

RADIO TEST REPORT

Test Report No. 14807590S-A

Customer	CASIO COMPUTER CO., LTD.
Description of EUT	Watch
Model Number of EUT	GD-B500 (Bluetooth Module: CW3552 is contained.)
FCC ID	BBQS50W
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 29, 2023
Remarks	-

Representative Test Engineer

M. Ikudama

Miku Ikudome Engineer

Approved By

A. Hayashi

Akio Hayashi Manager

CERTIFICATE 1266.03

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14807590S-A

Revision	Test Report No.	Date	Page Revised Contents
-	14807590S-A	June 29, 2023	-
(Original)			

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
ССК	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SA, S/A SG	Signal Generator	
	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
Freq.				
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	14
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	30
Radiated Spurious Emission	
Pre-check of Worst Case Position	
Antenna Terminal Conducted Tests	32

SECTION 1: Customer Information

Company Name	CASIO COMPUTER CO., LTD.
Address	2-1, Sakaecho 3 chome, Hamura-shi, Tokyo 205-8555 Japan
Telephone Number	+81-42-579-7282
Contact Person	Shuji Yamashita

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date - SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Watch
Model Number	GD-B500
	(Bluetooth Module: CW3552 is contained.)
Alternative Name	R060
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	May 29, 2023
Test Date	June 7 to 17, 2023

2.2 **Product Description**

General Specification

Rating	GD-B500 (Watch): Typical: DC 3.0 V, Min.: DC 1.9 V, Max.: DC 3.3 V CW3552 (Module): Typical: DC 3.0 V, Min.: DC 1.9 V, Max.: DC 3.3 V
Operating temperature	-10 deg. C to +60 deg. C

Radio Specification

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	2.5 dBi

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207	-	N/A	*1)
6 dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)	See data.	Complied	Conducted
Maximum Peak Output Power	ISED: - FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	ISED: RSS-247 5.2(a) FCC: Section 15.247(b)(3)		Complied	Conducted
Power Density	ISED: RSS-Gen 6.12 FCC: KDB 558074 D01	ISED: RSS-247 5.4(d) FCC: Section 15.247(e)		Complied	Conducted
	15.247 Meas Guidance v05r02				
Spurious Emission Restricted	ISED: - FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	ISED: RSS-247 5.2(b) FCC: Section15.247(d)	8.9 dB 2390.000 MHz, AV, Horizontal,	Complied	Conducted (below 30 MHz)/ Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Tx BT LE 2402 MHz		(above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) The test is not applicable since the EUT does not have AC mains.

*2 Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Item	Frequency range	Uncertainty (+/-)
Conducted Emission (AC Mains) LISN	150 kHz-30 MHz	3.1 dB
Radiated Emission	9 kHz-30 MHz	3.3 dB
(Measurement distance: 3 m)	30 MHz-200 MHz	4.8 dB
	200 MHz-1 GHz	6.1 dB
	1 GHz-6 GHz	4.7 dB
	6 GHz-18 GHz	5.3 dB
	18 GHz-40 GHz	5.5 dB
Radiated Emission	1 GHz-18 GHz	5.6 dB
(Measurement distance: 1 m)	18 GHz-40 GHz	5.8 dB

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector) SPM-06	1.3 dB
Power Measurement above 1 GHz (Peak Detector) SPM-06	2.1 dB
Power Measurement above 1 GHz (Average Detector) SPM-07	1.1 dB
Power Measurement above 1 GHz (Peak Detector) SPM-07	1.2 dB
Power Measurement above 1 GHz (Average Detector) SPM-13	1.1 dB
Power Measurement above 1 GHz (Peak Detector) SPM-13	1.4 dB
Spurious Emission (Conducted) below 1 GHz	0.84 dB
Conducted Emissions Power Density Measurement 1 GHz-3 GHz	0.86 dB
Conducted Emissions Power Density Measurement 3 GHz-18 GHz	2.4 dB
Spurious Emission (Conducted) 18 GHz-26.5 GHz	2.4 dB
Spurious Emission (Conducted) 26.5 GHz-40 GHz	2.2 dB
Bandwidth Measurement	0.012 %
Duty Cycle and Time Measurement	0.27 %
Temperature_SCH-01	0.87 deg.C.
Humidity_SCH-01	3.5 %
Temperature_SCH-02	2.0 deg.C.
Humidity_SCH-02	6.7 %
Voltage	0.92 %

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 Japan

Telephone: +81-463-50-6400

A2LA Certificate Number: 1266.03

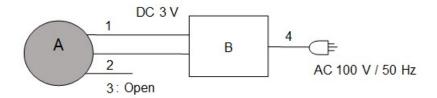
(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing


4.1 Operating Mode(s)

Mode		Remarks*		
Bluetooth Low En	ergy (BT LE)	1M-PHY Uncoded PHY (1M-PHY), Maximum Packet Size, PRBS9		
*Power of the EU	T was set by the	software as follows;		
Power Setting:	Fixed			
Software: BLE RF Test V		ersion: 9.9		
(Date: 2023.6.)		7, Storage location: EUT memory)		
*This setting of software is the worst case.				
Any conditions under the normal use do not exceed the condition of setting.				
In addition, end u	sers cannot char	nge the settings of the output power of the product.		

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency		
Conducted Spurious Emission,	Tx BT LE, 1M-PHY *1)	2440 MHz		
Radiated Spurious Emission (Below 1 GHz)				
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE, 1M-PHY	2402 MHz		
Maximum Peak Output Power,		2440 MHz		
Power Density,		2480 MHz		
6 dB Bandwidth,				
99 % Occupied Bandwidth,				
*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.				

4.2 Configuration and Peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model Number	Serial Number	Manufacturer	Remarks
А	Watch	GD-B500	17 *1) *2) 24 *3)	CASIO COMPUTER CO., LTD.	EUT
В	Power Supply (DC)	PAN35-10A	BP002287	KIKUSUI	*1)
		PAN55-20A	DD000084	KIKUSUI	*2)
		PW18-2ATP	19050351	TEXIO	*3)

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC	0.1 + 1.8 + 0.4	Unshielded	Unshielded	*4)
2	DC	0.1 + 1.8 + 0.4	Unshielded	Unshielded	*4)
3	Signal	0.1	Unshielded	Unshielded	*5)
4	AC	1.8	Unshielded	Unshielded	-

*1) Used for Radiated Emission (Below 1 GHz)

*2) Used for Radiated Emission (Above 1 GHz)

*3) Used for Antenna Terminal Conducted test

*4) Cable for test operation

*5) Cable is for system reset during the development, not used for the product.

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

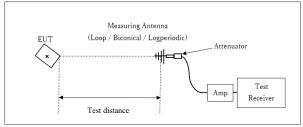
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

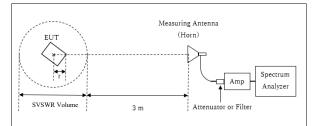
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

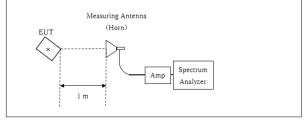
20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz	•	20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.2	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
		VBW: 3 MHz		
		Detector:		
		Power Averaging (Linear		
		voltage)		
		Trace: 100 traces		
		Duty factor was added to		
			the results.	


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table


1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.54 dB *Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Antenna polarization	Carrier	Spurious (30 MHz - 1 GHz)	Spurious (1 GHz - 2.8 GHz)	Spurious (2.8 GHz - 10 GHz)	Spurious (10 GHz - 18 GHz)	Spurious (18 GHz - 26.5 GHz)
Horizontal	Y	Х	Y	Х	Х	Х
Vertical	Х	Х	Х	Y	Х	Х

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

Test Distance: 3 m

Distance Factor: 20 x log (3.97 m / 3.0 m) = 2.44 dB * Test Distance: (3 + SVSWR Volume /2) - r = 3.97 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.03 m

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6 dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 160 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

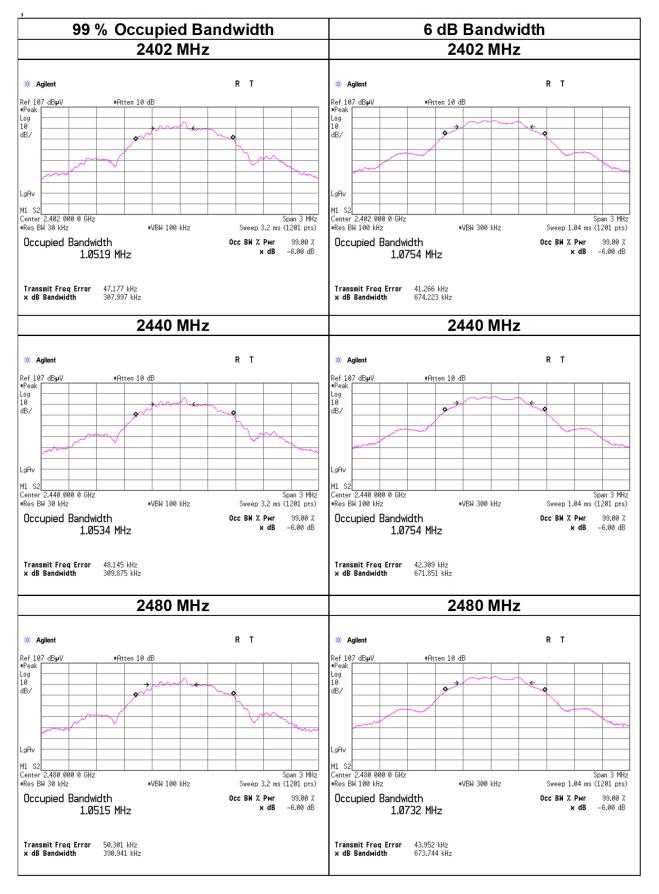
*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz).

*5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place	Shonan EMC Lab. No.5 Shielded Room
Date	June 7, 2023
Temperature / Humidity	25 deg. C / 44 % RH
Engineer	Miku Ikudome
Mode	Tx BT LE

Frequency	99 % Occupied	6 dB Bandwidth	Limit for			
	Bandwidth		6 dB Bandwidth			
[MHz]	[kHz]	[MHz]	[MHz]			
2402	1051.9	0.674	> 0.5000			
2440	1053.4	0.672	> 0.5000			
2480	1051.5	0.674	> 0.5000			

99 % Occupied Bandwidth and 6 dB Bandwidth

Maximum Peak Output Power

Test placeShonan EMC Lab. No.5 Shielded RoomDateJune 7, 2023Temperature / Humidity25 deg. C / 44 % RHEngineerMiku IkudomeModeTx BT LE

Maximum peak output power

					Con	ducted Po	wer		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2402	-12.34	1.75	10.18	-0.41	0.91	30.00	1000	30.41	2.50	2.09	1.62	36.02	4000	33.93	
2440	-12.31	1.76	10.18	-0.37	0.92	30.00	1000	30.37	2.50	2.13	1.63	36.02	4000	33.89	
2480	-12.36	1.77	10.18	-0.41	0.91	30.00	1000	30.41	2.50	2.09	1.62	36.02	4000	33.93	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

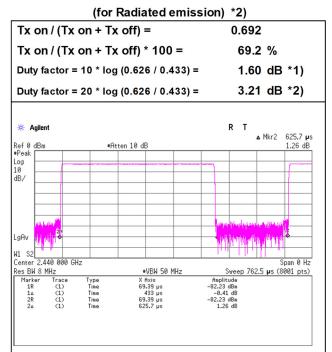
e.i.r.p. Result = Conducted Power Result + Antenna Gain

All comparison were carried out on same frequency and measurement factors.

<u>Average Output Power</u> (Reference data for RF Exposure)

Test placeShonan EMC Lab. No.5 Shielded RoomDateJune 7, 2023Temperature / Humidity25 deg. C / 44 % RHEngineerMiku IkudomeModeTx BT LE

Average power


Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult	
		Loss	Loss	(Time a	verage)	factor	(Burst pow er average)		
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]	
2402	-14.64	1.75	10.18	-2.71	0.54	1.60	-1.11	0.77	
2440	-14.59	1.76	10.18	-2.65	0.54	1.60	-1.05	0.79	
2480	-14.62	1.77	10.18	-2.67	0.54	1.60	-1.07	0.78	

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Result (Time average) + Duty factor

Burst rate confirmation

(for Average power) *1)

Radiated Spurious Emission

Test place	Shonan EMC Lab.
Semi Anechoic Chamber	No.2
Date	June 17, 2023
Temperature / Humidity	24 deg. C / 55 % RH
Engineer	Takahiro Suzuki
	(1 GHz to 26.5 GHz)
Mode	Tx BT LE 2402 MHz

		(* PK: Peak,	AV: Average, Q	P: Quasi-Peak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	44.30	28.16	14.18	38.75	2.44	50.33	73.9	23.5	165	17	-
Hori.	4804.000	PK	45.44	31.50	7.00	38.57	2.44	47.81	73.9	26.0	132	10	-
Hori.	7206.000	PK	45.90	36.96	8.36	39.17	2.44	54.49	73.9	19.4	150	0	-
Hori.	7206.000	AV	36.46	36.96	8.36	39.17	2.44	45.05	53.9	8.8	150	0	Floor noise
Vert.	2390.000	PK	45.68	28.16	14.18	38.75	2.44	51.71	73.9	22.1	171	168	-
Vert.	4804.000	PK	45.26	31.50	7.00	38.57	2.44	47.63	73.9	26.2	261	351	-
Vert.	7206.000	PK	45.13	36.96	8.36	39.17	2.44	53.72	73.9	20.1	150	0	-
Vert.	7206.000		36.40	36.96		39.17		44.99	53.9	8.9	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log(3.97 \text{ m} / 3.0 \text{ m}) = 2.44 \text{ dB}$

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	M argin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	35.74	28.16	14.18	38.75	3.21	2.44	44.98	53.9	8.9	*1)
Hori.	4804.000	AV	35.15	31.50	7.00	38.57	3.21	2.44	40.73	53.9	13.1	-
Vert.	2390.000	AV	35.42	28.16	14.18	38.75	3.21	2.44	44.66	53.9	9.2	*1)
Vert.	4804.000	AV	35.15	31.50	7.00	38.57	3.21	2.44	40.73	53.9	13.1	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log(3.97 \text{ m} / 3.0 \text{ m}) = 2.44 \text{ dB}$

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Burst rate confirmation" sheet.

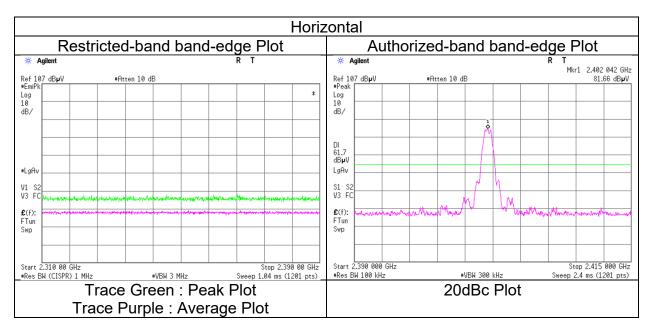
*1) Not out of band emission (Leakage Power)

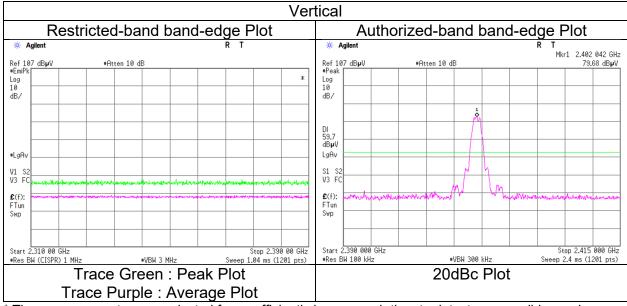
20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	81.39	28.15	14.20	38.74	2.44	87.44	-	-	Carrier
Hori.	2400.000	PK	41.87	28.15	14.19	38.74	2.44	47.91	67.4	19.4	-
Vert.	2402.000	PK	79.84	28.15	14.20	38.74	2.44	85.89	-	-	Carrier
Vert.	2400.000	PK	42.50	28.15	14.19	38.74	2.44	48.54	65.8	17.2	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.97 m / 3.0 m) = 2.44 dB


 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$


Radiated Spurious Emission (Reference Plot for band-edge)

Test placeShonan EMC Lab.Semi Anechoic ChamberNo.2DateJune 17, 2023Temperature / Humidity24 deg. C / 55 % RHEngineerTakahiro Suzuki

Mode

Tx BT LE 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Test place	Shonan EMC Lab.	
Semi Anechoic Chamber	No.1	No.2
Date	June 13, 2023	June 17, 2023
Temperature / Humidity	21 deg.C, 63 %RH	24 deg.C, 55 %RH
Engineer	Kouki Yamada	Takahiro Suzuki
	(30 MHz -1 GHz)	(1 GHz -26.5 GHz)
Mode	Tx BT LE 2440 MHz	

		(* PK: Peak,	AV: Average, Q	P: Quasi-Peak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	30.978	QP	21.40	18.24	7.05	31.83	0.00	14.86	40.0	25.1	100	0	-
Hori.	52.481	QP	21.90	10.33	7.45	31.83	0.00	7.85	40.0	32.1	100	0	-
Hori.	194.747	QP	21.20	16.59	9.03	31.77	0.00	15.05	43.5	28.4	100	0	-
Hori.	463.295	QP	21.30	16.88	7.62	31.84	0.00	13.96	46.0	32.0	100	0	-
Hori.	893.136	QP	20.80	22.11	9.96	31.33	0.00	21.54	46.0	24.4	100	0	-
Hori.	4880.000	PK	45.56	31.53	7.04	38.60	2.44	47.97	73.9	25.9	119	350	-
Hori.	7320.000	PK	45.21	37.10	8.45	39.23	2.44	53.97	73.9	19.9	150	0	-
Hori.	7320.000	AV	36.20	37.10	8.45	39.23	2.44	44.96	53.9	8.9	150	0	Floor noise
Vert.	165.293	QP	21.50	15.48	8.98	31.77	0.00	14.19	43.5	29.3	100	0	-
Vert.	472.711	QP	21.20	17.12	7.68	31.84	0.00	14.16	46.0	31.8	100	0	-
Vert.	776.904	QP	21.40	20.54	9.31	31.85	0.00	19.40	46.0	26.6	100	0	-
Vert.	4880.000	PK	46.09	31.53	7.04	38.60	2.44	48.50	73.9	25.4	280	358	-
Vert.	7320.000	PK	44.83	37.10	8.45	39.23	2.44	53.59	73.9	20.3	150	0	-
Vert.	7320.000	AV	36.06	37.10	8.45	39.23	2.44	44.82	53.9	9.0	150	0	Floor noise
Result = R	Reading + Ant.Fa	c. + Loss (0	Cable+(Atte	nuator or Fil	ter)(below 1	8 GHz)) - (Gain(Amplif	ier) + Distar	nce factor				

Distance factor : 1 GHz - 10 GHz : $20\log(3.97 \text{ m} / 3.0 \text{ m}) = 2.44 \text{ dB}$

10 GHz - 40 GHz : $20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	M argin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4880.000	AV	36.45	31.53	7.04	38.60	3.21	2.44	42.07	53.9	11.8	-
Vert.	4880.000	AV	35.93	31.53	7.04	38.60	3.21	2.44	41.55	53.9	12.3	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor Distance factor : 1 GHz - 10 GHz : 20log (3.97 m / 3.0 m) = 2.44 dB

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$ Duty factor refer to "Burst rate confirmation" sheet.

Radiated Spurious Emission

Test place	Shonan EMC Lab.
Semi Anechoic Chamber	No.2
Date	June 17, 2023
Temperature / Humidity	24 deg.C, 55 %RH
Engineer	Takahiro Suzuki
	(1 GHz -26.5 GHz)
Mode	Tx BT LE 2480 MHz

		(* PK: Peak,	AV: Average, Q	P: Quasi-Peak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	45.24	28.05	14.28	38.70	2.44	51.31	73.9	22.5	138	44	-
Hori.	4960.000	PK	45.35	31.72	7.09	38.63	2.44	47.97	73.9	25.9	307	350	-
Hori.	7440.000	PK	46.04	37.28	8.53	39.30	2.44	54.99	73.9	18.9	150	0	-
Hori.	7440.000	AV	35.02	37.28	8.53	39.30	2.44	43.97	53.9	9.9	150	0	Floor noise
Vert.	2483.500	PK	44.62	28.05	14.28	38.70	2.44	50.69	73.9	23.2	151	185	-
Vert.	4960.000	PK	45.77	31.72	7.09	38.63	2.44	48.39	73.9	25.5	110	348	-
Vert.	7440.000	PK	45.03	37.28	8.53	39.30	2.44	53.98	73.9	19.9	150	0	-
Vert.	7440.000		35.72	37.28	8.53	39.30		44.67	53.9	9.2	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log(3.97 \text{ m} / 3.0 \text{ m}) = 2.44 \text{ dB}$ $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	M argin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	35.46	28.05	14.28	38.70	3.21	2.44	44.74	53.9	9.1	*1)
Hori.	4960.000	AV	36.10	31.72	7.09	38.63	3.21	2.44	41.93	53.9	11.9	-
Vert.	2483.500	AV	35.42	28.05	14.28	38.70	3.21	2.44	44.70	53.9	9.2	*1)
Vert.	4960.000	AV	36.30	31.72	7.09	38.63	3.21	2.44	42.13	53.9	11.7	-

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log(3.97 \text{ m}/3.0 \text{ m}) = 2.44 \text{ dB}$

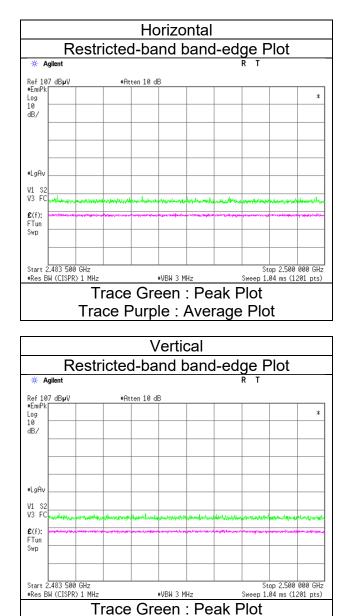
 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$ Duty factor refer to "Burst rate confirmation" sheet.

*1) Not out of band emission (Leakage Power)

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

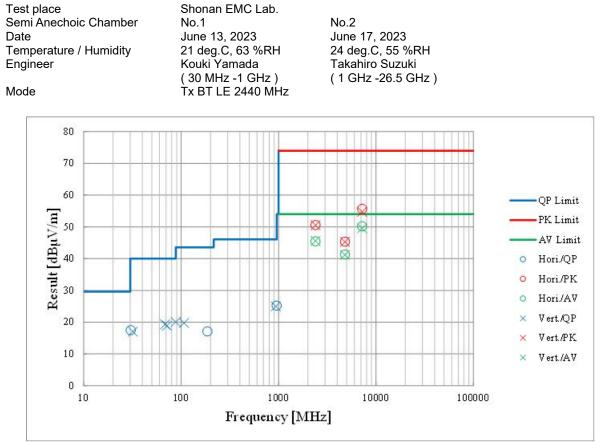

Tx BT LE 2480 MHz

Shonan EMC Lab.

June 17, 2023 24 deg.C, 55 %RH

Takahiro Suzuki

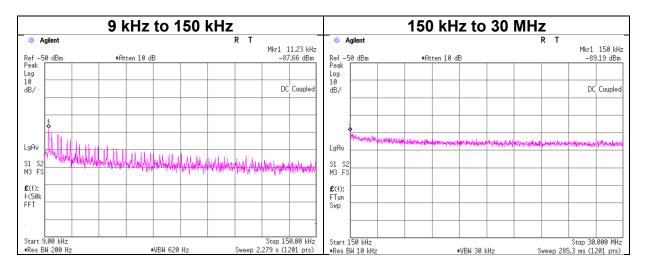
No.2



* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Trace Purple : Average Plot

Final result of restricted band edge was shown in tabular data.


Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

Conducted Spurious Emission

Test place Date Temperature / Humidity Engineer Mode Shonan EMC Lab. No.5 Shielded Room June 7, 2023 25 deg. C / 44 % RH Miku Ikudome Tx BT LE, 2440 MHz

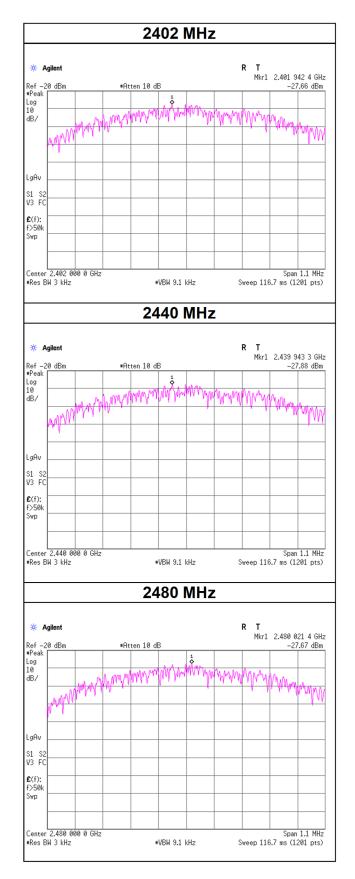
Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-87.7	0.5	10.1	2.5	1.0	-74.5	300	6.0	-13.3	46.5	59.8	-
150.00	-89.2	0.5	10.1	2.5	1.0	-76.1	300	6.0	-14.8	24.0	38.8	-

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Power Density

Test placeShoDateJuneTemperature / Humidity25 cEngineerMikeModeTx E


Shonan EMC Lab. No.5 Shielded Room June 7, 2023 25 deg. C / 44 % RH Miku Ikudome Tx BT LE

Frequency	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm/3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm/3 kHz]	[dB]
2402	2401.942	-27.66	1.75	10.18	-15.73	8.00	23.73
2440	2439.943	-27.88	1.76	10.18	-15.94	8.00	23.94
2480	2480.021	-27.67	1.77	10.18	-15.72	8.00	23.72

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Power Density

APPENDIX 2: Test Instruments

Test Equipment [1/2]

	quipment						I. .	
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	SAT10-15	160493	Attenuator	Weinschel Corp.	54A-10	83406	2022/12/01	12
AT	SCC-G66	196947	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803478/2	2023/03/02	12
AT	SOS-27	191845	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2022/08/08	12
AT	SPM-07	146247	Power Meter	Keysight Technologies Inc	8990B	MY51000272	2023/05/29	12
AT	SPSS-04	146310	Power sensor	Keysight Technologies Inc	N1923A	MY5326009	2023/05/29	12
AT	SRENT-15	160899	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185516	2023/01/26	12
AT	STS-05	146212	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997828	2022/09/20	12
RE	COTS- SEMI-5	170932	EMI Software	TSJ (Techno Science Japan)	TEPTO- DV3(RE,CE,ME, PE)	-	-	-
RE	KAT6-04	144899	Attenuator	Inmet	18N-6dB	-	2022/12/16	12
RE	KHA-04	146351	Horn Antenna	EMCO	3160-09	1278	2023/05/22	12
RE	SAEC- 01(NSA)	145597	Semi-Anechoic Chamber	TDK	SAEC-01(NSA)	1	2023/04/04	12
RE	SAEC- 02(SVSW R)	145598	Semi-Anechoic Chamber	ТDК	SAEC- 02(SVSWR)	2	2023/05/17	12
RE	SAF-01	145003	Pre Amplifier	SONOMA	310N	290211	2023/02/09	12
RE	SAF-05	145128	Pre Amplifier	Toyo Corporation	TPA0118-36	1440490	2023/05/19	12
RE	SAF-08	145007	Pre Amplifier	Toyo Corporation	HAP18-26W	19	2023/03/03	12
RE	SAT10-05	145136	Attenuator	Keysight Technologies Inc	8493C-010	74864	2022/10/20	12
RE	SAT3-09	144959	Attenuator	JFW	50HF-003N	-	2022/08/23	12
RE	SBA-01	145161	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	BBA9106	91032664	2023/04/12	12
RE	SCC- A1/A3/A5/ A7/A8/A13/ SRSE-01	144967	Coaxial Cable&RF Selector	Fujikura/Fujikura/Su hner/Suhner/Suhner /Suhner/TOYO	8D2W/12DSFA/1 41PE/141PE/141 PE/141PE/NS49 06	-/0901-269(RF Selector)	2023/04/18	12
RE	SCC- A2/A4/A6/ A7/A8/A13/ SRSE-01	144968	Coaxial Cable&RF Selector	Fujikura/Fujikura/Su hner/Suhner/Suhner /Suhner/TOYO	8D2W/12DSFA/1 41PE/141PE/141 PE/141PE/NS49 06	Selector)	2023/04/18	12
RE	SCC-G15	145176	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	2023/03/03	12
RE	SCC-G41	151617	Coaxial Cable	Junkosha	MWX221- 01000NFSNMS/ B	1612S006	2023/01/12	12
RE	SCC-G50	178573	Coaxial Cable	Huber+Suhner	SUCOFLEX_104 _E	MY13407/4E	2023/03/02	12
RE	SCC-G57	179540	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	802815/2	2023/03/03	12
RE	SCC-G69	200009	Coaxial Cable	Huber+Suhner	SUCOFLEX 104	575617/4	2023/06/06	12
RE	SCC-G79	236869	Coaxial Cable	Huber+Suhner	SUCOFLEX 104	200084/4A	2023/06/06	12
RE	SFL-02	145301	Highpass Filter	Micro-Tronics	HPM50111	51	2022/10/20	12
RE	SHA-02	145384	Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	9120D-726	2023/03/09	12
RE	SHA-10	194685	Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	711	2023/03/27	12

	quipinen							
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	SJM-20	207277	Measuring	ASKUL	-	-	-	-
RE	SJM-22	207279	Tape Measure	ASKUL	-	-	-	-
RE	SLA-05	145527	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	193	2023/04/12	12
RE	SOS-20	191837	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	-	2022/08/06	12
RE	SOS-21	191838	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	-	2022/08/08	12
RE	SSA-03	145801	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY48250152	2022/08/04	12
RE	STR-01	145790	Test Receiver	Rohde & Schwarz	ESU40	100093	2023/04/22	12
RE	STS-01	145792	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997812	2022/09/20	12
RE	STS-02	145793	Digital Hitester	HIOKI E.E. CORPORATION	3805-50	80997819	2023/05/26	12

Test Equipment [2/2]

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test RE: Radiated Emission