

FCC PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: IT-300-35E

FCC ID: BBQIT300 IC: 2388F-IT300

REPORT NUMBER: 10J13537-7, REVISION A

ISSUE DATE: APRIL 7, 2011

Prepared for

CASIO COMPUTER CO., LTD 6-2 HON-MACHI 1-CHOME SHIBUYA-KU TOKYO, 151-8543, JAPAN

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	02/23/11	Initial Issue	F. Ibrahim
Α	04/07/11	Revised IC standard revision in page 5, Worst-case configuration description in page 7, Bandwidth in page 14 and Peak plot in page 58.	F. Ibrahim

Page 2 of 73

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS
2.	TES	ST METHODOLOGY
3.	FAG	CILITIES AND ACCREDITATION6
4.	CA	LIBRATION AND UNCERTAINTY6
4	.1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	.3.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
5	.1.	DESCRIPTION OF EUT
5	.2.	MAXIMUM OUTPUT POWER7
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5	.4.	SOFTWARE AND FIRMWARE7
5	.5.	WORST-CASE CONFIGURATION AND MODE7
5	.6.	DESCRIPTION OF TEST SETUP
6.	TES	ST AND MEASUREMENT EQUIPMENT10
7.	A NI-	TENNA PORT TEST RESULTS
		BASIC DATA RATE GFSK MODULATION
	. <i></i> 7.1.	
	7.1.	
	7.1. 7.1.	
	7.1.	5. AVERAGE TIME OF OCCUPANCY
	7.1. 7.1.	
_		
7.	.2. 7.2.	ENHANCED DATA RATE 8PSK MODULATION
	7.2.	2. 20dB BANDWIDTH
	7.2.	
	7.2. 7.2.	
	7.2.	6. OUTPUT POWER
	7.2.	7. CONDUCTED SPURIOUS EMISSIONS
8.	RA	DIATED TEST RESULTS
8	.1.	LIMITS AND PROCEDURE
	8.1.	
0	8.1. 2	2. ENHANCED DATA RATE 8PSK MODULATION
Ø.	.∠.	
CON	/PLI	Page 3 of 73 ANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4701C
4717	73 BE	ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 report shall not be reproduced except in full, without the written approval of UL CCS.

	8.3.	WORST-CASE BELOW 1 GHz	.67
9	. AC	C POWER LINE CONDUCTED EMISSIONS	68
1	0. I	MAXIMUM PERMISSIBLE EXPOSURE	72
1	1. (CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE	75
1	2. 8	SETUP PHOTOS	.76

Page 4 of 73

PASS

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME:	CASIO COMPUTER CO., LTD 6-2 HON-MACHI 1-CHOME SHIBUYA-KU, TOKYO, 151-8543, JAPAN				
EUT DESCRIPTION:	HANDHELD TERMINAL				
MODEL:	IT-300-35E				
SERIAL NUMBER: NO 15					
DATE TESTED:	ARY 01, 2011				
	APPLICABLE STANDARDS				
s	TANDARD	TEST RESULTS			
FCC PAI	RT 15 SUBPART C	PASS			
INDUSTRY CANAI	DA RSS-210 Issue 8 Annex 8	PASS			

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS

TOM CHEM EMC ENGINEER UL CCS

Page 5 of 73

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth and 802.11b/g equipped Handheld Terminal

The radio module is manufactured by Universal Scientific Industrial Corp.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	Basic GFSK	0.01	1.00
2402 - 2480	Enhanced 8PSK	2.00	1.58

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Chip antenna, with a maximum gain of -1.63 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was BTRadio Test Ver 3.20

The test utility software used during testing was BT Radio: BTRadioTest_Auth.exe

5.5. WORST-CASE CONFIGURATION AND MODE

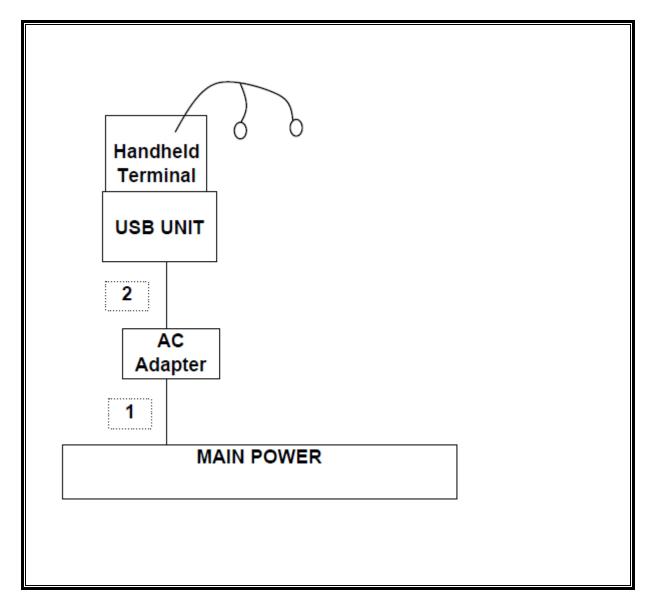
The fundamental was measured in three different orientations X, Y, Z and the worst among them with AC/DC Adapter, USB and Charging Unit and headphone to find worst-case orientation, and it was found that Y orientation with AC/DC Adapter, USB and Charging Unit and headphone is worst-case; therefore final testing for radiated emissions was performed with EUT in Y orientation with AC/DC Adapter, USB and Charging Unit and headphone

The worst-case channel is determined as the channel with the highest output power, radiated emissions below 1 GHz and power line conducted emissions were performed with the EUT set to the channel with highest output power.

Page 7 of 73

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number							
AC/DC Adapter	Casio	AD-S15050B	N/A				
USB and Charging Unit	Casio	HA-J65US	N/A				
Headphone	Rastabanana	N/A	N/A				
Micro SD	San Disk	09228042950J1	N/A				

I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC Input	1	US 115V	Un-Shielded	1.9m			
2	DC Input (USB Unit)	1	Mini-Jack	Shielded	1.85m	Ferrite at USB unit end		

Page 8 of 73

SETUP DIAGRAM

Page 9 of 73

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	03/05/11			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/10/11			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	07/10/11			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/10/11			
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	05/06/11			
Peak Power Meter	Boonton	4541	C01186	03/01/11			

Page 10 of 73

7. ANTENNA PORT TEST RESULTS

7.1. BASIC DATA RATE GFSK MODULATION

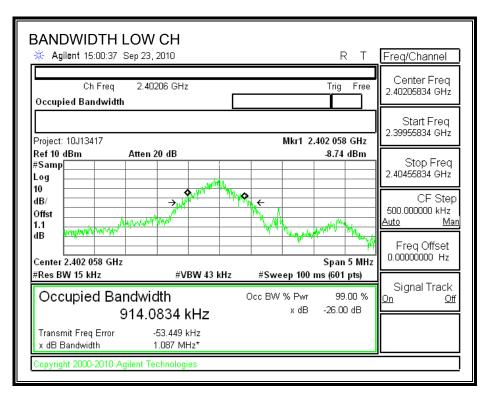
7.1.1.99% BANDWIDTH

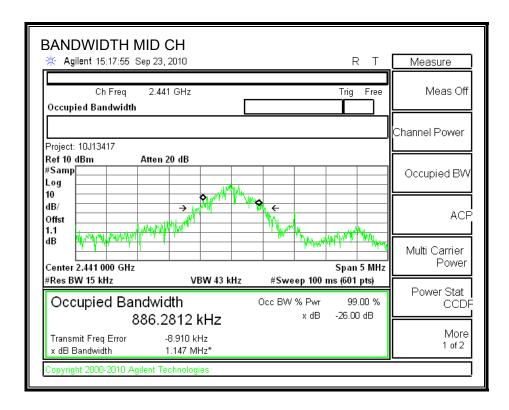
<u>LIMIT</u>

None; for reporting purposes only.

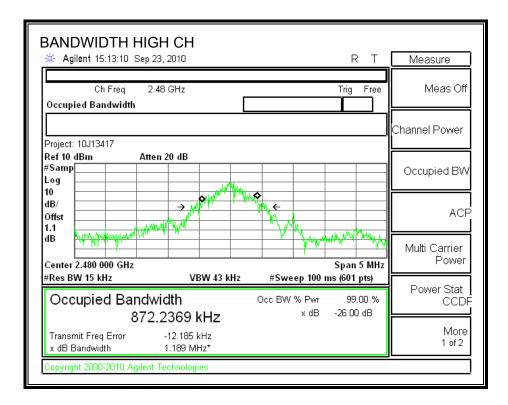
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
Low	2402	914.0834
Middle	2441	886.2812
High	2480	872.2369

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701C TEL: (510) 771-1000 FAX: (510) 661-0888


Page 11 of 73

99% BANDWIDTH

Page 12 of 73

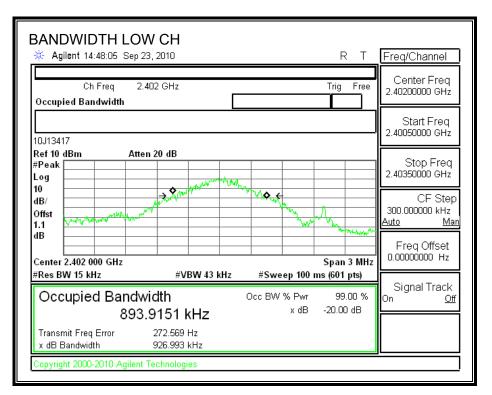
Page 13 of 73

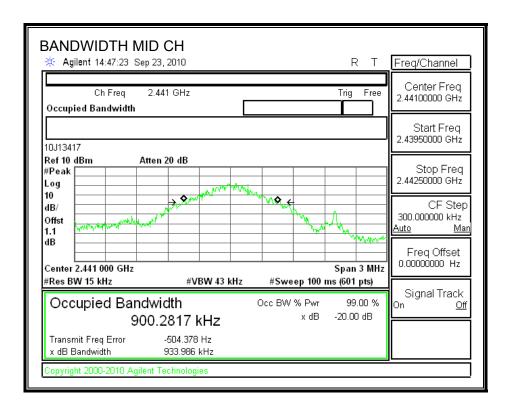
7.1.2. 20 dB BANDWIDTH

<u>LIMIT</u>

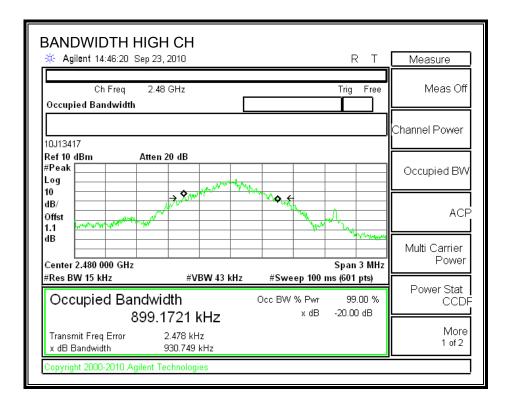
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	926.993
Middle	2441	933.986
High	2480	930.749


Page 14 of 73

20 dB BANDWIDTH

Page 15 of 73

Page 16 of 73

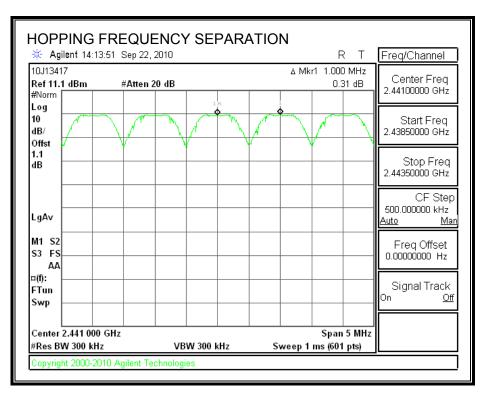
7.1.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.1.4. NUMBER OF HOPPING CHANNELS

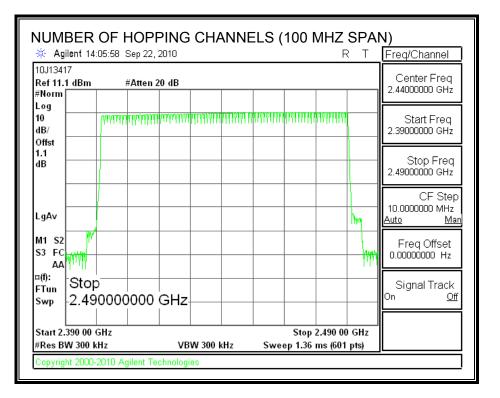
<u>LIMIT</u>

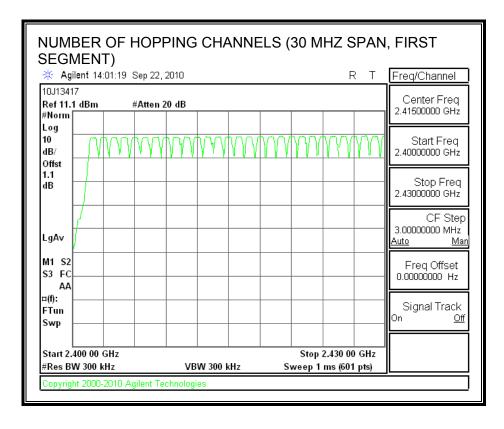
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

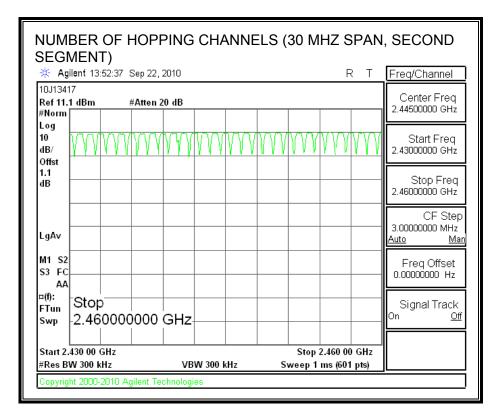
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

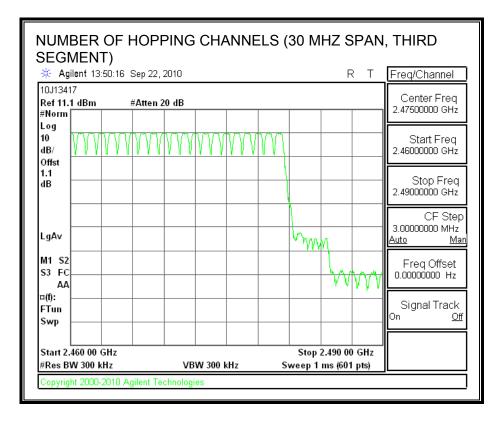
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

79 Channels observed.


Page 18 of 73


NUMBER OF HOPPING CHANNELS

Page 19 of 73

Page 20 of 73

7.1.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

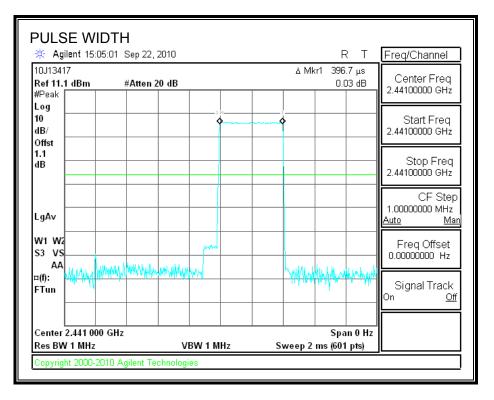
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

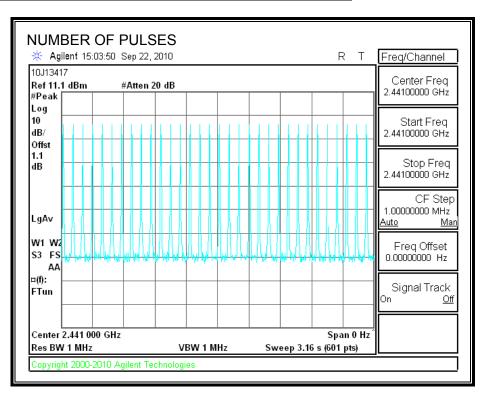
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS


GFSK Mode

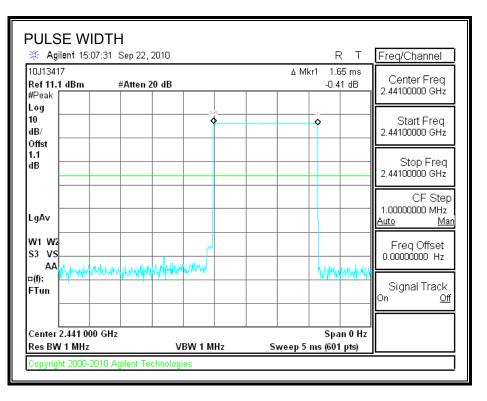
DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
DH1	0.397	32	0.127	0.4	0.273
DH3	1.650	17	0.281	0.4	0.120
DH5	2.892	11	0.318	0.4	0.082


Page 21 of 73

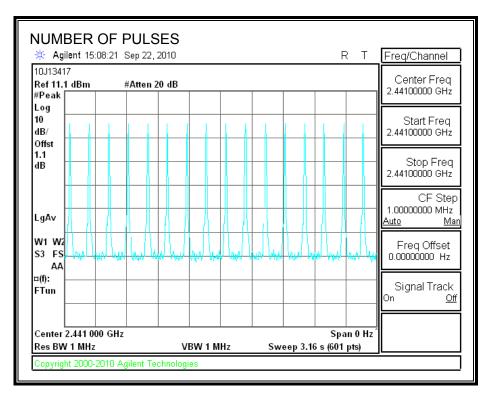
<u>DH1</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



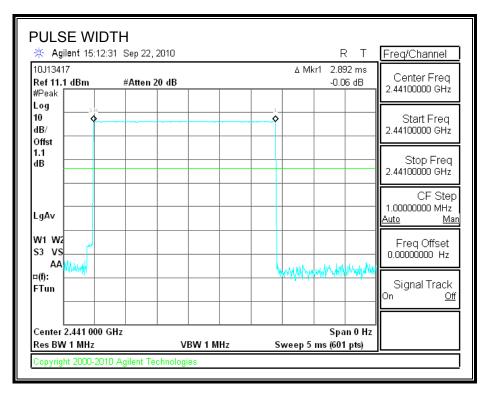
Page 22 of 73


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

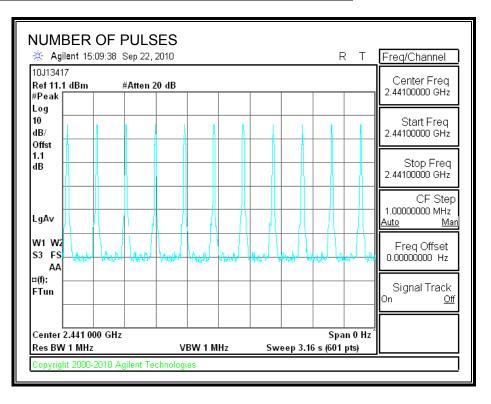
DH3

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



Page 23 of 73


COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

<u>DH5</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

7.1.6. OUTPUT POWER

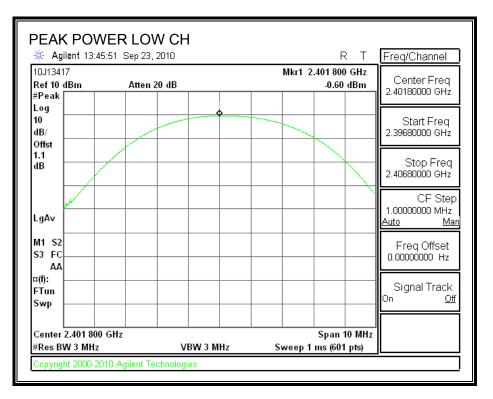
<u>LIMIT</u>

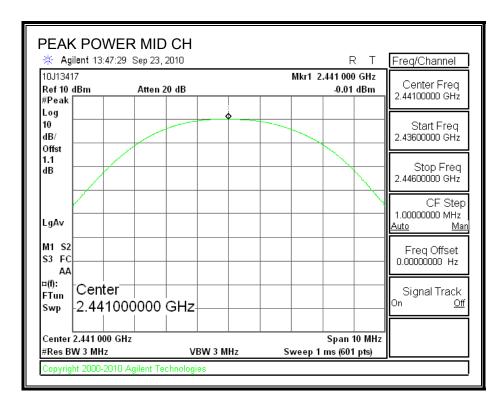
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-0.60	30	-30.60
Middle	2441	-0.01	30	-30.01
High	2480	0.01	30	-29.99

Page 25 of 73

OUTPUT POWER

Page 26 of 73

🔆 Agilent 13:48	:23 Sep 23, 2010		R	T Freq/Channel
10J13417 Ref 10 dBm #Peak	Atten 20 dB		Mkr1 2.480 000 (0.01 c	Contor Frod
Log 10 dB/ Offst		*		Start Freq 2.47500000 GHz
dB				Stop Freq 2.48500000 GHz
LgAv				CF Step 1.00000000 MHz <u>Auto Mar</u>
M1 S2 S3 FC AA				Freq Offset 0.00000000 Hz
¤(f): FTun Swp				Signal Track
Center 2.480 000 #Res BW 3 MHz	GHz	VBW 3 MHz	Span 10 Sweep 1 ms (601 p	

Page 27 of 73

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

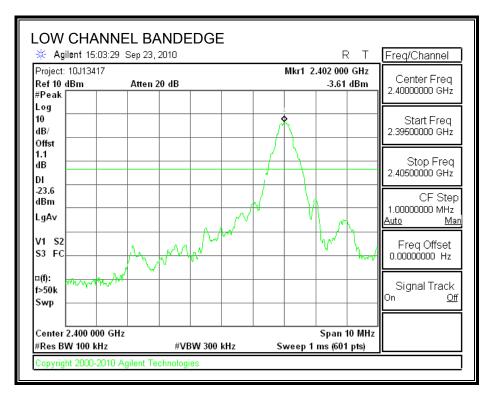
FCC §15.247 (d)

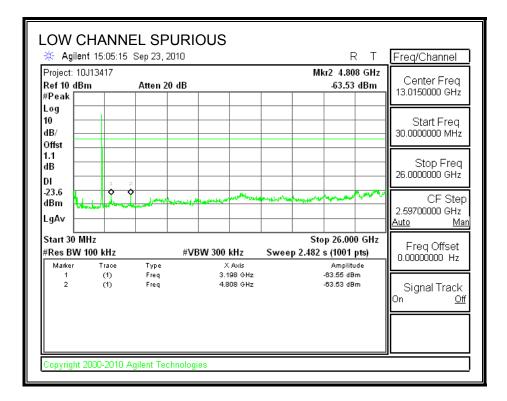
IC RSS-210 A8.5

Limit = -20 dBc

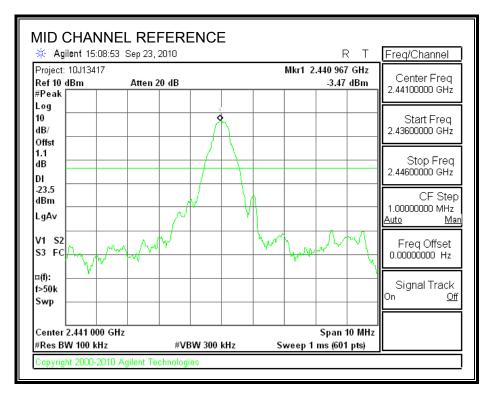
TEST PROCEDURE

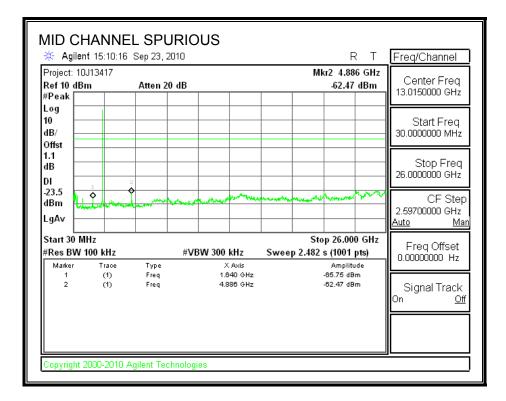
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

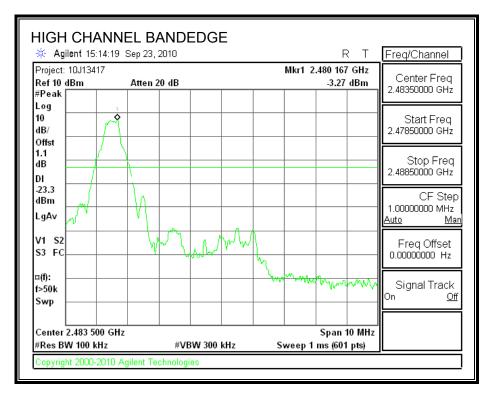

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

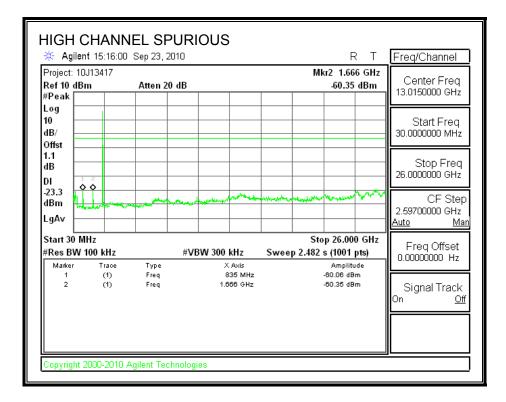

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

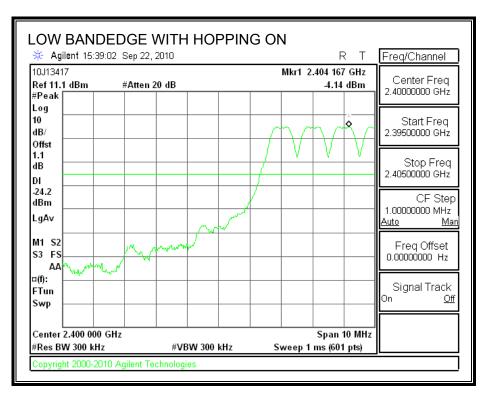
RESULTS

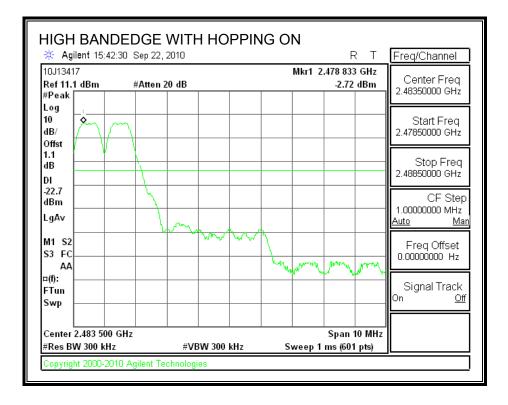

Page 28 of 73


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 32 of 73

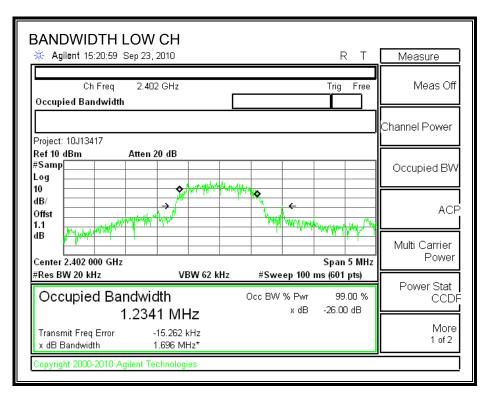
7.2. ENHANCED DATA RATE 8PSK MODULATION

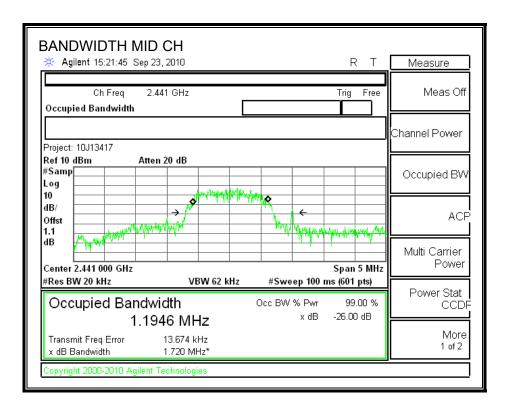
7.2.1. 99% BANDWIDTH

<u>LIMIT</u>

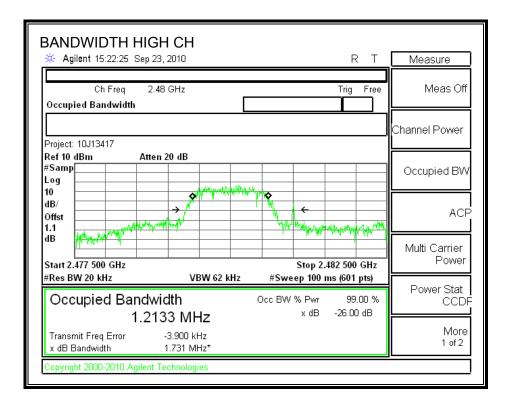
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 99% bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.2341
Middle	2441	1.1946
High	2480	1.2133


Page 33 of 73

99% BANDWIDTH

Page 34 of 73

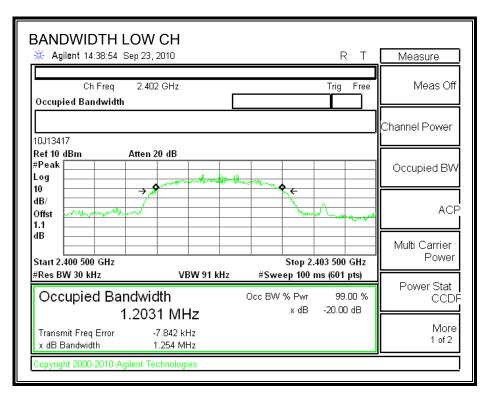
Page 35 of 73

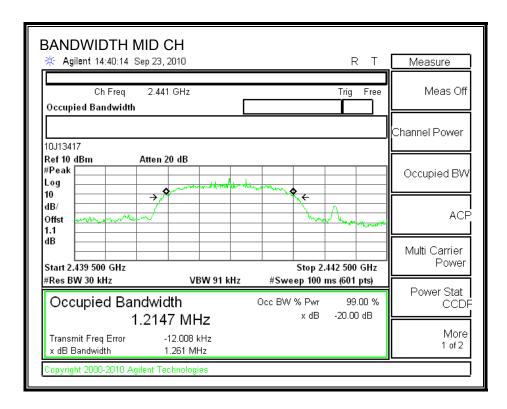
7.2.2. 20dB BANDWIDTH

<u>LIMIT</u>

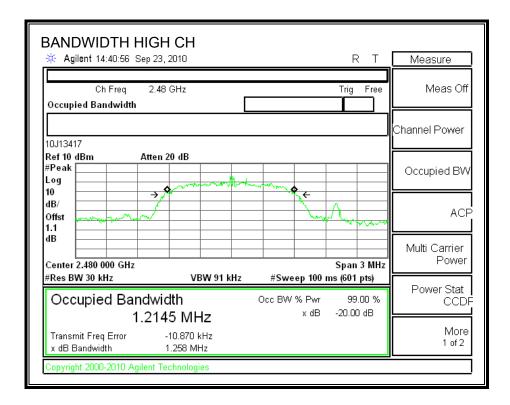
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


<u>RESULTS</u>

Channel	Frequency	20 dB Bandwidth	
	(MHz)	(MHz)	
Low	2402	1.254	
Middle	2441	1.261	
High	2480	1.258	


Page 36 of 73

20 dB BANDWIDTH

Page 37 of 73

Page 38 of 73

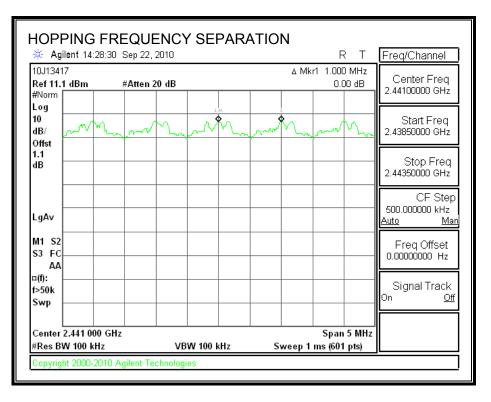
7.2.3. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

Page 39 of 73

7.2.4. NUMBER OF HOPPING CHANNELS

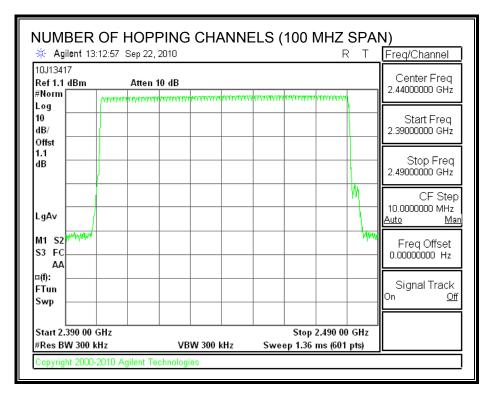
LIMIT

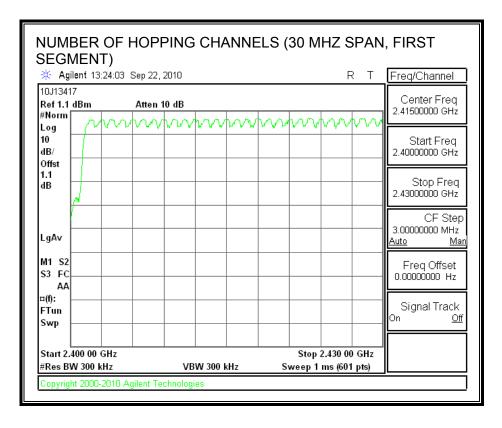
FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

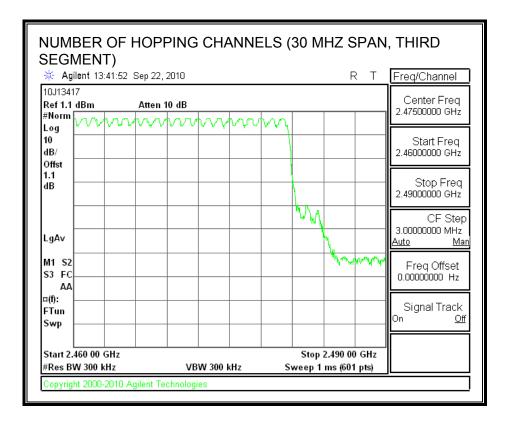
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

79 Channels observed.

Page 40 of 73


NUMBER OF HOPPING CHANNELS

Page 41 of 73

	MEN ilenf 13	'	Sep 22, 1	2010					F	2 т	Freq/Channel
)J1341 ef 1.1	7		Atten 1							<u> </u>	Center Freq
Norm ⊳q	vvv	vvv	vvv	ww	vvv	νγν	vvv	vvv	vw	vvv	2.44500000 GHz
) B/ ffst											Start Freq 2.43000000 GHz
nst 1 B											Stop Freq 2.46000000 GHz
jAv											CF Step 3.00000000 MHz <u>Auto Mar</u>
1 S2 3 FC AA											Freq Offset 0.00000000 Hz
f): Fun wp											Signal Track On <u>Off</u>
	430 00 W 300 I			VB	W 300 F	Hz	S		2.460 00 ms (601		

Page 42 of 73

7.2.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

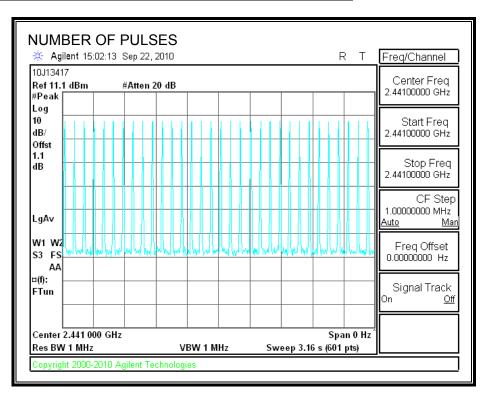
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

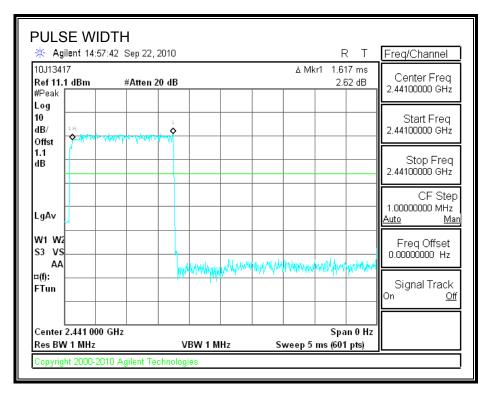

8PSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupan cy (sec)	Limit (sec)	Margin (sec)
DH1	0.4067	32	0.130	0.4	0.270
DH3	1.617	16	0.259	0.4	0.141
DH5	2.875	11	0.316	0.4	0.084

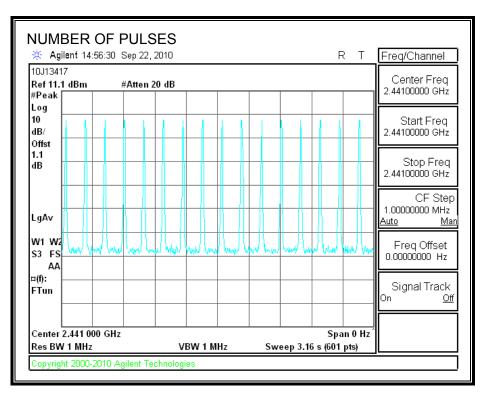

Page 43 of 73

<u>DH1</u>

PULSE WIDTH

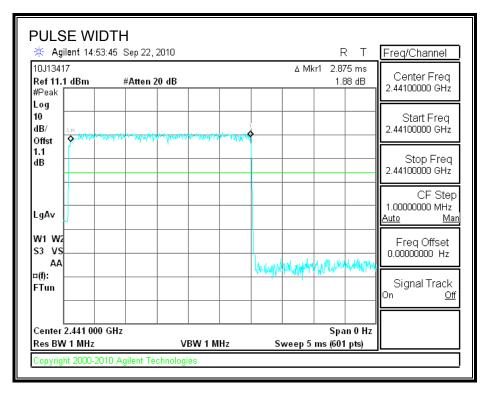


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

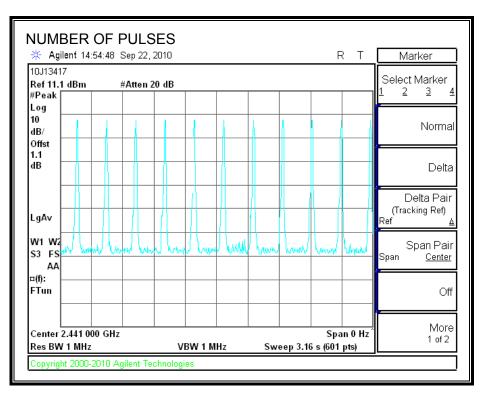


<u>DH3</u>

PULSE WIDTH



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



<u>DH5</u>

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 46 of 73

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

7.2.6. OUTPUT POWER

<u>LIMIT</u>

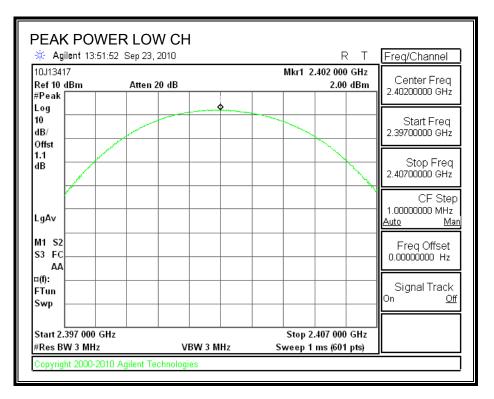
§15.247 (b) (1)

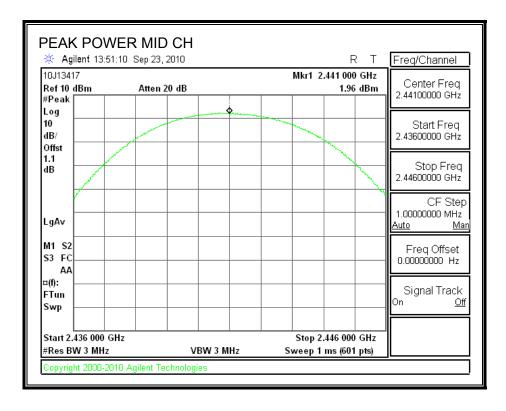
RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

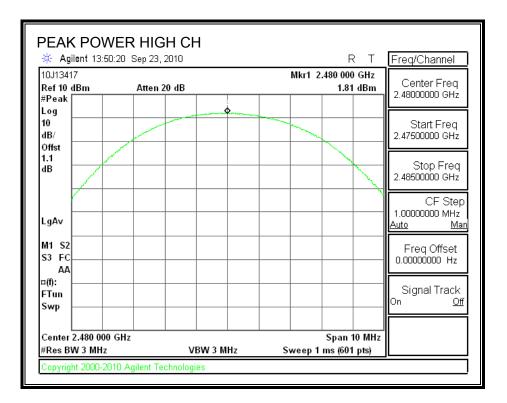
Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.00	30	-28.00
Middle	2441	1.96	30	-28.04
High	2480	1.81	30	-28.19


Page 47 of 73

OUTPUT POWER

Page 48 of 73

Page 49 of 73

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

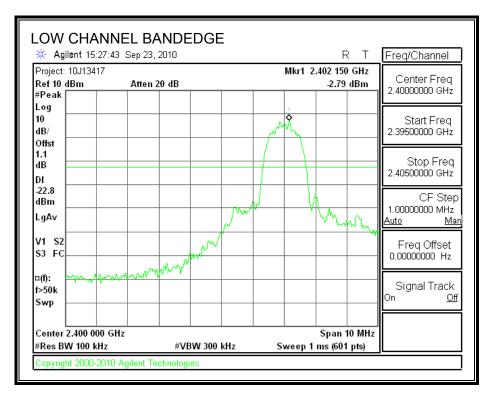
FCC §15.247 (d)

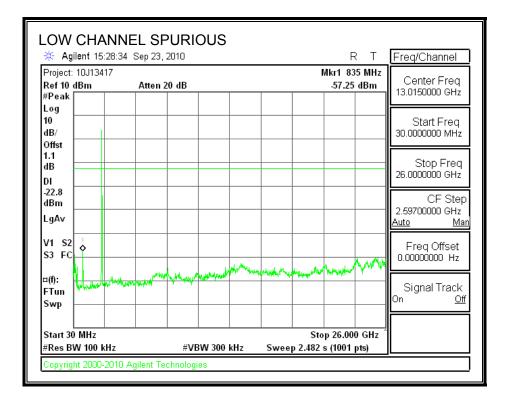
IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

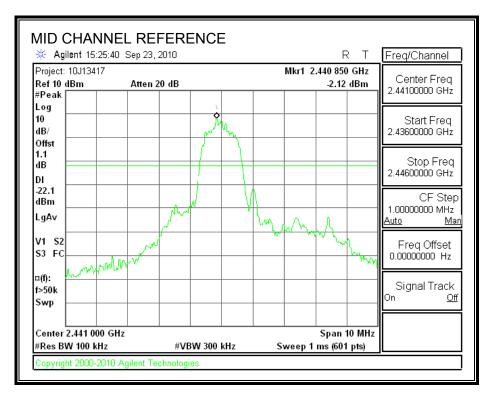
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

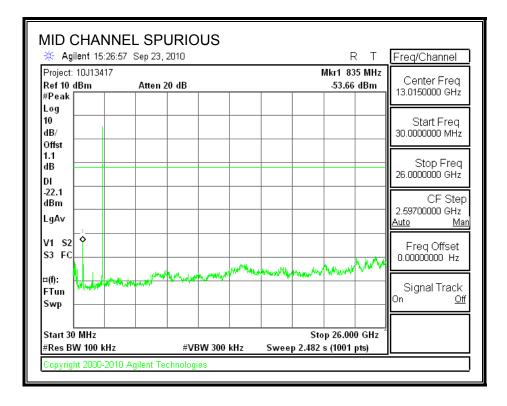

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

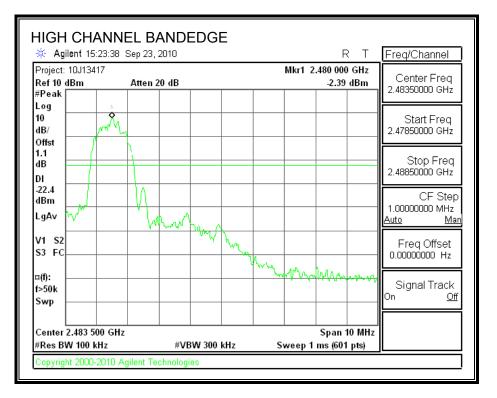
RESULTS

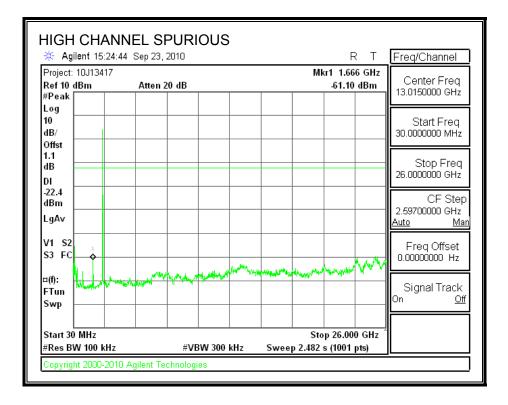
Page 50 of 73


SPURIOUS EMISSIONS, LOW CHANNEL

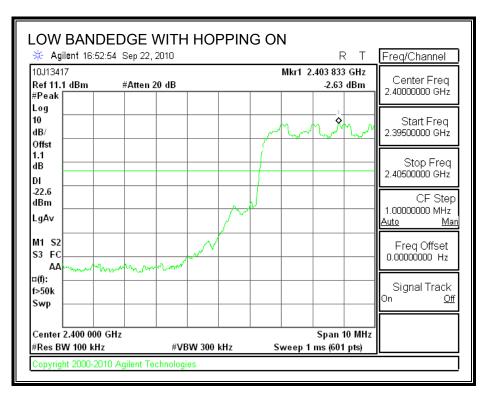


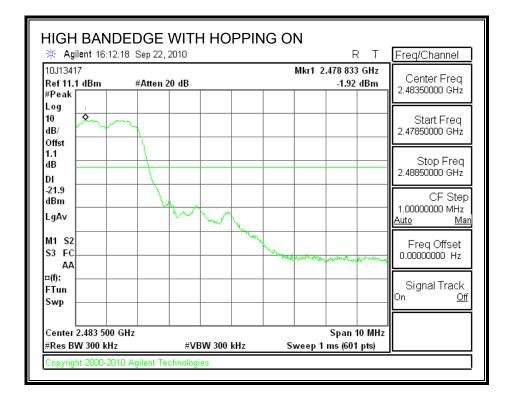
Page 51 of 73


SPURIOUS EMISSIONS, MID CHANNEL



Page 52 of 73


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 53 of 73

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 54 of 73

8. RADIATED TEST RESULTS

LIMITS AND PROCEDURE 8.1.

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

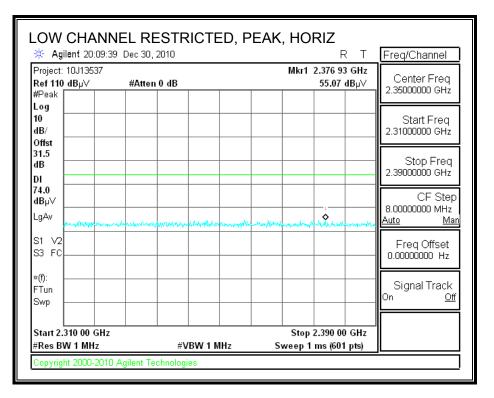
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

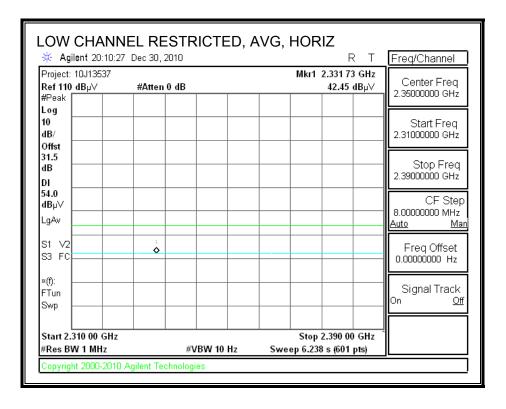
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

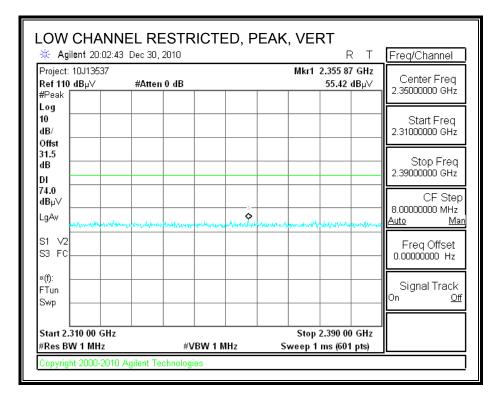
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

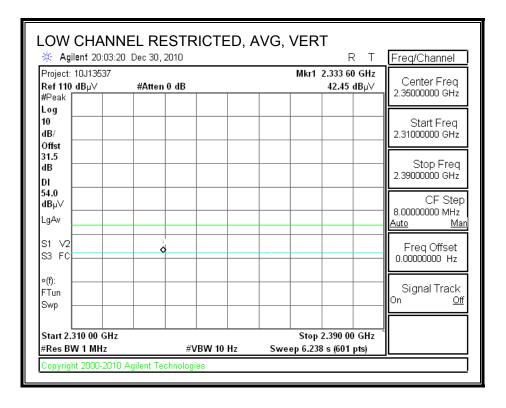

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

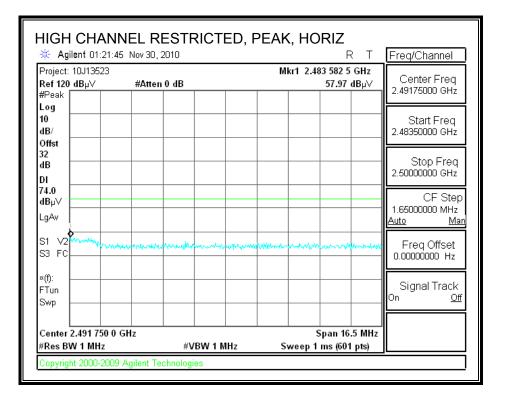
Page 55 of 73

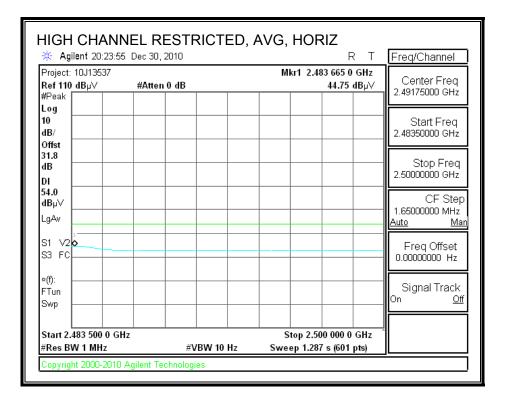
8.1.1. BASIC DATA RATE GFSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

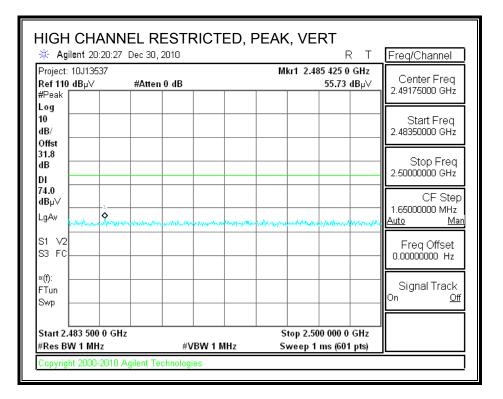


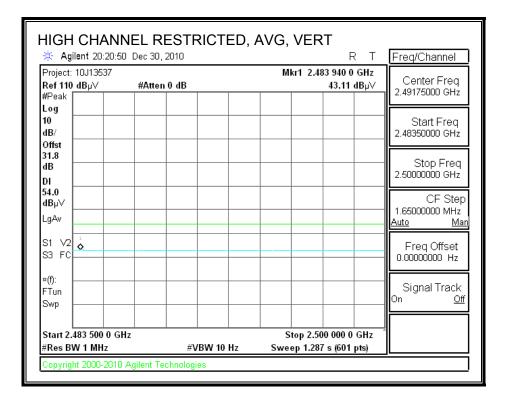
Page 56 of 73


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 57 of 73

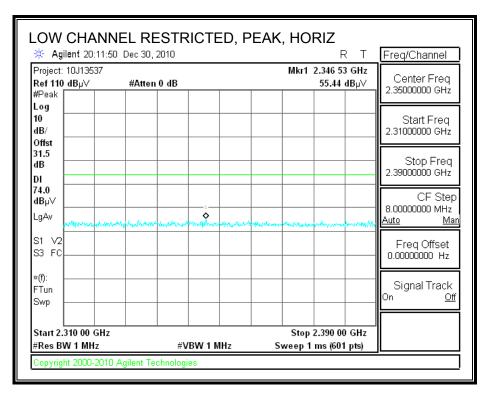

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

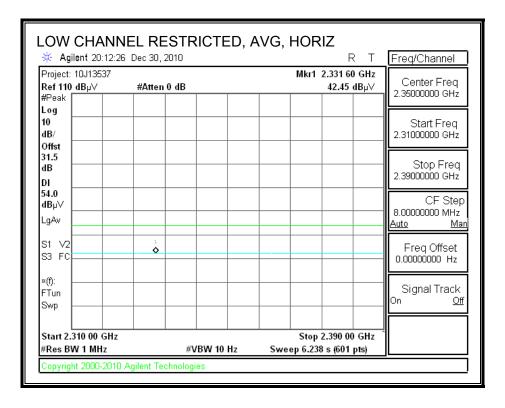


Page 58 of 73

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

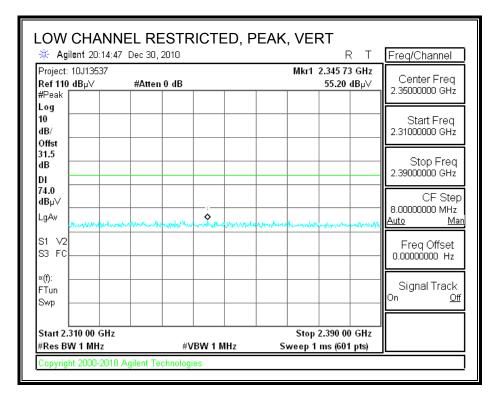
Page 59 of 73

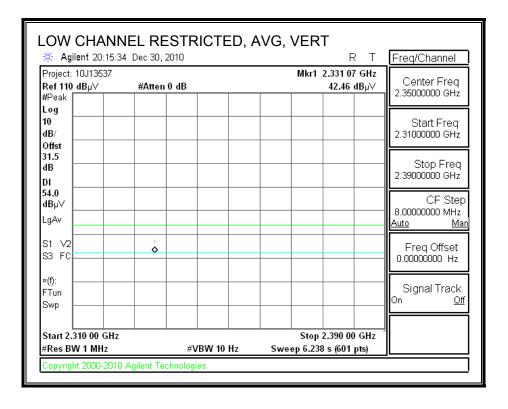

HARMONICS AND SPURIOUS EMISSIONS


Test Eng	r:	Oliver S	iu										
Date:		01/03/11											
Project #	•	10J1353											
Company		Casio											
Test Targ		FCC 15.	247										
Mode Op	,			Y роз	sition (w	orst case)						
-		·		-									
	f	Measurer	nent Freq	piency	r Amp	Preamp	Gain			Average	Field Stren	gth Limit	
	Dist	Distance	to Anter	ına -	D Corr	Distance	Corre	ct to 3 me	ters	Peak Fie	ld Strength	Limit	
	Read	Analyzer	Reading		Avg	Average	Field S	trength @	3 m	Margin v	rs. Average	Limit	
	AF	Antenna	Factor		Peak	Calculate	d Peal	r Field Stre	ength	Margin v	rs. Peak Lii	nit	
	CL	Cable Lo:	55		HPF	High Pas	s Filte:	r		-			
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low ch, 2		•••											
4.804	3.0	44.8	33.0	5.8	-36.5	0.0	0.0	47.1	74.0	- 26.9	V	P	
4.804	3.0	36.9	33.0	5.8	-36.5	0.0	0.0	39.2	54.0	-14.8	<u>v</u>	<u>A</u>	
4.804	3.0	42.1	33.0	5.8	-36.5	0.0	0.0	44.4	74.0	-29.6	H	P	
4.804	3.0	33.0	33.0	5.8	-36.5	0.0	0.0	35.4	54.0	-18.6	H	A	
Mid ch, 2		• • • • • • • • • • • • • • • • • • • •	33.1	5.8	-36.5			45.0	740	-28.7	TT	n	
4.882 4.882	3.0	42.8 35.1	33.1 33.1	5.8	-36.5	0.0 0.0	0.0 0.0	45.3	74.0 54.0	-28.7 -16.4	v v	P A	
+.002 7.323	3.0	36.2	35.3	7.3	-36.2	0.0	0.0	42.5	54.0 74.0	-31.5	v	P	
7.323	3.0	24.7	35.3	7.3	-36.2	0.0	0.0	31.1	54.0	-22.9	v	Å	
4.882	3.0	40.2	33.1	5.8	-36.5	0.0	0.0	42.7	74.0	-31.3	Ĥ	P	
4.882	3.0	31.2	33.1	5.8	-36.5	0.0	0.0	33.7	54.0	-20.3	H	Â	
7.323	3.0	36.9	35.3	7.3	-36.2	0.0	0.0	43.2	74.0	-30.8	H	P	
7.323	3.0	24.2	35.3	7.3	-36.2	0.0	0.0	30.6	54.0	-23.4	H	A	
	2480MH	Ŀ			1					1		1	
High ch,	3.0	41.0	33.2	5.9	-36.5	0.0	0.0	43.6	74.0	- 30.4	H	P	
	3.0	32.5	33.2	5.9	-36.5	0.0	0.0	35.2	54.0	- 18.8	H	A	
4.960	3.0	36.8	35.5	7.3	-36.2	0.0	0.0	43.4	74.0	- 30.6	H	Р	
4.960 4.960 7.440		25.5	35.5	7.3	-36.2	0.0	0.0	32.1	54.0	-21.9	H	A	
4.960 4.960 7.440 7.440	3.0		33.2	5.9	-36.5	0.0	0.0	44.6	74.0	-29.5	V	Р	
4.960 4.960 7.440 7.440 4.960	3.0 3.0	41.9		5.9	-36.5	0.0	0.0	37.2	54.0	-16.8	V	<u>A</u>	
4.960 4.960 7.440 7.440 4.960 4.960	3.0 3.0 3.0	34.6	33.2	¢	*****			43.7	74.0	-30.3	v	Р	
4.960 4.960 7.440 7.440 4.960	3.0 3.0	• • • • • • • • • • • • • • • • • • • •	33.2 35.5 35.5	7.3 7.3	-36.2 -36.2	0.0 0.0	0.0 0.0	32.0	54.0	-22.0	V	A	

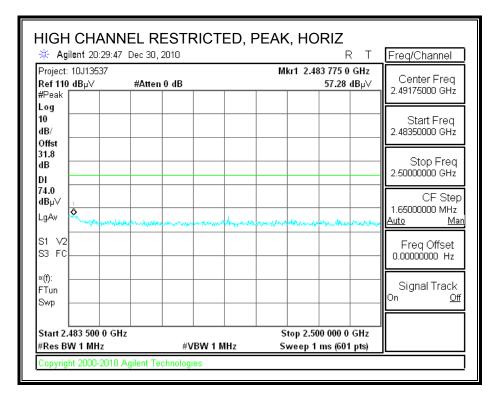
Page 60 of 73

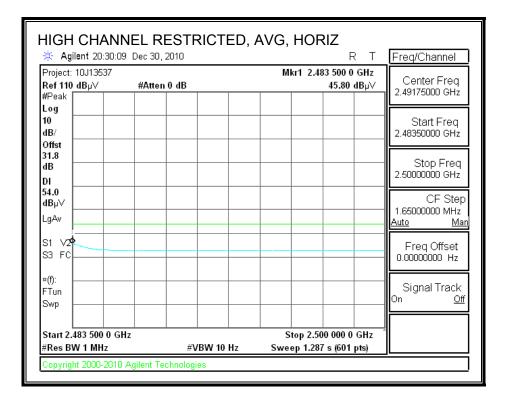
8.1.2. ENHANCED DATA RATE 8PSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

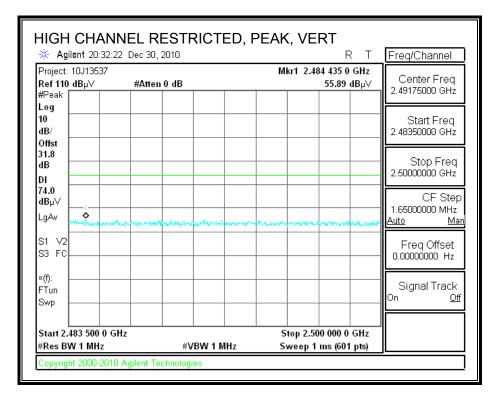


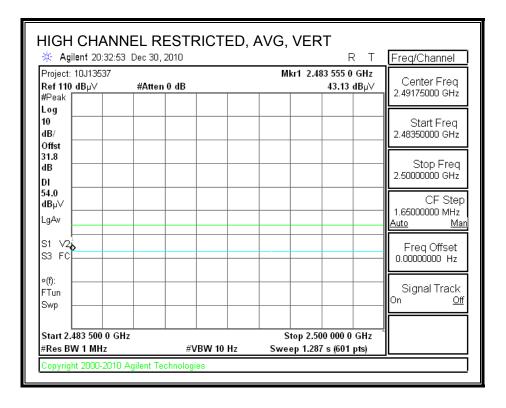
Page 61 of 73


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 62 of 73


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 63 of 73

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 64 of 73

HARMONICS AND SPURIOUS EMISSIONS

Complia		Measuren tification		s, Fre	mont 51	n Chamb	er						
Test Engr	•	Oliver S	ա										
Date:	•	01/03/11											
Project #:		10J1353											
Company		CASIO											
Company Fest Targ		FCC 15.3	247										
Mode Op		BT, EDR		Y-Po:	ition								
-		,	,,										
	f	Measuren	nent Freq	piency	7 Amp	Preamp (Gain			Average	Field Stren	gth Limit	
	Dist	Distance	to Anter	ma	D Corr	Distance	Corre	ct to 3 me	ters	Peak Fie	eld Strength	Limit	
	Read	Analyzer	Reading		Avg	Average	Field S	trength @	3 m	Margin	vs. Average	Limit	
	AF	Antenna	Factor		Peak	Calculate	d Peal	r Field Stre	ength	Margin	vs. Peak Lii	nit	
	CL	Cable Los	55		HPF	High Pas	s Filte:	r					
f	Dist	Read	AF	CL	Amp	D Corr			Limit	: -	Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low ch, 2													
4.804	3.0	38.2	33.0	5.8	-36.5	0.0	0.0	40.6	74.0	-33.4	H	P	
4.804	3.0	26.1	33.0	5.8	-36.5	0.0	0.0	28.4	54.0	-25.6	H	A	
4.804	3.0	38.8	33.0	5.8	-36.5	0.0	0.0	41.2	74.0	-32.8	V	P	
4.804	3.0	26.1	33.0	5.8	-36.5	0.0	0.0	28.4	54.0	-25.6	V	A	
Mid ch, 2		-&	22.1		-			40.0	740				
4.882 4.882	3.0	37.7 25.3	33.1 33.1	5.8 5.8	-36.5	0.0 0.0	0.0 0.0	40.2 27.8	74.0 54.0	-33.8 -26.2	V V	P	
+.004 7.323	3.0	36.6	35.3	7.3	-36.2	0.0	0.0	43.0	54.0 74.0	-20.2	v	A P	
7.323	3.0	24.2	35.3	7.3	-36.2	0.0	0.0	45.0 30.6	74.0 54.0	-23.4	v	F A	
4.882	3.0	39.3	33.1	5.8	-36.5	0.0	0.0	41.8	54.0 74.0	-32.2	ч Н	P	
4.882	3.0	25.3	33.1	5.8	-36.5	0.0	0.0	27.8	54.0	-26.2	H	A	
7.323	3.0	37.2	35.3	7.3	-36.2	0.0	0.0	43.5	24.0 74.0	-30.5	H	P	
7.323	3.0	24.2	35.3	7.3	-36.2	0.0	0.0	30.6	54.0	-23.4	H	Å	
High ch,					1								
4.960	3.0	38.0	33.2	5.9	-36.5	0.0	0.0	40.6	74.0	-33.4	H	Р	
4.960	3.0	25.3	33.2	5.9	-36.5	0.0	0.0	27.9	54.0	-26.1	H	A	
7.440	3.0	36.8	35.5	7.3	-36.2	0.0	0.0	43.4	74.0	-30.6	H	P	
7.440	3.0	24.5	35.5	7.3	-36.2	0.0	0.0	31.1	54.0	-22.9	H	A	
4.960	3.0	39.0	33.2	5.9	-36.5	0.0	0.0	41.7	74.0	-32.3	V	P	
	3.0	26.6	33.2	5.9	-36.5	0.0	0.0	29.2	54.0	-24.8	V	A	
4.960	2.0	36.5	35.5	7.3	-36.2	0.0	0.0	43.1	74.0	-3 0.9	V	Р	
	3.0 3.0	24.6	35.5	7.3	-36.2	0.0	0.0	31.2	54.0	-22.8	v	A	

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 65 of 73

8.2. RECEIVER ABOVE 1 GHz

			7 Measurem												
ompli	ance Ce	rtification	Services, Fr	emont :	5m Ch	amber									
	ny: Casi #: 10A /1/11														
		Chin Pang													
~			lapter/Head	set											
ode:	KX, BM	etooth (W	orse Case)												
st Eo	uipmen	<u>t:</u>													
			_				_								
F	lorn 1-	18GHz	Pre-ar	nplifer	1-26	GHz	Pre-am	plifer	26-40GH	z	н	orn > 180	GHz		Limit
T59;	S/N: 324	i@3m	▼ T145 A	Agilent 3	008A0	05(🖵				-				-	RX RSS 210 🗸
Li Ero	quency Cal	loc —				_	1								
		2807700	12' c	able 2	28076	500	20' ca	ble 22	2807500		HPF	Re	ject Filte		<u>x Measurements</u> W=VBW=1MHz
3' 0	able 228	07700	12' ca	ble 228	07600		20' cab	le 2280	07500 _						ge Measurements
														RBW=	1MHz; VBW=10Hz
f	D: 4	D 101	Read Avg.	AT	CT		Da	171			т. т.	А. Т. [.]	T01 7 4	A 3.5	NT 4
I GHz	Dist (m)	dBuV	dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBnV/m	Avg dBnV/m	Pk Lim dBuV/m		dB	Avg Mar dB	Notes (V/H)
	2441 MHz	ωDuν	шыцт	ub/m	ш	ιω.		w.	uBu v/m	ubu v/m	uDu v/m	uDu v/m	ш	wD	(1)
27	3.0	47.5	41.7	26.2	3.1	-35.7	0.0	0.0	41.1	35.3	74	54	- 32.9	-18.7	Н
40	3.0	47.6	41.4	28.3	39	-35.1	0.0	0.0	44.7	38 <i>.</i> 5	74	54	-29.3	- 15 .5	Н
27	3.0	46.0	36.5	26.2	3.1 3.9	-35.7	0.0	0.0 0.0	39.6	30.1	74	54 54	-34.4 -28.9	-23.9	v
40	3.0	48.0	41.0	28.3	39	-35.1	0.0	UU	45.1	38.1	74	54	-28.9	-15.9	v
			i	1		å								ii.	
v. 11.1						_									
te: No	other emi	ssions were	detected above	the syste	m noise	e floor.									
	f	Measurem	ent Frequenc	v		Amp	Preamp (Gain				Avg Lim	Average I	Field Strengt	h Limit
		Distance to		·		D Corr	-		ct to 3 mete	ers		-	-	d Strength Li	
	Read	Analyzer R	eading			Avg	Average	Field S	Strength @	3 m		Avg Mar	Margin vs	. Average Li	mit
	AF	Antenna Fa	actor			Peak	Calculate	ed Peal	c Field Stre	ngth		Pk Mar	Margin vs	. Peak Limit	
	CL	Cable Loss	3			HPF	High Pas	s Filter							
	010						0								

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.UL CCS.

Page 66 of 73

WORST-CASE BELOW 1 GHz 8.3.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Continuan	ice Certif	ication Se	rvices, Fi	emon	t 5m Cha	mber							
Test Engr		Oliver Su	a										
Date:		01/03/11											
Project #:	1	10J13537											
Company		CASIO											
Test Targe	≥t:	FCC 15 C	lass B										
Mode Ope	21:	BT, EDR3	M, TX, Y	-Positi	on (wors	t case)							
	f	Measurem	-	-	Amp	Preamp G				Margin	Margin vs.	Limit	
	Dist	Distance t		a				to 3 meters					
	Read	Analyzer I	-		Filter	Filter Inse							
	AF CL	Antenna F			Corr.	Calculated		-					
	CL	Cable Loss	5		Limit	Field Stre	ngth Lu	nit					
f	Dist	Read	AF	CL	Атр	D Corr	Pad	Corr.	Limit	; -	Ant. Pol.	Det.	Notes
MHz	Dist (m)	Read dBuV	AF dB/m	dB	Amp dB	D Corr dB	- Pad dB	Corr. dBuV/m	dBuV/m	dB	V/H	P/A/QP	Notes
MHz 119.164	Dist (m) 3.0	Read dBuV 39.1	AF dB/m 13.5	dB 1.0	Amp dB 28.3	D Corr dB 0.0	Pad dB 0.0	Corr. dBuV/m 25.3	dBuV/m 43.5	dB -18.2	V/H V	P/A/QP P	Notes
MHz 119.164 363.974	Dist (m) 3.0 3.0	Read dBuV 39.1 37.9	AF dB/m 13.5 14.4	dB 1.0 1.7	Amp dB 28.3 28.1	D Corr dB 0.0 0.0	Pad dB 0.0 0.0	Corr. dBuV/m 25.3 25.9	dBuV/m 43.5 46.0	dB -18.2 -20.1	V/H V V	P/A/QP P P	Notes
MHz 119.164 363.974 415.936	Dist (m) 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2	AF dB/m 13.5 14.4 15.2	dB 1.0 1.7 1.8	Amp dB 28.3 28.1 28.1	D Corr dB 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2	dBuV/m 43.5 46.0 46.0	dB -18.2 -20.1 -17.8	V/H V V V	P/A/QP P P P	Notes
MHz 119.164 363.974 415.936 441.977	Dist (m) 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8	AF dB/m 13.5 14.4 15.2 15.7	dB 1.0 1.7 1.8 1.9	Amp dB 28.3 28.1 28.1 28.1 28.0	D Corr dB 0.0 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2 31.4	dBuV/m 43.5 46.0 46.0 46.0	dB -18.2 -20.1 -17.8 -14.6	V/H V V V V	P/A/QP P P P P	Notes
	Dist (m) 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2	AF dB/m 13.5 14.4 15.2 15.7 19.5	dB 1.0 1.7 1.8 1.9 2.4	Amp dB 28.3 28.1 28.1	D Corr dB 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2 31.4 26.4	dBuV/m 43.5 46.0 46.0	dB -18.2 -20.1 -17.8 -14.6 -19.6	V/H V V V	P/A/QP P P P P P P	Notes
MHz 119.164 363.974 415.936 441.977 688.947	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8 31.7	AF dB/m 13.5 14.4 15.2 15.7	dB 1.0 1.7 1.8 1.9	Amp dB 28.3 28.1 28.1 28.0 27.2	D Corr dB 0.0 0.0 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2 31.4	dBuV/m 43.5 46.0 46.0 46.0 46.0	dB -18.2 -20.1 -17.8 -14.6	V/H V V V V V	P/A/QP P P P P P P P P	Notes
MHz 119.164 363.974 415.936 441.977 688.947 998.56	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8 31.7 31.2	AF dB/m 13.5 14.4 15.2 15.7 19.5 22.5	dB 1.0 1.7 1.8 1.9 2.4 3.0	Amp dB 28.3 28.1 28.1 28.0 27.2 27.9	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2 31.4 26.4 28.7	dBuV/m 43.5 46.0 46.0 46.0 46.0 54.0	dB -18.2 -20.1 -17.8 -14.6 -19.6 -25.3	V/H V V V V V V	P/A/QP P P P P P P	Notes
MHz 119.164 363.974 415.936 441.977 688.947 998.56 127.924	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8 31.7 31.2 39.1	AF dB/m 13.5 14.4 15.2 15.7 19.5 22.5 13.6	dB 1.0 1.7 1.8 1.9 2.4 3.0 1.1	Amp dB 28.3 28.1 28.1 28.0 27.2 27.9 28.3	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pad dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 25.3 25.9 28.2 31.4 26.4 28.7 25.5	dBuV/m 43.5 46.0 46.0 46.0 46.0 54.0 43.5	dB -18.2 -20.1 -17.8 -14.6 -19.6 -25.3 -18.0	V/H V V V V V V H	P/A/QP P P P P P P P P	Notes
MHz 119.164 363.974 415.936 441.977 688.947 998.56 127.924 338.053 363.974 390.015	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8 31.7 39.1 39.2 44.8 31.7 39.1 39.2 48.3 39.1 48.3 39.2 39.3 39.2 39.8	AF dB/m 13.5 14.4 15.2 15.7 19.5 22.5 13.6 14.0 14.4 14.8	dB 1.0 1.7 1.8 1.9 2.4 3.0 1.1 1.6 1.7 1.8	Amp dB 28.3 28.1 28.1 28.0 27.2 27.9 28.3 28.1 28.1 28.1	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pad dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Corr. dBuV/m 25.3 25.9 28.2 31.4 26.4 28.7 25.5 35.8 27.2 28.3	dBuV/m 43.5 46.0 46.0 46.0 46.0 54.0 43.5 46.0 46.0 46.0	dB -18.2 -20.1 -17.8 -14.6 -19.6 -25.3 -18.0 -10.2 -18.8 -17.7	V/H V V V V H H H H	P/A/QP P	Notes
MHz 119.164 363.974 415.936 441.977 688.947 998.56 127.924 338.053 363.974	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 39.1 37.9 39.2 41.8 31.7 31.2 39.1 48.3 39.2	AF dB/m 13.5 14.4 15.2 15.7 19.5 22.5 13.6 14.0 14.4	dB 1.0 1.7 1.8 1.9 2.4 3.0 1.1 1.6 1.7	Amp dB 28.3 28.1 28.0 27.2 27.9 28.3 28.1 28.1	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pad dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Corr. dBuV/m 25.3 25.9 28.2 31.4 26.4 26.4 28.7 25.5 35.8 27.2	dBuV/m 43.5 46.0 46.0 46.0 54.0 43.5 46.0 46.0	dB -18.2 -20.1 -17.8 -14.6 -19.6 -25.3 -18.0 -10.2 -18.8	V/H V V V V V H H H	P/A/QP P	Notes

Page 67 of 73

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

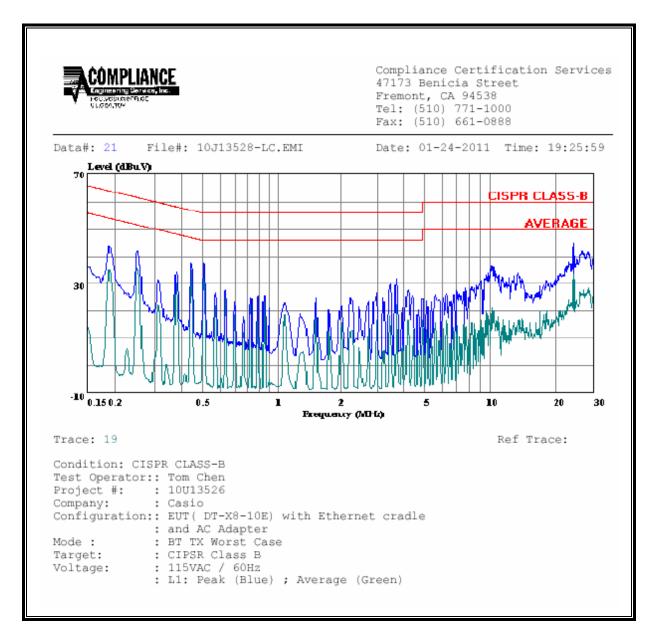
The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

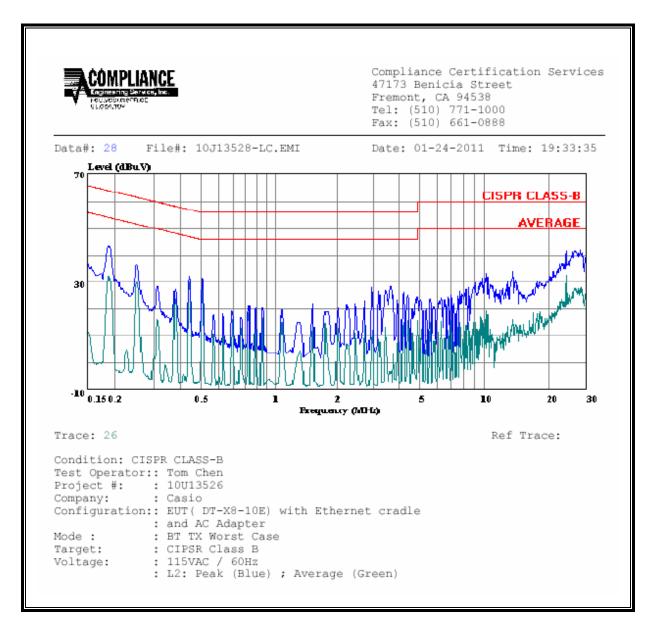
Page 68 of 73

Т


<u>6 WORST EMISSIONS</u>

		CONDUC	TED EMISS	IONS D.	ATA (115	VAC 60H	z)		
Freq.		Reading		Closs	Limit	EN_B	Marg	;iл	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.19	43.84		34.88	0.00	64.12	54.12	-20.28	-19.24	L1
0.25	41.90		34.85	0.00	61.66	51.66	-19.76	-16.81	L1
0.51	37.58		34.72	0.00	56.00	46.00	-18.42	-11.28	L1
0.19	42.07		30.25	0.00	64.04	54.04	-21.97	-23.79	L2
0.25	36.54		30.17	0.00	61.72	51.72	-25.18	-21.55	L2
0.44	32.14		29.36	0.00	57.02	47.02	-24.88	-17.66	L2
6 Worst I	Data								

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 69 of 73

LINE 1 RESULTS

Page 70 of 73

LINE 2 RESULTS

Page 71 of 73

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			()	
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	0
1500-100,000			5	0
(B) Limits	for General Populati	ion/Uncontrolled Ex	posure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions are exposure.

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m^2 is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 73 of 73

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	2.00	-1.63	0.0022	0.0002

11. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE

<u>LIMITS</u>

Per OTE Bulletin 65, for frequency bands with the same MPE limits, the Power Densities produced by each transmitter are summed. The summation must be under the limit for the band.

Per OTE Bulletin 65, for frequency bands with different limits the Power Densities are calculated separately for each band, divided by the limit for the band and the results are then summed. The summation must be less than 1.

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	2.00	-1.63	0.0022	0.0002
2.4 GHz	802.11g	0.20	20.91	1.94	0.3837	0.0384
Colocated					0.3858	0.0386

Page 75 of 73