.40

Page 23 of 53

POWER SPECTRAL DENSITY

Page 24 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 53

8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the in-band reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

Page 26 of 53

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 27 of 53

UL VERIFICATION SERVICES INC.

FORM NO: CCSUP47011 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

SPURIOUS EMISSIONS, MID CHANNEL

Page 28 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 29 of 53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 30 of 53

9.2. TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

Page 31 of 53

Actual Average

Measured Average + Correction Factor

41.164 dBuV + 1.38

= 42.544 dBuV

=

=

Page 32 of 53

*			MI4 0.000	20 CU-	
100 dB µ∀ ak	#Atten 0 dB		MKF1 2.389 . 52.67	ZU GHZ 7 dBµ∨	Center Freq 2.35000000 GHz
·					Start Freq 2.31000000 GHz
					Stop Frec 2.3900000 GHz
I V Av	LIGHT ISSNELTAL STATE	situdety frankling type taken	A Company and Company and	1 Antoria da antoria da a	CF Ste 8.0000000 MHz <u>Auto M</u>
S2 FC AA					Freq Offset 0.00000000 Hz
n					Signal Track On <u>O</u>
rt 2.310 00 GHz		2 MU-	Stop 2.390 (DO GHz	

Page 33 of 53

Measured Average + Correction Factor

- = 41.147 dBuV + 1.38
- = 42.527 dBuV

=

Page 34 of 53

RESTRICTED BANDEDGE (HIGH CHANNEL)

Page 35 of 53

Actual Average

Measured Average + Correction Factor

40.605 dBuV + 1.38

= 41.985 dBuV

=

=

Page 36 of 53

			Mkr1 2	.499 587 5	GHz	li <u> </u>
i 100 dBµ∨ eak	#Atten 0 dB			51.17	dBµ∨	Center Fred 2.49175000 GH:
t						Start Frec 2.48350000 GH:
						Stop Fred 2.50000000 GH:
D JV Av	and the state of the second states and the second	Herkamondon and Ingelinderal	and which we have a	and the second	1 \$	CF Ste 1.65000000 MH <u>Auto M</u>
S2 FC AA						Freq Offset 0.00000000 Hz
p						Signal Tracl On <u>(</u>
rt 2.483 500 0 G	Hz		Stop 2	.500 000 0	GHz	

Page 37 of 53

Actual Average

Measured Average + Correction Factor

- = 40.559 dBuV + 1.38
- = 41.939 dBuV

=

Page 38 of 53

HARMONICS AND SPURIOUS EMISSIONS

Page 39 of 53

Page 40 of 53

OW/	CHANNEL	WORST	EMISSIONS

TOJUUL I	3J15120												
Company N	Name: CASIO	Computer	Co., Ltd.										
lodel / C	onfig: Tx-lo												
lode: GB-	-5600B												
est By: C	harles Vergo	nio											
	1000 1000												
iorizontai	1000 - 1800				T144			Corrected					
	Test	Matau		T100 A.+	Due	0.44	T160	Desdar	E Eistele		E Ealds		
Mauluau	Test	Meter De adia a(d		TI30 Ant	Preamp	Cable		Reading		Manada		Manuala	11 - 1 - 1 - 1 - 4
Marker	(ML-)	Reading(d	Detector	Factor	Gain [JD]	Factor				(JD)	Labu v/mj -	(JP)	Teight
1		47.74	Delector	22.0	_25.7	[UD] 67		52 04	- Avg	(UD)	74	_01.16	200
1	4/99.0	4/./4		220	-35./	0./	0.2	52.64	52.97	-0.47	74	-20.5	145
2	7206 520	40.4	DK	35.9	-35.7	9.0	0.2	50.70	53.97	-0.47	74	-20.0	102
2	7200.529	42.29	DMS	25.4	-35.0	0.0	0.3	40.27	52.97	-1.6	74	-23.21	140.0
2	7205.08	40.07		267	-30.0	10.0	0.5	49.37	52.97	-4.0	74	-20.05	149.0
3	9007.393	25.19		30.7	-30.3	10.2	0.5	46.29	53.97	-7.60	74	-20.93	159
3	9007.38	35.10	RIVIS	30.7	-30.3	10.2	0.5	40.20	53.97	-7.09	/4	-21.12	150
/ertical 10	00 - 18000N	IHz											
or croar re					T144			Corrected					
		Meter		T136 Ant	Preamp	Cable	T160	Reading	E-Fields		E-Fields		
Marker	Test	Reading(d		Factor	Gain	Factor	BRF	dB(uVolts/	[dBuV/m]	Margin	[dBuV/m] -	Margin	Height
No.	Frequency	BuV)	Detector	[dB/m]	[dB]	[dB]	[dB]	meter)	- Avg	(dB)	Peak	(dB)	[cm]
4	4799.8	45.96	PK	33.9	-35.7	6.7	0.2	51.06	53.97	-2.91	74	-22.94	100
4	4803.9	41.46	RMS	33.9	-35.7	6.7	0.2	46.56	53.97	-7.41	74	-27.44	126
5	7206.529	41.31	PK	35.4	-35.8	8.6	0.3	49.81	53.97	-4.16	74	-24.19	100
5	7205.72	41.08	PK	35.4	-35.8	8.6	0.3	49.58	53.97	-4.39	74	-24.42	132
6	9607.595	37.22	PK	36.7	-36.3	10.2	0.5	48.32	53.97	-5.65	74	-25.68	200
6	9607.36	27.58	RMS	36.7	-36.3	10.2	0.5	38.68	53.97	-15.29	74	-25.68	127.1
	detector												
PK − Peak													

Page 41 of 53

Page 42 of 53

Page 43 of 53

MID CHANNEL WORST CASE EMISSIONS

roject :1	3J15120												
ompany	Name:Casio												
/Iodel / C	onfig: GB-560	OOB											
Node:Mic	d Channel BLE												
fest By:Ch	narles Vergor	nio											
lorizonta	1000 - 18000	MHz					-						
	Test	Meter		T136 Ant		Cable			E-Fields		E-Fields		
Marker	Frequency	Reading		Factor	T144 Preamp Gain	Factor	T160 BRF	dB(uVolts/	[dBuV/m] ·	Margin	[dBuV/m] -	Margin	Heigh
No.	(MHz)	(dBuV)	Detector	[dB/m]	[dB]	[dB]	[dB]	meter)	Avg	(dB)	Peak	(dB)	[cm]
1	4879.8	44.3	PK	33.9	-35.7	6.7	0.2	49.4	53.97	-4.57	74	-24.6	200
1	4880.01	46.44	RMS	33.9	-35.7	6.7	0.2	51.54	53.97	-2.43	74	-22.46	137
2	9761.08	44.72	PK	36.7	-36.3	10.2	0.5	55.82	53.97	1.85	74	-18.18	118
2	9759.41	38.29	RMS	36.7	-36.3	10.2	0.5	49.39	53.97	-4.58	74	-24.61	127.1
/ertical 1	000 - 18000M	Hz											
	Test	Meter		T136 Ant		Cable			E-Fields		E-Fields		
Marker	Frequency	Reading		Factor	T144 Preamp Gain	Factor	T160 BRF	dB(uVolts/	[dBuV/m] -	Margin	[dBuV/m] -	Margin	Height
No.	(MHz)	(dBuV)	Detector	[dB/m]	[dB]	[dB]	[dB]	meter)	Avg	(dB)	Peak	(dB)	[cm]
4	4879.97	50.95	PK	33.9	-35.7	6.7	0.2	56.05	53.97	2.08	74	-17.95	200
4	4879.97	46.56	RMS	33.9	-35.7	6.7	0.2	51.66	53.97	-2.31	74	-22.34	156
5	7320.66	48.16	PK	35.4	-35.8	8.6	0.3	56.66	53.97	2.69	74	-17.34	200
5	7319.74	42.18	RMS	35.4	-35.8	8.6	0.3	50.68	53.97	-3.29	74	-23.32	143
6	9760.62	37.99	PK	36.7	-36.3	10.2	0.5	49.09	53.97	-4.88	74	-24.91	100
6	9759.51	28.26	RMS	36.7	-36.3	10.2	0.5	39.36	53.97	-14.61	74	-34.64	125
PK - Peak	detector												
Av - Aver	age detector												

Page 44 of 53

Page 45 of 53

Page 46 of 53

Project :1	3J15120												
Company	Name:Casio												
Model / C	onfig: GB-56	008											
IVIODE:High Channel BLE													
Test By:CI	harles vergo	nio											
Horizonta	1000 - 1800												
101120110	Test	Meter			T144	Cable			E-Fields		E-Fields		
Marker	Frequency	Reading		T136 Ant	Preamp	Factor	T160 BRF	dB(uVolts/	[dBuV/m] -	Margin	[dBuV/m] -	Margin	Height
No	(MHz)	(dBuV)	Detector	Factor [dB/m]	Gain [dB]	[dB]	[dB]	meter)	Δνσ	(dB)	Peak	(dB)	[cm]
1	4959.6	47.82	PK	33.9	-35.7	6.7	0.2	52.92	53.97	-1.05	74	-21.08	200
1	4959.93	43.96	RMS	33.9	-35.7	6.7	0.2	49.06	53.97	-4.91	74	-24.94	146
2	9920.3	37.11	PK	36.7	-36.3	10.2	0.5	48.21	53.97	-5.76	74	-25.79	124
2	9919.47	29.95	RMS	36.7	-36.3	10.2	0.5	41.05	53.97	-12.92	74	-32.95	146
 Vertical 1	000 - 18000N	IHz											
	Test	Meter			T144	Cable			E-Fields		E-Fields		
Marker	Frequency	Reading		T136 Ant	Preamp	Factor	T160 BRF	dB(uVolts/	[dBuV/m] -	Margin	[dBuV/m] -	Margin	Height
No.	(MHz)	(dBuV)	Detector	Factor [dB/m]	Gain [dB]	[dB]	[dB]	meter)	Avg	(dB)	Peak	(dB)	[cm]
3	4959.8	44.69	PK	33.9	-35.7	6.7	0.2	49.79	53.97	-4.18	74	-24.21	200
3	4959.83	39.41	RMS	33.9	-35.7	6.7	0.2	44.51	53.97	-9.46	74	-29.49	146.4
4	7440	44.55	РК	35.4	-35.8	8.6	0.3	53.05	53.97	-0.92	74	-20.95	200
4	7439.71	42.02	RMS	35.4	-35.8	8.6	0.3	50.52	53.97	-3.45	74	-23.48	154.3
PK - Peak	detector												
QP - Quasi-Peak detector													

Page 47 of 53

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 48 of 53

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 49 of 53