

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: IT-800A-35U

FCC ID: BBQIT800A IC: 2388F-IT800A

REPORT NUMBER: 11J13697-4

ISSUE DATE: JUNE 22, 2011

Prepared for

CASIO COMPUTER CO., LTD 6-2 HON-MACHI 1-CHOME SHIBUYA-KU TOKYO, 151-8543, JAPAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	06/22/11	Initial Issue, updated to the latest RSS-210 and RSS-GEN from 09J12750-7 and changed EUT model number and FCC ID/IC ID	T. Chan

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	1.1.	MEASURING INSTRUMENT CALIBRATION	5
4	1.2.	SAMPLE CALCULATION	5
4	1.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	5.1.	DESCRIPTION OF EUT	6
5	5.2.	MAXIMUM TRANSMITTER FIELD STRENGTH	6
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	5.4.	SOFTWARE AND FIRMWARE	6
5	5.5.	WORST-CASE CONFIGURATION AND MODE	6
5	5.6.	MODIFICATIONS	6
5	5.7.	DESCRIPTION OF TEST SETUP	7
6.	TE	ST AND MEASUREMENT EQUIPMENT	9
7.	RA	DIATED EMISSION TEST RESULTS	10
7	7.1.		
	7.1		
	7.1 7.1		
	7.1		
•		MAING LINE CONDUCTED EMISSIONS	40
8.	AC	MAINS LINE CONDUCTED EMISSIONS	18
9.	FR	EQUENCY STABILITY	22
10.	9	9% BANDWIDTH	23
11.	S	ETUP PHOTOS	25

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CASIO COMPUTER CO., LTD

6-2 HON-MACHI 1-CHOME

SHIBUYA-KU

TOKYO. 151-8543. JAPAN

EUT DESCRIPTION: HANDHELD TERMINAL

MODEL: IT-800A-35U (HANDHELD) & HA-H62IO (ETHERNET CRADLE)

SERIAL NUMBER: 73 (CONDUCTED) & 02121 (RADIATED)

DATE TESTED: OCTOBER 21 TO 29, 2009

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C

Pass

INDUSTRY CANADA RSS-210 Issue 8, Annex 2

Pass

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. All Data are complied with the latest RSS-210 Issue 8 Standard.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN **EMC MANAGER UL CCS**

MENGISTU MEKURIA EMC ENGINEER **UL CCS**

Page 4 of 35

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11abg, Bluetooth and RFID equipped Handheld Terminal

The RFID module is manufactured by NXP Semiconductors.

5.2. MAXIMUM TRANSMITTER FIELD STRENGTH

The field strength of the transmitter is as follows:

Frequency Range	Mode	Output Power
(MHz)		(dBuV/m @ 30m)
13.56	Normal Mode	29.54

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a loop antenna.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was NFCTest Ver 0.19.00.

5.5. WORST-CASE CONFIGURATION AND MODE

Emission with highest power is considered to be the worst-case. To determine the worst case configuration the EUT investigate in X, Y, Z-Positions, and EUT with the Ethernet cradle. The highest power is turned out for the EUT with Y-Position. As a result, all the necessary harmonics tests have done with this EUT orientation.

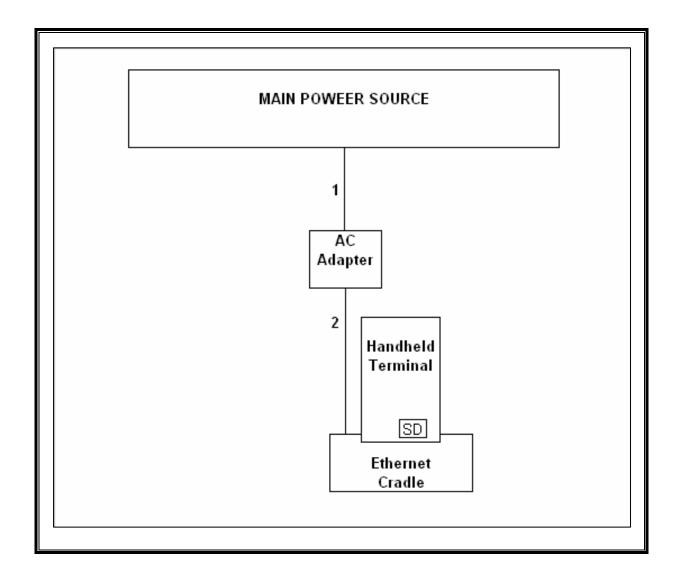
5.6. MODIFICATIONS

No modifications were made during testing.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST											
Description	Manufacturer	Model	Serial Number								
AC/DC Adapter	Casio	AD-S42120B	N/A								
Ethernet Cradle	Casio	HA-H62IO	N/A								
Micro SD	San Disk	09228042950J1	N/A								
ACCESSS CARD	N/A	N/A	N/A								


I/O CABLES

	I/O CABLE LIST												
			Connector Type	Cable Type	Cable Length	Remarks							
1	AC	1	US 115V	Un-shielded	2m	N/A							
2	DC	1	DC	Un-shielded	2m	one ferrite at Cradle end.							

TEST SETUP

The EUT is sited on the cradle that connects to AC Adapter.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST										
Description	Manufacturer	Model	Asset No.	Cal Due						
RF Filter Section	HP	85420E	C00958	03/24/11						
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	C00957	03/24/11						
Antenna, Loop, 30 MHz	EMCO	6502	C00593	09/16/10						
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	1/14/2010						
Antenna, Horn, 18 GHz	EMCO	3115	C00945	1/29/2010						
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	12/16/2009						
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	2/4/2010						
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	8/24/2010						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	1/5/2010						
Spectrum Analyzer, 40 GHz	Agilent / HP	8564E	C00951	6/12/2010						
Power Meter	Agilent / HP	437B	N02785	12/2/2009						
Power Sensor, 18 GHz	Agilent / HP	8481A	N02783	11/2/2009						
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	4/6/2010						

7. RADIATED EMISSION TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMIT

§15.225 IC RSS-210, Section 2.5 (Transmitter) IC RSS-GEN, Section 6 (Receiver)

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows: §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator										
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)								
0.009 - 0.490	2400 / F (kHz)	300								
0.490 – 1.705	24000 / F (kHz)	30								
1.705 – 30.0	30	30								
30 – 88	100**	3								
88 - 216	150**	3								
216 – 960	200**	3								
Above 960	500	3								

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is: Limit $(dBuV/m) = 20 \log limit (uV/m)$

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

TEST PROCEDURE

ANSI C63.4

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 624 MHz; therefore, the frequency range was investigated from 30 MHz to the 10th harmonic of the highest fundamental frequency.

RESULTS

7.1.1. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 – 30 MHz)

FCC Part 15, Subpart B & C 10 Meter Distance Measurement At Open Field

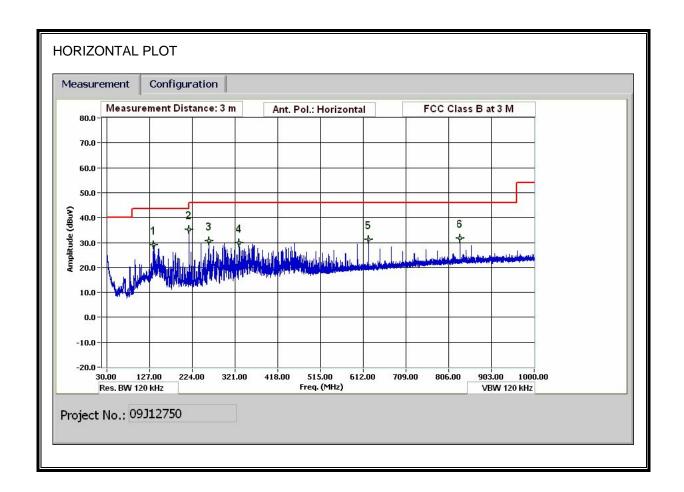
CASIO COMPUTER CO., LTD.

Project #: 09J12750 IT-800A-35U Model #:

Tester: MENGISTU MEKURIA

10/21/2009

Frequency	PK	Q.	AV	AF	Distance	PK Corrected	AV Corrected			PK Margin	AV Margin	Notes
(MHz)	(dBu/V)	(dBu/V)	(dBuV)	dB/m	Correction (dB)	Reading (dBuV/m)	Reading (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	
Loop Ante 13.56	nna Face 58.98	On:	N/A	10.56	-4 0.00	29.54	N/A	84.00	N/A	-54.5	N/A	Fundamental Measured @ 3m Dist
Loop Antenna Face Off: 13.56 53.41 N/A 10.56 -40.00 23.97 N/A 84.00 N/A -60.0 N/A Fundamental Measured @ 3m									Fundamental Measured @ 3m Dist			


No other emissions were found of 20dB below the system noise up to 30MHz

Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 10000Mhz. Radiated emission limits in these three bands are based on measurements employing an average detector.

P.K. = Peak Q.P. = Quasi Peak Readings

A.F. = Antenna factor

7.1.2. TX SPURIOUS EMISSION 30 TO 1000 MHz

DATE: JUNE 22, 2011

IC: 2388F-IT800A

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Mexicrement

Compliance Certification Services, Fremont 5m Chamber

MENGISTU MEKURIA Test Engr: 10/21/2009

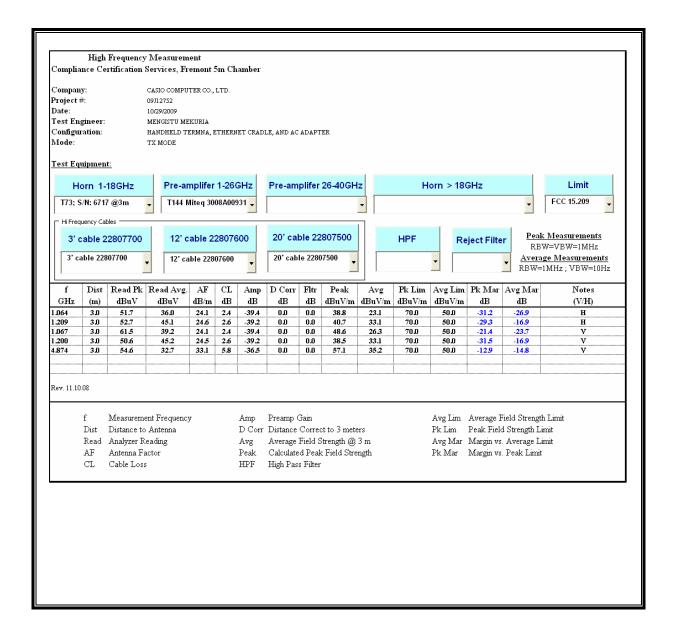
10/21/2009 09J12752 Project#:

CASIO COMPUTER CO., LTD

EUT Descripcion: HANDHELD TERMINAL WITH ETHERNET CRADLE

EUT M/N: IT-800A-35U Test Target: FCC CLASS B Mode Oper: TX 13.56 MHz

f Measurement Frequency Amp Preamp Gain
Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit


f	Dist	Rend	AF	CL	Ашр	D Corr	Filter	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(=)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
135.604	3.0	42.9	13.4	1.1	28.3	0.0	0.0	29.1	43.5	-14.4	H	P	
216.968	3.0	50.3	11.9	1.3	28.2	0.0	0.0	35.3	46.0	-10.7	H	P	
261.730	3.0	45.2	12.2	1.4	28.2	0.0	0.0	30.5	46.0	-15.5	H	P	
329.652	3.0	42.5	13.9	1.6	28.1	0.0	0.0	29.9	46.0	-16.1	H	P	
624.024	3.0	37.6	18.7	2.3	27.4	0.0	0.0	31.1	46.0	-14.9	H	P	
331.993	3.0	35.4	21.3	2.7	27.6	0.0	0.0	31.8	46.0	-14.2	H	P	
57.802	3.0	50.2	8.0	0.7	28.4	0.0	0.0	30.6	40.0	-9.4	v	P	
216,968	3.0	52.0	11.9	1.3	28.2	0.0	0.0	37.0	46.0	-9.0	v	P	
319.452	3.0	47.7	13.7	1.6	28.1	0.0	0.0	34.9	46.0	-11.1	v	P	
362.534	3.0	48.5	14.4	1.7	28.1	0.0	0.0	36.4	46.0	-9.6	v	P	
97.983	3.0	42.7	18.4	2.2	27.5	0.0	0.0	35.8	46.0	-10.2	v	P	
624.024	3.0	47.2	18.7	2.3	27.4	0.0	0.0	40.8	46.0	-5.2	v	2	
650.066	3.0	40.4	19.0	2.3	27.4	0.0	0.0	34.4	46.0	-11.7	v	P	

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

7.1.3. TX SPURIOUS EMISSIONS ABOVE 1 GHz

7.1.4. RX SPURIOUS EMISSIONS ABOVE 1 GHz

These requirements do not apply to receivers used in combination with permanently co-located transmitters continuously transmitting

8. AC MAINS LINE CONDUCTED EMISSIONS

LIMITS

§15.207 IC RSS-GEN, Section 7.2.4

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency range	Limits (dBµV)					
(MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

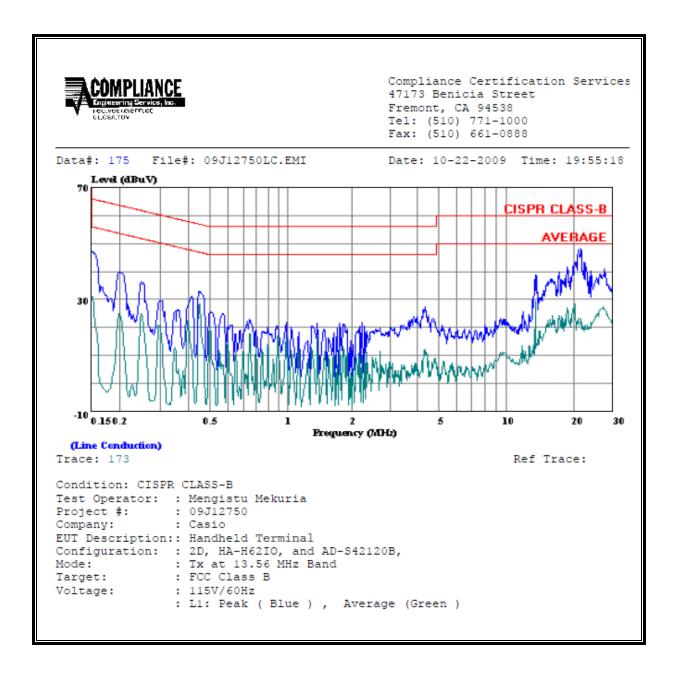
Notes:

TEST PROCEDURE

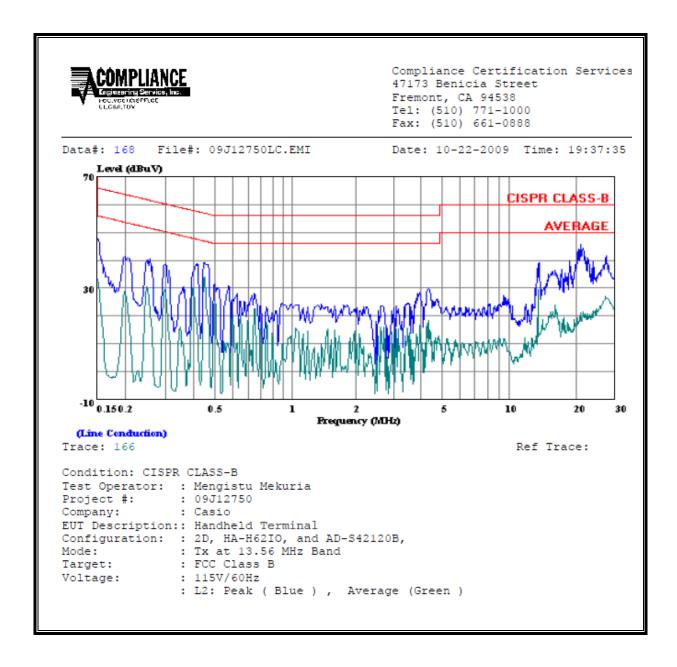
ANSI C63.4

RESULTS

No non-compliance noted:


^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)														
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2						
0.15	47.25		31.04	0.00	66.00	56.00	-18.75	-24.96	L1						
0.45	32.83		28.42	0.00	56.89	46.89	-24.06	-18.47	L1						
20.92	47.90		28.35	0.00	60.00	50.00	-12.10	-21.65	L1						
0.15	47.71		33.45	0.00	66.00	56.00	-18.29	-22.55	L2						
0.42	38.77		30.19	0.00	57.55	47.55	-18.78	-17.36	L2						
0.45	39.29		34.08	0.00	56.93	46.93	-17.64	-12.85	L2						
6 Worst Data															

LINE 1 RESULTS

LINE 2 RESULTS

9. FREQUENCY STABILITY

LIMIT

 $\S15.225$ (e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.3.1 and 2.3.2

RESULTS

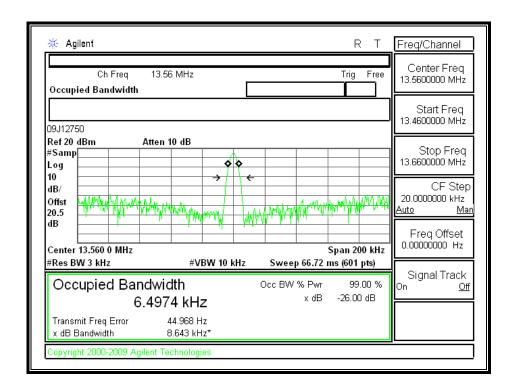
Reference Frequency: EUT Channel 13.56 MHz @ 20°C						
Limit: ± 100 ppm = 1.356 kHz						
Power Supply	Environment Frequency Deviation Measureed with Time Elapse					
(Vac)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)	Minutes	
115.00	50	13.5599835	1.278	± 100	10	
115.00	40	13.5599843	1.214	± 100	10	
115.00	30	13.5599971	0.273	± 100	10	
115.00	20	13.5600008	0.000	± 100	10	
115.00	10	13.5600208	-1.477	± 100	10	
115.00	0	13.5600287	-2.055	± 100	10	
115.00	-10	13.5600217	-1.539	± 100	10	
115.00	-20	13.5599933	0.552	± 100	10	
97.15	20	13.5600005	0.023	± 100	10	
132.25	20	13.5600007	0.008	± 100	10	

Note: While maintaining a constant temperature inside the environmental chamber, the EUT has been recorded at operating frequency at startup and two, five, and ten minutes, but only the worst case readings of minutes was reporting.

10. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Frequency	99% Bandwidth	
(MHz)	(KHz)	
13.65	6.4974	

99% BANDWIDTH

