

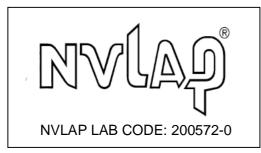
## FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

### **CERTIFICATION TEST REPORT**

FOR

### HANDHELD TERMINAL

### MODEL NUMBER: IT-800A-35U


FCC ID: BBQIT800A IC: 2388F-IT800A

## REPORT NUMBER: 31KE0135-SH-B

ISSUE DATE: JUNE 27, 2011

Prepared for CASIO COMPUTER CO., LTD 6-2 HON-MACHI 1-CHOME SHIBUYA-KU TOKYO, 151-8543, JAPAN

Prepared by UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN TEL: +81 596 24 8116 FAX: +81 596 24 8124



This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. \*As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/m ark1/index.jsp#nvlap

### **Revision History**

| Rev. | Issue<br>Date | Revisions     | Revised By  |
|------|---------------|---------------|-------------|
|      | 06/27/2011    | Initial Issue | T. Hatakeda |

Page 2 of 87

UL Japan, Inc. Head Office EMC Lab.

# TABLE OF CONTENTS

| 1. | ATT                                                                                                                                                  | ESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2. | TES                                                                                                                                                  | ſ METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                            |
| 3. | FAC                                                                                                                                                  | ILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                            |
| 4. | CAL                                                                                                                                                  | IBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |
| 4  | 4.1.                                                                                                                                                 | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                            |
| 4  | 4.2.                                                                                                                                                 | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                            |
| 4  | 4.3.                                                                                                                                                 | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                            |
| 5. | EQU                                                                                                                                                  | IPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                            |
| 5  | 5.1.                                                                                                                                                 | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                            |
| 5  | 5.2.                                                                                                                                                 | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 8                                                                          |
| 5  | 5.3.                                                                                                                                                 | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                            |
| 5  | 5.4.                                                                                                                                                 | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                            |
| 5  | 5.5.                                                                                                                                                 | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                            |
| 5  | 5.6.                                                                                                                                                 | DESCRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                           |
| 6. | TES                                                                                                                                                  | TAND MEASUREMENT EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                           |
|    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |
| 7. | ANT                                                                                                                                                  | ENNA PORT TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                           |
|    | 7.1.                                                                                                                                                 | 802.11a MODE IN THE 5.2 GHz BAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                           |
|    | 7. <i>1.</i><br>7.1.1                                                                                                                                | 802.11a MODE IN THE 5.2 GHz BAND<br>26 dB and 99% BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15<br>15                                                                     |
|    | 7.1.                                                                                                                                                 | 802.11a MODE IN THE 5.2 GHz BAND<br>26 dB and 99% BANDWIDTH<br>OUTPUT POWER<br>PEAK POWER SPECTRAL DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>15<br>18<br>22                                                         |
|    | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4                                                                                                             | 802.11a MODE IN THE 5.2 GHz BAND.         26 dB and 99% BANDWIDTH         OUTPUT POWER.         PEAK POWER SPECTRAL DENSITY         PEAK EXCURSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>15<br>18<br>22<br>25                                                   |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5                                                                                                    | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH         .       26 dB and 99% BANDWIDTH         .       OUTPUT POWER.         .       PEAK POWER SPECTRAL DENSITY         .       PEAK EXCURSION         .       CONDUCTED SPURIOUS EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>15<br>18<br>22<br>25<br>28                                             |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5                                                                                                    | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>15<br>18<br>22<br>25<br>28<br>31                                       |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.1<br>7.2.2                                                                         | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH         . 26 dB and 99% BANDWIDTH       .         . OUTPUT POWER.       .         . PEAK POWER SPECTRAL DENSITY       .         . PEAK EXCURSION       .         . CONDUCTED SPURIOUS EMISSIONS       .         . 802.11a MODE IN THE 5.3 GHz BAND.       .         . 26 dB and 99% BANDWIDTH       .         . OUTPUT POWER.       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>15<br>18<br>22<br>25<br>28<br>31<br>31<br>34                           |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3                                                                         | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH         OUTPUT POWER.       2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>15<br>22<br>25<br>28<br>31<br>31<br>34<br>38                           |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.1<br>7.2.2                                                                         | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH       7         OUTPUT POWER       7         PEAK POWER SPECTRAL DENSITY       7         PEAK EXCURSION       7         CONDUCTED SPURIOUS EMISSIONS       7         802.11a MODE IN THE 5.3 GHz BAND.       7         26 dB and 99% BANDWIDTH       7         OUTPUT POWER       7         PEAK EXCURSION       7         802.11a MODE IN THE 5.3 GHz BAND.       7         26 dB and 99% BANDWIDTH       7         OUTPUT POWER       7         PEAK POWER SPECTRAL DENSITY       7         PEAK POWER SPECTRAL DENSITY       7         PEAK EXCURSION       7                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>15<br>22<br>25<br>28<br>31<br>34<br>38<br>41                           |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.5<br>7.2.6                                                       | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH         OUTPUT POWER.       2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>15<br>225<br>28<br>31<br>34<br>38<br>41<br>44                          |
| 7  | 7.1.<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.5<br>7.2.6<br>7.3.1                                                       | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH         . 26 dB and 99% BANDWIDTH       .         . OUTPUT POWER       .         . PEAK POWER SPECTRAL DENSITY       .         . PEAK EXCURSION       .         . CONDUCTED SPURIOUS EMISSIONS       .         . 802.11a MODE IN THE 5.3 GHz BAND.       .         . 26 dB and 99% BANDWIDTH       .         . OUTPUT POWER       .         . PEAK POWER SPECTRAL DENSITY       .         . 0UTPUT POWER       .         . PEAK POWER SPECTRAL DENSITY       .         . 0UTPUT POWER       .         . 26 dB and 99% BANDWIDTH       .         . 26 dB and 99% BANDWIDTH       .         . 26 dB and 99% BANDWIDTH       .                                                            | 15<br>15<br>12<br>25<br>28<br>31<br>34<br>34<br>34<br>41<br>44<br>47<br>47   |
| 7  | 7.1.<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.5<br>7.2.6<br>7.3.                                                        | 802.11a MODE IN THE 5.2 GHz BAND.       2         26 dB and 99% BANDWIDTH       2         OUTPUT POWER       2         PEAK POWER SPECTRAL DENSITY       2         PEAK EXCURSION       2         CONDUCTED SPURIOUS EMISSIONS       2         802.11a MODE IN THE 5.3 GHz BAND.       2         26 dB and 99% BANDWIDTH       2         26 dB and 99% BANDWIDTH       2         27 OUTPUT POWER       2         28 OUTPUT POWER       2         29 OUTPUT POWER       2         20 OUTPUT POWER       2         21 a MODE IN THE 5.6 GHz BAND       2         22 d B and 99% BANDWIDTH       2         23 d B and 99% BANDWIDTH       2         24 d B and 99% BANDWIDTH       2 | 15<br>15<br>22<br>25<br>28<br>31<br>34<br>38<br>41<br>44<br>47<br>50         |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.5<br>7.2.6<br>7.3.1<br>7.3.1<br>7.3.2                            | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH       7         OUTPUT POWER.       7         PEAK POWER SPECTRAL DENSITY       7         PEAK EXCURSION       7         CONDUCTED SPURIOUS EMISSIONS       7         802.11a MODE IN THE 5.3 GHz BAND.       7         26 dB and 99% BANDWIDTH       7         OUTPUT POWER.       7         PEAK EXCURSION       7         802.11a MODE IN THE 5.3 GHz BAND.       7         OUTPUT POWER.       7         PEAK POWER SPECTRAL DENSITY       7         PEAK POWER SPECTRAL DENSITY       7         PEAK EXCURSION       7         OUTPUT POWER       7         PEAK EXCURSION       7         OUDUCTED SPURIOUS EMISSIONS       7         802.11a MODE IN THE 5.6 GHz BAND.       7         26 dB and 99% BANDWIDTH       7         QUTPUT POWER.       7         PEAK EXCURSION       7         PEAK EXCURSION       7         PEAK EXCURSION       7                                                                                                                                                     | <i>15</i><br>15<br>18<br>225<br>28<br>31<br>34<br>34<br>47<br>47<br>50<br>57 |
| 7  | 7.1.<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4<br>7.1.5<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.5<br>7.2.6<br>7.3.1<br>7.3.2<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4 | 802.11a MODE IN THE 5.2 GHz BAND.       26 dB and 99% BANDWIDTH       20         OUTPUT POWER.       000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>15</i><br>15<br>1225<br>31<br>334<br>34<br>47<br>57<br>50                 |

Page 3 of 87

UL Japan, Inc. Head Office EMC Lab.

| 8.<br>8. | 2.1. 8<br>2.2. 8 | NSMITTER ABOVE 1 GHz<br>802.11a MODE IN THE LOWER 5.2 GHz BAND<br>802.11a MODE IN THE UPPER 5.3 GHz BAND<br>802.11a MODE IN THE 5.6 GHz BAND | 64<br>67 |
|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 8.3.     | RECE             | EIVER ABOVE 1 GHz                                                                                                                            | 74       |
| 8.4.     | WOR              | RST-CASE BELOW 1 GHz                                                                                                                         | 75       |
| 9. A     |                  | ER LINE CONDUCTED EMISSIONS                                                                                                                  | 78       |
| 10.      | SETUP            | PHOTOS                                                                                                                                       | 81       |

Page 4 of 87

UL Japan, Inc. Head Office EMC Lab.

# **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:    | CASIO COMPUTER CO., LTD<br>6-2 HON-MACHI 1-CHOME, SHIBUYA-KU<br>TOKYO, 151-8543, JAPAN |
|------------------|----------------------------------------------------------------------------------------|
| EUT DESCRIPTION: | HANDHELD TERMINAL                                                                      |
| MODEL:           | IT-800A-35U (HANDHELD) & HA-H62IO (ETHERNET CRADLE)                                    |
| SERIAL NUMBER:   | 22PFU A21400526AAAA1 (RADIATED)<br>30 (CONDUCTED)                                      |
| DATE TESTED:     | JUNE 20 - 22, 2011                                                                     |
|                  |                                                                                        |

| APPLICABLE STANDARDS                    |              |  |  |  |  |
|-----------------------------------------|--------------|--|--|--|--|
| STANDARD                                | TEST RESULTS |  |  |  |  |
| CFR 47 Part 15 Subpart E                | Pass         |  |  |  |  |
| INDUSTRY CANADA RSS-210 Issue 8 Annex 9 | Pass         |  |  |  |  |
| INDUSTRY CANADA RSS-GEN Issue 3         | Pass         |  |  |  |  |

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Japan, Inc. By:

atakeda

TAKAHIRO HATAKEDA Leader of WiSE Japan UL Verification Services UL Japan, Inc.

Tested By:

ahayuki. L

TAKAYUKI SHIMADA Engineer of WiSE Japan UL Verification Services UL Japan, Inc.

Page 5 of 87

UL Japan, Inc. Head Office EMC Lab.

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 3, and RSS-210 Issue 8.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 4383-326 Asamacho, Ise-shi, Mie-ken 516-0021 JAPAN.

UL Japan, Inc. is accredited by NVLAP, Laboratory Code 200572-0 The full scope of accreditation can be viewed at http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

| Test room | Conducted emission |
|-----------|--------------------|
| (semi-    | ( <u>+</u> dB)     |
| anechoic  | 150kHz-30MHz       |
| chamber)  |                    |
| No.4      | 3.2dB              |

Page 6 of 87

UL Japan, Inc. Head Office EMC Lab.

| Test room          | Radiated emission |                      |                     |                |                     |                   |                           |  |
|--------------------|-------------------|----------------------|---------------------|----------------|---------------------|-------------------|---------------------------|--|
| (semi-<br>anechoic |                   | (3m*)(               | (3m*)( <u>+</u> dB) |                | (1m*)( <u>+</u> dB) |                   | (0.5m*)( <u>+</u> dB<br>) |  |
| chamber)           | 9kHz<br>-30MHz    | 30MHz<br>-<br>300MHz | 300MHz<br>-1GHz     | 1GHz<br>-10GHz | 10GHz<br>-18GHz     | 18GHz<br>-26.5GHz | 26.5GHz<br>-40GHz         |  |
| No.4               | 4.0dB             | 5.0dB                | 5.1dB               | 4.8dB          | 5.0dB               | 5.1dB             | 4.2dB                     |  |

\*3m/1m/0.5m = Measurement distance

| Antenna terminal conducted emission<br>and Power density ( <u>+</u> dB) |           |                | Antenna terminal conducted<br>emission<br>( <u>+</u> dB) |               | Channel<br>power<br>( <u>+</u> dB) |
|-------------------------------------------------------------------------|-----------|----------------|----------------------------------------------------------|---------------|------------------------------------|
| Below 1GHz                                                              | 1GHz-3GHz | 3GHz-<br>18GHz | 18GHz-26.5GHz                                            | 26.5GHz-40GHz |                                    |
| 1.0dB                                                                   | 1.1dB     | 2.7dB          | 3.2dB                                                    | 3.3dB         | 1.5dB                              |

Page 7 of 87

UL Japan, Inc. Head Office EMC Lab.

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is a 802.11 abg, Bluetooth and RFID equipped Handheld Terminal.

The 802.11abg module is manufactured by Fujitsu Component Limited.

# 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

| Frequency Range<br>(MHz) | Mode    | Output Power<br>(dBm) | Output Power<br>(mW) |
|--------------------------|---------|-----------------------|----------------------|
| 5180-5240                | 802.11a | 11.70                 | 14.79                |
| 5260-5320                | 802.11a | 11.25                 | 13.34                |
| 5500-5700                | 802.11a | 12.37                 | 17.25                |

# 5.3. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was RFTestTool.exe.

Page 8 of 87

UL Japan, Inc. Head Office EMC Lab.

# 5.4. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

All final tests in the 802.11a Mode were made at 6 Mb/s.

The EUT has been evaluated at X, Y, Z-orientations and the worst among them with AC/DC adapter and with Ethernet cradle. The highest measured emission was determined as the following table.

|                                | Horizontal           | Vertical             |
|--------------------------------|----------------------|----------------------|
| Carrier and Bandedge           | Z                    | Х                    |
| Radiated Emission (above 1GHz) | Z                    | Z                    |
| Radiated Emission (below 1GHz) | X with AC/DC adapter | Z with AC/DC adapter |
| Conducted Emission             | with Cradle          | with Cradle          |

# 5.5. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Dipole antenna, with a maximum gain of 0.15 dBi(5180-5320MHz) and 0.65dBi(5500-5700MHz).

Page 9 of 87

UL Japan, Inc. Head Office EMC Lab.

## 5.6. DESCRIPTION OF TEST SETUP

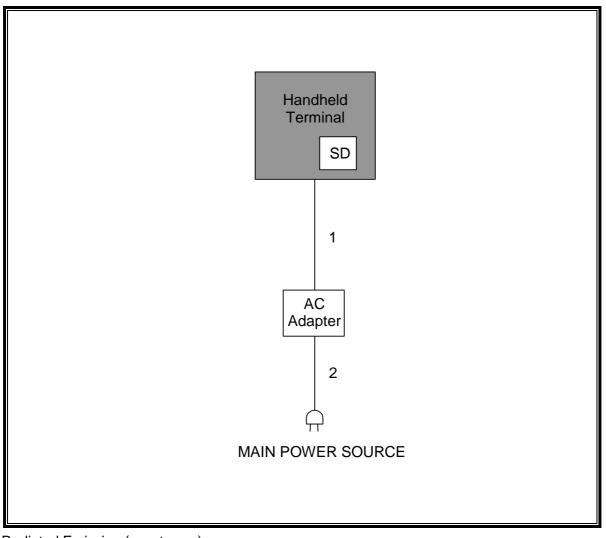
#### SUPPORT EQUIPMENT

| PERIPHERAL SUPPORT EQUIPMENT LIST |              |              |                      |  |  |  |
|-----------------------------------|--------------|--------------|----------------------|--|--|--|
| Description                       | Manufacturer | Model        | Serial Number        |  |  |  |
| AC/DC Adaptor                     | Casio        | AD-S15050B   | 18                   |  |  |  |
| Ethernet Cradle                   | Casio        | HA-H62IO     | 224AA 3C0101725GAAA1 |  |  |  |
| AC/DC Adaptor                     | Casio        | AD-S42120B   | 001                  |  |  |  |
| Micro SD                          | Panasonic    | RP-SM01GBJ1K | SR9FB014582          |  |  |  |

#### I/O CABLES

|              | I/O CABLE LIST |                           |                   |               |                 |                                          |  |  |
|--------------|----------------|---------------------------|-------------------|---------------|-----------------|------------------------------------------|--|--|
| Cable<br>No. | Port           | # of<br>Identica<br>Ports | Connector<br>Type | Cable<br>Type | Cable<br>Length | Remarks                                  |  |  |
| 1            | DC             | 1                         | DC                | Un-shielded   | 1.5m            | one ferrite at Handheld<br>Terminal end. |  |  |
| 2            | AC             | 1                         | US 115V           | Un-shielded   | 2.0m            | N/A                                      |  |  |
| 3            | DC             | 1                         | DC                | Un-shielded   | 1.6m            | one ferrite at Cradle end.               |  |  |

#### TEST SETUP

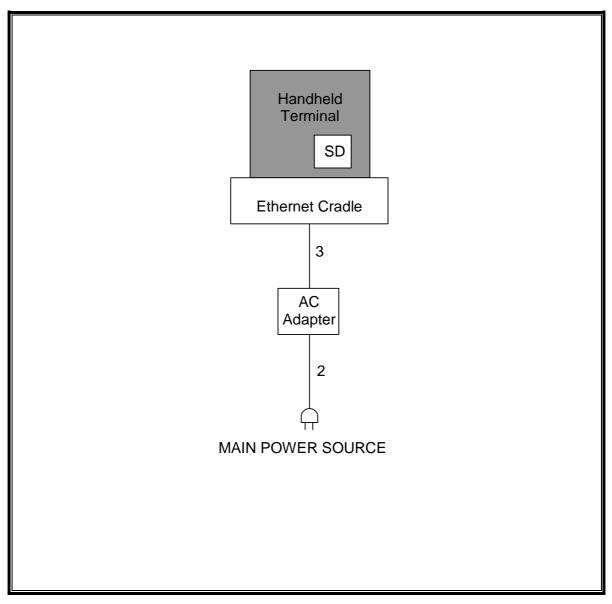

The EUT is sitting on a cradle during the Conducted emission test.

The EUT is connected with AC/DC adapter during the Radiated emission (below 1GHz) test. The EUT is a stand alone configuration during Radiated emission (above 1GHz) test. Test software exercised the radio card.

Page 10 of 87

UL Japan, Inc. Head Office EMC Lab.

### **SETUP DIAGRAM FOR TESTS (1/2)**




Radiated Emission (worst case)

Page 11 of 87

UL Japan, Inc. Head Office EMC Lab.

### **SETUP DIAGRAM FOR TESTS (2/2)**



Conducted Emission (worst case)

Page 12 of 87

UL Japan, Inc. Head Office EMC Lab.

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Control No. | Instrument                          | Manufacturer                   | Model No                    | Serial No                    | Calibration Date *<br>Interval(month) |
|-------------|-------------------------------------|--------------------------------|-----------------------------|------------------------------|---------------------------------------|
| MAEC-04     | Semi Anechoic<br>Chamber(NSA)       | TDK                            | Semi Anechoic<br>Chamber 3m | DA-10005                     | 2011/03/01 * 12                       |
| MOS-15      | Thermo-Hygrometer                   | Custom                         | CTH-180                     | -                            | 2011/02/23 * 12                       |
| MJM-07      | Measure                             | PROMART                        | SEN1955                     | -                            | -                                     |
|             | EMI measurement<br>program          | TSJ                            | TEPTO-DV                    | -                            | -                                     |
| MSA-10      | Spectrum Analyzer                   | Agilent                        | E4448A                      | MY46180655                   | 2011/02/15 * 12                       |
| MHA-21      | Horn Antenna 1-<br>18GHz            | Schwarzbeck                    | BBHA9120D                   | 9120D-557                    | 2010/08/08 * 12                       |
| MCC-56      | Microwave Cable                     | Suhner                         | SUCOFLEX104                 | 270875/4(1m) /<br>284655(5m) | 2011/03/02 * 12                       |
| MPA-12      | MicroWave System<br>Amplifier       | Agilent                        | 83017A                      | MY39500780                   | 2011/03/10 * 12                       |
| MCC-79      | Microwave Cable<br>1G-26.5GHz       | Suhner                         | SUCOFLEX104                 | 278923/4                     | 2010/12/02 * 12                       |
| MHF-23      | High Pass Filter 7-<br>20GHz        | TOKIMEC                        | TF37NCCC                    | 603                          | 2011/01/06 * 12                       |
| MHA-17      | Horn Antenna 15-<br>40GHz           | Schwarzbeck                    | BBHA9170                    | BBHA9170307                  | 2011/06/17 * 12                       |
| MCC-54      | Microwave Cable                     | Suhner                         | SUCOFLEX101                 | 2873(1m) / 2876(5m)          | 2011/03/02 * 12                       |
| MPA-03      | Microwave System<br>Power Amplifier | Agilent                        | 83050A                      | 3950M00205                   | 2011/06/15 * 12                       |
| MOS-19      | Thermo-Hygrometer                   | Custom                         | CTH-201                     | 0001                         | 2010/12/13 * 12                       |
| MSA-03      | Spectrum Analyzer                   | Agilent                        | E4448A                      | MY44020357                   | 2010/11/30 * 12                       |
| MPSE-18     | Power sensor                        | Anritsu                        | MA2411B                     | 0738174                      | 2010/11/01 * 12                       |
| MPM-13      | Power Meter                         | Anritsu                        | ML2495A                     | 0824014                      | 2010/11/01 * 12                       |
| MAT-20      | Attenuator(10dB)(ab<br>ove1GHz)     | HIROSE<br>ELECTRIC<br>CO.,LTD. | AT-110                      | -                            | 2011/01/06 * 12                       |
| MSA-04      | Spectrum Analyzer                   | Agilent                        | E4448A                      | US44300523                   | 2011/04/08 * 12                       |
| MTR-07      | Test Receiver                       | Rohde & Schwarz                | ESCI                        | 100635                       | 2010/10/27 * 12                       |
| MBA-05      | Biconical Antenna                   | Schwarzbeck                    | BBA9106                     | 1302                         | 2010/10/11 * 12                       |
| MLA-08      | Logperiodic<br>Antenna              | Schwarzbeck                    | UKLP9140-A                  | N/A                          | 2010/10/11 * 12                       |
| MCC-50      | Coaxial Cable                       | UL Japan                       | -                           | -                            | 2011/03/25 * 12                       |

Page 13 of 87

UL Japan, Inc. Head Office EMC Lab.

#### REPORT NO: 31KE0135-SH-B FCC ID: BBQIT800A

| Control No. | Instrument        | Manufacturer         | Model No                                                                                        | Serial No | Calibration Date *<br>Interval(month) |
|-------------|-------------------|----------------------|-------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| MAT-51      | Attenuator(6dB)   | Weinschel            | 2                                                                                               | AS3557    | 2011/01/14 * 12                       |
| MPA-14      | Pre Amplifier     | SONOMA<br>INSTRUMENT | 310                                                                                             | 260833    | 2011/03/04 * 12                       |
| MSA-05      | Spectrum Analyzer | Advantest            | R3273                                                                                           | 160400285 | 2010/11/18 * 12                       |
| MLS-07      | LISN(AMN)         | Schwarzbeck          | NSLK8127                                                                                        | 8127364   | 2011/02/22 * 12                       |
| MTA-31      | Terminator        | TME                  | CT-01                                                                                           | -         | 2011/01/05 * 12                       |
| MAT-67      | Attenuator(13dB)  | JFW Industries, Inc. | 50FP-013H2 N                                                                                    | -         | 2011/02/22 * 12                       |
| MCC-113     | Coaxial cable     | J                    | 5D-<br>2W(10m)/SFM1<br>41(5m)/421-<br>010(1m)/sucofor<br>m141-<br>PE(1m)/RFM-<br>E121(Switcher) | -/04178   | 2010/07/21 * 12                       |

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Page 14 of 87

UL Japan, Inc. Head Office EMC Lab.

# 7. ANTENNA PORT TEST RESULTS

# 7.1. 802.11a MODE IN THE 5.2 GHz BAND

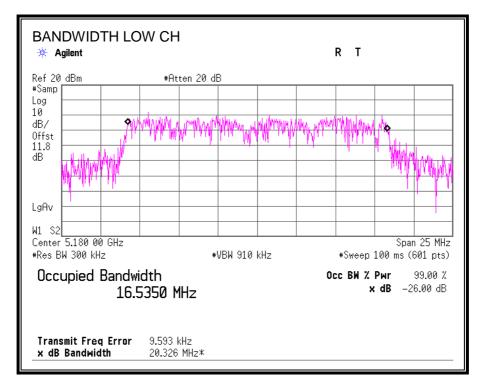
## 7.1.1. 26 dB and 99% BANDWIDTH

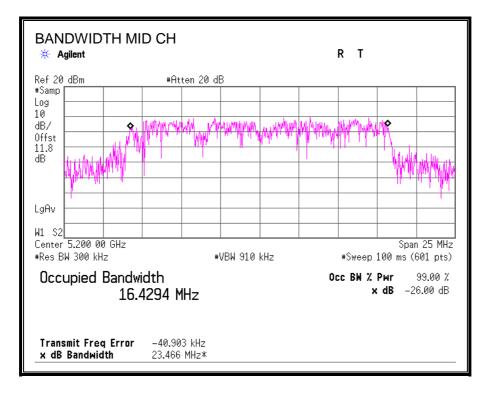
### LIMITS

None; for reporting purposes only.

### TEST PROCEDURE

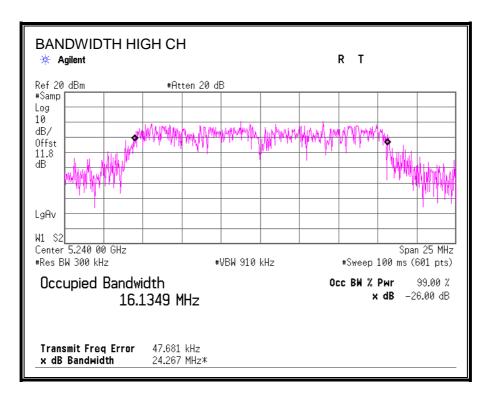
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


#### **RESULTS**


| Channel | Frequency | 26 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 5180      | 20.326          | 16.5350       |
| Middle  | 5200      | 23.466          | 16.4294       |
| High    | 5240      | 24.267          | 16.1349       |

Page 15 of 87

UL Japan, Inc. Head Office EMC Lab.


#### 26 dB & 99%BANDWIDTH





Page 16 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 17 of 87

UL Japan, Inc. Head Office EMC Lab.

### 7.1.2. OUTPUT POWER

#### **LIMITS**

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

#### RESULTS

#### FCC

Limit

| Channel | Frequency | Fixed | В      | 4 + 10 Log B | Limit |
|---------|-----------|-------|--------|--------------|-------|
|         |           | Limit |        | Limit        |       |
|         | (MHz)     | (dBm) | (MHz)  | (dBm)        | (dBm) |
| Low     | 5180      | 17    | 20.326 | 17.08        | 17    |
| Mid     | 5200      | 17    | 23.466 | 17.70        | 17    |
| High    | 5240      | 17    | 24.627 | 17.91        | 17    |

Results

| Channel | hannel Frequency |       | Limit | Margin |
|---------|------------------|-------|-------|--------|
|         | (MHz)            | (dBm) | (dBm) | (dB)   |
| Low     | 5180             | 11.70 | 17    | -5.30  |
| Mid     | 5200             | 11.45 | 17    | -5.55  |
| High    | 5240             | 11.27 | 17    | -5.73  |

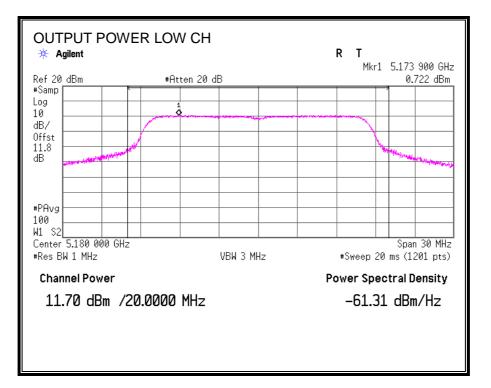
Page 18 of 87

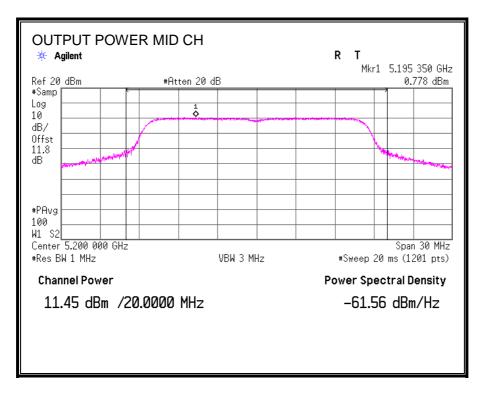
UL Japan, Inc. Head Office EMC Lab.

## IC

### Limit

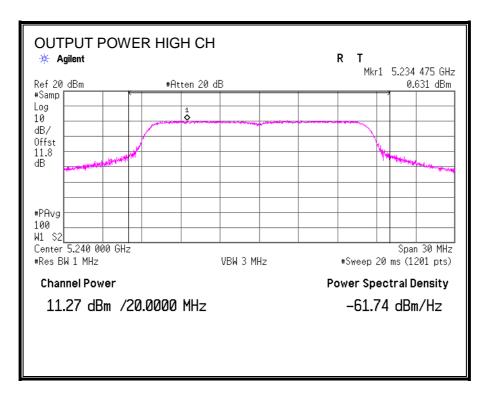
| Channel | Frequency | Fixed | В       | 11 + 10 Log B | Limit | EIRP  | 10 + 10 Log B | EIRP  |
|---------|-----------|-------|---------|---------------|-------|-------|---------------|-------|
|         |           | Limit |         | Limit         |       | Fixed | Limit         | Limit |
|         | (MHz)     | (dBm) | (MHz)   | (dBm)         | (dBm) | Limit | (dBm)         | (dBm) |
| Low     | 5180      | -     | 16.5350 | -             | -     | 23.01 | 22.18         | 22.18 |
| Mid     | 5200      | -     | 16.4294 | -             | -     | 23.01 | 22.16         | 22.16 |
| High    | 5240      | -     | 16.1349 | -             | -     | 23.01 | 22.08         | 22.08 |


#### Results


| Channel | Frequency | Power | Limit | Margin | Antenna    | EIRP       | EIRP        | Margin |
|---------|-----------|-------|-------|--------|------------|------------|-------------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   | Gain (dBi) | Power(dBm) | Limit (dBm) | (dB)   |
| Low     | 5180      | 11.70 | -     | -      | 0.15       | 11.85      | 22.18       | -10.33 |
| Mid     | 5200      | 11.45 | -     | -      | 0.15       | 11.60      | 22.16       | -10.56 |
| High    | 5240      | 11.27 | -     | -      | 0.15       | 11.42      | 22.08       | -10.66 |

Page 19 of 87

UL Japan, Inc. Head Office EMC Lab.


#### **OUTPUT POWER**





Page 20 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 21 of 87

UL Japan, Inc. Head Office EMC Lab.

### 7.1.3. PEAK POWER SPECTRAL DENSITY

#### **LIMITS**

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is equal to 0.15 dBi, therefore the limit is 4 dBm.

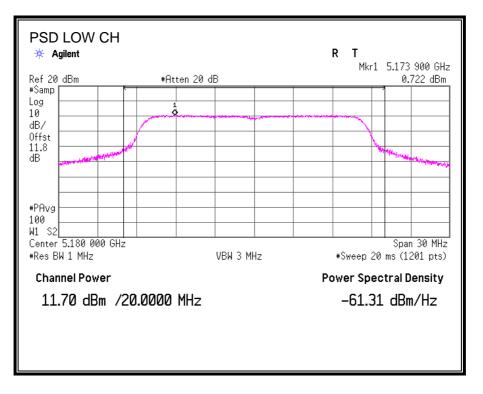
#### TEST PROCEDURE

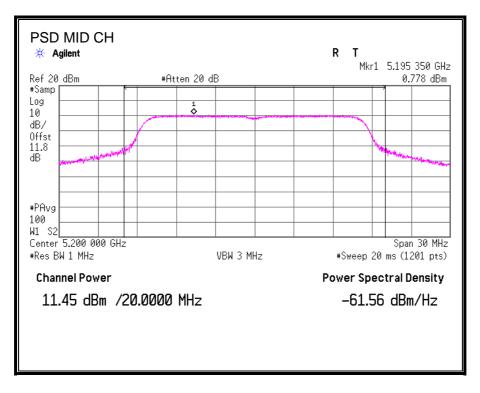
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

#### **RESULTS**

FCC

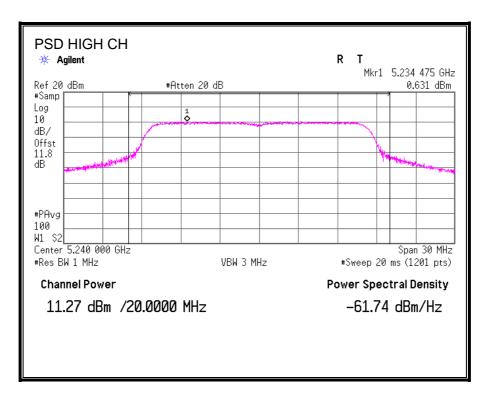
| Channel | Frequency | PPSD  | Limit | Margin |
|---------|-----------|-------|-------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |
| Low     | 5180      | 0.722 | 4.00  | -3.28  |
| Middle  | 5200      | 0.778 | 4.00  | -3.22  |
| High    | 5240      | 0.631 | 4.00  | -3.37  |


IC


| Channel | Frequency | PPSD  | Antenna   | EIRP      | Limit | Margin |
|---------|-----------|-------|-----------|-----------|-------|--------|
|         | (MHz)     | (dBm) | Gain(dBi) | PPSD(dBm) | (dBm) | (dB)   |
| Low     | 5180      | 0.722 | 0.15      | 0.87      | 10    | -9.128 |
| Middle  | 5200      | 0.778 | 0.15      | 0.93      | 10    | -9.072 |
| High    | 5240      | 0.631 | 0.15      | 0.78      | 10    | -9.219 |

#### Page 22 of 87

UL Japan, Inc. Head Office EMC Lab.


#### **POWER SPECTRAL DENSITY**





Page 23 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 24 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.1.4. PEAK EXCURSION

### **LIMITS**

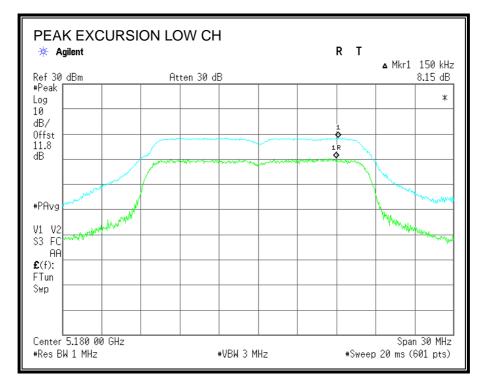
FCC §15.407 (a) (6)

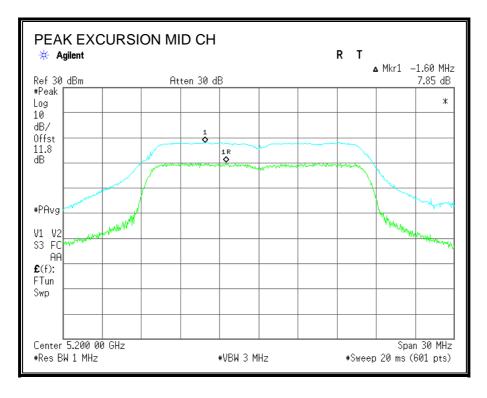
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

#### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

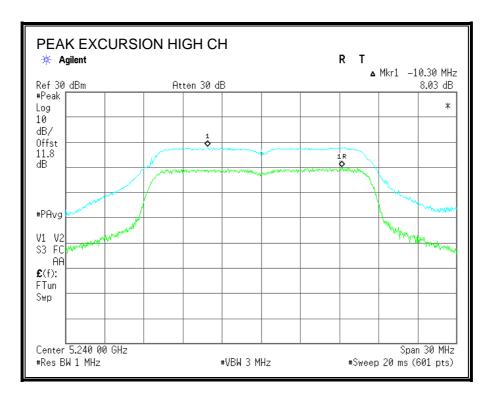
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


#### **RESULTS**


| Channel | Frequency | Peak Excursion | Limit | Margin |
|---------|-----------|----------------|-------|--------|
|         | (MHz)     | (dB)           | (dB)  | (dB)   |
| Low     | 5180      | 8.15           | 13    | -4.85  |
| Middle  | 5200      | 7.85           | 13    | -5.15  |
| High    | 5240      | 8.03           | 13    | -4.97  |

Page 25 of 87

UL Japan, Inc. Head Office EMC Lab.


#### PEAK EXCURSION





Page 26 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 27 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.1.5. CONDUCTED SPURIOUS EMISSIONS

#### LIMITS

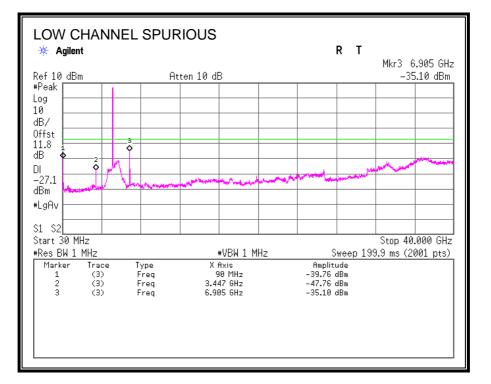
FCC §15.407 (b) (1)

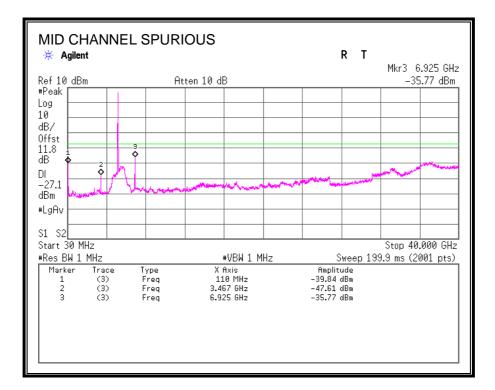
IC RSS-210 A9.2 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

#### TEST PROCEDURE

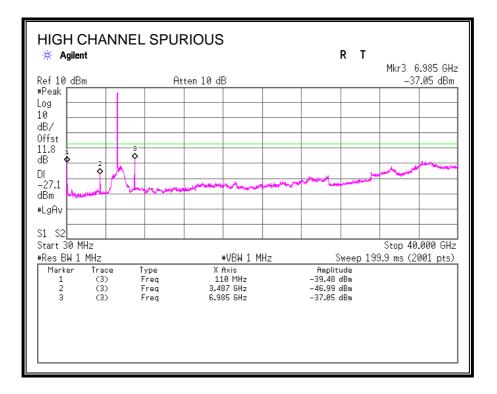
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Page 28 of 87

UL Japan, Inc. Head Office EMC Lab.


#### SPURIOUS EMISSIONS





Page 29 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 30 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.2. 802.11a MODE IN THE 5.3 GHz BAND

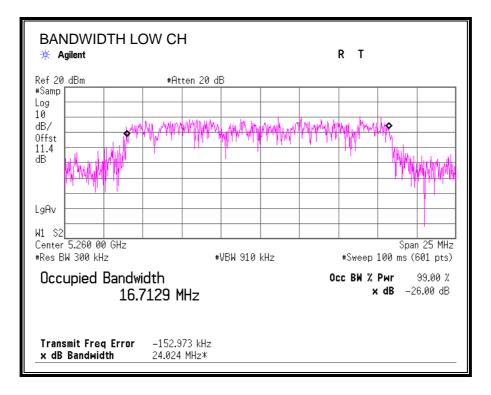
### 7.2.1. 26 dB and 99% BANDWIDTH

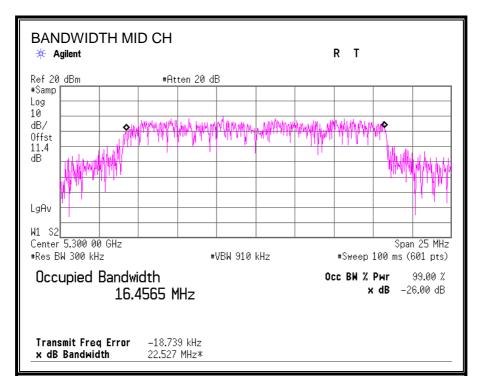
### <u>LIMITS</u>

None; for reporting purposes only.

#### TEST PROCEDURE

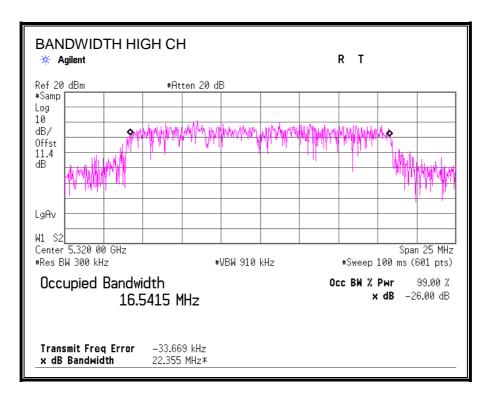
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


#### **RESULTS**


| Channel | Frequency | 26 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 5260      | 24.024          | 16.7129       |
| Middle  | 5300      | 22.527          | 16.4565       |
| High    | 5320      | 22.355          | 16.5415       |

Page 31 of 87

UL Japan, Inc. Head Office EMC Lab.


### 26 dB and 99% BANDWIDTH





Page 32 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 33 of 87

UL Japan, Inc. Head Office EMC Lab.

### 7.2.2. OUTPUT POWER

#### **LIMITS**

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

#### **RESULTS**

FCC

Limit

| Channel | Frequency | Fixed | В      | 11 + 10 Log B | Limit |
|---------|-----------|-------|--------|---------------|-------|
|         |           | Limit |        | Limit         |       |
|         | (MHz)     | (dBm) | (MHz)  | (dBm)         | (dBm) |
| Low     | 5260      | 24    | 24.024 | 24.81         | 24    |
| Mid     | 5300      | 24    | 22.527 | 24.53         | 24    |
| High    | 5320      | 24    | 22.355 | 24.49         | 24    |

Results

| Channel | Frequency | Power | Limit | Margin |  |
|---------|-----------|-------|-------|--------|--|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |  |
| Low     | 5260      | 10.98 | 24    | -13.02 |  |
| Mid     | 5300      | 10.73 | 24    | -13.27 |  |
| High    | 5320      | 11.25 | 24    | -12.75 |  |

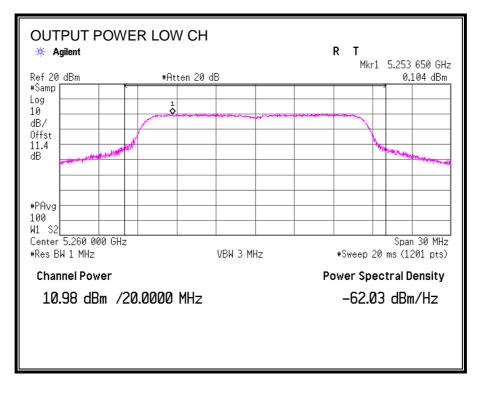
Page 34 of 87

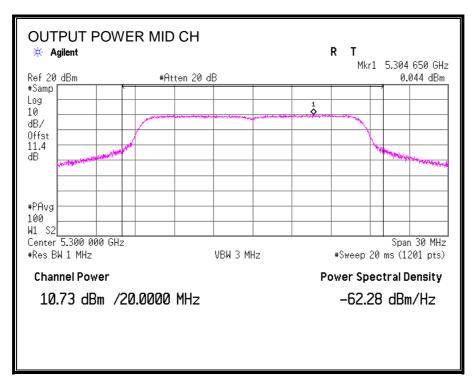
UL Japan, Inc. Head Office EMC Lab.

#### IC

Limit

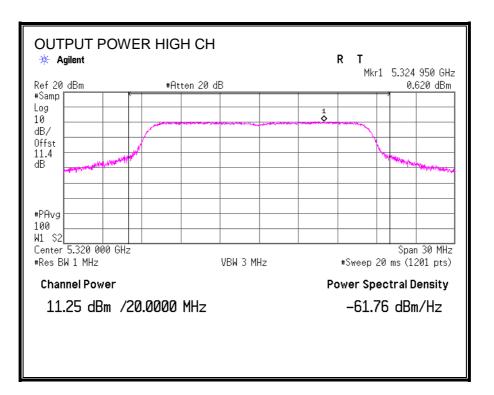
| Channel | Frequency | Fixed | В       | 11 + 10 Log B | Limit | EIRP  | 17 + 10 Log B | EIRP  |
|---------|-----------|-------|---------|---------------|-------|-------|---------------|-------|
|         |           | Limit |         | Limit         |       | Fixed | Limit         | Limit |
|         | (MHz)     | (dBm) | (MHz)   | (dBm)         | (dBm) | Limit | (dBm)         | (dBm) |
| Low     | 5260      | 24    | 16.7129 | 23.23         | 23.23 | 30.00 | 29.23         | 29.23 |
| Mid     | 5300      | 24    | 16.4565 | 23.16         | 23.16 | 30.00 | 29.16         | 29.16 |
| High    | 5320      | 24    | 16.5415 | 23.19         | 23.19 | 30.00 | 29.19         | 29.19 |


#### Results


| Channel | Frequency | Power | Limit | Margin | Antenna    | EIRP       | EIRP        | Margin |
|---------|-----------|-------|-------|--------|------------|------------|-------------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   | Gain (dBi) | Power(dBm) | Limit (dBm) | (dB)   |
| Low     | 5260      | 10.98 | 23.23 | -12.25 | 0.15       | 11.13      | 29.23       | -18.10 |
| Mid     | 5300      | 10.73 | 23.16 | -12.43 | 0.15       | 10.88      | 29.16       | -18.28 |
| High    | 5320      | 11.25 | 23.19 | -11.94 | 0.15       | 11.40      | 29.19       | -17.79 |

Page 35 of 87

UL Japan, Inc. Head Office EMC Lab.


#### **OUTPUT POWER**





Page 36 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 37 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.2.3 PEAK POWER SPECTRAL DENSITY

### LIMITS

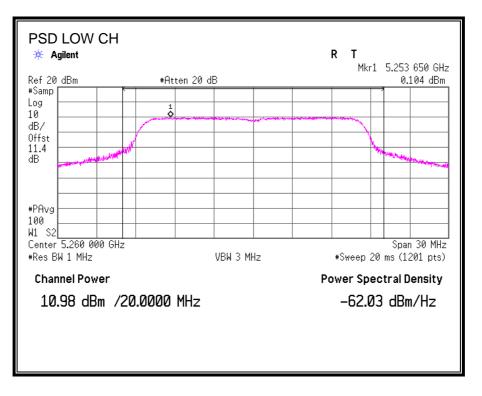
FCC §15.407 (a) (2)

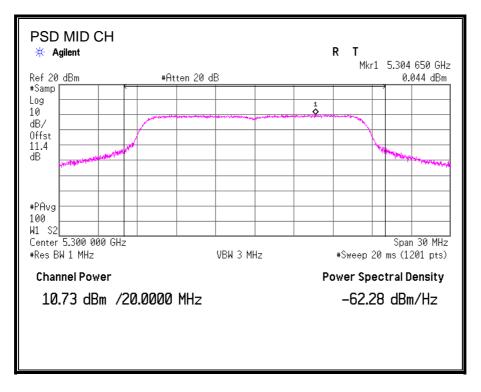
IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### TEST PROCEDURE

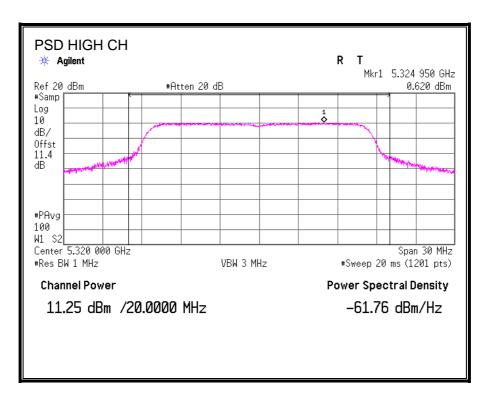
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


### **RESULTS**


| Channel | Frequency | PPSD  | Limit | Margin |
|---------|-----------|-------|-------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |
| Low     | 5260      | 0.104 | 11    | -10.90 |
| Middle  | 5300      | 0.044 | 11    | -10.96 |
| High    | 5320      | 0.620 | 11    | -10.38 |

Page 38 of 87

UL Japan, Inc. Head Office EMC Lab.


### **POWER SPECTRAL DENSITY**





Page 39 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 40 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.2.5 PEAK EXCURSION

### <u>LIMITS</u>

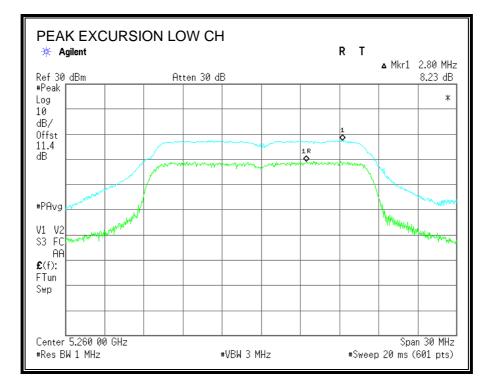
FCC §15.407 (a) (6)

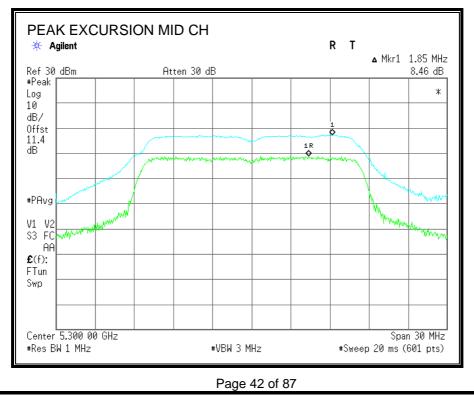
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

### TEST PROCEDURE

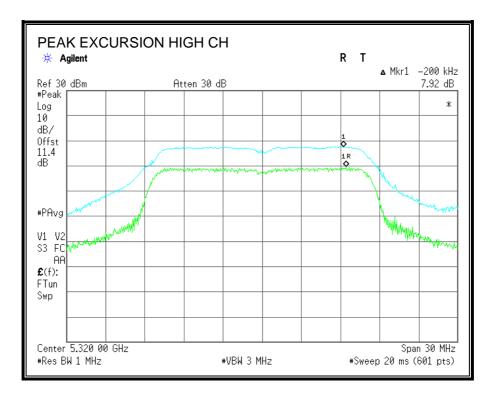
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


### **RESULTS**


| Channel | Frequency | Peak Excursion | Limit | Margin |
|---------|-----------|----------------|-------|--------|
|         | (MHz)     | (dB)           | (dB)  | (dB)   |
| Low     | 5260      | 8.23           | 13    | -4.77  |
| Middle  | 5300      | 8.46           | 13    | -4.54  |
| High    | 5320      | 7.92           | 13    | -5.08  |

Page 41 of 87


UL Japan, Inc. Head Office EMC Lab.

### PEAK EXCURSION





UL Japan, Inc. Head Office EMC Lab.



Page 43 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.2.6 CONDUCTED SPURIOUS EMISSIONS

### **LIMITS**

FCC §15.407 (b) (2)

IC RSS-210 A9.2 (2)

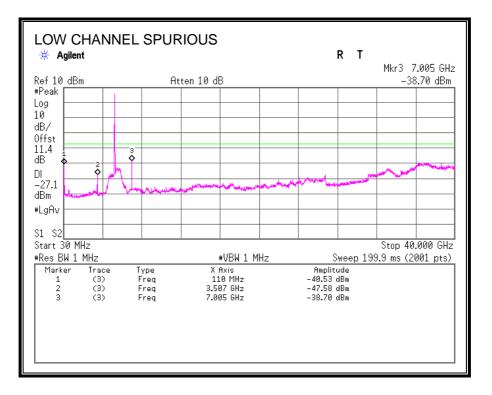
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

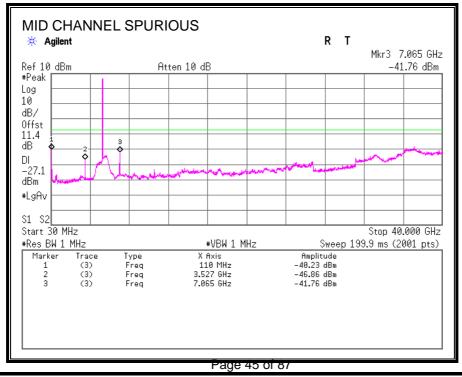
Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

## TEST PROCEDURE

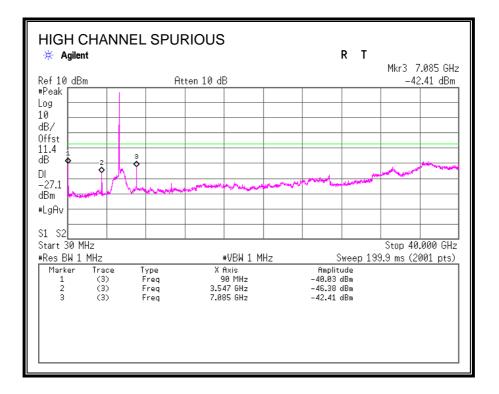
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Page 44 of 87

UL Japan, Inc. Head Office EMC Lab.


### RESULTS

### SPURIOUS EMISSIONS





UL Japan, Inc. Head Office EMC Lab.



Page 46 of 87

UL Japan, Inc. Head Office EMC Lab.

# 7.3. 802.11a MODE IN THE 5.6 GHz BAND

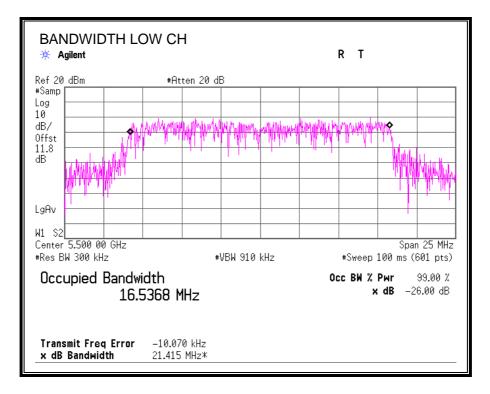
## 7.3.1. 26 dB and 99% BANDWIDTH

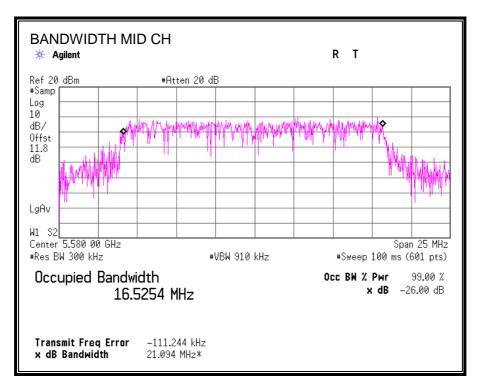
### LIMITS

None; for reporting purposes only.

### TEST PROCEDURE

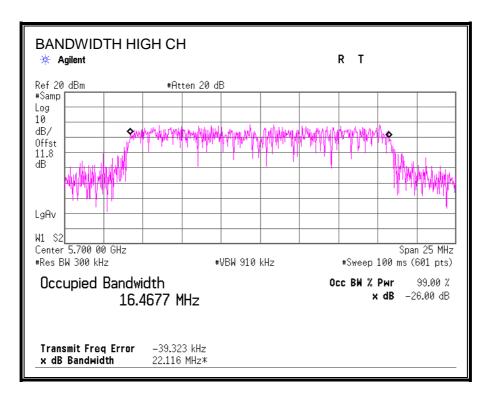
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


### **RESULTS**


| Channel | Frequency | 26 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 5500      | 21.415          | 16.5368       |
| Middle  | 5580      | 21.094          | 16.5254       |
| High    | 5700      | 22.116          | 16.4677       |

Page 47 of 87

UL Japan, Inc. Head Office EMC Lab.


## 26 dB and 99% BANDWIDTH





Page 48 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 49 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.3.2. OUTPUT POWER

### **LIMITS**

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

### **RESULTS**

FCC

Limit

| Channel | Frequency | Fixed | В      | 11 + 10 Log B | Limit |
|---------|-----------|-------|--------|---------------|-------|
|         |           | Limit |        | Limit         |       |
|         | (MHz)     | (dBm) | (MHz)  | (dBm)         | (dBm) |
| Low     | 5500      | 24    | 21.415 | 24.31         | 24    |
| Mid     | 5580      | 24    | 21.094 | 24.24         | 24    |
| High    | 5700      | 24    | 22.116 | 24.45         | 24    |

Results

| Channel | Frequency | Power | Limit | Margin |
|---------|-----------|-------|-------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |
| Low     | 5500      | 10.87 | 24    | -13.13 |
| Mid     | 5580      | 12.37 | 24    | -11.63 |
| High    | 5700      | 10.56 | 24    | -13.44 |

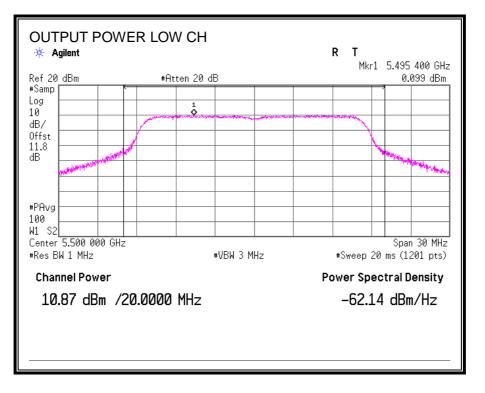
Page 50 of 87

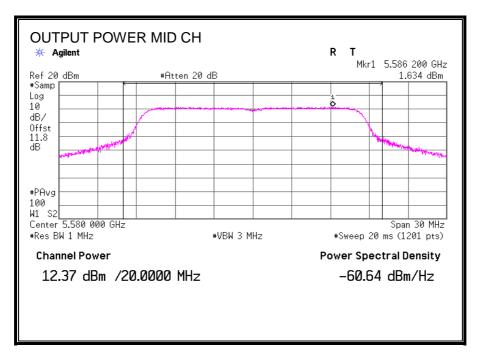
UL Japan, Inc. Head Office EMC Lab.

### IC

Limit

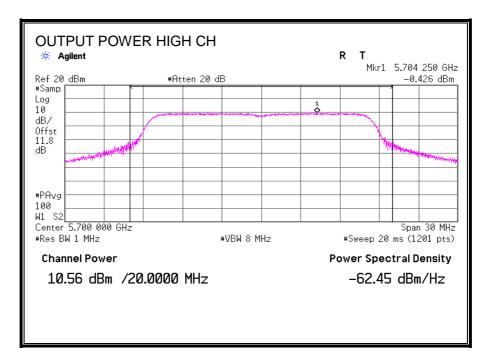
| Channel | Frequency | Fixed | В       | 11 + 10 Log B | Limit | EIRP  | 17 + 10 Log B | EIRP  |
|---------|-----------|-------|---------|---------------|-------|-------|---------------|-------|
|         |           | Limit |         | Limit         |       | Fixed | Limit         | Limit |
|         | (MHz)     | (dBm) | (MHz)   | (dBm)         | (dBm) | Limit | (dBm)         | (dBm) |
| Low     | 5500      | 24    | 16.5368 | 23.18         | 23.18 | 30.00 | 29.18         | 29.18 |
| Mid     | 5580      | 24    | 16.5254 | 23.18         | 23.18 | 30.00 | 29.18         | 29.18 |
| High    | 5700      | 24    | 16.4677 | 23.17         | 23.17 | 30.00 | 29.17         | 29.17 |


### Results


| Channel | Frequency | Power | Limit | Margin | Antenna    | EIRP       | EIRP        | Margin |
|---------|-----------|-------|-------|--------|------------|------------|-------------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   | Gain (dBi) | Power(dBm) | Limit (dBm) | (dB)   |
| Low     | 5500      | 10.87 | 23.18 | -12.31 | 0.65       | 11.52      | 29.18       | -17.66 |
| Mid     | 5580      | 12.37 | 23.18 | -10.81 | 0.65       | 13.02      | 29.18       | -16.16 |
| High    | 5700      | 10.56 | 23.17 | -12.61 | 0.65       | 11.21      | 29.17       | -17.96 |

Page 51 of 87

UL Japan, Inc. Head Office EMC Lab.


### **OUTPUT POWER**





Page 52 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 53 of 87

UL Japan, Inc. Head Office EMC Lab.

### PEAK POWER SPECTRAL DENSITY

### LIMITS

FCC §15.407 (a) (2)

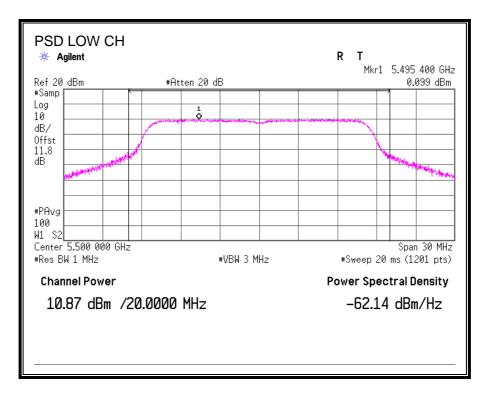
IC RSS-210 A9.2 (3)

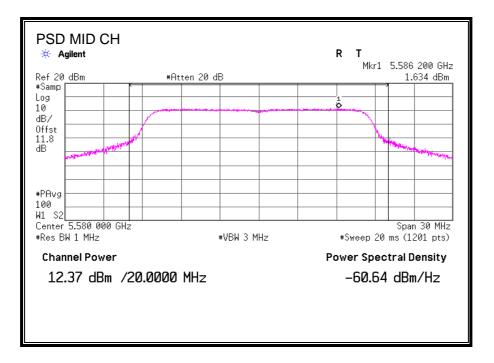
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.

### TEST PROCEDURE

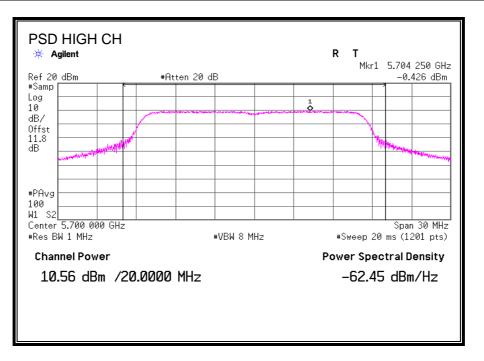
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


### **RESULTS**


| Channel | Frequency | PPSD   | Limit | Margin |
|---------|-----------|--------|-------|--------|
|         | (MHz)     | (dBm)  | (dBm) | (dB)   |
| Low     | 5500      | 0.099  | 11    | -10.90 |
| Middle  | 5580      | 1.634  | 11    | -9.37  |
| High    | 5700      | -0.426 | 11    | -11.43 |

Page 54 of 87

UL Japan, Inc. Head Office EMC Lab.


### **POWER SPECTRAL DENSITY**





Page 55 of 87

UL Japan, Inc. Head Office EMC Lab.



Page 56 of 87

UL Japan, Inc. Head Office EMC Lab.

## 7.3.3. PEAK EXCURSION

### **LIMITS**

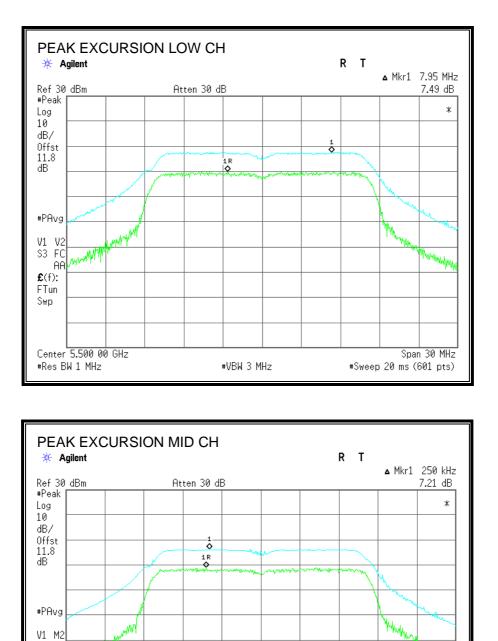
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

### TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


### **RESULTS**

| Channel | Frequency | Peak Excursion | Limit | Margin |
|---------|-----------|----------------|-------|--------|
|         | (MHz)     | (dB)           | (dB)  | (dB)   |
| Low     | 5500      | 7.49           | 13    | -5.51  |
| Middle  | 5580      | 7.21           | 13    | -5.79  |
| High    | 5700      | 7.91           | 13    | -5.09  |

Page 57 of 87

UL Japan, Inc. Head Office EMC Lab.

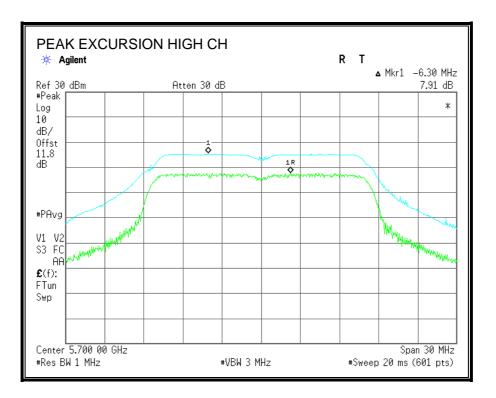
### PEAK EXCURSION



Page 58 of 87

#VBW 3 MHz

Span 30 MHz


#Sweep 20 ms (601 pts)

UL Japan, Inc. Head Office EMC Lab.

Center 5.580 00 GHz #Res BW 1 MHz

\$3 FC

AA £(f): FTun Swp der All



Page 59 of 87

UL Japan, Inc. Head Office EMC Lab.

# 7.3.4. CONDUCTED SPURIOUS EMISSIONS

### LIMITS

FCC §15.407 (b) (3)

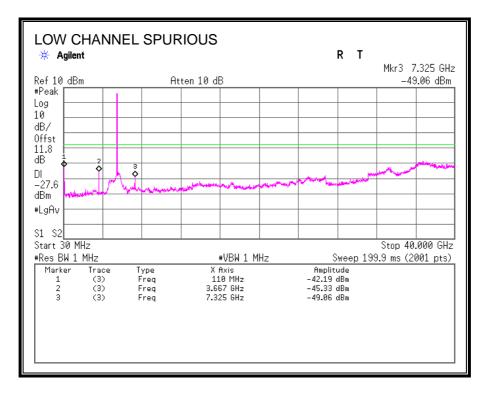
IC RSS-210 A9.2 (3)

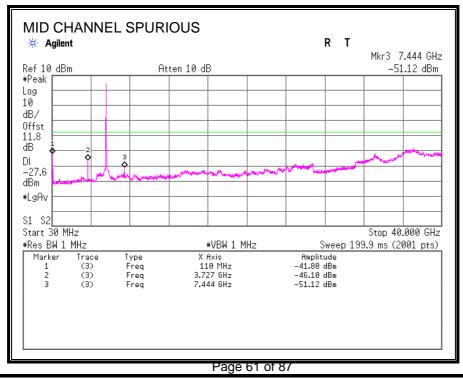
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

### TEST PROCEDURE

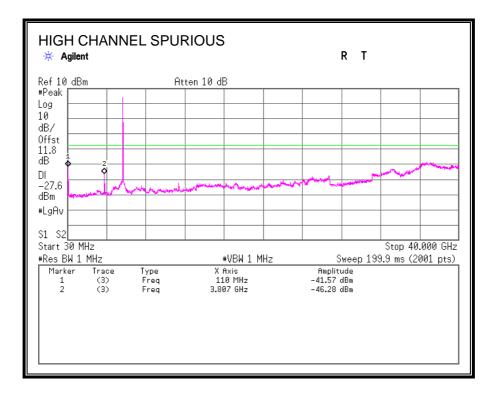
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Page 60 of 87

UL Japan, Inc. Head Office EMC Lab.


### **RESULTS**

### SPURIOUS EMISSIONS





UL Japan, Inc. Head Office EMC Lab.



Page 62 of 87

UL Japan, Inc. Head Office EMC Lab.

# 8. RADIATED TEST RESULTS

# 8.1. LIMITS AND PROCEDURE

## LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.5 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

### TEST PROCEDURE

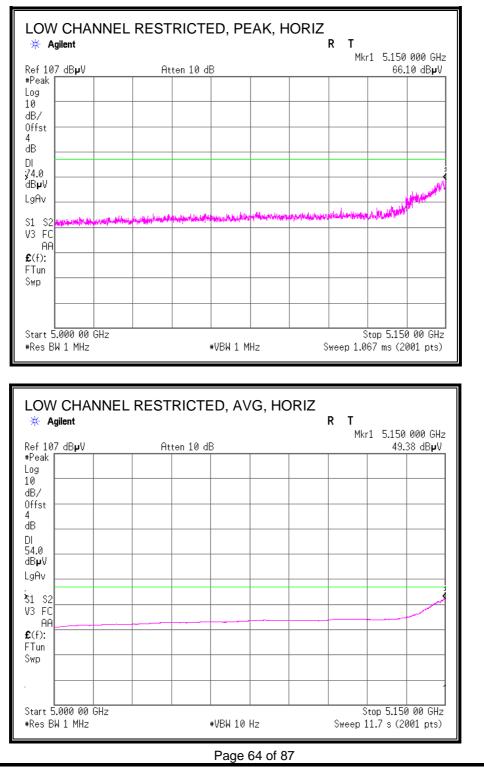
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

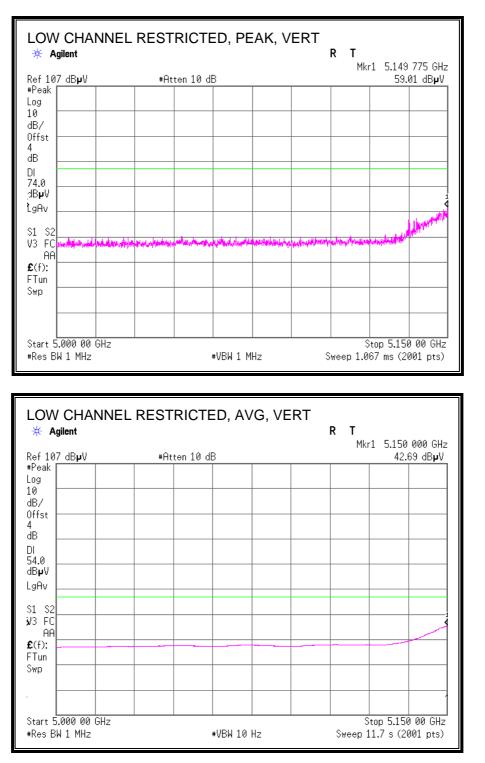
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


Page 63 of 87

UL Japan, Inc. Head Office EMC Lab.

# 8.2. TRANSMITTER ABOVE 1 GHz


## 8.2.1. 802.11a MODE IN THE LOWER 5.2 GHz BAND

### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**



UL Japan, Inc. Head Office EMC Lab.

### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**



Page 65 of 87

UL Japan, Inc. Head Office EMC Lab.

### HARMONICS AND SPURIOUS EMISSIONS

| Test place<br>Report No. | Head Office EMC Lab<br>31KE0135-SH-B | . No.4 Semi Anechoic Chamber |
|--------------------------|--------------------------------------|------------------------------|
| Date                     | 06/20/2011                           | 06/21/2011                   |
| Temperature/ Humidity    | 24 deg. C / 62% RH                   | 24 deg. C / 62% RH           |
| Engineer                 | Takayuki Shimada                     | Takumi Shimada               |
|                          | (1-10GHz)                            | (Above 10GHz)                |
| Mode                     | 11a Tx, 5.2GHz Band                  | , Legacy                     |

### LOW CH(5180MHz)

| 2011 01  |           |          |         |          |      |      |          |          | _      |                     |        |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5150.000  | PK       | 63.6    | 31.6     | 3.8  | 31.4 | 67.6     | 68.2     | -0.6   | Bandedge            |        |
| Hori     | 6906.600  | PK       | 56.8    | 35.2     | 4.5  | 32.3 | 64.2     | 68.2     | -4.0   | Outside             |        |
| Hori     | 10360.000 | PK       | 64.3    | 38.9     | -2.0 | 33.3 | 67.9     | 68.2     | -0.3   | Outside             |        |
| Hori     | 15540.000 | PK       | 46.8    | 39.3     | -0.9 | 32.7 | 52.5     | 74.0     | -21.5  | Inside              |        |
| Hori     | 5150.000  | AV       | 47.2    | 31.6     | 3.8  | 31.4 | 51.2     | 54.0     | -2.8   | Bandedge            |        |
| Hori     | 15540.000 | AV       | 35.3    | 39.3     | -0.9 | 32.7 | 41.0     | 54.0     | -13.0  | Inside              |        |
| Vert     | 5150.000  | PK       | 57.0    | 31.6     | 3.8  | 31.4 | 61.0     | 68.2     | -7.2   | Bandedge            |        |
| Vert     | 6906.600  | PK       | 56.5    | 35.2     | 4.5  | 32.3 | 63.9     | 68.2     | -4.3   | Outside             |        |
| Vert     | 10360.000 | PK       | 63.2    | 38.9     | -2.0 | 33.3 | 66.8     | 68.2     | -1.4   | Outside             |        |
| Vert     | 15540.000 | PK       | 45.7    | 39.3     | -0.9 | 32.7 | 51.4     | 74.0     | -22.6  | Inside              |        |
| Vert     | 5150.000  | AV       | 40.2    | 31.6     | 3.8  | 31.4 | 44.2     | 54.0     | -9.8   | Bandedge            |        |
| Vert     | 15540.000 | AV       | 34.3    | 39.3     | -0.9 | 32.7 | 40.0     | 54.0     | -14.0  | Inside              |        |

### MID CH(5200MHz)

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 6933.280  | PK       | 55.7    | 35.2     | 4.5  | 32.3 | 63.1     | 68.2     | -5.1   | Outside             |        |
| Hori     | 10400.000 | PK       | 64.0    | 38.9     | -2.0 | 33.3 | 67.6     | 68.2     | -0.6   | Outside             |        |
| Hori     | 15600.000 | PK       | 47.0    | 39.1     | -0.9 | 32.7 | 52.5     | 74.0     | -21.5  | Inside              |        |
| Hori     | 15600.000 | AV       | 35.2    | 39.1     | -0.9 | 32.7 | 40.7     | 54.0     | -13.3  | Inside              |        |
| Vert     | 6933.280  | PK       | 55.0    | 35.2     | 4.5  | 32.3 | 62.4     | 68.2     | -5.8   | Outside             |        |
| Vert     | 10400.000 | PK       | 63.0    | 38.9     | -2.0 | 33.3 | 66.6     | 68.2     | -1.6   | Outside             |        |
| Vert     | 15600.000 | PK       | 46.2    | 39.1     | -0.9 | 32.7 | 51.7     | 74.0     | -22.3  | Inside              |        |
| Vert     | 15600.000 | AV       | 34.2    | 39.1     | -0.9 | 32.7 | 39.7     | 54.0     | -14.3  | Inside              |        |

### HI CH(5240MHz)

| Frequency | Detector                                                                                       | Reading | Ant.Fac.                                                                                                                                                                                                                                                                                                                                | Loss                                                                                                                                                                                                                                                                                                                                                                                               | Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inside or Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [MHz]     |                                                                                                | [dBuV]  | [dB/m]                                                                                                                                                                                                                                                                                                                                  | [dB]                                                                                                                                                                                                                                                                                                                                                                                               | [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [dBuV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [dBuV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Restricted Bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6986.642  | PK                                                                                             | 54.3    | 35.3                                                                                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                                                                                                                                                                | 32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10480.000 | PK                                                                                             | 63.3    | 39.1                                                                                                                                                                                                                                                                                                                                    | -2.0                                                                                                                                                                                                                                                                                                                                                                                               | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15720.000 | PK                                                                                             | 45.8    | 38.6                                                                                                                                                                                                                                                                                                                                    | -1.0                                                                                                                                                                                                                                                                                                                                                                                               | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15720.000 | AV                                                                                             | 34.6    | 38.6                                                                                                                                                                                                                                                                                                                                    | -1.0                                                                                                                                                                                                                                                                                                                                                                                               | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6986.642  | PK                                                                                             | 53.9    | 35.3                                                                                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                                                                                                                                                                | 32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10480.000 | PK                                                                                             | 62.9    | 39.1                                                                                                                                                                                                                                                                                                                                    | -2.0                                                                                                                                                                                                                                                                                                                                                                                               | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15720.000 | PK                                                                                             | 45.6    | 38.6                                                                                                                                                                                                                                                                                                                                    | -1.0                                                                                                                                                                                                                                                                                                                                                                                               | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15720.000 | AV                                                                                             | 34.0    | 38.6                                                                                                                                                                                                                                                                                                                                    | -1.0                                                                                                                                                                                                                                                                                                                                                                                               | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | [MHz]<br>6986.642<br>10480.000<br>15720.000<br>15720.000<br>6986.642<br>10480.000<br>15720.000 |         | [MHz]         [dBuV]           6986.642         PK         54.3           10480.000         PK         63.3           15720.000         PK         45.8           15720.000         PK         45.8           10480.000         PK         53.9           10480.000         PK         62.9           15720.000         PK         45.6 | 6986.642         PK         54.3         35.3           10480.000         PK         63.3         39.1           15720.000         PK         45.8         38.6           15720.000         AV         34.6         38.6           6986.642         PK         53.9         35.3           10480.000         PK         62.9         39.1           15720.000         PK         45.8         38.6 | [MHz]         [dBuV]         [dB/m]         [dB]           6986.642         PK         54.3         35.3         4.6           10480.000         PK         63.3         39.1         -2.0           15720.000         PK         45.8         38.6         -1.0           15720.000         PK         53.9         35.3         4.6           0986.642         PK         53.9         35.3         4.6           10420.000         PK         62.9         39.1         -2.0           15720.000         PK         62.9         39.1         -2.0           15720.000         PK         45.6         38.6         -1.0 | [MHz]         [dBuV]         [dB/m]         [dB]         [dB]           6986.642         PK         54.3         35.3         4.6         32.3           10480.000         PK         63.3         39.1         -2.0         33.3           15720.000         PK         45.8         38.6         -1.0         32.7           15720.000         AV         34.6         38.6         -1.0         32.7           6986.642         PK         53.9         35.3         4.6         32.7           10480.000         PK         62.9         39.1         -2.0         33.3           15720.000         PK         62.9         39.1         -2.0         33.3           15720.000         PK         45.6         38.6         -1.0         32.7 | [MHz]         [dBuV]         [dB/m]         [dB]         [dB]         [dBUV/m]           6986.642         PK         54.3         35.3         4.6         32.3         61.9           10480.000         PK         63.3         39.1         -2.0         33.3         67.1           15720.000         PK         45.8         38.6         -1.0         32.7         50.7           15720.000         PK         53.9         35.3         4.6         32.3         61.5           10480.000         PK         62.9         39.1         -2.0         33.3         67.1           15720.000         PK         53.9         35.3         4.6         32.3         61.5           10480.000         PK         62.9         39.1         -2.0         33.3         66.7           15720.000         PK         45.6         38.6         -1.0         32.7         50.5 | [MHz]         [dBuV]         [dBMm]         [dB]         [dBUV/m]         [dBuV/m]         [dBuV/m]           6986.642         PK         54.3         35.3         4.6         32.3         61.9         68.2           10480.000         PK         63.3         39.1         -2.0         33.3         67.1         68.2           15720.000         PK         45.8         38.6         -1.0         32.7         50.7         74.0           15720.000         AV         34.6         38.6         -1.0         32.7         56.5         68.2           10480.000         PK         63.9         35.3         4.6         32.3         61.5         68.2           10480.000         PK         62.9         35.3         4.6         32.3         61.5         68.2           10480.000         PK         62.9         39.1         -2.0         33.3         66.7         68.2           15720.000         PK         45.6         38.6         -1.0         32.7         50.5         74.0 | [MHz]         [dBuV]         [dB/m]         [dB]         [dB]         [dBUV/m]         [dBU/m]         [dB]           6986.642         PK         54.3         35.3         4.6         32.3         61.9         68.2         -6.3           10480.000         PK         63.3         39.1         -2.0         33.3         67.1         68.2         -1.1           15720.000         PK         45.8         38.6         -1.0         32.7         50.7         74.0         -23.3           15720.000         PK         53.9         35.3         4.6         32.3         66.7         698.642         PK         53.9         35.3         4.6         32.3         66.7         68.2         -6.7           10480.000         PK         62.9         39.1         -2.0         33.3         66.7         68.2         -6.7           10480.000         PK         62.9         39.1         -2.0         33.3         66.7         68.2         -1.7           15720.000         PK         45.6         38.6         -1.0         32.7         50.5         74.0         -23.5 | [MHz]         [dBuv]         [dB]         [dB]         [dBV/m]         [dBV/m]         [dB]         pf Restricted Bands           6986.642         PK         54.3         35.3         4.6         32.3         61.9         68.2         -6.3         Outside           10480.000         PK         63.3         39.1         -2.0         33.3         67.1         68.2         -1.1         Outside           15720.000         PK         45.8         38.6         -1.0         32.7         50.7         74.0         -23.3         Inside           15720.000         PK         45.8         38.6         -1.0         32.7         39.5         54.0         -14.5         Inside           6986.642         PK         53.9         35.3         4.6         32.3         61.5         68.2         -6.7         Outside           10480.000         PK         62.9         39.1         -2.0         33.3         66.7         68.2         -1.5         Outside           10480.000         PK         62.9         39.1         -2.0         33.3         66.7         68.2         -1.5         Outside           15720.000         PK         45.6         38.6         -1 |

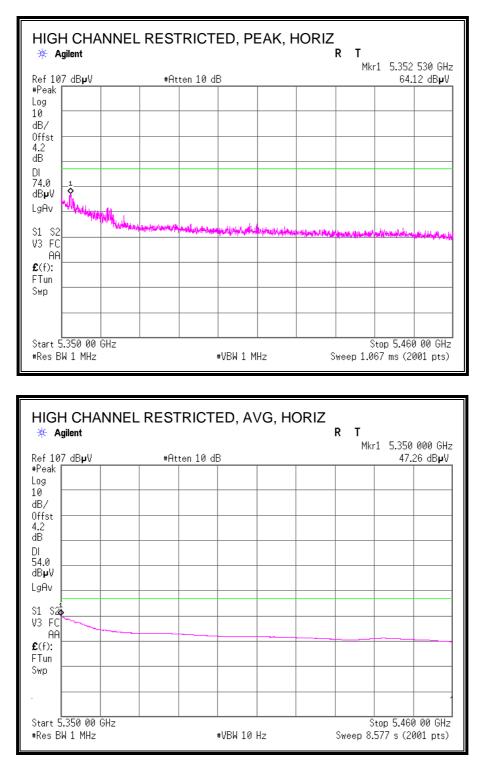
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

 With the terminal was not seen so the result was its base noise level.

 Distance factor:
 10GHz-26.5GHz

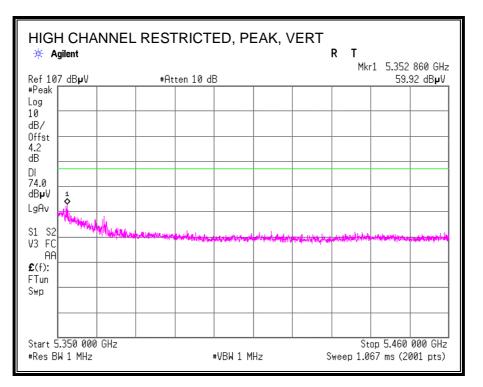
 20log(3.0m/1.0m)=
 9.5dB

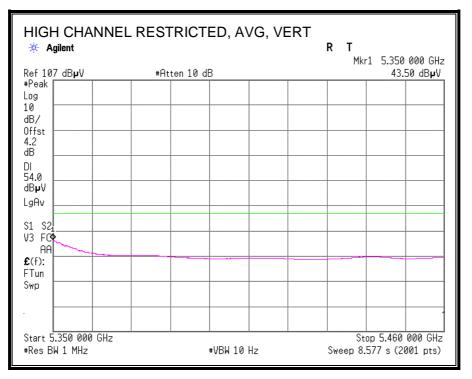

 26.5GHz-40GHz
 20log(3.0m/0.5m)=15.6dB

Page 66 of 87

UL Japan, Inc. Head Office EMC Lab.

## 8.2.2. 802.11a MODE IN THE UPPER 5.3 GHz BAND


### **RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)**




Page 67 of 87

UL Japan, Inc. Head Office EMC Lab.

### **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**





Page 68 of 87

UL Japan, Inc. Head Office EMC Lab.

### HARMONICS AND SPURIOUS EMISSIONS

| Test place<br>Report No. | Head Office EMC Lab<br>31KE0135-SH-B | . No.4 Semi Anechoic Chamber |
|--------------------------|--------------------------------------|------------------------------|
| Date                     | 06/20/2011                           | 06/21/2011                   |
| Temperature/ Humidity    | 24 deg. C / 62% RH                   | 24 deg. C / 62% RH           |
| Engineer                 | Takayuki Shimada                     | Takumi Shimada               |
|                          | (1-10GHz)                            | (Above 10GHz)                |
| Mode                     | 11a Tx, 5.3GHz Band                  | , Legacy                     |

### LOW CH(5260MHz)

| LOW OIL  |           |          |         |          |      |      |          |          |        |                     |        |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 7013.265  | PK       | 53.6    | 35.4     | 4.6  | 32.3 | 61.3     | 68.2     | -6.9   | Outside             |        |
| Hori     | 10520.000 | PK       | 62.1    | 39.1     | -2.0 | 33.3 | 65.9     | 68.2     | -2.3   | Outside             |        |
| Hori     | 15780.000 | PK       | 47.4    | 38.4     | -1.0 | 32.7 | 52.1     | 74.0     | -21.9  | Inside              |        |
| Hori     | 15780.000 | AV       | 34.5    | 38.4     | -1.0 | 32.7 | 39.2     | 54.0     | -14.8  | Inside              |        |
| Vert     | 7013.265  | PK       | 53.1    | 35.4     | 4.6  | 32.3 | 60.8     | 68.2     | -7.4   | Outside             |        |
| Vert     | 10520.000 | PK       | 61.2    | 39.1     | -2.0 | 33.3 | 65.0     | 68.2     | -3.2   | Outside             |        |
| Vert     | 15780.000 | PK       | 47.0    | 38.4     | -1.0 | 32.7 | 51.7     | 74.0     | -22.3  | Inside              |        |
| Vert     | 15780.000 | AV       | 34.4    | 38.4     | -1.0 | 32.7 | 39.1     | 54.0     | -14.9  | Inside              |        |

| MID CH(  | MID CH(5300MHz) |          |         |          |      |      |          |          |        |                     |        |  |
|----------|-----------------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|--|
| Polarity | Frequency       | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |  |
|          | [MHz]           |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |  |
| Hori     | 7066.592        | PK       | 52.0    | 35.5     | 4.6  | 32.4 | 59.7     | 68.2     | -8.5   | Outside             |        |  |
| Hori     | 10600.000       | PK       | 60.4    | 39.2     | -1.9 | 33.3 | 64.4     | 74.0     | -9.6   | Inside              |        |  |
| Hori     | 15900.000       | PK       | 47.2    | 38.0     | -0.8 | 32.6 | 51.8     | 74.0     | -22.2  | Inside              |        |  |
| Hori     | 10600.000       | AV       | 49.2    | 39.2     | -1.9 | 33.3 | 53.2     | 54.0     | -0.8   | Inside              |        |  |
| Hori     | 15900.000       | AV       | 34.7    | 38.0     | -0.8 | 32.6 | 39.3     | 54.0     | -14.7  | Inside              |        |  |
| Vert     | 7066.592        | PK       | 50.8    | 35.5     | 4.6  | 32.4 | 58.5     | 68.2     | -9.7   | Outside             |        |  |
| Vert     | 10600.000       | PK       | 59.2    | 39.2     | -1.9 | 33.3 | 63.2     | 74.0     | -10.8  | Inside              |        |  |
| Vert     | 15900.000       | PK       | 45.8    | 38.0     | -0.8 | 32.6 | 50.4     | 74.0     | -23.6  | Inside              |        |  |
| Vert     | 10600.000       | AV       | 48.6    | 39.2     | -1.9 | 33.3 | 52.6     | 54.0     | -1.4   | Inside              |        |  |
| Vert     | 15900.000       | AV       | 34.5    | 38.0     | -0.8 | 32.6 | 39.1     | 54.0     | -14.9  | Inside              |        |  |

| - 1-     | 320MHz)<br>Frequency | Dotoctor | Pooding | Ant Eac | Loss | Gain | Result | Limit    | Margin | Inside or Outside   | Remark |
|----------|----------------------|----------|---------|---------|------|------|--------|----------|--------|---------------------|--------|
| FUIAIILY | [MHz]                | Delector | [dBuV]  | [dB/m]  | [dB] | [dB] |        | [dBuV/m] | Ű      | of Restricted Bands | Nemark |
|          |                      |          | L       | · ·     | • •  |      |        | • •      |        |                     |        |
| Hori     | 5350.000             | PK       | 59.8    | 31.8    | 3.9  | 31.5 | 64.0   | 68.2     | -4.2   | Bandedge            |        |
| Hori     | 7093.260             | PK       | 51.6    | 35.5    | 4.6  | 32.4 | 59.3   | 68.2     | -8.9   | Outside             |        |
| Hori     | 10640.000            | PK       | 62.0    | 39.3    | -1.9 | 33.3 | 66.1   | 74.0     | -7.9   | Inside              |        |
| Hori     | 15960.000            | PK       | 45.7    | 37.8    | -0.8 | 32.6 | 50.1   | 74.0     | -23.9  | Inside              |        |
| Hori     | 5350.000             | AV       | 44.6    | 31.8    | 3.9  | 31.5 | 48.8   | 54.0     | -5.2   | Bandedge            |        |
| Hori     | 10640.000            | AV       | 49.5    | 39.3    | -1.9 | 33.3 | 53.6   | 54.0     | -0.4   | Inside              |        |
| Hori     | 15960.000            | AV       | 34.3    | 37.8    | -0.8 | 32.6 | 38.7   | 54.0     | -15.3  | Inside              |        |
| Vert     | 5350.000             | PK       | 54.8    | 31.8    | 3.9  | 31.5 | 59.0   | 68.2     | -9.2   | Bandedge            |        |
| Vert     | 7093.260             | PK       | 50.1    | 35.5    | 4.6  | 32.4 | 57.8   | 68.2     | -10.4  | Outside             |        |
| Vert     | 10640.000            | PK       | 61.1    | 39.3    | -1.9 | 33.3 | 65.2   | 74.0     | -8.8   | Inside              |        |
| Vert     | 15960.000            | PK       | 45.5    | 37.8    | -0.8 | 32.6 | 49.9   | 74.0     | -24.1  | Inside              |        |
| Vert     | 5350.000             | AV       | 40.3    | 31.8    | 3.9  | 31.5 | 44.5   | 54.0     | -9.5   | Bandedge            |        |
| Vert     | 10640.000            | AV       | 49.1    | 39.3    | -1.9 | 33.3 | 53.2   | 54.0     | -0.8   | Inside              |        |
| Vert     | 15960.000            | AV       | 34.1    | 37.8    | -0.8 | 32.6 | 38.5   | 54.0     | -15.5  | Inside              |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier) \*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

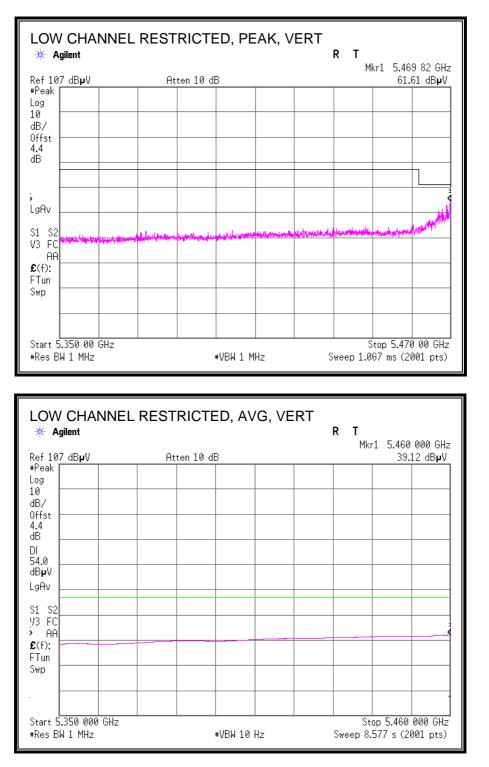
\*The 10th harmonic was not seen so the result was its base noise level.


Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

Page 69 of 87

UL Japan, Inc. Head Office EMC Lab.

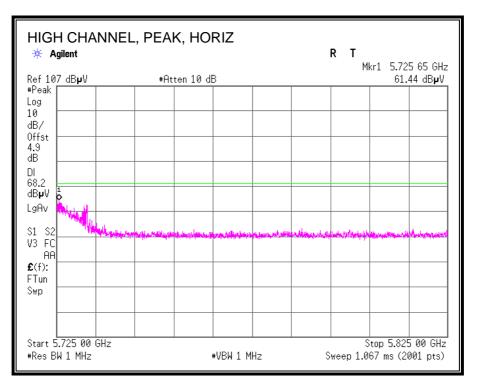
## 8.2.3. 802.11a MODE IN THE 5.6 GHz BAND


### **RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)**

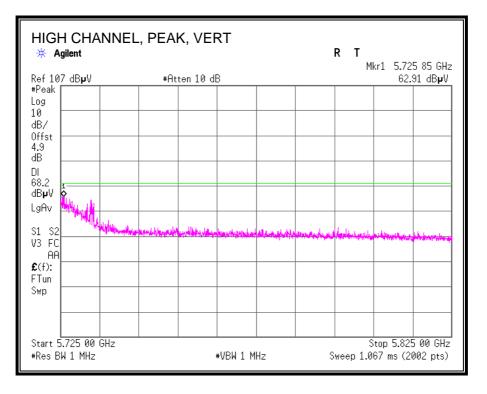


Page 70 of 87

UL Japan, Inc. Head Office EMC Lab.


### **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**




Page 71 of 87

UL Japan, Inc. Head Office EMC Lab.

### AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



### AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)



Page 72 of 87

UL Japan, Inc. Head Office EMC Lab.

### HARMONICS AND SPURIOUS EMISSIONS

| Test place<br>Report No. | Head Office EMC Lab<br>31KE0135-SH-B | . No.4 Semi Anechoic Chamber |
|--------------------------|--------------------------------------|------------------------------|
| Date                     | 06/20/2011                           | 06/21/2011                   |
| Temperature/ Humidity    | 24 deg. C / 62% RH                   | 24 deg. C / 62% RH           |
| Engineer                 | Takayuki Shimada                     | Takumi Shimada               |
|                          | (1-10GHz)                            | (Above 10GHz)                |
| Mode                     | 11a Tx, 5.6GHz Band                  | , Legacy                     |

| LOW CH   | LOW CH(5500MHz) |          |         |          |      |      |          |          |        |                     |        |  |
|----------|-----------------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|--|
| Polarity | Frequency       | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |  |
|          | [MHz]           |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |  |
| Hori     | 5470.000        | PK       | 54.7    | 31.9     | 4.0  | 31.5 | 59.1     | 68.2     | -9.1   | Outside             |        |  |
| Hori     | 7333.258        | PK       | 46.4    | 35.9     | 4.7  | 32.5 | 54.5     | 74.0     | -19.5  | Inside              |        |  |
| Hori     | 11000.000       | PK       | 55.4    | 39.8     | -1.9 | 33.3 | 60.0     | 74.0     | -14.0  | Inside              |        |  |
| Hori     | 16500.000       | PK       | 48.5    | 38.5     | -0.6 | 32.6 | 53.8     | 68.2     | -14.4  | Outside             |        |  |
| Hori     | 7333.258        | AV       | 37.9    | 35.9     | 4.7  | 32.5 | 46.0     | 54.0     | -8.0   | Inside              |        |  |
| Hori     | 11000.000       | AV       | 43.6    | 39.8     | -1.9 | 33.3 | 48.2     | 54.0     | -5.8   | Inside              |        |  |
| Vert     | 5470.000        | PK       | 57.9    | 31.9     | 4.0  | 31.5 | 62.3     | 68.2     | -5.9   | Outside             |        |  |
| Vert     | 7333.258        | PK       | 45.8    | 35.9     | 4.7  | 32.5 | 53.9     | 74.0     | -20.1  | Inside              |        |  |
| Vert     | 11000.000       | PK       | 57.6    | 39.8     | -1.9 | 33.3 | 62.2     | 74.0     | -11.8  | Inside              |        |  |
| Vert     | 16500.000       | PK       | 50.6    | 38.5     | -0.6 | 32.6 | 55.9     | 68.2     | -12.3  | Outside             |        |  |
| Vert     | 7333.258        | AV       | 36.5    | 35.9     | 4.7  | 32.5 | 44.6     | 54.0     | -9.4   | Inside              |        |  |
| Vert     | 11000.000       | AV       | 44.7    | 39.8     | -1.9 | 33.3 | 49.3     | 54.0     | -4.7   | Inside              |        |  |

#### MID CH(5580MHz)

|      | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result | Limit    | Margin | Inside or Outside   | Remark |
|------|-----------|----------|---------|----------|------|------|--------|----------|--------|---------------------|--------|
|      | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] |        | [dBuV/m] | 0      | of Restricted Bands |        |
| Hori | 7439.925  | PK       | 45.0    | 36.1     | 4.7  | 32.5 | 53.3   | 74.0     | -20.7  | Inside              |        |
| Hori | 11160.000 | PK       | 57.7    | 39.7     | -1.9 | 33.3 | 62.2   | 74.0     | -11.8  | Inside              |        |
| Hori | 16740.000 | PK       | 50.0    | 38.9     | -0.5 | 32.6 | 55.8   | 68.2     | -12.4  | Outside             |        |
| Hori | 7439.925  | AV       | 35.0    | 36.1     | 4.7  | 32.5 | 43.3   | 54.0     | -10.7  | Inside              |        |
| Hori | 11160.000 | AV       | 45.7    | 39.7     | -1.9 | 33.3 | 50.2   | 54.0     | -3.8   | Inside              |        |
| Vert | 7439.925  | PK       | 44.9    | 36.1     | 4.7  | 32.5 | 53.2   | 74.0     | -20.8  | Inside              |        |
| Vert | 11160.000 | PK       | 56.7    | 39.7     | -1.9 | 33.3 | 61.2   | 74.0     | -12.8  | Inside              |        |
| Vert | 16740.000 | PK       | 49.1    | 38.9     | -0.5 | 32.6 | 54.9   | 68.2     | -13.3  | Outside             |        |
| Vert | 7439.925  | AV       | 34.2    | 36.1     | 4.7  | 32.5 | 42.5   | 54.0     | -11.5  | Inside              |        |
| Vert | 11160.000 | AV       | 44.8    | 39.7     | -1.9 | 33.3 | 49.3   | 54.0     | -4.7   | Inside              |        |

| HI CH(57 | HI CH(5700MHz) |          |         |          |      |      |          |          |        |                     |        |  |
|----------|----------------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|--|
| Polarity | Frequency      | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |  |
|          | [MHz]          |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |  |
| Hori     | 5725.000       | PK       | 61.7    | 32.4     | 4.1  | 31.6 | 66.6     | 68.2     | -1.6   | Outside             |        |  |
| Hori     | 7600.051       | PK       | 45.0    | 36.4     | 4.8  | 32.6 | 53.6     | 74.0     | -20.4  | Inside              |        |  |
| Hori     | 11400.000      | PK       | 60.8    | 39.7     | -1.9 | 33.3 | 65.3     | 74.0     | -8.7   | Inside              |        |  |
| Hori     | 17100.000      | PK       | 50.8    | 40.0     | -0.3 | 32.6 | 57.9     | 68.2     | -10.3  | Outside             |        |  |
| Hori     | 7600.051       | AV       | 33.5    | 36.4     | 4.8  | 32.6 | 42.1     | 54.0     | -11.9  | Inside              |        |  |
| Hori     | 11400.000      | AV       | 48.1    | 39.7     | -1.9 | 33.3 | 52.6     | 54.0     | -1.4   | Inside              |        |  |
| Vert     | 5725.000       | PK       | 60.7    | 32.4     | 4.1  | 31.6 | 65.6     | 68.2     | -2.6   | Outside             |        |  |
| Vert     | 7600.051       | PK       | 45.2    | 36.4     | 4.8  | 32.6 | 53.8     | 74.0     | -20.2  | Inside              |        |  |
| Vert     | 11400.000      | PK       | 57.2    | 39.7     | -1.9 | 33.3 | 61.7     | 74.0     | -12.3  | Inside              |        |  |
| Vert     | 17100.000      | PK       | 49.9    | 40.0     | -0.3 | 32.6 | 57.0     | 68.2     | -11.2  | Outside             |        |  |
| Vert     | 7600.051       | AV       | 33.7    | 36.4     | 4.8  | 32.6 | 42.3     | 54.0     | -11.7  | Inside              |        |  |
| Vert     | 11400.000      | AV       | 45.2    | 39.7     | -1.9 | 33.3 | 49.7     | 54.0     | -4.3   | Inside              |        |  |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

\*The 10th harmonic was not seen so the result was its base noise level. Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

Page 73 of 87

UL Japan, Inc. Head Office EMC Lab.

# 8.3. RECEIVER ABOVE 1 GHz

| Test place<br>Report No. | Head Office EMC Lab<br>31KE0135-SH-B | . No.4 Semi Anechoic Chamber |
|--------------------------|--------------------------------------|------------------------------|
| Date                     | 06/20/2011                           | 06/21/2011                   |
| Temperature/ Humidity    | 24 deg. C / 62% RH                   | 24 deg. C / 62% RH           |
| Engineer                 | Takayuki Shimada                     | Takumi Shimada               |
|                          | (1-10GHz)                            | (Above 10GHz)                |
| Mode                     | Rx, 5GHz Band                        |                              |

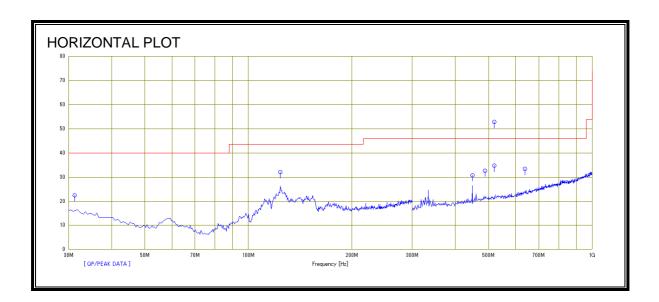
### 5.2GHz Band

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 5200.000  | PK       | 42.1    | 31.6     | 3.8  | 31.5 | 46.0     | 74.0     | -28.0  |        |
| Hori     | 5200.000  | PK       | 30.2    | 31.6     | 3.8  | 31.5 | 34.1     | 74.0     | -39.9  |        |
| Vert     | 5200.000  | PK       | 41.8    | 31.6     | 3.8  | 31.5 | 45.7     | 74.0     | -28.3  |        |
| Vert     | 5200.000  | PK       | 30.2    | 31.6     | 3.8  | 31.5 | 34.1     | 74.0     | -39.9  |        |

5.3GHz Band

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |  |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|--|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |  |
| Hori     | 5300.000  | PK       | 41.6    | 31.7     | 3.9  | 31.5 | 45.7     | 74.0     | -28.3  |        |  |
| Hori     | 5300.000  | PK       | 30.3    | 31.7     | 3.9  | 31.5 | 34.4     | 74.0     | -39.6  |        |  |
| Vert     | 5300.000  | PK       | 41.7    | 31.7     | 3.9  | 31.5 | 45.8     | 74.0     | -28.2  |        |  |
| Vert     | 5300.000  | PK       | 30.3    | 31.7     | 3.9  | 31.5 | 34.4     | 74.0     | -39.6  |        |  |

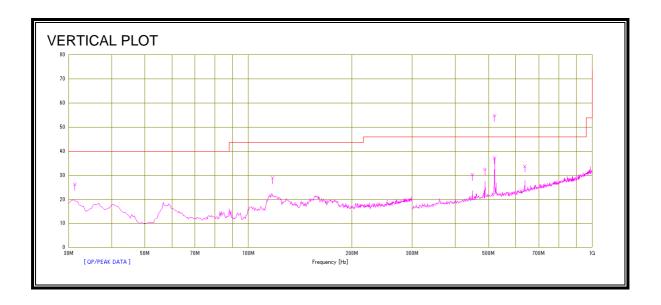
### 5.6GHz Band


| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 5580.000  | PK       | 42.0    | 32.1     | 4.0  | 31.6 | 46.5     | 74.0     | -27.5  |        |
| Hori     | 5580.000  | PK       | 30.8    | 32.1     | 4.0  | 31.6 | 35.3     | 74.0     | -38.7  |        |
| Vert     | 5580.000  | PK       | 42.2    | 32.1     | 4.0  | 31.6 | 46.7     | 74.0     | -27.3  |        |
| Vert     | 5580.000  | PK       | 30.8    | 32.1     | 4.0  | 31.6 | 35.3     | 74.0     | -38.7  |        |

Page 74 of 87

UL Japan, Inc. Head Office EMC Lab.

# 8.4. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



Page 75 of 87

UL Japan, Inc. Head Office EMC Lab.

## RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)



Page 76 of 87

UL Japan, Inc. Head Office EMC Lab.

### RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

| Test place            | Head Office EMC Lab. No.4 Semi Anechoic Chamber |
|-----------------------|-------------------------------------------------|
| Report No.            | 31KE0135-SH-B                                   |
| Date                  | 06/21/2011                                      |
| Temperature/ Humidity | 24 deg. C / 62% RH                              |
| Engineer              | Takayuki Shimada                                |
| Mode                  | Tx                                              |

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 520.002   | QP       | 36.3    | 19.4     | 11.1 | 32.1 | 34.7     | 46.0     | -11.3  |        |
| Hori     | 31.260    | PK       | 30.1    | 17.5     | 7.0  | 32.2 | 22.4     | 40.0     | -17.6  |        |
| Hori     | 124.050   | PK       | 42.5    | 13.3     | 8.3  | 32.1 | 32.0     | 43.5     | -11.5  |        |
| Hori     | 448.501   | PK       | 33.7    | 18.4     | 10.7 | 32.1 | 30.7     | 46.0     | -15.3  |        |
| Hori     | 487.501   | PK       | 34.8    | 19.0     | 10.9 | 32.1 | 32.6     | 46.0     | -13.4  |        |
| Hori     | 637.002   | PK       | 33.0    | 20.8     | 11.7 | 32.2 | 33.3     | 46.0     | -12.7  |        |
| Vert     | 520.002   | QP       | 38.8    | 19.4     | 11.1 | 32.1 | 37.2     | 46.0     | -8.8   |        |
| Vert     | 31.260    | PK       | 33.9    | 17.5     | 7.0  | 32.2 | 26.2     | 40.0     | -13.8  |        |
| Vert     | 117.540   | PK       | 40.0    | 12.7     | 8.2  | 32.1 | 28.8     | 43.5     | -14.7  |        |
| Vert     | 448.501   | PK       | 33.2    | 18.4     | 10.7 | 32.1 | 30.2     | 46.0     | -15.8  |        |
| Vert     | 487.501   | PK       | 34.6    | 19.0     | 10.9 | 32.1 | 32.4     | 46.0     | -13.6  |        |
| Vert     | 637.002   | PK       | 33.4    | 20.8     | 11.7 | 32.2 | 33.7     | 46.0     | -12.3  |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier) \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Distance factor:

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

Page 77 of 87

UL Japan, Inc. Head Office EMC Lab.

# 9. AC POWER LINE CONDUCTED EMISSIONS

### **LIMITS**

FCC §15.207 (a)

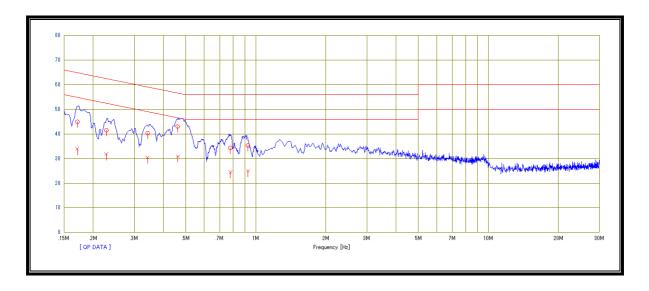
RSS-Gen 7.2.4

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|
|                             | Quasi-peak             | Average    |  |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |

\* Decreases with the logarithm of the frequency.

## TEST PROCEDURE

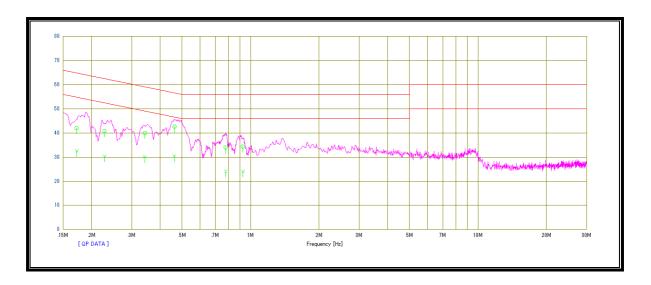
ANSI C63.4


### **RESULTS**

| -         | Reading Level |        | Corr.  | Resu   | ults   | Lin    | nit    | Margin  |         |       |         |
|-----------|---------------|--------|--------|--------|--------|--------|--------|---------|---------|-------|---------|
| Frequency | QP            | AV     | Factor | QP     | AV     | QP     | AV     | QP      | AV      | Phase | Comment |
| [MHz]     | [dBuV]        | [dBuV] | [dB]   | [dBuV] | [dBuV] | [dBuV] | [dBuV] | [dB]    | [dB]    |       |         |
| 0. 17075  | 31.9          | 20.8   | 13. 1  | 45.0   | 33.9   | 64.9   | 54.9   | - 19. 9 | - 21. 0 | N     |         |
| 0. 22755  | 28. 2         | 18.4   | 13.3   | 41.5   | 31.7   | 62.5   | 52.5   | - 21. 0 | - 20. 8 | N     |         |
| 0.34245   | 27.0          | 17.1   | 13.3   | 40.3   | 30.4   | 59.1   | 49.1   | - 18. 8 | - 18. 7 | N     |         |
| 0.46190   | 29.8          | 17.6   | 13.3   | 43.1   | 30.9   | 56.7   | 46.7   | - 13. 6 | - 15. 8 | N     |         |
| 0. 77770  | 21.1          | 11.1   | 13.3   | 34.4   | 24.4   | 56.0   | 46.0   | - 21. 6 | - 21. 6 | N     |         |
| 0. 92570  | 22.0          | 11.6   | 13.3   | 35.3   | 24.9   | 56.0   | 46.0   | - 20. 7 | -21.1   | N     |         |
| 0. 17230  | 29.0          | 19.4   | 13.1   | 42.1   | 32.5   | 64.8   | 54.8   | - 22. 7 | - 22. 3 | L     |         |
| 0. 22830  | 27.5          | 17.0   | 13.3   | 40.8   | 30.3   | 62.5   | 52.5   | - 21. 7 | - 22. 2 | L     |         |
| 0.34245   | 26.7          | 16.7   | 13.3   | 40.0   | 30.0   | 59.1   | 49.1   | - 19. 1 | - 19. 1 | L     |         |
| 0.46220   | 29.3          | 17.1   | 13.3   | 42.6   | 30.4   | 56.7   | 46.7   | -14.1   | - 16. 3 | L     |         |
| 0. 77730  | 20.6          | 10.7   | 13.3   | 33.9   | 24.0   | 56.0   | 46.0   | - 22. 1 | - 22. 0 | L     |         |
| 0. 92520  | 21.1          | 10.7   | 13.3   | 34.4   | 24.0   | 56.0   | 46.0   | -21.6   | - 22. 0 | L     |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |
|           |               |        |        |        |        |        |        |         |         |       |         |

Page 78 of 87

UL Japan, Inc. Head Office EMC Lab.


### LINE 1 RESULTS



Page 79 of 87

UL Japan, Inc. Head Office EMC Lab.

### LINE 2 RESULTS



Page 80 of 87

UL Japan, Inc. Head Office EMC Lab.