

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: IT-300-35E

FCC ID: BBQIT300 IC: 2388F-IT300

REPORT NUMBER: 10J13537-6, Revision A

ISSUE DATE: APRIL 7, 2011

Prepared for

CASIO COMPUTER CO., LTD 6-2 HON-MACHI 1-CHOME SHIBUYA-KU TOKYO, 151-8543, JAPAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	02/23/11	Initial Issue	F. Ibrahim
A	04/07/11	Added Headphone to 5.5 Worst-configuration, 5.6 Support equipment list and Test Setup, and replaced the plot at Page 66.	F. Ibrahim

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	. FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQ	QUIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TE	ST AND MEASUREMENT EQUIPMENT	10
7.	AN	ITENNA PORT TEST RESULTS	11
	7.1.	802.11b MODE IN THE 2.4 GHz BAND	11
	7.1		
	7.1 7.1		
	7.1		
	7.1		
	7.1		
		802.11g MODE IN THE 2.4 GHz BAND	29
	7.2 7.2	• • • • • • • • • • • • • • • • • • • •	
	7.2		
		2.4. AVERAGE POWER	
	, ,	2.5. POWER SPECTRAL DENSITY	
_		2.6. CONDUCTED SPURIOUS EMISSIONS	43
8.	. RA	2.6. CONDUCTED SPURIOUS EMISSIONS	43
8.	. RA 8.1.	2.6. CONDUCTED SPURIOUS EMISSIONS ADIATED TEST RESULTS	43 49
8.	8.1. 8.2.	2.6. CONDUCTED SPURIOUS EMISSIONS	434949
8.	8.1. 8.2. 8.2	2.6. CONDUCTED SPURIOUS EMISSIONS ADIATED TEST RESULTS	43495050

	8.4.	WORST-CASE BELOW 1 GHz	69
9.	AC	POWER LINE CONDUCTED EMISSIONS	72
10	. N	MAXIMUM PERMISSIBLE EXPOSURE	76
11	. с	CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE	79
12	S	SETUP PHOTOS	80

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CASIO COMPUTER CO., LTD

6-2 HON-MACHI 1-CHOME

SHIBUYA-KU

TOKYO, 151-8543, JAPAN

EUT DESCRIPTION: HANDHELD TERMINAL

MODEL: IT-300-35E

SERIAL NUMBER: 053 / 065 /048

DATE TESTED: DECEMBER 30, 2010 - JANUARY 19, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS TOM CHEN EMC ENGINEER

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth and 802.11b/g equipped Handheld Terminal

The radio module is manufactured by Universal Scientific Industrial Corp.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	16.11	40.83
2412 - 2462	802.11g	20.91	123.31

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole antenna, with a maximum gain of 1.94 dBi.

5.4. SOFTWARE AND FIRMWARE

The operating system installed in the handheld terminals during testing was Windows Mobile.

The test utility software used to operate the wi-fi module during testing was SSINTEI.EXE.

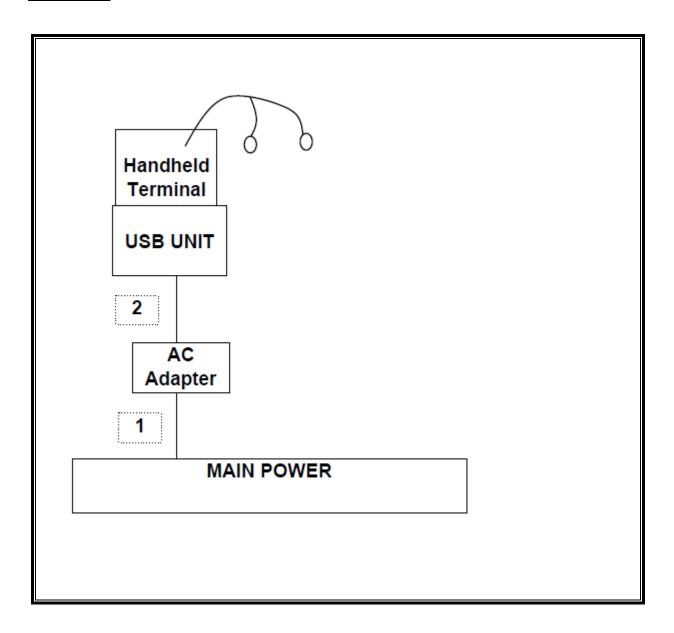
5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

All final tests in the 802.11b mode were made at 1 Mb/s. All final tests in the 802.11g mode were made at 6 Mb/s.

The EUT also has been evaluated at X, Y, Z-orientations and the worst among them with AC/DC Adapter, USB and Charging Unit and headphone. The highest measured emission was determined the EUT with AC/DC Adapter, USB and Charging Unit and headphone configuration

5.6. DESCRIPTION OF TEST SETUP


SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number		
AC/DC Adapter	Casio	AD-S15050B	N/A		
USB and Charging Unit	Casio	HA-J65US	N/A		
Micro SD	San Disk	09228042950J1	N/A		
Headphone	Rastabanana	N/A	N/A		

I/O CABLES

	I/O CABLE LIST					
Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identica	Type	Type	Length	
		Ports				
1	AC Input	1	US115V	Un-Shielded	1.9m	
2	DC Input (USB	1	Mini-Jack	Shielded	1.85m	Ferrite at USB unit
	Unit)					end

TEST SETUP

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	03/05/11	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/10/11	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	07/10/11	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/10/11	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11	
Peak Power Meter	Boonton	4541	C01186	03/01/11	

7. ANTENNA PORT TEST RESULTS

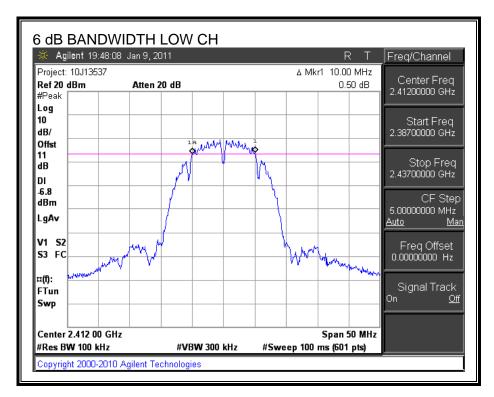
7.1. 802.11b MODE IN THE 2.4 GHz BAND

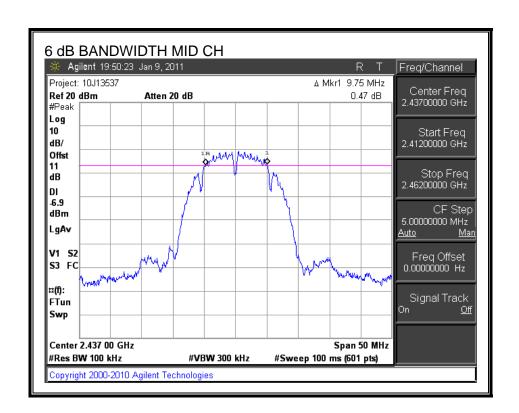
7.1.1. 6 dB BANDWIDTH

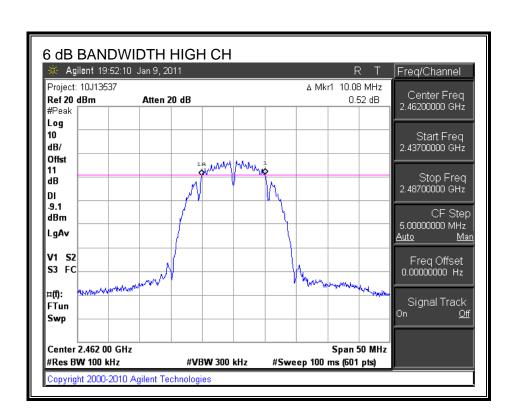
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

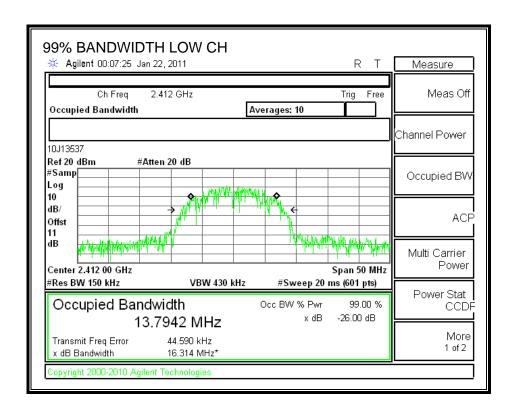

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10.00	0.5
Middle	2437	9.75	0.5
High	2462	10.08	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

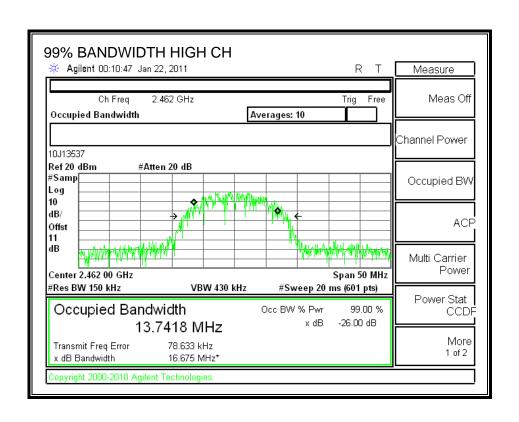
LIMITS


None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.7942
Middle	2437	13.6854
High	2462	13.7418


99% BANDWIDTH

REPORT NO: 10J13537-6A FCC ID: BBQIT300

opyright 2000-2010 Agilent Technologies

DATE: APRIL 7, 2011 IC: 2388F-IT300 REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured by power meter in peak mode.

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	16.11	30	-14.19
Middle	2437	15.84	30	-14.46
High	2462	14.45	30	-15.85

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter in average mode.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 1.3 dB cable provided) was entered as an offset in the power meter to allow for direct reading of power.

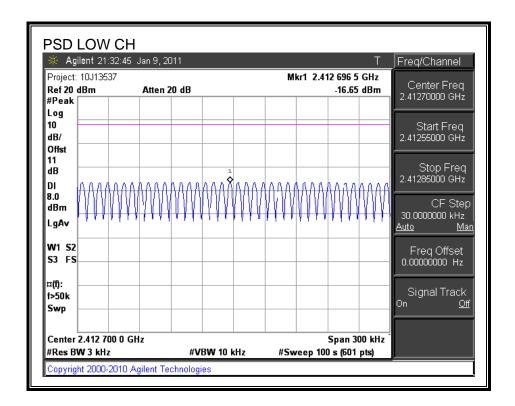
Channel	Frequency	Peak Power
	(MHz)	(dBm)
Low	2412	12.81
Middle	2437	12.20
High	2462	11.58

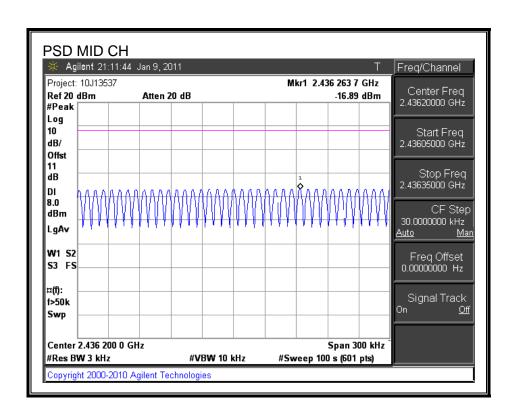
7.1.5. POWER SPECTRAL DENSITY

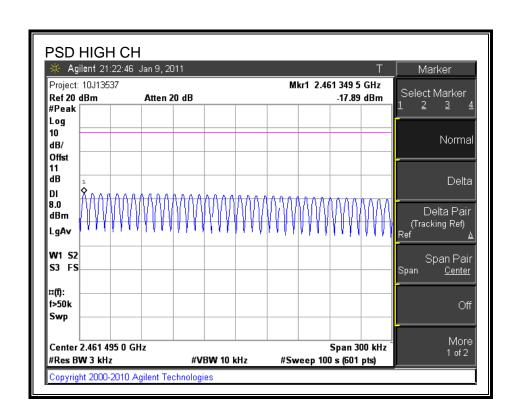
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

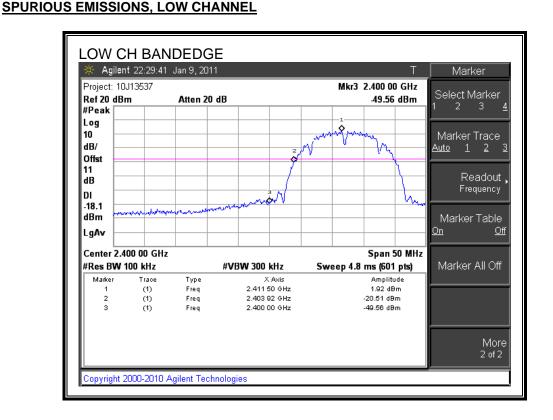
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-16.65	8	-24.65
Middle	2437	-16.89	8	-24.89
High	2462	-17.89	8	-25.89

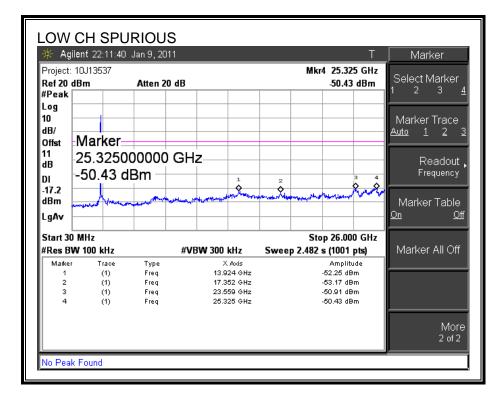
POWER SPECTRAL DENSITY

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

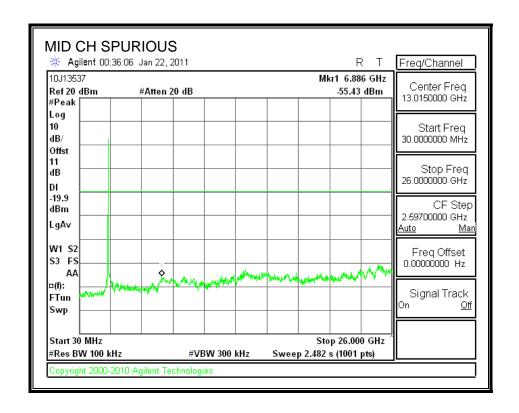
FCC §15.247 (d)

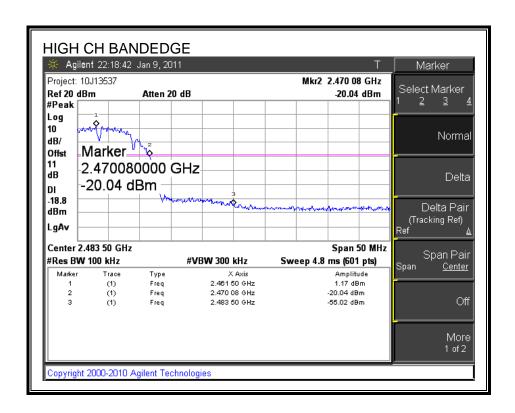

IC RSS-210 A8.5

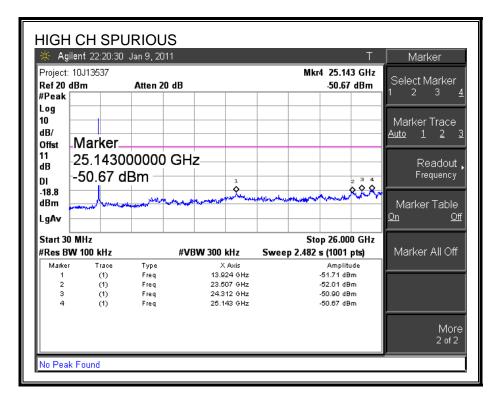

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

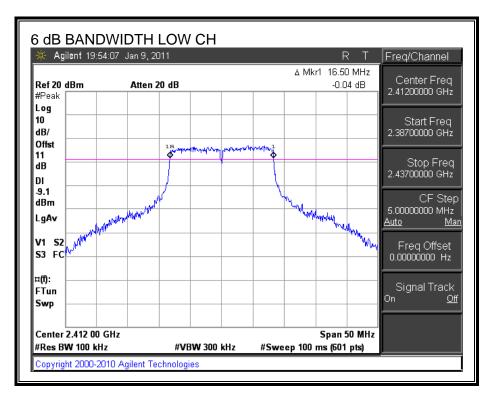
7.2. 802.11g MODE IN THE 2.4 GHz BAND

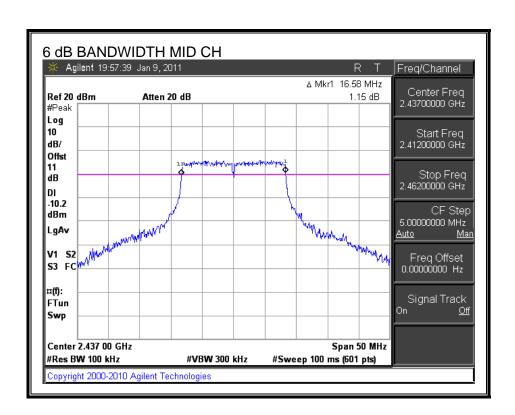
7.2.1. 6 dB BANDWIDTH

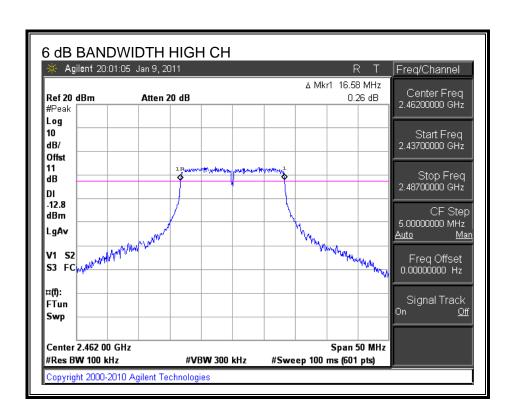
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

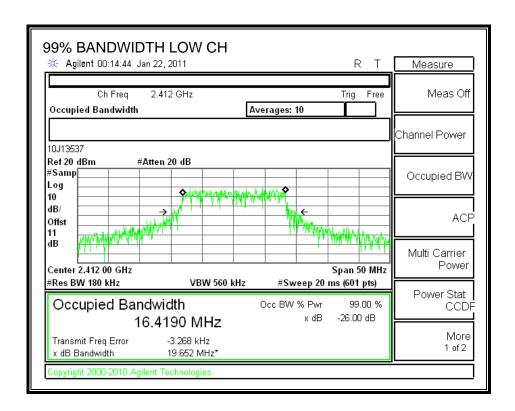

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(kHz)	(kHz)
Low	2412	16500	500
Middle	2437	16580	500
High	2462	16580	500

6 dB BANDWIDTH

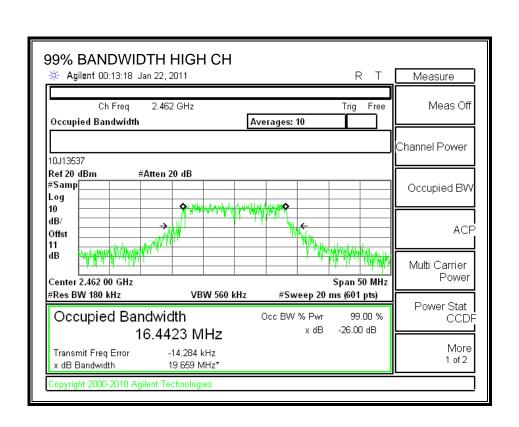
7.2.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.419
Middle	2437	16.3996
High	2462	16.4423

99% BANDWIDTH

REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300 REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is by power meter in peak mode.

RESULTS

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	20.91	30	-9.09
Middle	2437	19.87	30	-10.13
High	2462	19.00	30	-11.00

Note: Measurement includes offset of 10 dB attenuator and 1.3 dB for cable/connector provided.

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency (MHz)	Power (dBm)
Low	2412	12.37
Middle	2437	9.49
High	2462	9.01

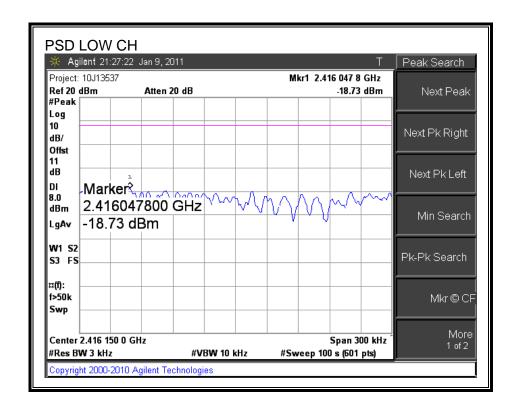
7.2.5. POWER SPECTRAL DENSITY

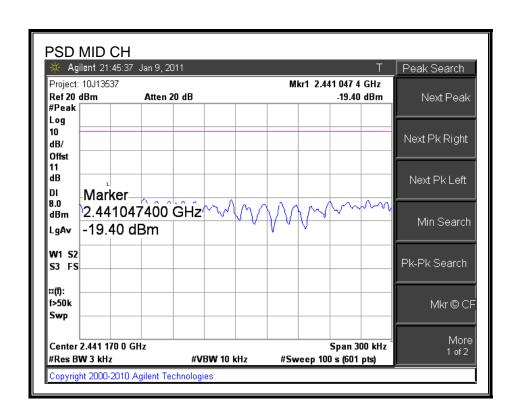
LIMITS

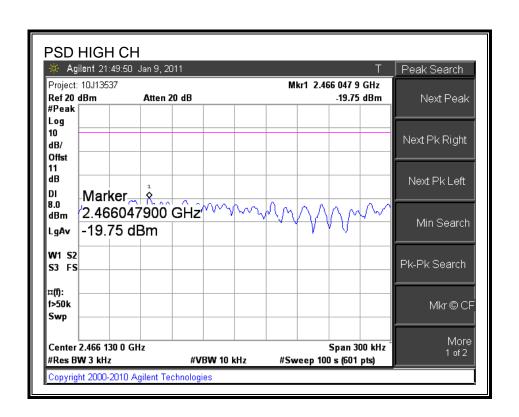
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
1	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-18.73	8	-26.73
Middle	2437	-19.40	8	-27.40
High	2462	-19.75	8	-27.75

POWER SPECTRAL DENSITY

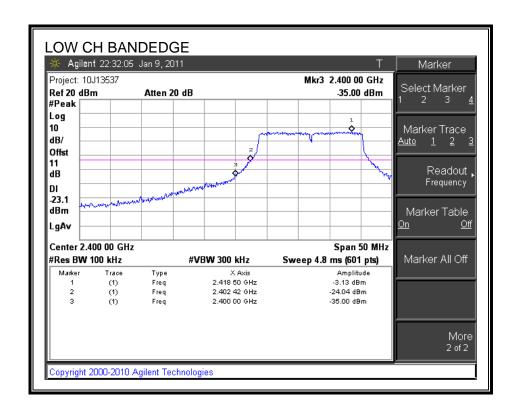
7.2.6. CONDUCTED SPURIOUS EMISSIONS

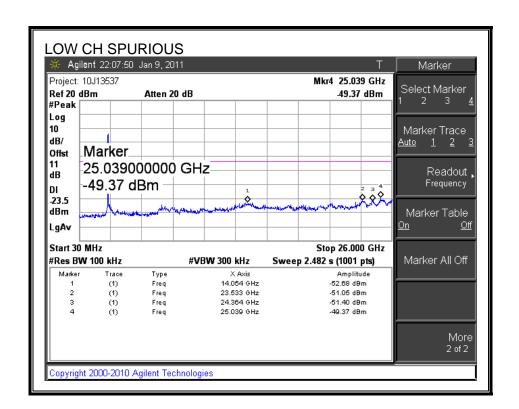
LIMITS

FCC §15.247 (d)

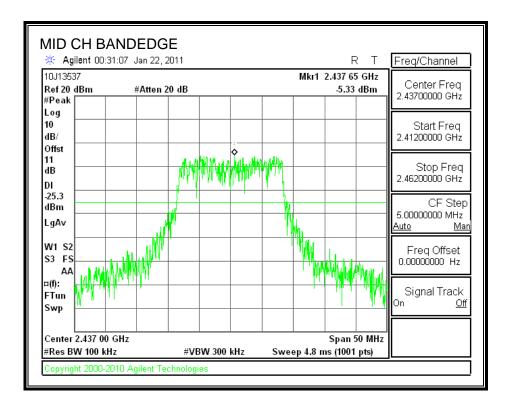
IC RSS-210 A8.5

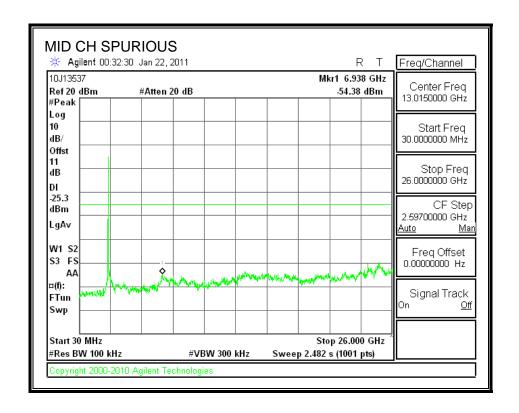
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

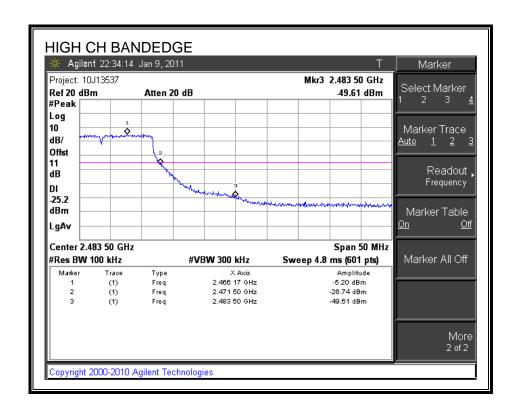

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

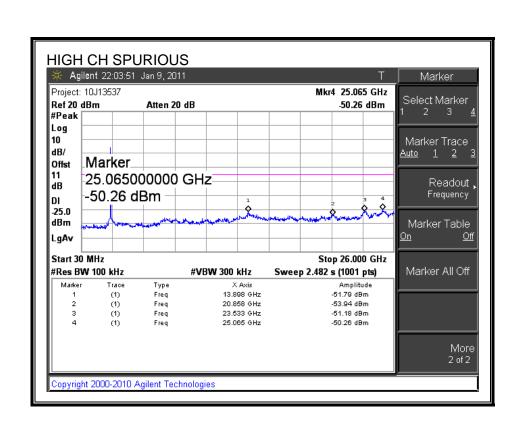
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL



SPURIOUS EMISSIONS, MID CHANNEL



SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

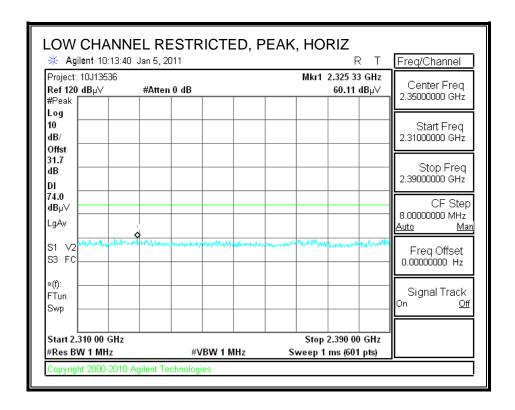
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

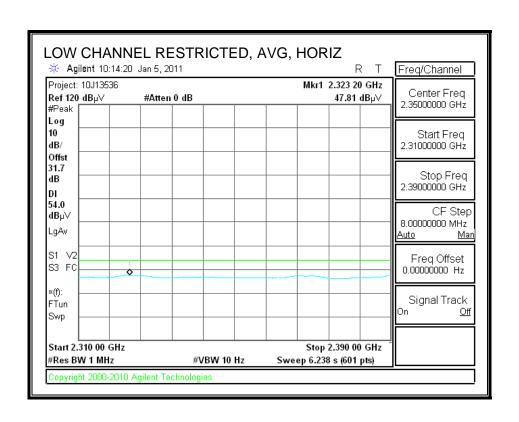
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

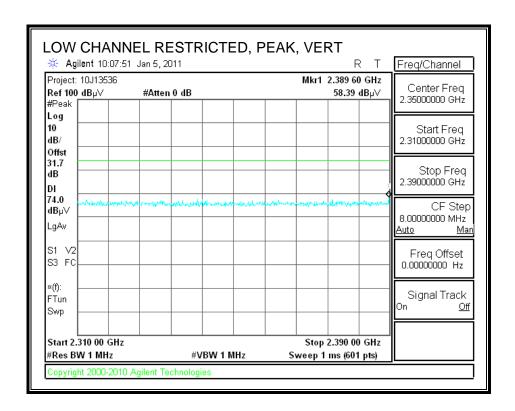

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

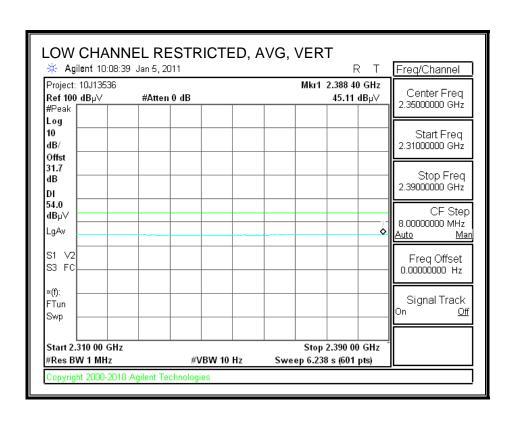

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

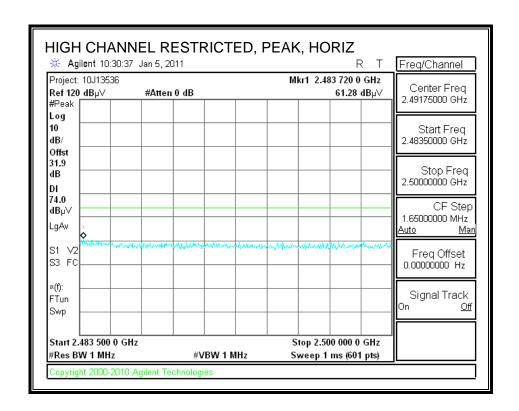


REPORT NO: 10J13537-6A FCC ID: BBQIT300

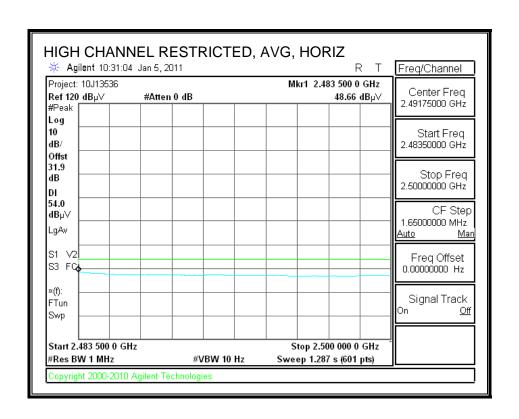


DATE: APRIL 7, 2011 IC: 2388F-IT300

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

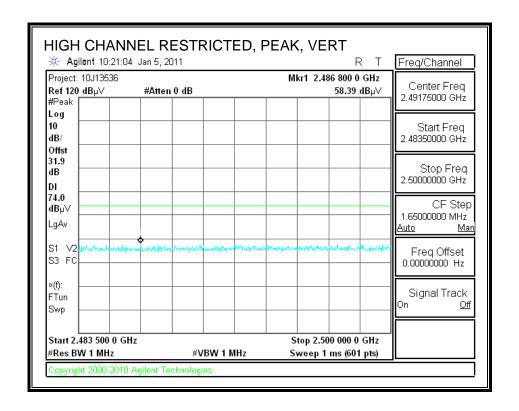


REPORT NO: 10J13537-6A FCC ID: BBQIT300

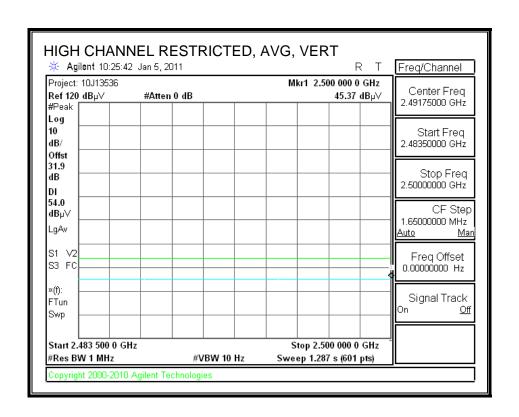


DATE: APRIL 7, 2011 IC: 2388F-IT300

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



REPORT NO: 10J13537-6A FCC ID: BBQIT300



DATE: APRIL 7, 2011 IC: 2388F-IT300

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

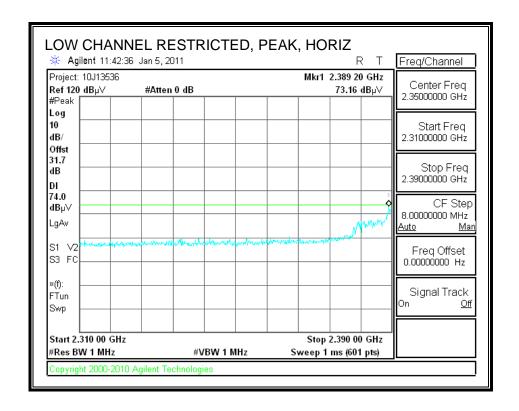
HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 01/05/11 10J13536 Project #: Company: Casio FCC Class B Test Target: Mode Oper: 802.11b mode

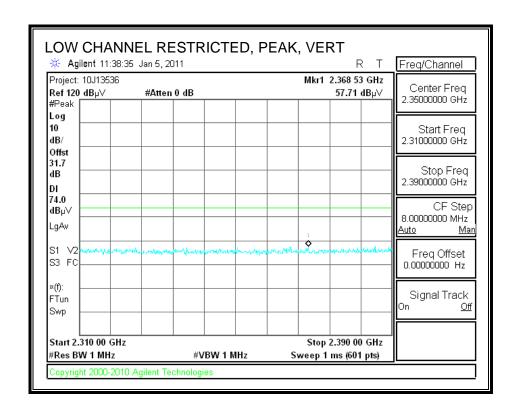
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit Antenna Factor Peak Calculated Peak
> Cable Loss HPF High Pass Filter Margin vs. Peak Limit

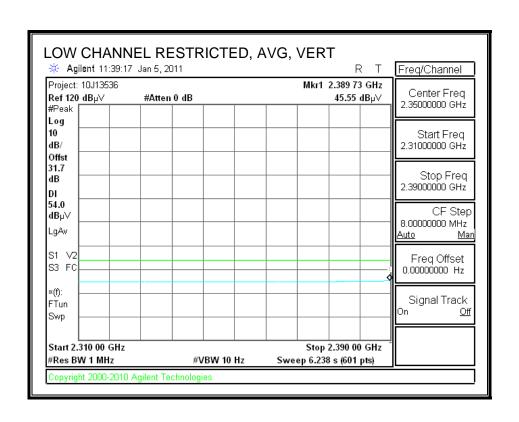

CL

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	đВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
b Mode, L	ow Ch.												
4.824	3.0	43.4	33.0	5.8	-36.5	0.0	0.0	45.8	74.0	-28.2	V	P	
4.824	3.0	39.4	33.0	5.8	-36.5	0.0	0.0	41.8	54.0	-12.2	v	A	
4.824	3.0	42.2	33.0	5.8	-36.5	0.0	0.0	44.5	74.0	-29.5	H	P	
4.824	3.0	36.5	33.0	5.8	-36.5	0.0	0.0	38.9	54.0	-15.1	H	A	
12.060	3.0	35.3	39.0	9.8	-35.4	0.0	0.0	48.7	74.0	-25.3	V	P	
12.060	3.0	23.0	39.0	9.8	-35.4	0.0	0.0	36.4	54.0	-17.6	V	A	
12.060	3.0	35.1	39.0	9.8	-35.4	0.0	0.0	48.4	74.0	-25.6	H	P	
12.060	3.0	22.8	39.0	9.8	-35.4	0.0	0.0	36.1	54.0	-17.9	Н	A	
b Mode, N	lid Ch.												
4.874	3.0	39.9	33.1	5.8	-36.5	0.0	0.0	42.4	74.0	-31.6	v	P	
4.874	3.0	33.3	33.1	5.8	-36.5	0.0	0.0	35.7	54.0	-18.3	V V	P A P	
4.874	3.0	41.6	33.1	5.8	-36.5	0.0	0.0	44.1	74.0	-29.9	H	P	
4.874	3.0	35.8	33.1	5.8	-36.5	0.0	0.0	38.3	54.0	-15.8	H	A	
7.311	3.0	41.8	35.3	7.3	-36.2	0.0	0.0	48.1	74.0	-25.9	V	P	
7.311	3.0	35.5	35.3	7.3	-36.2	0.0	0.0	41.8	54.0	-12.2	V	A	
7.311	3.0	41.7	35.3	7.3	-36.2	0.0	0.0	48.1	74.0	-25.9	Н	P	
7.311	3.0	35.6	35.3	7.3	-36.2	0.0	0.0	41.9	54.0	-12.1	Н	A	
12.185	3.0	35.1	39.0	9.8	-35.4	0.0	0.0	48.5	74.0	-25.5	V	P	
12.185	3.0	23.4	39.0	9.8	-35.4	0.0	0.0	36.8	54.0	-17.2	V	A	
12.185	3.0	35.4	39.0	9.8	-35.4	0.0	0.0	48.8	74.0	-25.2	Н	P	
12.185	3.0	23.3	39.0	9.8	-35.4	0.0	0.0	36.7	54.0	-17.3	Н	P A	
b Mode, F	ligh Ch.												
4.924	3.0	39.0	33.1	5.9	-36.5	0.0	0.0	41.5	74.0	-3 2. 5	V	P	
4.924	3.0	30.0	33.1	5.9	-36.5	0.0	0.0	32.5	54.0	-21.5	V V	A	
4.924	3.0	41.1	33.1	5.9	-36.5	0.0	0.0	43.7	74.0	-30.3	H	P	
4.924	3.0	34.4	33.1	5.9	-36.5	0.0	0.0	37.0	54.0	-17.0	Н	A	
7.386	3.0	41.1	35.4	7.3	-36.2	0.0	0.0	47.6	74.0	-26.4	V	A P	
7.386	3.0	34.2	35.4	7.3	-36.2	0.0	0.0	40.7	54.0	-13.4	v	A	
7.386	3.0	40.1	35.4	7.3	-36.2	0.0	0.0	46.6	74.0	-27.4	Н	P	
7.386	3.0	32.3	35.4	7.3	-36.2	0.0	0.0	38.8	54.0	-15.2	Н	A	
12.310	3.0	35.6	39.0	9.9	-35.4	0.0	0.0	49.1	74.0	-24.9	v	P	
12.310	3.0	23.5	39.0	9,9	-35.4	0.0	0.0	37.0	54.0	-17.0	V	A	
12.310	3.0	35.9	39.0	9.9	-35.4	0.0	0.0	49.4	74.0	-24.6	Н	P	
12.310	3.0	23.5	39.0	9.9	-35.4	0.0	0.0	37.0	54.0	-17.0	Н	A	

Note: No other emissions were detected above the system noise floor.

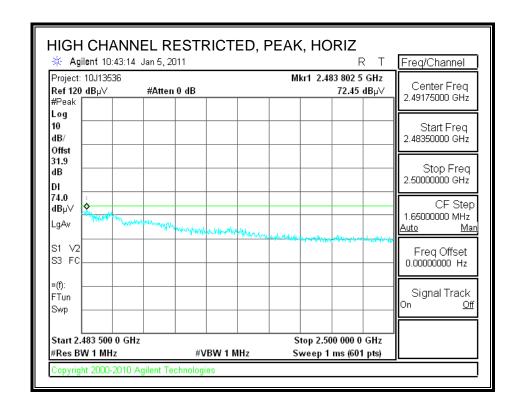
8.2.2. TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

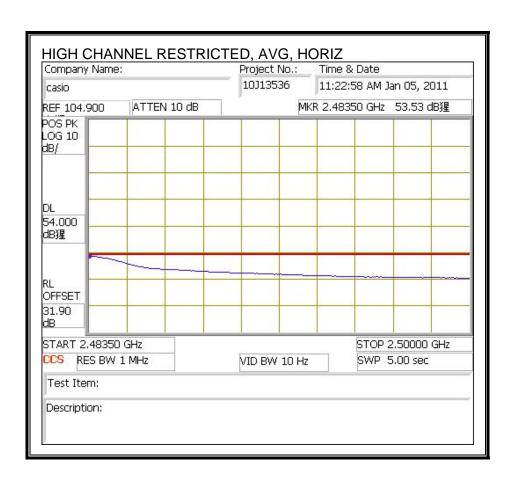

REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

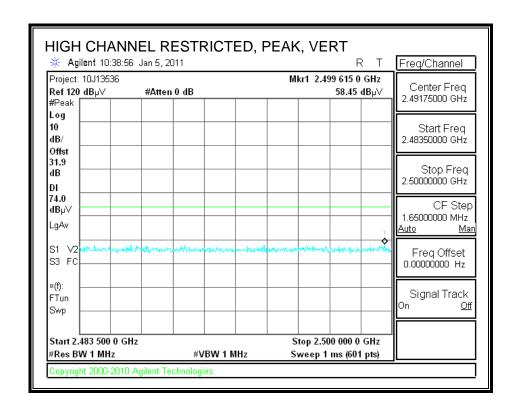


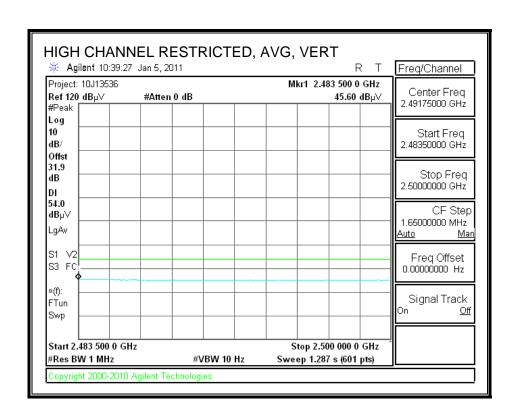
REPORT NO: 10J13537-6A FCC ID: BBQIT300



DATE: APRIL 7, 2011 IC: 2388F-IT300

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


REPORT NO: 10J13537-6A FCC ID: BBQIT300


DATE: APRIL 7, 2011

IC: 2388F-IT300

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 10J13537-6A FCC ID: BBQIT300

DATE: APRIL 7, 2011 IC: 2388F-IT300

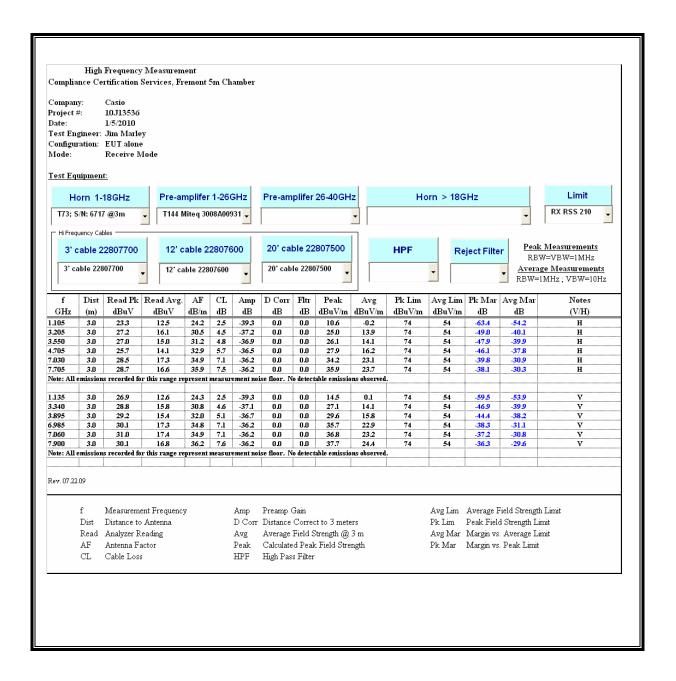
REPORT NO: 10J13537-6A DATE: APRIL 7, 2011 IC: 2388F-IT300 FCC ID: BBQIT300

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

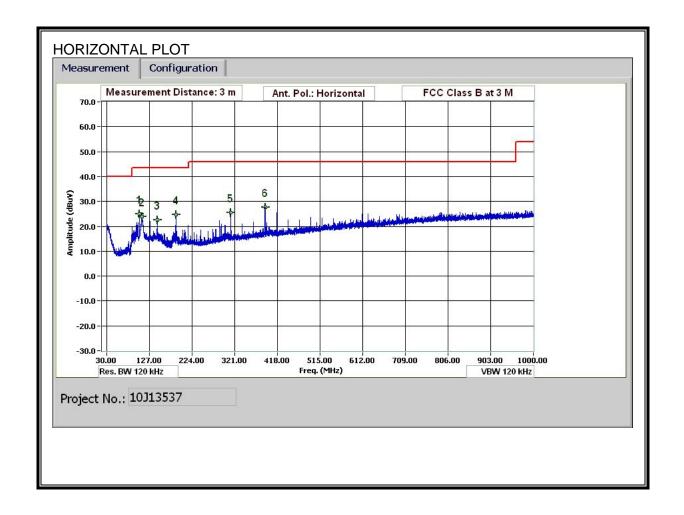
William Zhuang Test Engr: Date: 01/05/11 Project #: 10J13536 Casio Company: Test Target: FCC Class B Mode Oper: 802.11g mode

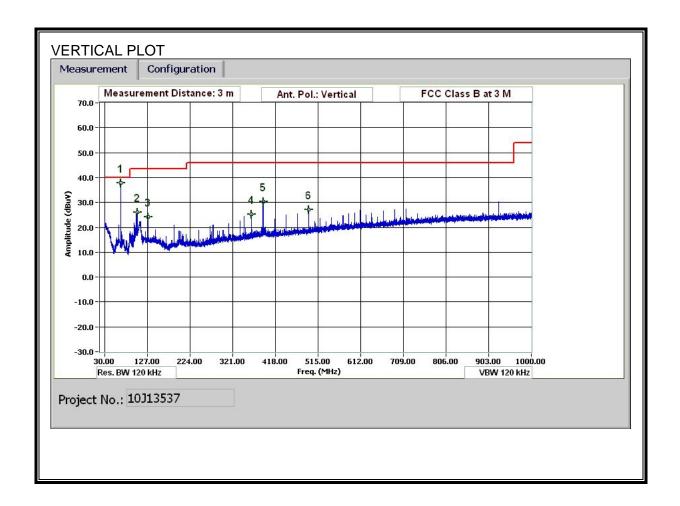

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit Antenna Factor Peak Calculated Peak Field Strength
> Cable Loss HPF High Pass Filter Margin vs. Peak Limit AF

CL Cable Loss

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	dВ	đВ	dВ	đВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
g Mode, L	ow Ch.												
4.824	3.0	39.5	33.0	5.8	-36.5	0.0	0.0	41.9	74.0	-32.1	H	P	
4.824	3.0	27.2	33.0	5.8	-36.5	0.0	0.0	29.6	54.0	-24.4	Н	A	
4.824	3.0	40.4	33.0	5.8	-36.5	0.0	0.0	42.7	74.0	-31.3	V	P	
4.824	3.0	26.9	33.0	5.8	-36.5	0.0	0.0	29.3	54.0	-24.7	V	A	
12.060	3.0	35.5	39.0	9.8	-35.4	0.0	0.0	48.8	74.0	-25.2	V	P	
12.060	3.0	23.3	39.0	9.8	-35.4	0.0	0.0	36.6	54.0	-17.4	V	A	
12.060	3.0	36.3	39.0	9.8	-35.4	0.0	0.0	49.6	74.0	-24.4	H	P A	
12.060	3.0	23.5	39.0	9.8	-35.4	0.0	0.0	36.8	54.0	-17.2	Н	A	
g Mode, N	lid Ch.												
4.874	3.0	38.3	33.1	5.8	-36.5	0.0	0.0	40.7	74.0	-33.3	Н	P	
4.874	3.0	25.8	33.1	5.8	-36.5	0.0	0.0	28.2	54.0	-25.8	Н	A	
4.874	3.0	40.6	33.1	5.8	-36.5	0.0	0.0	43.1	74.0	-30.9	V	P	
4.874	3.0	25.9	33.1	5.8	-36.5	0.0	0.0	28.4	54.0	-25.6	v	A	
7.311	3.0	50.7	35.3	7.3	-36.2	0.0	0.0	57.0	74.0	-17.0	v	P	
7.311	3.0	31.9	35.3	7.3	-36.2	0.0	0.0	38.3	54.0	-15.7	v	A	
7.311	3.0	46.8	35.3	7.3	-36.2	0.0	0.0	53.2	74.0	-20.8	H	P	
7.311	3.0	29.1	35.3	7.3	-36.2	0.0	0.0	35.4	54.0	-18.6	Н	A	
12.185	3.0	35.7	39.0	9.8	-35.4	0.0	0.0	49.1	74.0	-24.9	Н	P	
12.185	3.0	23.5	39.0	9.8	-35.4	0.0	0.0	36.9	54.0	-17.1	Н	A	
12.185	3.0	35.5	39.0	9.8	-35.4	0.0	0.0	48.9	74.0	-25.1	V	P	
12.185	3.0	23.4	39.0	9.8	-35.4	0.0	0.0	36.8	54.0	-17.2	V	A	
g Mode, F	ligh Ch.												
4.924	3.0	40.1	33.1	2.4	-36.5	0.0	0.0	39.2	74.0	-34.8	V	P	
4.924	3.0	25.9	33.1	2.4	-36.5	0.0	0.0	25.0	54.0	-29.0	V	A	
4.924	3.0	41.3	33.1	2.4	-36.5	0.0	0.0	40.4	74.0	-33.6	Н	P	
4.924	3.0	26.4	33.1	2.4	-36.5	0.0	0.0	25.5	54.0	-28.5	н	P A	
4.924	3.0	40.6	33.1	4.7	-36.5	0.0	0.0	42.0	74.0	-32.0	Н	P	
4.924	3.0	26.0	33.1	4.7	-36.5	0.0	0.0	27.5	54.0	-26.5	Н	A	
7.386	3.0	47.7	35.4	5.8	-36.2	0.0	0.0	52.7	74.0	- 21. 3	v	P	
7.386	3.0	31.1	35.4	5.8	-36.2	0.0	0.0	36.1	54.0	-17.9	V	A	
7.386	3.0	46.2	35.4	5.8	-36.2	0.0	0.0	51.2	74.0	-22.8	Н	P	
7.386	3.0	30.0	35.4	5.8	-36.2	0.0	0.0	35.0	54.0	-19.0	Н	A	
12.310	3.0	35.6	39.0	7.7	-35.4	0.0	0.0	46.9	74.0	-27.1	v	P	
12.310	3.0	23.5	39.0	7.7	-35.4	0.0	0.0	34.8	54.0	-19.2	v	Ā	
12.310	3.0	36.4	39.0	7.7	-35.4	0.0	0.0	47.7	74.0	-26.3	H	P	
12.310	3.0	23.6	39.0	7.7	-35.4	0.0	0.0	34.9	54.0	-19.1	н	A	

Note: No other emissions were detected above the system noise floor.


8.3. RECEIVER ABOVE 1 GHz


8.4. WORST-CASE BELOW 1 GHz

RESULTS

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

RADIATED EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

TABULATED DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Analyzer Reading

Test Engr: Tom Chen 01/19/11 10J13537 Project #: Company: Casio Test Target: FCC Class B Mode Oper: TX mode worst case

Read

Measurement Frequency Amp Preamp Gain Dist Distance to Antenna

D Corr Distance Correct to 3 meters

Filter Filter Insert Loss Calculated Field Strength

ΑF Antenna Factor Corr. CLCable Loss Limit Field Strength Limit Dist Read D Corr Pad Limit Amp Corr. MHz dBuV dВ dBuV/m dBuV/m (m) Horizontal 41.7 28.3 25.0 10.7 0.9 0.0

104.043 43.5 110.403 3.0 39.3 11.9 1.0 28.3 0.0 0.0 23.8 43.5 -19.7 н P 145.565 36.9 12.9 22.6 3.0 1.1 28.3 0.0 43.5 -20.9 Н 0.0 11.3 P 187,206 3.0 40.5 28.2 0.0 0.0 24.7 43.5 -18.8 н 1.2 312.012 3.0 38.6 13.6 1.5 28.1 0.0 0.0 25.6 н P 46.0 -20.4 P 390.015 3.0 39.1 14.8 1.8 28.1 0.0 0.0 27.5 46.0 -18.5 Н Vertical 66.962 3.0 53.3 8.0 0.7 28.4 0.0 0.0 33.6 40.0 OP 103.683 3.0 42.9 10.6 0.9 28.3 0.0 0.0 26.1 43.5 v P 128.164 3.0 37.8 13.6 1.1 28.3 0.00.0 24.2 43.5 \mathbf{v} P 363.974 3.0 37.3 14.4 28.1 0.0 0.0 25.3 46.0 P 390.015 3.0 41.9 14.8 1.8 28.1 30.4 46.0 2.0 493.939 3.0 36.2 16.6 27.8 0.0 27.0 46.0

Margin Margin vs. Limit

Margin Ant Pol.

V/H

Det.

P/A/QP

Notes

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

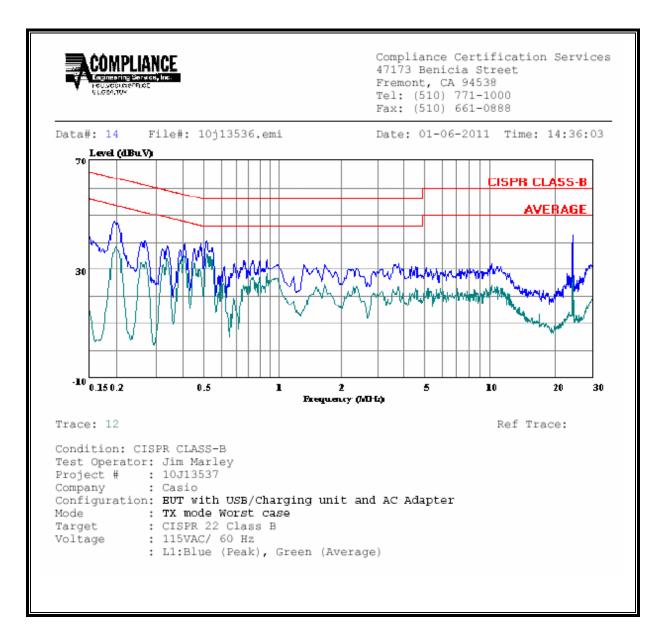
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

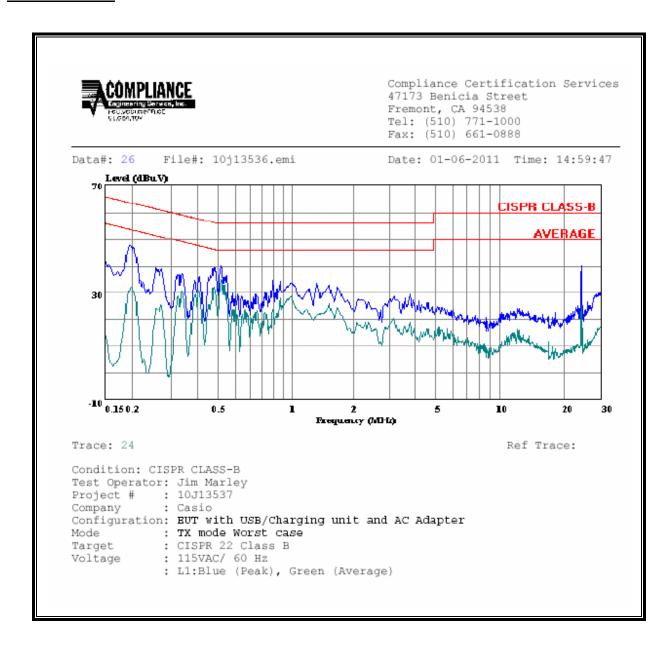
Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4


RESULTS

Pass


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.		Reading		Closs	Limit	EN_B	Marg	ri:	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.20	47.84		38.37	0.00	63.82	53.82	-15.98	-15.45	L1	
0.41	39.48		34.65	0.00	57.69	47.69	-18.21	-13.04	L1	
0.52	40.58		35.51	0.00	56.00	46.00	-15.42	-10.49	L1	
0.20	47.86		32.34	0.00	63.69	53.69	-15.83	-21.35	L2	
0.48	39.48		32.34	0.00	56.32	46.32	-16.84	-13.98	L2	
0.52	40.12		34.94	0.00	56.00	46.00	-15.88	-11.06	L2	
6 Worst l	 Data 									

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900f ²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transitient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 $f^{0.5}$	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	802.11b	0.20	16.11	1.94	0.1270	0.0127
2.4 GHz	802.11g	0.20	20.91	1.94	0.3837	0.0384

11. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

Per OTE Bulletin 65, for frequency bands with the same MPE limits, the Power Densities produced by each transmitter are summed. The summation must be under the limit for the band.

Per OTE Bulletin 65, for frequency bands with different limits the Power Densities are calculated separately for each band, divided by the limit for the band and the results are then summed. The summation must be less than 1.

RESULTS

Band	Mode	Separation Distance (m)	Output Power (dBm)	Antenna Gain (dBi)	IC Power Density (W/m^2)	FCC Power Density (mW/cm^2)
2.4 GHz	Bluetooth	0.20	2.00	-1.63	0.0022	0.0002
2.4 GHz	802.11g	0.20	20.91	1.94	0.3837	0.0384
Colocated					0.3858	0.0386