

SAR TEST REPORT

Test Report	t No	o.: 14018553H-A-R1
Applicant	:	CASIO COMPUTER CO., LTD.
Type of EUT	:	Communication module
Model Number of EUT	:	TYPE1FJ
FCC ID	:	BBQDZD100
Test regulation	:	FCC47CFR 2.1093
Test Result Reported SAR Value	:	Complied (Refer to SECTION 4)The highest reported SARBody(1g): 0.09 W/kgLimbs(10g): 0.17 W/kg

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 14018553H-A. 14018553H-A is replaced with this report.

Date of test: October 12, and 18, 2021 **Representative** test engineer: Hisayoshi Sato Engineer

Approved by :

Satofumi Matsuyama Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

	Page FCC ID	: 14018553H-A-R1 : 2 of 80 : BBQDZD100 : January 16, 2023
--	----------------	--

REVISION HISTORY

Original Test Report No.: 14018553H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	14018553H-A	October 27, 2021	-	-
1	14018553H-A-R1	January 16, 2023	Page 17	Correction of the following description in Note 1. sentence of Clause 8.1; From "802.11g/n HT20/HT40" To "802.11g/n OFDM"

Test report No. Page	: 14018553H-A-R1 : 3 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	NSA	Normalized Site Attenuation
AC	Alternating Current	NVLAP	National Voluntary Laboratory Accreditation Program
AFH	Adaptive Frequency Hopping	OBW	Occupied Band Width
AM	Amplitude Modulation	OFDM	Orthogonal Frequency Division Multiplexing
Amp, AMP	Amplifier	P/M	Power meter
ANSI	American National Standards Institute	PCB	Printed Circuit Board
Ant, ANT	Antenna	PER	Packet Error Rate
AP	Access Point	PHY	Physical Layer
Atten., ATT	Attenuator	PK	Peak
AV	Average	PN	Pseudo random Noise
BPSK	Binary Phase-Shift Keying	PRBS	Pseudo-Random Bit Sequence
BR	Bluetooth Basic Rate	PSD	Power Spectral Density
BT	Bluetooth	QAM	Quadrature Amplitude Modulation
BT LE	Bluetooth Low Energy	QP	Quasi-Peak
BW	BandWidth	QPSK	Quadri-Phase Shift Keying
Cal Int	Calibration Interval	RBW	Resolution Band Width
CCK			
	Complementary Code Keying	RDS	Radio Data System
Ch., CH	Channel Comite International Special des Perturbations	RE	Radio Equipment
CISPR	Radioelectriques	RF	Radio Frequency
CW	Continuous Wave	RMS	Root Mean Square
DBPSK	Differential BPSK	Rx	Receiving
DC	Direct Current	SA, S/A	Spectrum Analyzer
DFS	Dynamic Frequency Selection	SG	Signal Generator
DQPSK	Differential QPSK	SVSWR	Site-Voltage Standing Wave Ratio
DSSS	Direct Sequence Spread Spectrum	TR	Test Receiver
EDR	Enhanced Data Rate	Tx	Transmitting
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	VBW	Video BandWidth
EMC	ElectroMagnetic Compatibility	Vert.	Vertical
EMI	ElectroMagnetic Interference	WLAN	Wireless LAN
EN	European Norm		
ERP, e.r.p.	Effective Radiated Power		
EU	European Union		
EUT	Equipment Under Test		
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
LIMS	Laboratory Information Management System		
MCS			
	Modulation and Coding Scheme		
MRA	Mutual Recognition Arrangement		
NIST	National Institute of Standards and Technology		
NS	No signal detect.		

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

CONTENTS

SECTION1: Customer information	
SECTION2: Equipment under test (EUT)	.5
2.1 Identification of EUT	5
2.2 Product Description	5
SECTION3: Test standard information	.6
3.1 Test Specification	6
3.2 Procedure	6
3.3 Additions or deviations to standard	6
3.4 Exposure limit	7
3.5 SAR	
3.6 Test Location	
SECTION4: Test result	
4.1 Result	
4.2 Stand-alone SAR result	
SECTION5: Tune-up tolerance information and software information	.9
SECTION6: RF Exposure Conditions (Test Configurations)	11
6.1 Summary of the distance between antenna and surface of EUT	11
6.2 SAR-based Exemption - FCC section 1.1307	12
6.3 SAR test exclusion considerations according to KDB447498 D01	
6.4 SAR test exclusion considerations according to KDB UMPC	
SECTION7: Description of the Body setup	
7.1 Procedure for SAR test position determination	
7.2 Test position for Body setup	
SECTION8: Description of the operating mode	17
8.1 Output Power and SAR test required	17
SECTION9: Test surrounding	18
9.1 Measurement uncertainty	18
SECTION10: Parameter Check	19
10.1 For SAR system check	19
10.2 For SAR measurement	
SECTION11: System Check confirmation	20
SECTION12: Measured and Reported (Scaled) SAR Results	21
12.1 Result of Body SAR of WLAN 2.4GHz Band	22
12.2 Result of Limbs SAR of WLAN 2.4GHz Band	23
12.3 Repeated measurement	24
SECTION13: Test instruments	25
APPENDIX 1 : System Check	26
APPENDIX 2: SAR Measurement data	
APPENDIX 3 : System specifications	
APPENDIX 4 : Photographs of test setup	
	•

PAGE

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 5 of 80 : BBQDZD100 : January 16, 2023

SECTION1: Customer information

Company Name	:	CASIO COMPUTER CO., LTD.
Address	:	2-1, Sakaecho 3-chome, Hamura-shi, Tokyo 205-8555, Japan
Telephone Number	:	+81-42-579-7282
Contact Person	:	Shuji Yamashita

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, ISED certification number on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 5: Tune-up tolerance information and software information
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 5.

SECTION2: Equipment under test (EUT)

2.1 Identification of EUT

<information eut="" of="" the=""></information>	
Туре	: Communication module
Model Number	: TYPE1FJ
Serial Number	: DB0001
Receipt Date	: September 17, 2021
Condition	: Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	: No Modification by the test lab

2.2 Product Description

Model: TYPE1FJ (referred to as the EUT in this report) is a Communication module.

:

General Specification

Rating	:	DC3.3 V (Typ.)
Clock frequency(ies) in the system	:	37.4 MHz

Radio Specification

Radio Type

Transceiver

WLAN (IEEE802.11b/g/n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz - 2462 MHz
Type of Modulation	DSSS, OFDM
Bandwidth & Channel spacing	20 MHz & 5 MHz
Antenna Type	Monopole Pattern Antenna
Antenna Gain	0.8 dBi

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 6 of 80 : BBQDZD100 : January 16, 2023
Issued date	: January 16, 2023

SECTION3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093 Radiofrequency radiation exposure evaluation: portable devices.

: Published RF exposure KDB procedures

KDB447498D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
KDB447498D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
 □ KDB648474D04(v01r03) □ KDB941225D01(v03r01) 	SAR Evaluation Considerations for Wireless Handsets 3G SAR Measurement Procedures
KDB941225D05(v02r05)	SAR Evaluation Considerations for LTE Devices
□ KDB941225D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
KDB941225D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
 □ KDB616217D04(v01r02) ☑ KDB865664D01(v01r04) ☑ KDB248227D01(v02r02) 	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers SAR Measurement Requirements for 100MHz to 6 GHz SAR Guidance for 802.11(Wi-Fi) Transmitters

Reference

[1] SPEAG uncertainty document

[2] IEEE Std 1528-2013

[3] IEC62209-2:2010+AMD1:2019 CS

3.2 Procedure

Transmitter	WLAN and Bluetooth	
Test Procedure	Published RF exposure KDB procedures	
Category SAR		
Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430		

This EUT operates only with the specified Digital Camera.

Therefore the test was performed with the Digital Camera (Host) in which the distance to the exterior surface is shortest.

3.3 Additions or deviations to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 7 of 80 : BBQDZD100 : January 16, 2023
 	e e

3.4 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(hands/wrists/feet/anklets averaged over any 10g of tissue) LIMIT 4.0 W/kg

<u>3.5 SAR</u>

Specific Absorption Rate (SAR): The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg) or equivalently milliwatts per gram (mW/g).

SAR is related to the E-field at a point by the following equation:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where

 $\sigma = \text{conductivity of the tissue (S/m)}$ $\rho = \text{mass density of the tissue (kg/m3)}$ E = rms E-field strength (V/m)

3.6 Test Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing *A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

Test report No. Page	: 14018553H-A-R1 : 8 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

SECTION4: Test result

4.1 Result

Complied

Highest values at each band are listed next section.

4.2 Stand-alone SAR result

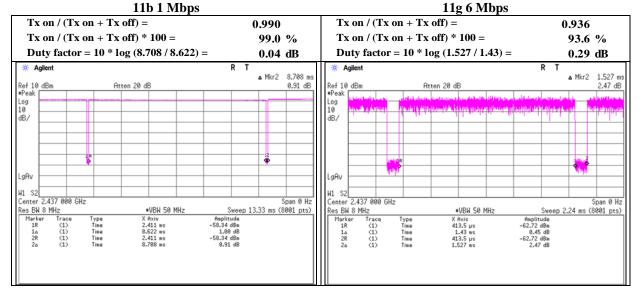
RF Exposure Conditions		Equipment Class - Highest Reported SAR (W/kg) DTS
Standalone Tx (1-g SAR)	Body-worn	0.085
Standalone Tx (10-g SAR)	Limbs	0.166

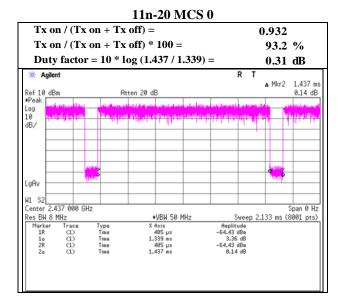
*Details are shown at section 12.

Test report No. Page	: 14018553H-A-R1 : 9 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

SECTION5: Tune-up tolerance information and software information

Maximum tune-up tolerance limit


Mode	Band	Maximum tune-up tolerance limit	Maximum tune-up tolerance limit
		[dBm]	[mW]
WLAN	2.4GHz	10.50	11.22
Ear WI AN Maximum tune up tolerance limit is defined by a systemer as duty 1000/			


For WLAN Maximum tune-up tolerance limit is defined by a customer as duty 100%.

Software setting	
*The power value of	the EUT was set for testing as follows (setting value might be different from product
specification value);	
Power settings:	11b: 40, 11g: 38, 11n20: 40
Software:	20210909_RF11ch
Any conditions under	vare is the worst case. ed with condition that obtained the maximum average power (Burst) in pre-check. the normal use do not exceed the condition of setting. cannot change the settings of the output power of the product.

Test report No.	: 14018553H-A-R1
Page	: 10 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

Duty conformation

Test report No.	: 14018553H-A-R1
Page	: 11 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

SECTION6: RF Exposure Conditions (Test Configurations)

6.1 Summary of the distance between antenna and surface of EUT

Test position	Distance
Front	2.76 mm
Rear	30.5 mm
Right	28.25 mm
Left	93.03 mm
Тор	18.2 mm
Bottom	47.95 mm

*Details are shown in appendix 4

6.2 SAR-based Exemption - FCC section 1.1307

Exception condition as per section 1.1307 (b)(3)(i)(B)

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20dm} (d/20 \ cm)^x & d \le 20 \ cm \\ ERP_{20cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20cm}\sqrt{f}}\right)$$
 and f is in GHz;

And

$$ERP_{20cm}(mW) = \begin{cases} 2040 \ f & 0.3 \ GHz \le f < 1.5 \ GHz \\ 3060 & 1.5 \ GHz \le f \le 6 \ GHz \end{cases}$$

d = the separation distance.

When separation distance is less than 0.5 cm, no exemption condition, so test is required.

As per section 1.1307 (b)(2)

Separation distance is the minimum distance in any direction from any part of a radiating structure and any part of the body of a nearby person.

Radiating structure is an unshielded RF current-carrying conductor that generates an RF reactive near electric or magnetic field and/or radiates an RF electromagnetic wave. It is the component of an RF source that transmits, generates, or reradiates an RF fields, such as an antenna, aperture, coil, or plate.

Antenna	Tx Interface	Band	Frequency	uency Output Power or ERP Calculated Threshold Value											
			[MHz]	dBm	mW	Front	Rear	Right	Left	Тор	Bottom				
Main	11b	2.4GHz	2462	10.50	10.50	10.50	10.50	10.50	11	<5mm -	85 mW	74 mW	713 mW	32 mW	202 mW
wiaiii	110	2.40112	2402		11	MEASURE-	-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-				
Main	11-	2.4GHz	2462	10.50	11	<5mm -	85 mW	74 mW	713 mW	32 mW	202 mW				
Iviain	11g	2.40HZ	2402	10.50	10.50	10.50	10.50	10.50 11	MEASURE-	-EXEMP T-	-EXEMP T-	-EXEMPT-	-EXEMPT-	-EXEMPT-	
Main	11n20	2.4GHz	2462	10.50	11	<5mm -	85 mW	74 mW	713 mW	32 mW	202 mW				
iviain	11120	2.40HZ	2402	10.30	0.50 11	MEASURE-	-EXEMPT-	-EXEMP T-	-EXEMPT-	-EXEMPT-	-EXEMPT-				

Although the SAR test is excluded in the table above, we took a conservative approach and measured the SAR of Top.

Test report No. Page ECC ID	: 14018553H-A-R1 : 13 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

6.3 SAR test exclusion considerations according to KDB447498 D01

The following is based on KDB447498D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison
- 4. The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. When the separation of antenna to EUT's surfaces and edges are ≤ 50 mm, the separation distance used for the SAR exclusion calculations is 5 mm.</p>
- 5. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is > 50 mm.

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0(for Body)/ 7.5(for Limbs) or less, SAR test is excluded.

For Body SAR

SAR exclusion calculations for antenna <50mm from the user

21110											
Antenna	T x Interface	Frequency (MHz)	Output	Power	Calculated Threshold Value						
			dBm	mW	Front	Rear	Right	Left	Тор	Bottom	
Main	11b	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5	
					-MEASURE-	-MEASURE-	-MEASURE-		-MEASURE-	-MEASURE-	
Main	11g	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5	
	Ū				-MEASURE-	-MEASURE-	-MEASURE-		-MEASURE-	-MEASURE-	
Main	11n20	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5	
					-MEASURE-	-MEASURE-	-MEASURE-		-MEASURE-	-MEASURE-	

For Limbs SAR

SAR exclusion calculations for antenna <50mm from the user

Antenna	T x Interface	Frequency (MHz)	Output	Power	Calculated Threshold Value					
			dBm	mW	Front	Rear	Right	Left	Тор	Bottom
Main	11b	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5
					-EXEMPT-	-EXEMPT-	-EXEMPT-		-EXEMPT-	-EXEMPT-
Main	11g	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5
	Ū.				-EXEMPT-	-EXEMPT-	-EXEMPT-		-EXEMPT-	-EXEMPT-
Main	11n20	2462	10.50	11	3.5	3.5	3.5	N/A	3.5	3.5
					-EXEMPT-	-EXEMPT-	-EXEMPT-		-EXEMPT-	-EXEMPT-

Although the SAR test is excluded in the table above, we took a conservative approach and measured the SAR of Front and Top.

Test report No. Page	: 14018553H-A-R1 : 14 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion threshold is determined according to the following.

a) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW$ at > 100 MHz and $\le 1500 MHz$ b) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot 10] mW$ at > 1500 MHz and $\le 6 GHz$

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is < 50 mm.

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

For Body SAR

SAR exclusion calculations for antenna >50mm from the user

Antenn	a Tx Interface	Frequency (MHz)	Output	Power	Calculated Thresh	old Value				
			dBm	mW	Front	Rear	Right	Left	Тор	Bottom
Main	11b	2462	10.50	11	N/A	N/A	N/A	525.9 mW	N/A	N/A
								-EXEMPT-		
Main	11g	2462	10.50	11	N/A	N/A	N/A	525.9 mW	N/A	N/A
								-EXEMPT-		
Main	11n20	2462	10.50	11	N/A	N/A	N/A	525.9 mW	N/A	N/A
								-EXEMPT-		

For Limbs SAR

SAR exclusion calculations for antenna >50mm from the user

Antenna	T x Interface	Frequency (MHz)	Output	Power	Calculated Thresh	old Value				
			dBm	mW	Front	Rear	Right	Left	Тор	Bottom
Main	11b	2462	10.50	11	N/A	N/A	N/A	525.9 mW -EXEMPT-	N/A	N/A
Main	11g	2462	10.50	11	N/A	N/A	N/A	525.9 mW -EXEMPT-	N/A	N/A
Main	11n20	2462	10.50	11	N/A	N/A	N/A	525.9 mW -EXEMPT-	N/A	N/A

Test report No. Page	: 14018553H-A-R1 : 15 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

6.4 SAR test exclusion considerations according to KDB UMPC

Based on KDB941225D07, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna location at ≤ 25 mm from that surface or edges, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands by the devices to determine SAR compliance.

KDB 941225 UMPC

SAR test required										
Front	Rear	Right	Left	Тор	Bottom					
MEASURE	EXEMPT	EXEMPT	EXEMPT	MEASURE	EXEMPT					

Test report No. : 14018553H-A-R1 Page : 16 of 80 FCC ID : BBQDZD100 Issued date : January 16, 2023
--

SECTION7: Description of the Body setup

7.1 Procedure for SAR test position determination

-The tested procedure was performed according to the FCC section 1.1307, the KDB 447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies) and the KDB 941225 D07 (SAR Evaluation Procedures for UMPC Mini-Tablet Devices).

7.2 Test position for Body setup

For Body SAR

No.	Position	Test	WLAN
		distance	Tested
1	Front	0mm*1	V
2	Rear	0mm	
3	Right	0mm	
4	Left	0mm	
5	Тор	0mm	
6	Bottom	0mm	
7	Front tilt *2	0mm	

For Limbs SAR

No.	Position	Test	WLAN
		distance	Tested
1	Front*3	0mm	\square
2	Rear	0mm	
3	Right	0mm	
4	Left	0mm	
5	Тор	0mm	
6	Bottom	0mm	

*1 The test was conservatively performed with test distance 0mm.

*2 Conservatively, measured the front tilt side.

*3 Front is a test position which scraped off extra casing for SAR test for Limbs.

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 17 of 80 : BBQDZD100 : January 16, 2023
100 de da	• • • • • • • • • • • • • • • • • • •

SECTION8: Description of the operating mode

8.1 Output Power and SAR test required

According to KDB248227D01, The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

Wi-Fi 2.4GHz (DTS Band) SISO

Band (GHz)	Mode	Data Rate	Freq. (MHz)	T une-up upper Power (dBm)	Measured average Power (dBm)	Initial test configuration	Note(s)
2.4	11b	1 Mbps	2412	10.50	10.17	Yes	2
			2437	10.50	10.11		
			2462	10.50	10.02		
	11g	6 Mbps	2412	10.50	10.11		
			2437	10.50	10.07		
			2462	10.50	10.06		1
	11n20	MCS 0	2412	10.50	10.40		1
			2437	10.50	10.33		
			2462	10.50	10.30		

Note(s):

- According to KDB248227D01, SAR is not required for 802.11g/n OFDM channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Initial SAR test channel was chosen. (shaded blue frame)

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 18 of 80 : BBQDZD100 : January 16, 2023

SECTION9: Test surrounding

9.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010+AMD1:2019 CSV, and determined by Schmid & Partner Engineering AG (DASY5/6 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

		Uncert		Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description		value		Dist.		1g	10g	(1g)	(10g)
Measurement System									
Probe Calibration	±	6.55	%	Ν	1	1	1	$\pm 6.55\%$	±6.55%
Axial Isotropy	±	4.7	%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%
Hemispherical Isotropy	±	9.6	%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%
Linearity	±	4.7	%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Modulation Response	±	2.4	%	R	√3	1	1	±1.4%	±1.4%
System Detection Limits	±	1.0	%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Boundary Effects	±	2.0	%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%
Readout Electronics	±	0.3	%	Ν	1	1	1	±0.3%	±0.3%
Response Time	±	0.8	%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration Time	±	2.6	%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
RF Ambient Noise	±	3.0	%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
RF Ambient Reflections	±	3.0	%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
Probe Positioner	±	0.04	%	R	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$
Probe Positioning	±	0.8	%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Post-processing	±	4.0	%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%
Test Sample Related									
Device Holder	±	3.6	%	Ν	1	1	1	±3.6%	±3.6%
Test sample Positioning	±	2.9	%	N	1	1	1	±2.9%	±2.9%
Power Scaling	±	0.0	%	R	$\sqrt{3}$	1	1	±0.0%	$\pm 0.0\%$
Power Drift	±	5.0	%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%
Phantom and Setup									
Phantom Uncertainty	±	7.6	%	R	$\sqrt{3}$	1	1	±4.4%	±4.4%
SAR correction	±	1.9	%	Ν	1	1	0.84	±1.9%	±1.6%
Liquid Conductivity (mea.)	+	4.8	%	Ν	1	0.78	0.71	±3.8%	±3.4%
Liquid Permittivity (mea.)	-	4.2	%	Ν	1	0.23	0.26	±1.0%	±1.1%
Temp. unc Conductivity	±	3.4	%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%
Temp. unc Permittivity	±	0.4	%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%
Combined Std. Uncertainty								±12.5%	±12.4%
Expanded STD Uncertainty ($\kappa = 2$	2)							±25.1%	±24.8%

Note: This uncertainty budget for validation is worst-case. Table of uncertainties are listed for ISO/IEC 17025.

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 19 of 80 : BBQDZD100 : January 16, 2023
Page FCC ID	: 19 of 80 : BBQDZD100

SECTION10: Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

According to KDB865664 D01, +/- 5% tolerances are required for εr and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB865664 D01.

Target Frequency	Н	ead	B	ody
(MHz)	Er	σ (S/m)	Er	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon_{\rm r}$ = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

10.1 For SAR system check

DIELECTRIC PARAMETERS MEASUREMENT RESULTS													
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Target [σ]	Target [ɛr]	Measure [σ]	Measure [εr]	Deviation σ [%]	Deviation ɛr [%]	Limit [%]	Remark
2021/10/12	22.5	40	MBBL600-6000	22.0	2450.0	1.95	52.7	2.04	50.5	4.5	-4.1	+/- 5	
2021/10/18	23.0	40	MBBL600-6000	22.5	2450.0	1.95	52.7	2.02	50.6	3.7	-4.0	+/- 5	

10.2 For SAR measurement

DIELECTRIC PARAMETERS MEAS UREMENT RESULTS Date Relative Liquid Deviation σ Deviation εr Limit Remark Ambient Liquid type M easured Target Target Measure Measure Temp Humidity Temp. Frequency [MHz] [σ] [Er] [σ] [ɛr] [%] [%] [%] [%] [deg.c] [deg.c 2021/10/12 22.5 40 MBBL600-6000 2412.0 1.91 52.8 2.01 50.6 4.8 -4.2 +/- 5 22.0 2021/10/12 22.5 40 MBBL600-6000 22.0 2437.0 1.94 52.7 2.03 50.5 4.6 -4.1 +/- 5 40 MBBL600-6000 22.0 1.97 52.7 2.05 4.2 -4.1 2021/10/12 22.5 2462.0 50.5 +/- 5 2021/10/18 23.0 40 MBBL600-6000 22.5 2412.0 1.91 52.8 1.99 50.6 4.0 -4.0 +/- 5 40 MBBL600-6000 2021/10/18 23.0 22.5 2437.0 1.94 52.7 2.01 50.6 3.7 -4.0 +/- 5 23.0 40 MBBL600-6000 22.5 2462.0 2.7 2021/10/18 1.97 52.7 2.02 50.6 -4.0 +/- 5

Test report No. Page FCC ID	: 14018553H-A-R1 : 20 of 80 : BBQDZD100
Issued date	: January 16, 2023

SECTION11: System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm \pm 0.5 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm \pm 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1GHz to 6GHz) and 15 mm (below 1GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 12 mm (1GHz to 3GHz) and 15 mm (below 1GHz) was aligned with the dipole.

For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.

Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube. Distance between probe sensors and phantom surface was set to 3 mm.

For 5 GHz band - Distance between probe sensors and phantom surface was set to 5 mm.

The dipole input power (forward power) was 100 mW(For 5GHz band) or 250 mW(For other band).

The results are normalized to 1 W input power.

Target Value

Freq [MHz]		Model,S/N	Head Body			ody
			(SPEAG)	(SPEAG)	(SPEAG)	(SPEAG)
			1g [W/kg]	10g[W/kg]	1g [W/kg]	10g[W/kg]
	2450	D2450,713	54.80	25.40	53.20	24.72

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles(Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1W.

			T.S.		Measur	ed Results	Target	Delta	
Date Tested	Test Freq	M odel,S/N			Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	
2021/10/12	2450	D2450,713	Body	1g	13.30	53.20	53.20	0.0	
				10g	6.06	24.24	24.72	-1.9	
2021/10/18	2450	D2450,713	Body	1g	13.60	54.40	53.20	2.3	
				10g	6.22	24.88	24.72	0.6	

Test report No. Page	: 14018553H-A-R1 : 21 of 80
FCC ID Issued date	: BBQDZD100 : January 16, 2023

SECTION12: Measured and Reported (Scaled) SAR Results

WLAN SAR Test Reduction criteria are as follows

• KDB 248227 D01 (SAR Guidance for 802.11(Wi-Fi) Transmitters):

SAR test reduction for 802.11 WLAN transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- $\Rightarrow \leq 0.4$ W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- ♦ For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- ♦ When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- ♦ When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Test report No.	: 14018553H-A-R1
Page	: 22 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

SAR Test Reduction criteria are as follows

KDB 447498 D01 (General RF Exposure Guidance):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\Rightarrow \leq 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- $\Rightarrow \leq 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- $\Rightarrow \leq 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- According to Notice 2016-DRS001 requirements, the low, mid and high frequency channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- When reported SAR value is exceed 1.2W/kg(if any), device holder perturbation verification is required; however, since distance between device holder and antenna of EUT is enough, it was not conducted.
- Reported SAR= Measured SAR [W/kg] · Scaled factor
 - * Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]
- Maximum tune-up tolerance limit is by the specification from a customer.

Note: Measured value is rounded round off to three decimal places

				Power	(dBm)	Power		Duty	1-g SAF	R (W/kg)	
Test Position	Dist. (mm)	Mode	Freq. (MHz)	(MHz) upper average Power Power	Scaled factor	Duty (%)	Scaled factor	M eas.	Reported	Plot No.	
			2412	10.50	10.17	1.08	99.0	1.01	0.033	0.036	
Front	0	11b	2437	10.50	10.11	1.09	99.0	1.01			
			2462	10.50	10.02	1.12	99.0	1.01			
			2412	10.50	10.17	1.08	99.0	1.01	0.034	0.037	
Тор	0	11b	2437	10.50	10.11	1.09	99.0	1.01			
			2462	10.50	10.02	1.12	99.0	1.01			
			2412	10.50	10.17	1.08	99.0	1.01	0.078	0.085	1
Front tilt	Front tilt 0 11	11b	2437	10.50	10.11	1.09	99.0	1.01	0.069	0.076	
			2462	10.50	10.02	1.12	99.0	1.01	0.067	0.076	

12.1 Result of Body SAR of WLAN 2.4GHz Band

OFDM was excluded from the following table according to KDB248227D01.

SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

1) When KDB447498D01 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

toleran	n tune-up ice limit	Maximum tune-up tolerance limit OFDM		OFDM scaled factor	Position	DSSS Reported SAR value [W/kg]		limit [W/kg]	S tandalone S AR request
[dBm] 10.50	[mW] 11.22	[dBm] 10.50	[mW] 11.22	1.000	Front tilt	0.085	0.085	< 1.2	No

Note(s):

• OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW] Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

Test report No.	: 14018553H-A-R1
Page	: 23 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

12.2 Result of Limbs SAR of WLAN 2.4GHz Band

		Mode	Freq. (MHz)	Power	(dBm)	Power		Duty	10-g SA	R (W/kg)	
Test Position	Dist. (mm)			Tune-up upper Power	Measured average Power		Duty (%)	Scaled factor	M eas.	Reported	Plot No.
			2412	10.50	10.17	1.08	99.0	1.01	0.152	0.166	2
Front	0 11b	11b	2437	10.50	10.11	1.09	99.0	1.01	0.138	0.152	
			2462	10.50	10.02	1.12	99.0	1.01	0.145	0.164	
			2412	10.50	10.17	1.08	99.0	1.01	0.017	0.019	
Тор	Тор 0	11b	2437	10.50	10.11	1.09	99.0	1.01			
			2462	10.50	10.02	1.12	99.0	1.01			

OFDM was excluded from the following table according to KDB248227D01.

SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

1) When KDB447498D01 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 3.0 W/kg.

	n tune-up ce limit	Maximum tune-up tolerance limit		OFDM scaled factor	Position	DSSS Reported SAR value	OFDM Estimated SAR value	limit [W/kg]	S tandalone S AR request
DS	SSS	OFDM				[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]						
10.50	11.22	10.50	11.22	1.000	Front	0.166	0.166	< 3.0	No

Note(s):

• OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]

• Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

12.3 Repeated measurement

According to KDB865664 D1.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated

measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg (~ 10% from the 1-g SAR limit). 4) Perform a third repeated measurement only if the original, first or second repeated measurement is \ge 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

For Body SAR

Test Configuration						Erec	Meas. SA	.R (W/kg)	Largest to	-
Wireless Technologies	Transmit Antenna	Exposure	Position	Dist. (mm)	Mode	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Plot No.
WLAN 2.4 GHz	M ain	Body	Front tilt	0	11b	2412	0.078	N/A	N/A	-

Note(s):

N/A: Repeated Measurement is not required since the original highest measured SAR for all band is < 0.80 W/kg.

For Limbs SAR

	Test Configuration					Erec	Meas. SA	.R (W/kg)	Largest to	
Wireless Technologies	Transmit Antenna	Exposure	Position	Dist. (mm)	Mode	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Plot No.
WLAN 2.4 GHz	Main	Body	Front	0	11b	2412	0.152	N/A	N/A	-

Note(s):

N/A: Repeated Measurement is not required since the original highest measured SAR for all band is < 2.0 W/kg.

Test report No.	: 14018553H-A-R1
Page	: 25 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

SECTION13: Test instruments

Local Id	LIM S ID	Description	M anufacturer	Model	Serial	Last Cal Date	Interval
		Software for					
COTS-MPSE-02	173900	MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
			Schmid&Partner				
COTS-MSAR-03	141181	Dasy5	Engineering AG	DASY5	-	-	-
		Dielectric assessment	Schmid&Partner				
COTS-MSAR-04	141182	software	Engineering AG	DAK	-	-	-
MAT-78	142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
			Schmid&Partner				
MDA-07	141457	Dipole Antenna	Engineering AG	D2450V2	713	2019/09/09	36
		Data Acquisition	Schmid&Partner				
MDAE-03	141484	Electronics	Engineering AG	DAE4	1372	2021/08/10	12
			Schmid&Partner	Mounting device for			
MDH-01	142484	Device holder	Engineering AG	transmitter	-	2020/11/27	12
		Dielectric assessment	Schmid&Partner				
MDPK-03	141471	kit	Engineering AG	DAKS-3.5	0008	2021/04/14	12
		Dual Directional					
MHDC-12	142559	Coupler	Hewlett Packard	772D	2839A0016	-	-
	154400	Body Simulating	Schmid & Partner	10000 (000	at the second		
MMBBL600-6000	176483	Liquid	Engineering AG	MBBL600-6000	SL AAM U16 BC	-	-
			COPPER MOUNTAIN				
MNA-03	141551	Vector Reflectometer		DIANAD D140	0030913	2021/04/19	12
			TECHNOLOGIES	PLANAR R140	0030913		
MOS-33	88581	Thermo-Hy grometer	CUSTOM. Inc	CTH-201	-	2021/07/08	12
MOS-37	141574	Digital thermometer	LKM electronic	DTM 3000	-	2021/07/08	12
		Dosimetric E-Field	Schmid&Partner				
MPB-09	141589	Probe	Engineering AG	EX3DV4	3922	2021/08/16	12
	1 1005 (2mm Oval Flat	Schmid&Partner	0.0.011.001.00	1015	2021/05/20	
MPF-02	142056	Phantom	Engineering AG	QDOVA001BB	1045	2021/05/28	12
10101010	141011	D 14.	Keysight	210144	10052060017	2021/06/00	10
MPM-15	141811	Power Meter	Technologies Inc Keysight	N1914A	MY53060017	2021/06/08	12
MPSE-20	141833	Power sensor	Technologies Inc	N8482H	M Y53050001	2021/06/08	12
MPSE-24	141843	Power sensor	Anritsu Corporation	MA24106A	1026164	2021/08/17	12
			1				
MPSE-25	141844	Power sensor	Anritsu Corporation Schmid&Partner	MA24106A	1031504	2021/08/17	12
MRBT-02	142247	SAR robot	Engineering AG	TX60 Lspeag	F10/5E3LA1/A/01	2021/04/20	12
101 ND 1 -02	17227/	5/11(10001	Engineering AG	R&K	110/313131/1/01	2021/04/20	12
				CGA020M 602-			
MRFA-24	141875	Pre Amplifier	R&K	2633R	B30550	2021/06/16	12
WINI /1=27	1410/5	rie Ampiniei	Keysight	20001	150550	2021/00/10	12
MSG-10	141890	Signal Generator	Technologies Inc	N5181A	M Y47421098	2020/11/17	12

The expiration date of the calibration is the end of the expired month. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

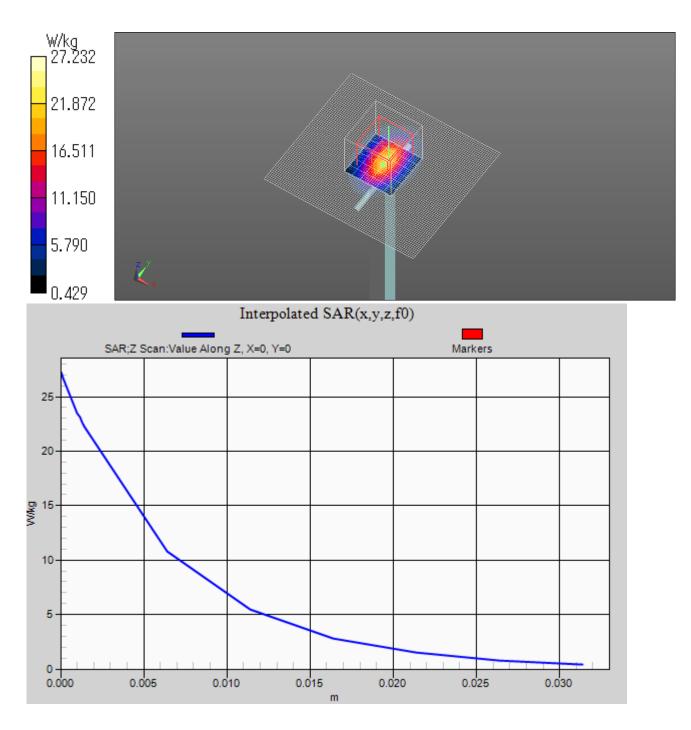
SAR room is checked before every testing and ambient noise is $<\!0.012W/kg$

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 26 of 80 : BBQDZD100 : January 16, 2023
FCC ID	: BBQDZD100

APPENDIX 1 : System Check

System check result Body 2450MHz 2021/10/12

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); ; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.038$ S/m; $\varepsilon_r = 50.52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.72, 7.72, 7.72) @ 2450 MHz; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (3);SEMCAD X Version 14.6.13 (7474)


System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.7 W/kg

System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.3 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.06 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 48.4% Maximum value of SAR (measured) = 22.3 W/kg

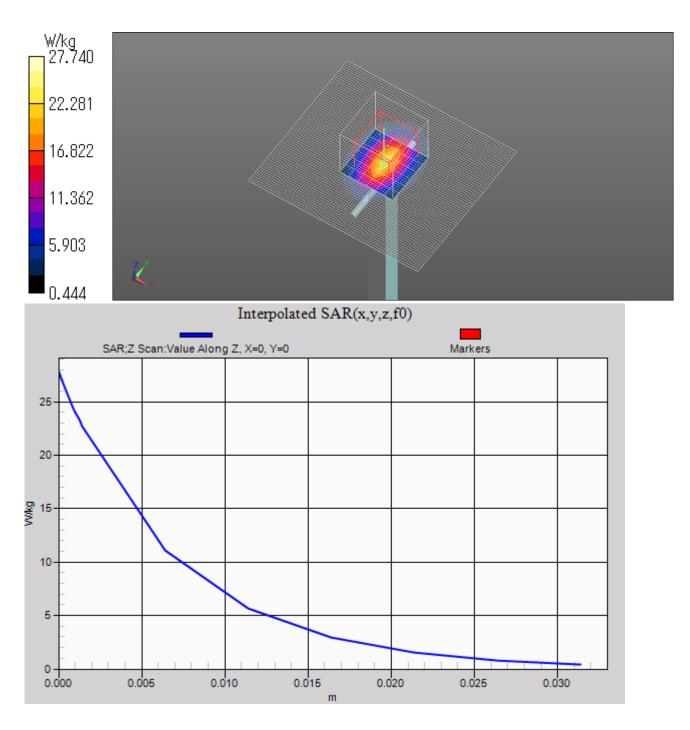
System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Z Scan (1x1x18): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 7.438 (6.910, 7.567) [mm] Maximum value of SAR (interpolated) = 27.2 W/kg

Ambient Temp. : 22.5 degree.C. Liquid Temp.; 22.0 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2021/10/12

Page	: 27 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

Test report No. Page FCC ID	: 14018553H-A-R1 : 28 of 80 : BBQDZD100
FCCID	: BRODTD100
Issued date	: January 16, 2023

System check result Body 2450MHz 2021/10/18


Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); ; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.022$ S/m; $\varepsilon_r = 50.577$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.72, 7.72, 7.72) @ 2450 MHz; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (3);SEMCAD X Version 14.6.13 (7474)

System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 24.0 W/kg

System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 111.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 48.8%Maximum value of SAR (measured) = 22.8 W/kg

System Performance Check at Frequencies 2450MHz/d=12mm, Pin=250 mW (EX-Probe)/Z Scan (1x1x18): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 7.461 (6.967, 7.597) [mm] Maximum value of SAR (interpolated) = 27.7 W/kg

Ambient Temp. : 23.0 degree.C. Liquid Temp.; 22.5 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2021/10/18

APPENDIX 2 : SAR Measurement data

Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5

These parameters comply with the requirement of the KDB 865664D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) Before SAR testing : Eb[V/m] After SAR testing : Ea[V/m]

Limit of power drift[W] =+/-5% X[dB]=10log[P]=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB

from E-filed relations with power. $p=E^{2}/\eta=E^{2}/\chi$ Therefore, The correlation of power and the E-filed $XdB=10log(P)=10log(E)^{2}=20log(E)$

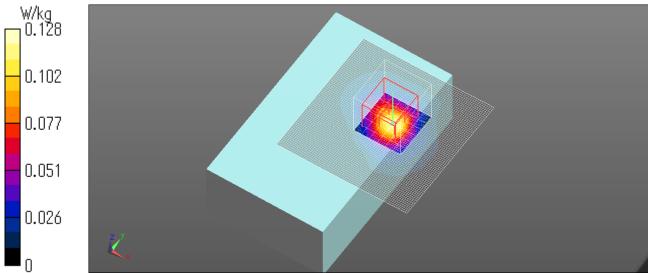
Therefore, The calculated power drift of DASY5 System must be the less than +/-0.212dB.

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 31 of 80 : BBQDZD100 : January 16, 2023

Measurement data

Plot No. 1 WLAN 2.4GHz for Body SAR Communication System: UID 0, _WLAN (0); Communication System Band: 11b/g/n; ; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 50.63$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.72, 7.72, 7.72) @ 2412 MHz; Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (3);SEMCAD X Version 14.6.13 (7474)

WLAN2.4GHz Body/Front tilt 0mm 11b 2412MHz 2nd/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.134 W/kg

WLAN2.4GHz Body/Front tilt 0mm 11b 2412MHz 2nd/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.579 V/m; Power Drift = 0.01 dBPeak SAR (extrapolated) = 0.161 W/kg**SAR(1 g) = 0.078 \text{ W/kg}; SAR(10 g) = 0.036 \text{ W/kg}** Smallest distance from peaks to all points 3 dB below = 9.8 mmRatio of SAR at M2 to SAR at M1 = 49.7%

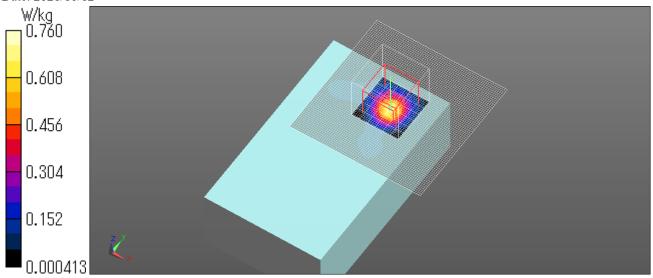
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.128 W/kg

Ambient Temp. : 23.0 degree.C. Liquid Temp.; 22.5 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2021/10/18

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 32 of 80 : BBQDZD100 : January 16, 2023

Plot No. 2 WLAN 2.4GHz for Limbs SAR Communication System: UID 0, _WLAN (0); Communication System Band: 11b/g/n; ; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 2.006$ S/m; $\varepsilon_r = 50.559$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3922; ConvF(7.72, 7.72, 7.72) @ 2412 MHz; Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (3);SEMCAD X Version 14.6.13 (7474)

WLAN2.4GHz Limbs/Front 0mm 11b 2412MHz/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.668 W/kg

WLAN2.4GHz Limbs/Front 0mm 11b 2412MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.44 V/m; Power Drift = -0.10 dBPeak SAR (extrapolated) = 0.992 W/kg**SAR(1 g) = 0.417 \text{ W/kg}; SAR(10 g) = 0.152 \text{ W/kg}** Smallest distance from peaks to all points 3 dB below = 7 mm Ratio of SAR at M2 to SAR at M1 = 47.9%

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.760 W/kg


Ambient Temp. : 22.5 degree.C. Liquid Temp.; 22.0 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2021/10/12

Test report No. : 14018553H-A-R1 Page : 33 of 80 FCC ID : BBQDZD100 Issued date : January 16, 2023
--

APPENDIX 3 : System specifications

Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items: Our system is DASY6; however, it behaves as DASY5.

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.

c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

- g) A computer running Windows 10 or 7 and the DASY5/6 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

Page : 3 FCC ID : F	14018553H-A-R1 34 of 80 BBQDZD100 January 16, 2023	
------------------------	---	--

Specifications

a)Robot TX60L		
Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5kg
Reach	:	920mm
Repeatability	:	+/-0.03mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2kg
Manufacture	:	Stäubli Robotics

b)E-Field Probe		
Model	:	EX3DV4
Construction	:	Symmetrical design with triangular core
		Built-in shielding against static charges
		PEEK enclosure material
		(resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis)
		+/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10 uW/g to > 100 mW/g;Linearity
		+/-0.2 dB(noise: typically < 1uW/g)
Dimensions	:	Overall length: 337 mm (Tip: 20 mm)
		Tip diameter: 2.5mm (Body: 12 mm)
		Typical distance from probe tip to dipole centers: 1 mm
Application	:	Highprecision dosimetric measurement in any exposure scenario
		(e.g., very strong gradient fields). Only probe which enables compliance
		testing for frequencies up to 6GHz with precision of better 30%.
Manufacture	:	Schmid & Partner Engineering AG

EX3DV4 E-field Probe

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 35 of 80 : BBQDZD100 : January 16, 2023

Features	:	Signal amplifier, multiplexer, A/D converter and control logic
		Serial optical link for communication with DASY5 embedded system (fully remote controlled)
		Two step probe touch detector for mechanical surface detection and emergency robot stop
Measurement Range	:	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)
Input Offset voltage	:	$< 5 \mu V$ (with auto zero)
Input Resistance	:	200 ΜΩ
Input Bias Current	:	< 50 fA
Battery Power	:	> 10 h of operation (with two 9.6 V NiMH accus)
Dimension	:	60 x 60 x 68 mm
Manufacture	:	Schmid & Partner Engineering AG

d)Electro-Optic Converter (EOC)				
Version	:	EOC 61		
Description	:	for TX60 robot arm, including proximity sensor		
Manufacture	:	Schmid & Partner Engineering AG		

e)DASY5 Measurement	server	
Features	:	Intel ULV Celeron 400MHz
		128MB chip disk and 128MB RAM
		16 Bit A/D converter for surface detection system
		Vacuum Fluorescent Display
		Robot Interface
		Serial link to DAE (with watchdog supervision)
		Door contact port (Possibility to connect a light curtain)
		Emergency stop port (to connect the remote control)
		Signal lamps port
		Light beam port
		Three Ethernet connection ports
		Two USB 2.0 Ports
		Two serial links
		Expansion port for future applications
Dimensions (L x W x H)	:	440 x 241 x 89 mm
Manufacture	:	Schmid & Partner Engineering AG

f) Light Beam Switches			
Version	:	LB5	
Dimensions (L x H)	:	110 x 80 mm	
Thickness	:	12 mm	
Beam-length	:	80 mm	
Manufacture	:	Schmid & Partner Engineering AG	

g)Software		
Item	:	Dosimetric Assessment System DASY5
Туре No.	:	SD 000 401A, SD 000 402A
Software version No.	:	DASY52, Version 52.6 (1)
Manufacture / Origin	:	Schmid & Partner Engineering AG

h)Robot Control Unit		
Weight	:	70 Kg
AC Input Voltage	:	selectable
Manufacturer	:	Stäubli Robotics

			Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 36 of 80 : BBQDZD100 : January 16, 2023			
			Issueu uate	. January 10, 2023			
i)Phantom and Dev	ice Holder						
Phantom							
Туре	:	SAM Twin Phantom V4.0					
Description	:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEC/IEEE 62209-1528. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.					
Material	:	Vinylester, glass fiber reinforced (VE-G	F)				
Shell Material	:	Fiberglass					
Thickness	:	2.0 +/-0.2 mm					
Dimensions	:	Length: 1000 mm Width: 500 mm Height: adjustable feet					
Volume	:	Approx. 25 liters					
Manufacture	:	Schmid & Partner Engineering AG					
Туре	:	2mm Flat phantom ELI4.0 or 5					
Description	:	Phantom for compliance testing of hand devices in the frequency range of 30 M draft of the standard IEC/IEEE 62209-1 been optimized regarding its performance A cover prevents evaporation of the installation of the complete setup, inclu- grids, by teaching three points. The ph higher and is compatible with all SPEAU	1Hz to 6 GHz. EL14 i 1528 and all known tis ee and can be integrated liquid. Reference m ding all predefined pha antom is supported by	s fully compatible with the latest ssue simulating liquids. ELI4 has l into our standard phantom tables. markings on the phantom allow untom positions and measurement v software version DASY4.5 and			
Material	:	Vinylester, glass fiber reinforced (VE-G					
Shell Thickness	:	2.0 ± 0.2 mm (sagging: <1%)	,				
Filling Volume	:	approx. 30 liters					
Dimensions	:	Major ellipse axis: 600 mm Minor axis	s: 400 mm				
Manufacture	:	Schmid & Partner Engineering AG					

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Material : POM

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC/IEEE 62209-1528 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms. Material : POM, Acrylic glass, Foam

<u>Urethane</u>

For this measurement, the urethane foam was used as device holder.

Test report No. Page	: 14018553H-A-R1 : 37 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

j)Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Product identifier

Trade name	Broad Band Tissue Simulation Liquid HBBL600-10000V6, MBBL600-6000V6, HU16B, MU16B
Manufacturer/Supplier	Schmid & Partner Engineering AG

Declarable components:

CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

			Pa FC	st report No. ge 'C ID ued date	: 14018553H-A : 38 of 80 : BBQDZD100 : January 16, 2
tem Chec	ck Dipole SAR Calibra	tion Certificat	e -Dipole 2450MHz (D2	2450V2 S/N: 713)	
	Calibration Laboratory Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich,			S Schweizerischer C Service suisse d' Servizio svizzero S Swiss Calibration	étalonnage di taratura
	Accredited by the Swiss Accreditation The Swiss Accreditation Service Multilateral Agreement for the recommendation of the recommend	is one of the signatorie		Accreditation No.: S	CS 0108
	Client UL Japan (KYC)	OM)	Certil	icate No: D2450V2-71	3_Sep19
ſ	CALIBRATION C	ERTIFICATI			
	Object	D2450V2 - SN:7	13		
	Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation So	purces between 0.7-3	GHz
	Calibration date:	September 09, 2	019		
na Lo contradición de ten al forma de la contra			ional standards, which realize the phy		· ·
	The measurements and the uncerta	ainties with confidence p ad in the closed laborate		pages and are part of the cert	ificate.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence p ad in the closed laborate	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (;	vages and are part of the cert 22 ± 3)°C and humidity < 70ຯ	ificate. 6.
	The measurements and the uncert	ainties with confidence p ad in the closed laborato E critical for calibration)	ional standards, which realize the phy robability are given on the following p	pages and are part of the cert	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	ainties with confidence p ad in the closed laborato E critical for calibration) ID # SN: 104778 SN: 104244	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892)	22 ± 3)°C and humidity < 70% Scheduled Ca Apr-20 Apr-20	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893)	22 ± 3)°C and humidity < 709 Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	22 ± 3)°C and humidity < 709 22 ± 3)°C and humidity < 709 Scheduled Cr Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893)	22 ± 3)°C and humidity < 70% 22 ± 3)°C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	22 ± 3)°C and humidity < 70% 22 ± 3)°C and humidity < 70% Scheduled Ca Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	ificate. 6.
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19)	22 ± 3)°C and humidity < 709 Scheduled C: Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20	ificate. 6. alibration
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5038 (20k) SN: 5047.2 / 06327 SN: 7349	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19	22 ± 3)°C and humidity < 70% Scheduled C: Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Scheduled Cl	ificate. 6. alibration
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 7349 SN: 501	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. DAE4-601_Apr19) 06-Apr-19 (No. DAE4-601_Apr19)	22 ± 3)°C and humidity < 70% Scheduled C: Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Scheduled Cl Scheduled Cl In house ched	ificate. 6. alibration heck ck: Oct-20
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence p ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 50547.2 / 06327 SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19 07-Oct-15 (in house check Oct-18 07-Oct-15 (in house check Oct-18	Scheduled Cr Scheduled Cr Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Scheduled Cr Scheduled Cr) In house cher) In house cher) In house cher	ificate. 6. alibration heck ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence p anties with confidence p critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19 07-Oct-15 (in house check Oct-18	Scheduled Ci Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 D May-20 Apr-20 D May-20 Apr-20 Apr-20 D May-20 Apr-20 Ap	ificate. 6. alibration ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ad in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 50547.2 / 06327 SN: 50547.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: 100972	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19 07-Oct-15 (in house check Oct-18 07-Oct-15 (in house check Oct-18	Scheduled C: 22 ± 3)°C and humidity < 70%	ificate. 6. alibration heck ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-19
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: US37292783 SN: MY41092317 SN: US41080477 Name	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Oct-18 07-Oct-15 (in house check Oct-18 07-Oct-15 (in house check Oct-18 31-Mar-14 (in house check Oct-18	Scheduled C: Scheduled C: Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20) May-20 Apr-20) Scheduled Ci Apr-20 Scheduled Ci In house chee) In house chee) In house chee) In house chee) In house chee	heck heck ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-19
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p and in the closed laborato critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: US37292783 SN: MY41092317 SN: US41080477 Name	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Oct-18 07-Oct-15 (in house check Oct-18 07-Oct-15 (in house check Oct-18 31-Mar-14 (in house check Oct-18	Scheduled C: 22 ± 3)°C and humidity < 70%	heck heck k: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-19
	The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by:	ainties with confidence p ad in the closed laborato critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: US37292783 SN: WY41092317 SN: 100972 SN: US41080477 Name Leif Klysner Katja Pokovic	ional standards, which realize the phy robability are given on the following p ry facility: environment temperature (<u>Cal Date (Certificate No.)</u> 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19 30-Apr-19 (No. EX3-7349_May19 30-Apr-19 (No. DAE4-601_Apr19) <u>Check Date (in house)</u> 30-Oct-14 (in house check Feb-19 07-Oct-15 (in house check Cot-18 07-Oct-15 (in house check Oct-18 31-Mar-14 (in house check Oct-18 31-Mar-14 (in house check Oct-18	sages and are part of the cert 22 ± 3)°C and humidity < 709 Scheduled Ci Apr-20 Apr-20 Apr-20 Apr-20 Apr-20) May-20 Apr-20 Scheduled Ci) In house chert) In house chert	ificate. 6. alibration heck ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-20 ck: Oct-19

Test report No. Page FCC ID Issued date : 14018553H-A-R1 : 39 of 80 : BBQDZD100 : January 16, 2023

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep19

Page 2 of 8

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.18 W/kg

Certificate No: D2450V2-713_Sep19

Page 3 of 8

Page FCC ID	: 14018553H-A-R1 : 41 of 80 : BBQDZD100 : January 16, 2023

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 1.6 jΩ
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 4.0 jΩ
Return Loss	- 27.9 dB

General Antenna Parameters and Design

· · · · · · · · · · · · · · · · · · ·	
Electrical Delay (one direction)	1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-713_Sep19

Page 4 of 8

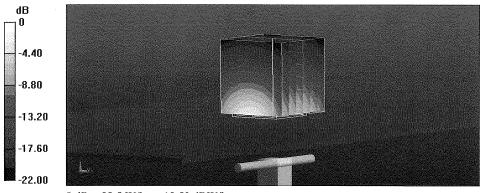
Test report No. Page	: 14018553H-A-R1 : 42 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

DASY5 Validation Report for Head TSL

Date: 09.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.4 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Certificate No: D2450V2-713_Sep19

Page 5 of 8

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 43 of 80 : BBQDZD100 : January 16, 2023

Impedance Measurement Plot for Head TSL

Ch 1	annel Sw <u>e</u> ep (2.450000 GHz 106.61 pH 2.450000 GHz	53.459 Ω 1.6412 Ω 37.000 mU 24.476 °
Ch1: Start 2.			-		Stop 2.65000 GHz
10.00 dB S1 5.00			> 1:	2.450000 GHz	-28.636 dB
5.00 0.00			> 1:	2.450000 GHz	-28.636 dB
5.00			> 1:	2.450000 GHz	-28.636 dB
5.00 0.00 -5.00			> 1:	2.450000 GHz	-2\$.636 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00				2.450000 GHz	-28.636 dB
5.00 0.00 5.00 -10.00 -15.00 -20.00 -25.00				2.450000 GHz	-2\$.636 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00				2.450000 GHz	-2\$.636 dB
5.00 0.00 5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00	Avg = 20			2.450000 GHz	-28.636 dB

Certificate No: D2450V2-713_Sep19

Page 6 of 8

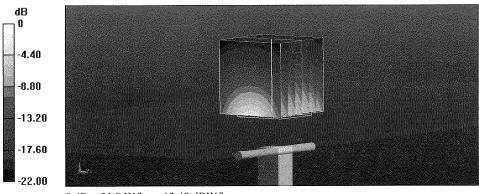
Test report No. Page	: 14018553H-A-R1 : 44 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

DASY5 Validation Report for Body TSL

Date: 09.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713

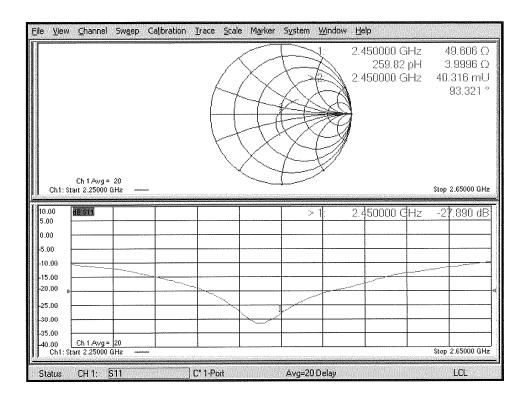

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 50.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 21.9 W/kg


0 dB = 21.9 W/kg = 13.40 dBW/kg

Certificate No: D2450V2-713_Sep19

Page 7 of 8

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 45 of 80 : BBQDZD100 : January 16, 2023

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-713_Sep19

Page 8 of 8

Test report No.	: 14018553H-A-R1
Page	: 46 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

D2450V2 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D2450V2
Manufacture	Schmid&Partner Engineering AG	Serial	713
Tested by	Hisayoshi Sato		

1. Test environment

Date	September 10, 2020		
Ambient Temperature	24.5 deg.C	Relative humidity	50 %RH
Date	September 2, 2021		
Ambient Temperature	23.0 deg.C	Relative humidity	40 %RH

2. Equipment used

September 10, 2020

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
EST-30	Network Analyzer	Keysight Technologies Inc	N5230A	MY46400314	SAR	2020/08/17 * 12
EST-62	Calibration Kit	Keysight Technologies Inc	85032F	MY41495257	SAR	2019/09/26 * 12
MPF-03	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	SAR	2020/05/25 * 12
MPSAM-03	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1764	SAR	2020/05/25 * 12
MOS-30	Thermo-Hygrometer	CUSTOM	CTH-201	3001	SAR	2020/07/10 * 12
MHBBL600- 10000	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC		-
MMBBL600- 6000	Body Simulating Liquid	Schmid & Partner Engineering AG	MBBL600-6000	SL AAM U16 BC		-

September 2, 2021

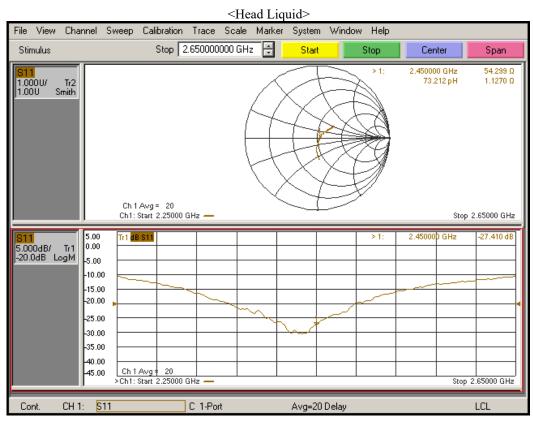
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
						Interval(month)
EST-63	Network Analyzer	Keysight Technologies	E5071C	MY46523746	SAR	2021/07/02 * 12
		Inc				
EST-57	2.4mm Calibration Kit	Keysight Technologies	85056A	MY44300225	SAR	2020/09/01 * 12
		Inc				
MPSAM-02	SAM Phantom	Schmid&Partner	QD000P40CB	1333	SAR	2021/05/27 * 12
		Engineering AG				
MPF-02	2mm Oval Flat Phantom	Schmid&Partner	QDOVA001BB	1045	SAR	2021/05/28 * 12
		Engineering AG				
MOS-33	Thermo-Hygrometer	CUSTOM	CTH-201	-	SAR	2021/07/08 * 12
MHBBL600-	Head Simulating Liquid	Schmid & Partner	HBBL600-10000V6	SL AAH U16		-
10000	0 1	Engineering AG		BC		
MMBBL600-	Body Simulating Liquid	Schmid & Partner	MBBL600-6000	SL AAM		-
6000		Engineering AG		U16 BC		

Test report No.	: 14018553H-A-R1
Page	: 47 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

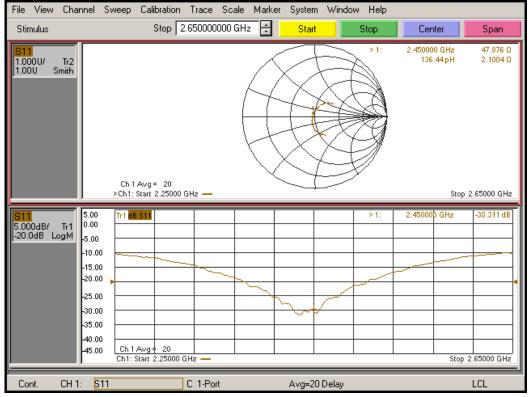
3. Test Result

		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed point	cal day	(real part) $[\Omega]$	$(img part) [j\Omega]$	(real part) $[\Omega]$	$(img part) [j\Omega]$	Tolerance	Result
Calibration (SPEAG)	2019/9/9	53.50	1.60	-	-	-	-
Calibration(ULJ)	2020/9/10	54.30	1.13	0.80	-0.47	+/-5Ω+/-5jΩ	Complied
Calibration(ULJ)	2021/9/2	52.24	1.35	-1.27	-0.25	+/-5Ω+/-5jΩ	Complied
		Head	Deviation	Tolerance			

		Head	Deviation	Tolerance	
Return loss	cal day	[dB]	[dB]	[+/-dB]	Result
Calibration (SPEAG)	2019/9/9	-28.60	-	-	-
Calibration(ULJ)	2020/9/10	-27.41	1.19	5.72	Complied
Calibration(ULJ)	2021/9/2	-31.84	-3.24	5.72	Complied

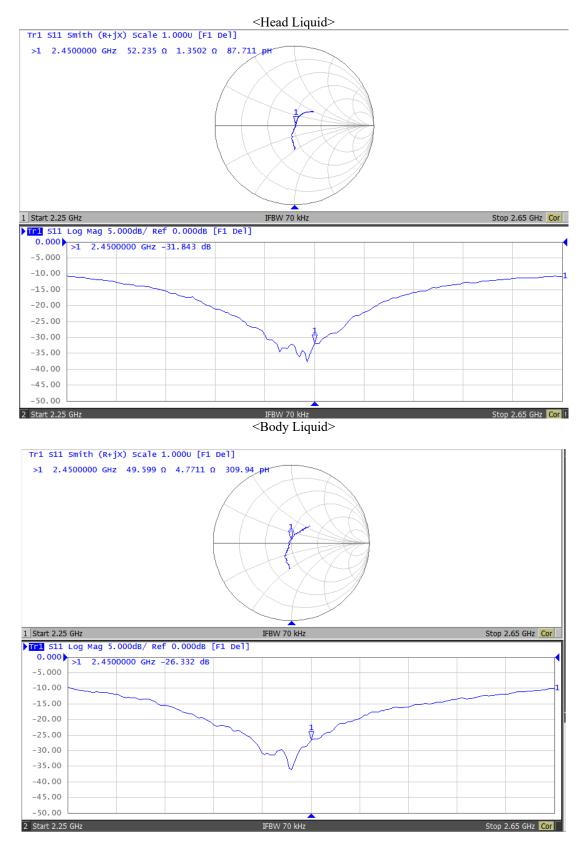

		Body	Body	Deviation	Deviation		
Impeadance, Transformed to feed point	cal day	(real part) [Ω]	$(img part) [j\Omega]$	(real part) [Ω]	$(img part) [j\Omega]$	Tolerance	Result
Calibration (SPEAG)	2019/9/9	49.60	4.00	-	-	-	-
Calibration(ULJ)	2020/9/10	47.88	2.10	-1.72	-1.90	+/-5Ω+/-5jΩ	Complied
Calibration(ULJ)	2021/9/2	49.60	4.77	0.00	0.77	+/-5Ω+/-5jΩ	Complied

		Body	Deviation	Tolerance	
Return loss	cal day	[dB]	[dB]	[+/-dB]	Result
Calibration (SPEAG)	2019/9/9	-27.90	-	-	-
Calibration(ULJ)	2020/9/10	-30.31	-2.41	5.58	Complied
Calibration(ULJ)	2021/9/2	-26.33	1.57	5.58	Comp lied


Tolerance: According to the KDB865664 D1

Test report No.	: 14018553H-A-R1
Page	: 48 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

Measurement Plots (September 10, 2020)



<Body Liquid>

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 49 of 80 : BBQDZD100 : January 16, 2023

Measurement Plots (September 2, 2021)

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 50 of 80 : BBQDZD100 : January 16, 2023

Dosimetric E-Field Probe Calibration Certificate (EX3DV4, S/N: 3922)

	ich, Switzerland	S State State	Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servi			reditation No.: SCS 0108
Multilateral Agreement for the	recognition of calibration c	ertificates	
Client UL Japan (RC	:C)	Certificate No:	EX3-3922_Aug21
CALIBRATION	CERTIFICATE		
CALIBINATION	OLIVINIOATE		
Object	EX3DV4 - SN:392	22	
Calibration procedure(s)	QA CAL-01.v9, Q	A CAL-12.v9, QA CAL-14.v6, QA	CAL-23.v5,
	QA CAL-25.v7		
	Calibration procee	dure for dosimetric E-field probes	
Calibration date:	August 16, 2021		
Calibration date.	August 10, 2021		
This calibration certificate docur	ments the traceability to nation	nal standards, which realize the physical units	of measurements (SI)
The measurements and the unc	ertainties with confidence pro	bability are given on the following pages and	are part of the certificate.
All calibrations have been cond	ucted in the closed laboratory	facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
Calibration Equipment used (Ma	TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
	SN: 104778		
Power meter NRP		09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244 SN: 103245 SN: CC2552 (20x)	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20)	Apr-22 Apr-22 Apr-22 Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20)	Apr-22 Apr-22 Apr-22 Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 013 ID SN: GB41293874 SN: MY41498087	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. 217-03343) 23-Dec-20 (No. ES3-3013_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 0313 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 0313 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 0313 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by:	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US341080477 Name Michael Weber	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by:	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US341080477 Name Michael Weber	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by: Approved by:	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477 Name Michael Weber Katja Pokovic	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician Technical Manager	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by: Approved by:	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477 Name Michael Weber Katja Pokovic	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Oct-21 Signature I.V Safffacture
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by: Approved by:	SN: 103244 SN: 103245 SN: 02252 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477 Name Michael Weber Katja Pokovic	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician Technical Manager	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Oct-21 Signature I.V Safffacture
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by: Approved by:	SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 0013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name Michael Weber Katja Pokovic	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician Technical Manager	Apr-22 Apr-22 Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Oct-21 Signature I.V Safffacture

: 14018553H-A-R1 : 51 of 80 : BBQDZD100 : January 16, 2023

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accr	editation Service is one of the signatories to the EA
Multilateral Agr	eement for the recognition of calibration certificates
Glossary:	
TSL	tissue simulating liquid

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization o	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
	itel, v = v is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3922_Aug21

Page 2 of 23

Test report No.	: 14018553H-A-R1
Page	: 52 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

EX3DV4 - SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.65	0.56	0.59	± 10.1 %
DCP (mV) ^B	99.5	102.8	99.6	

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	UncE
*									(k=2)
0	CW	X	0.00	0.00	1.00	0.00	149.5	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		137.1]	
		Z	0.00	0.00	1.00		151.1		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	94.30	22.97	10.00	60.0	± 3.8 %	± 9.6 %
AAA		Y	20.00	95.26	23.01		60.0		
~		Z	20.00	94.14	22.87		60.0	1	
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	94.25	22.08	6.99	80.0	± 2.0 %	± 9.6 %
AAA		Y	20.00	101.80	25.25	1	80.0		
		Z	20.00	95.26	22.60		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	98.97	23.27	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	114.94	30.08		95.0		
117.00		Z	20.00	100.85	24.21	1	95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	107.86	26.33	2.22	120.0	± 1.0 %	± 9.6 %
AAA		Y	20.00	118.09	30.05	1	120.0		/ -
		Z	20.00	110.74	27.69	1	120.0		
10387-	QPSK Waveform, 1 MHz	X	1.95	68.15	16.55	1.00	150.0	±2.0 %	± 9.6 %
AAA		Y	1.74	67.47	15.58	1	150.0		
		Z	1.93	67.69	16.38	1	150.0		
10388-	QPSK Waveform, 10 MHz	X	2.65	70.67	17.32	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.30	68.78	16.22		150.0		
		Z	2.62	70.36	17.16		150.0	ĺ	
10396-	64-QAM Waveform, 100 kHz	X	3.35	72.81	20.26	3.01	150.0	±0.7 %	± 9.6 %
AAA		Y	2.56	68.98	18.37	1	150.0		
		Z	3.53	73.46	20.56	1	150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.64	67.70	16.28	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	3.44	66.95	15.75		150.0		
		Z	3.75	68.13	16.47	1	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.93	65.73	15.71	0.00	150.0	±2.0 %	± 9.6 %
AAA		Y	4.74	65.52	15.48		150.0		2 0.0 %
		Z	4.91	65.56	15.61		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3922_Aug21

Page 3 of 23

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 53 of 80 : BBQDZD100 : January 16, 2023

EX3DV4- SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	50.1	370.37	35.07	25.31	0.11	5.10	1.02	0.29	1.01
Y	39.3	288.58	34.56	12.83	0.07	5.10	0.50	0.23	1.01
Z	52.4	387.14	35.06	24.70	0.10	5.10	1.21	0.30	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-74.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3922_Aug21

Page 4 of 23

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 54 of 80 : BBQDZD100 : January 16, 2023

EX3DV4-SN:3922

August 16, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.12	11.12	11.12	0.16	1.30	± 13.3 %
600	42.7	0.88	10.31	10.31	10.31	0.10	1.30	± 13.3 %
900	41.5	0.97	9.86	9.86	9.86	0.52	0.80	± 12.0 %
2450	39.2	1.80	7.83	7.83	7.83	0.35	0.95	± 12.0 %
5250	35.9	4.71	5.54	5.54	5.54	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.82	4.82	4.82	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies below a-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3922_Aug21

Page 5 of 23

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 55 of 80 : BBQDZD100 : January 16, 2023

EX3DV4- SN:3922

August 16, 2021

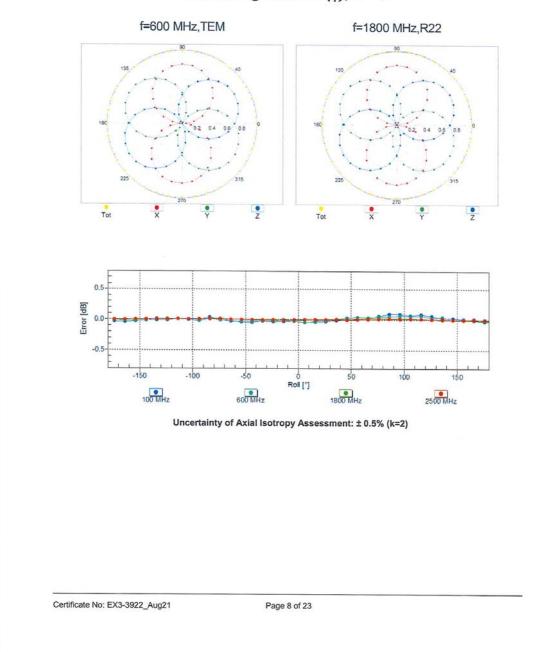
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.25	11.25	11.25	0.11	1.25	± 13.3 %
600	56.1	0.95	10.72	10.72	10.72	0.10	1.20	± 13.3 %
2450	52.7	1.95	7.73	7.73	7.73	0.33	0.95	± 12.0 %
5250	48.9	5.36	4.75	4.75	4.75	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.08	4.08	4.08	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. A frequencies below 3 GHz, the validity of tissue parameters (ε and ο) can be relaxed to ± 10% fil quid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and ο) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3922_Aug21

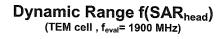

Page 6 of 23

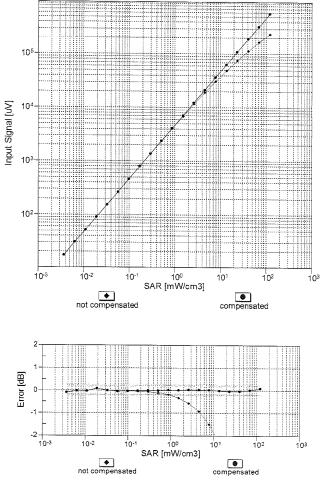
<page-header><text><section-header><figure></figure></section-header></text></page-header>
Hard Hard Hard Hard Hard Hard Hard Hard

Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 57 of 80 : BBQDZD100 : January 16, 2023

EX3DV4- SN:3922

August 16, 2021

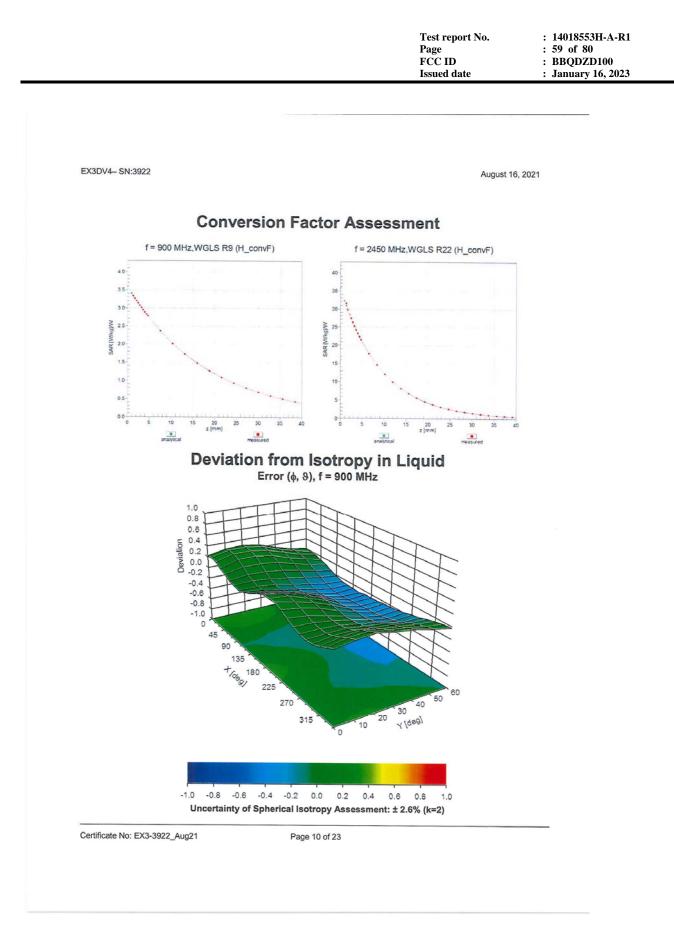




Test report No. Page FCC ID Issued date	: 14018553H-A-R1 : 58 of 80 : BBQDZD100 : January 16, 2023

EX3DV4-- SN:3922

August 16, 2021



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3922_Aug21

Page 9 of 23

August 16, 2021

EX3DV4-- SN:3922

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [±] (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6,56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth		± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)		4.77	± 9.6 %
10039	CAA	CDMA2000 (1xRTT, RC1)	Bluetooth CDMA2000	4.10	± 9.6 %
10042		IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)		4.57	± 9.6 %
10042	CAB	IS-91/EIA/TIA-553 FDD (FDMA/FDM, FI/4-DQPSK, Haifrate)	AMPS	7.78	± 9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	AMPS	0.00	± 9.6 %
10048	CAA		DECT	13.80	± 9.6 %
	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.33	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fulirate)	AMPS	4.77	$\pm 9.6\%$ $\pm 9.6\%$
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM		
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	6.56	± 9.6 %
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98 3.98	± 9.6 % ± 9.6 %

Certificate No: EX3-3922_Aug21

Page 11 of 23

EX3DV4-- SN:3922

-X3DV4-	- SN:392	2		Augi	ust 16, 2021
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
0169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
0172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
0173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
0174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
0176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 12 of 23

August 16, 2021

EX3DV4-	SN:3922	2		Augu	st 16, 2021
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6%
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD		
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.49	± 9.6 %
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	10.26	± 9.6 %
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.22	± 9.6 %
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD		± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	10.25 9.19	± 9.6 %
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	± 9.6 %
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 % ± 9.6 %
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.21	
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 %
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 % ± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.60	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD		
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 04-QAW)	LTE-TDD	10.06	± 9.6 %
10240	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.30	± 9.6 % ± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD		
10240		LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	± 9.6 %
10250	CAG CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.17	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QFSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 18-QAM)	LTE-TDD		± 9.6 %
10255		LTE-TDD (SC-FDMA, 30% RB, 15 MHz, 04-QAW)	LTE-TDD	10.14	± 9.6 %
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHZ, QPSK)		9.20	± 9.6 %
10256	CAB		LTE-TDD	9.96	± 9.6 %
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 13 of 23

					st 16, 202 ⁻
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAD	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	CAC	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	± 9.6 %
10303	CAB	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.6 %
10304	CAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10305	CAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10306	CAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	14.67	± 9.6 %
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	± 9.6 %
10308	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10310	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	± 9.6 %
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAD	iDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAD	iDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAA	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356		Pulse Waveform (200Hz, 80%)	Generic		
10356	AAA	QPSK Waveform, 1 MHz	Generic	0.97	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.10	± 9.6 %
10386	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10396	AAA	64-QAM Waveform, 100 KHz	Generic		
10399	AAA		WLAN	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)		8.37	± 9.6 %
	AAA	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAA	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403 10404	AAB	CDMA2000 (1xEV-DO, Rev. 0) CDMA2000 (1xEV-DO, Rev. A)	CDMA2000 CDMA2000	3.76	± 9.6 %
	AAB	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 1 10 10 10 10 10 10 10 10 10 10 10 10	3.77	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 14 of 23

LTE-TDD

August 16, 2021

7.82

8.38

8.60

LTE-TDD

± 9.6 %

± 9.6 %

EX3DV4-- SN:3922

AAA

10410

10414

10415

10416

10417

10418

10419

10422

10423

10424

10425

10426

10427

10430

10431

10432

10433

10434

10435

10447

10448

10449

10450

10451

10453

10456

10457

10458

10459

10460

10461

10462

10463

10464

10465

±9.6 % WLAN CCDF, 64-QAM, 40MHz ±9.6 % AAA Generic 8 54 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) WLAN AAA 1.54 ± 9.6 % IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) WLAN AAA 8.23 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) AAA WLAN 8 23 ± 9.6 % IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) WLAN ±9.6 % AAA 8 14 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) WLAN AAA 8 19 ± 9.6 % IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) WLAN AAA 8.32 ±9.6 % IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) WLAN AAA 8 47 ± 9.6 % IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) WLAN AAE 8 40 ±9.6 % IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) WLAN AAE 8 4 1 ±9.6 % IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) WLAN AAE 8.45 ±9.6 % IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) WLAN AAB 8.41 ± 9.6 % LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD AAB 8.28 ±9.6 % LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) AAC LTE-FDD 8.38 +96% LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD AAB 8.34 ± 9.6 % LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD 8.34 AAC ± 9.6 % W-CDMA (BS Test Model 1, 64 DPCH) WCDMA AAG 8.60 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) AAA LTE-TDD 7.82 ±9.6% AAA LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.56 +96% LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 AAA ± 9.6 % LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) AAC LTE-FDD 7.51 ±9.6 % LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD AAA 7.48 ± 9.6 % AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 ± 9.6 % Validation (Square, 10ms, 1ms) AAC Test 10.00 ±9.6% AAC IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) WLAN 8.63 ±9.6 % UMTS-EDD (DC-HSDPA) WCDMA AAC 6.62 ± 9.6 % AAC CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 ±9.6 % CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 AAC 8.25 ± 9.6 % UMTS-FDD (WCDMA, AMR) WCDMA 2.39 AAC ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) ± 9.6 % LTE-TDD 7.82 AAC AAC LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) LTE-TDD 8.30 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) LTE-TDD 8 56 ± 9.6 % AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) I TE-TDD 7.82 ± 9.6 % AAD LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) ± 9.6 % LTE-TDD 8.32 AAC LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) AAC LTE-TDD 8.57 ±9.6 % LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) LTE-TDD 7.82 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) LTE-TDD 8.32 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) ± 9.6 % LTE-TDD 8.56 LTE-TDD (SC-FDMA, 1 RB, 10 MHz, OPSK, UL Sub) AAD LTE-TDD 7 82 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) LTE-TDD 8.32 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) LTE-TDD AAC 8.57 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) LTE-TDD 7.82 ± 9.6 % LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) ± 9.6 % LTE-TDD 8.32

LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)

10466 10467 AAA 10468 AAF 10469 AAD 10470 10471 AAC 10472 10473 AAA 10474 AAC 10475 LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) AAD LTE-TDD 8 57 ±9.6 % 10477 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) LTE-TDD AAC 8.32 ± 9.6 % 10478 LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) LTE-TDD AAC 8.57 ± 9.6 % 10479 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) AAC LTE-TDD 774 ± 9.6 % 10480 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) LTE-TDD AAA 8 18 +96% 10481 LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) LTE-TDD AAA 8.45 ± 9.6 % 10482 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) LTE-TDD 7.71 ± 9.6 % AAA 10483 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) LTE-TDD AAA 8.39 ± 9.6 % 10484 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) LTE-TDD AAB 8.47 +9.6% LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) 10485 LTE-TDD 7.59 ± 9.6 % AAB 10486 LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) LTE-TDD

Certificate No: EX3-3922_Aug21

AAB

AAC

10487

Page 15 of 23

LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)

EX3DV4- SN:3922	
-----------------	--

EX3DV4-	SN:3922	2		Augu	ıst 16, 2021
10488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 % ± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAF	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6 %
10528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10529	AAF	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAE	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10534	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAF	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	± 9.6 %
10537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10538	AAF	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10545	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 16 of 23

EX3DV4-SN:3922 August 16, 2021 10546 IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) WLAN AAC 8.35 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) 10547 WLAN AAC 8 49 ± 9.6 % 10548 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN AAC 8.37 +96% 10550 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN AAC 8.38 ± 9.6 % 10551 IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) AAC WLAN 8.50 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) 10552 WLAN AAC 8 4 2 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) 10553 WLAN AAC 8 45 +9.6% IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) 10554 WLAN AAC 8.48 ± 9.6 % 10555 IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) AAC WLAN 8 47 ± 9.6 % IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) 10556 WLAN AAC 8.50 ± 9.6 % IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) 10557 WLAN AAC 8.52 ± 9.6 % 10558 IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) WLAN AAC 8.61 ± 9.6 % 10560 IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) WLAN AAC 8.73 ± 9.6 % 10561 IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) AAC WLAN 8.56 ± 9.6 % 10562 IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) AAC WLAN +9.6% 8.69 10563 AAC IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) WLAN 8.77 ± 9.6 % 10564 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) WLAN AAC ± 9.6 % 8.25 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) 10565 WLAN AAC 8.45 ± 9.6 % 10566 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) AAC WLAN 8,13 ± 9.6 % 10567 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) WLAN 8.00 ± 9.6 % 10568 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) WLAN AAC 8.37 ± 9.6 % 10569 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) AAC WLAN 8.10 ± 9.6 % 10570 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) AAC WLAN 8.30 ± 9.6 % 10571 AAC IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) WLAN 1.99 ± 9.6 % 10572 IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc WLAN AAC 1.99 ± 9.6 % 10573 AAC IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) WLAN 1.98 ± 9.6 % 10574 IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) WLAN AAC 1.98 ± 9.6 % 10575 AAC IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) WLAN 8.59 ± 9.6 % 10576 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) WLAN AAC 8.60 ± 9.6 % 10577 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) AAC WLAN 8.70 ± 9.6 % 10578 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) AAD WI AN 8.49 ± 9.6 % IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) 10579 AAD WI AN 8.36 ±9.6 % 10580 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) AAD WLAN 8.76 ± 9.6 % IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) 10581 AAD WLAN 8.35 ± 9.6 % 10582 IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) ± 9.6 % WLAN 8.67 AAD 10583 IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) AAD WI AN 8.59 ± 9.6 % 10584 IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) ± 9.6 % AAD WLAN 8.60 10585 IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) AAD WLAN 8.70 ± 9.6 % 10586 IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) ± 9.6 % AAD WI AN 8.49 10587 IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) AAA WLAN 8.36 ± 9.6 % 10588 IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) AAA WLAN 8.76 ± 9.6 % 10589 IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) AAA WLAN 8.35 ± 9.6 % 10590 IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) AAA WLAN 8.67 ± 9.6 % 10591 IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) AAA WLAN 8.63 ± 9.6 % 10592 IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) AAA WLAN 8 79 +96% 10593 IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) AAA WLAN 8.64 ± 9.6 % 10594 IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) WLAN AAA 8.74 ± 9.6 % 10595 IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) AAA WLAN 874 ± 9.6 % IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) 10596 WLAN AAA 871 ± 9.6 % 10597 IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) WLAN AAA 8.72 ± 9.6 % 10598 IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) WLAN AAA 8.50 ± 9.6 % 10599 IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) WLAN AAA 8.79 ± 9.6 % 10600 IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) WLAN AAA 8.88 +96% 10601 IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) WLAN AAA 8.82 ± 9.6 % 10602 IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) WLAN AAA 8.94 ± 9.6 %

Certificate No: EX3-3922_Aug21

AAA

10603

Page 17 of 23

WLAN

9.03

± 9.6 %

IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)

Test report No.	: 14018553H-A-R1
Page	: 67 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

(3DV4 9	SN:3922	2		Augu	st 16, 2021
0604	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
0605	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
0606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
0607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
0608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
0609	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
0610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
0611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
0612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
0613	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
0614	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
0615	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
0616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
0617	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
0618	AAC	IEEE 802.11ac WIFI (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
0619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
0620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
0621	AAC	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
0622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
0623	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
0624	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
0625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
0626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
0627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
0628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
0629	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
0630	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	± 9.6 %
0631	AAC	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
0632	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
0633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
0634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	± 9.6 %
0635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
0636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
0637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
0638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	± 9.6 %
0639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
0640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
0641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
0642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
0643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
0644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
0645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
0646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
0647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
0648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
0652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
0653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
0654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
0655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
0658	AAC	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
0659	AAC	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 % ± 9.6 %
0660	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
0661	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
0662	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	
	1 000	1	licar	1 0.97	± 9.6 %
0670	AAC	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 18 of 23

EX3DV4- SN:3922

August 16, 2021

LX30V4-	011.002.2	-		Augu	ist 16, 2021
10672	AAD	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAD	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8,74	± 9.6 %
10675	AAD	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	
10676	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN		± 9.6 %
10677	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.77	± 9.6 %
10678		IEEE 802.11ax (20MHz, MCS7, 90pc dc)		8.73	± 9.6 %
10679	AAD	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAD		WLAN	8.80	± 9.6 %
	AAG	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAE	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	±9.6 %
10688	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAD	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAE	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10691	AAB	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN		
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.66	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.32	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.55	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)		8.33	± 9.6 %
10711		IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.29	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC		WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
1	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	±9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %
			.d		

Certificate No: EX3-3922_Aug21

Page 19 of 23

.

EX3DV4-SN:3922

August 16, 2021

EX3DV4-	SN:3922			Augu	st 16, 2021
10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	±9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	$\pm 9.6\%$
10751		IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN		± 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.94	± 9.6 %
10755	AAC			8.64	± 9.6 %
	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	± 9.6 %
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
	1 ~~~~			1 0.01	1 - 0.0 /0

Certificate No: EX3-3922_Aug21

Page 20 of 23

.....

EX3DV4-- SN:3922

August 16, 2021

-X3DV4	SN:3922			Augu	ist 16, 2021
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
0788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		± 9.6 %
10794		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10795	AAC AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10796		5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 KHz)		7.84	± 9.6 %
10797	AAC		5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.0 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	
10828	-	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)			± 9.6 %
10829	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.43	± 9.6 %
	AAD		5G NR FR1 TDD	8.40	± 9.6 %
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	± 9.6 %
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6 %
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859		5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	
	AAD			0.04	± 9.6 %

Certificate No: EX3-3922_Aug21

Page 21 of 23

August 16, 2021

C/00/4-	0.1.0022	-		Augu	St 10, 2021
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 KHz)	5G NR FR2 TDD		± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.39	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	7.95	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	8.41	± 9.6 %
10880	+	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 KHz)		8.12	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 04QAM, 120 KHz)	5G NR FR2 TDD	8.38	± 9.6 %
10882	AAD	5G NR (DFT-S-OFDM, 1 RB, 50 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	5.75	± 9.6 %
10883	AAD		5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
		, , ,		0.07	L ± 0.0 /0

Certificate No: EX3-3922_Aug21

EX3DV4-- SN:3922

Page 22 of 23

EX3DV4-- SN:3922

August 16, 2021

10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6 %
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6 %
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6 %
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6 %
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6 %
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6 %
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6 %
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6 %
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6 %
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6 %
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3922_Aug21

Page 23 of 23

Test report No.	: 14018553H-A-R1
Page	: 73 of 80
FCC ID	: BBQDZD100
Issued date	: January 16, 2023

System check uncertainty

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents and is given in the following Table.

Repeatability Budget for System Check <300MHz – 6GHz range Bodv>

Error Description value Dist. 1g 10g 0 Measurement System Errors \pm 1.80 % N 1 1 1 Probe Calibration Drift \pm 1.00 % N 1 1 1 1 Probe Calibration Drift \pm 1.00 % N 1 1 1 1 Probe Linearity \pm 4.77 % R $\sqrt{3}$ 0 0 0 Broadband Signal \pm 0.0 % R $\sqrt{3}$ 0 0<	$(1g) \\ \pm 1.8\% \\ \pm 1.0\% \\ \pm 0.0\% \\ \pm 0$	(10g) $\pm 1.80\%$ $\pm 1.0\%$ $\pm 0.0\%$ $\pm 0.0\%$ $\pm 0.0\%$ $\pm 0.0\%$
Probe Calibration \pm 1.80%N111Probe Calibration Drift \pm 1.0%N1111Probe Linearity \pm 4.7%R $\sqrt{3}$ 00Broadband Signal \pm 0.0%R $\sqrt{3}$ 00Probe Isotropy \pm 4.7%R $\sqrt{3}$ 00Data Acquisition \pm 0.3%N100RF Ambient \pm 0.6%N100Probe Positioning \pm 0.2%N10.330.33Data Processing \pm 0.0%N111Phantom and Device ErrorsConductivity (meas.)DAK \pm 2.5%N10.780.71Conductivity (temp.)BB \pm 3.4%R $\sqrt{3}$ 0.780.71	$\begin{array}{c} \pm 1.0\% \\ \pm 1.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \end{array}$	$\begin{array}{c} \pm 1.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \end{array}$
Probe Calibration Drift \pm 1.0 $\%$ N 1 1 1 Probe Calibration Drift \pm 1.0 $\%$ N 1 1 1 Probe Linearity \pm 4.7 $\%$ R $\sqrt{3}$ 0 0 Broadband Signal \pm 0.0 $\%$ R $\sqrt{3}$ 0 0 Probe Isotropy \pm 4.7 $\%$ R $\sqrt{3}$ 0 0 Data Acquisition \pm 0.3 $\%$ N 1 0 0 RF Ambient \pm 0.6 $\%$ N 1 0 0 Probe Positioning \pm 0.2 $\%$ N 1 0.33 0.33 Data Processing \pm 0.0 $\%$ N 1 1 1 Phantom and Device Errors Errors Errors Conductivity (meas.)DAK \pm 2.5 $\%$ N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 $\%$ R $\sqrt{3}$	$\begin{array}{c} \pm 1.0\% \\ \pm 1.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \end{array}$	$\begin{array}{c} \pm 1.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \end{array}$
Probe Linearity \pm 4.7 $\%$ R $\sqrt{3}$ 00Broadband Signal \pm 0.0 $\%$ R $\sqrt{3}$ 00Probe Isotropy \pm 4.7 $\%$ R $\sqrt{3}$ 00Data Acquisition \pm 0.3 $\%$ N100RF Ambient \pm 0.6 $\%$ N100Probe Positioning \pm 0.2 $\%$ N10.330.33Data Processing \pm 0.0 $\%$ N111Phantom and Device ErrorsConductivity (meas.)DAK \pm 2.5 $\%$ N1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 $\%$ R $\sqrt{3}$ 0.78 0.71	±0.0% ±0.0% ±0.0% ±0.0% ±0.0%	$\begin{array}{c} \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \\ \pm 0.0\% \end{array}$
Broadband Signal \pm 0.0%R $\sqrt{3}$ 00Probe Isotropy \pm 4.7%R $\sqrt{3}$ 00Data Acquisition \pm 0.3%N100RF Ambient \pm 0.6%N100Probe Positioning \pm 0.2%N10.330.33Data Processing \pm 0.0%N111Phantom and Device ErrorsConductivity (meas.)DAK \pm 2.5%N10.780.71Conductivity (temp.)BB \pm 3.4%R $\sqrt{3}$ 0.780.71	$\pm 0.0\%$ $\pm 0.0\%$ $\pm 0.0\%$	$\pm 0.0\%$ $\pm 0.0\%$ $\pm 0.0\%$
Probe Isotropy \pm 4.7 $\%$ R $\sqrt{3}$ 0 0 Data Acquisition \pm 0.3 $\%$ N 1 0 0 RF Ambient \pm 0.6 $\%$ N 1 0 0 Probe Positioning \pm 0.2 $\%$ N 1 0.33 0.33 Data Processing \pm 0.0 $\%$ N 1 1 1 Phantom and Device ErrorsConductivity (meas.)DAK \pm 2.5 $\%$ N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 $\%$ R $\sqrt{3}$ 0.78 0.71	±0.0% ±0.0%	$\pm 0.0\%$ $\pm 0.0\%$
Data Acquisition \pm 0.3 % N 1 0 0 RF Ambient \pm 0.6 % N 1 0 0 0 Probe Positioning \pm 0.2 % N 1 0 0 0 Probe Positioning \pm 0.2 % N 1 0.33 0.33 0.33 Data Processing \pm 0.0 % N 1 1 1 1 Phantom and Device Errors \pm 2.5 % N 1 0.78 0.71 Conductivity (meas.)DAK \pm 2.5 % N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 % R $\sqrt{3}$ 0.78 0.71	±0.0%	±0.0%
RF Ambient \pm 0.6 % N 1 0 0 Probe Positioning \pm 0.2 % N 1 0.33 0.33 Data Processing \pm 0.0 % N 1 1 1 Phantom and Device Errors Errors Errors Errors N 1 0.78 0.71 Conductivity (meas.)DAK \pm 2.5 % N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 % R $\sqrt{3}$ 0.78 0.71	0.0.1	
Probe Positioning \pm 0.2 $\%$ N 1 0.33 0.33 Data Processing \pm 0.0 $\%$ N 1 1 1 1 Phantom and Device Errors Errors V V 1 0.78 0.71 Conductivity (meas.)DAK \pm 2.5 $\%$ N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 $\%$ R $\sqrt{3}$ 0.78 0.71	$\pm 0.0\%$	10.00/
Data Processing \pm 0.0 $\%$ 1 1 1 1 Phantom and Device Errors 2.5 $\%$ N 1 0.78 0.71 Conductivity (meas.)DAK \pm 2.5 $\%$ N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 $\%$ R $\sqrt{3}$ 0.78 0.71		$\pm 0.0\%$
Phantom and Device ErrorsConductivity (meas.)DAK \pm 2.5 %N10.780.71Conductivity (temp.)BB \pm 3.4 %R $\sqrt{3}$ 0.780.71	$\pm 0.1\%$	±0.1%
Conductivity (meas.)DAK \pm 2.5 % N 1 0.78 0.71 Conductivity (temp.)BB \pm 3.4 % R $\sqrt{3}$ 0.78 0.71	$\pm 0.0\%$	$\pm 0.0\%$
Conductivity (temp.)BB $\pm 3.4 \%$ R $\sqrt{3}$ 0.78 0.71		•
	±2.0%	±1.8%
Phantom Permittivity \pm 14.0 %R $\sqrt{3}$ 00	±1.5%	±1.4%
	$\pm 0.0\%$	±0.0%
Distance Phantom - DUT \pm 1.0 % N 1 2 2	±2.0%	±2.0%
DUT Modulationm \pm 0.0 % R $\sqrt{3}$ 1 1	$\pm 0.0\%$	±0.0%
Time-average SAR \pm 0.0 % R $\sqrt{3}$ 1 1	$\pm 0.0\%$	±0.0%
Validation antenna \pm 0.0 %N111	$\pm 0.0\%$	±0.0%
Accepted power ± 1.2 % N 1 1 1	±1.2%	±1.2%
Correction to the SAR results		
Deviation to Target ± 1.9 % N 1 1 0.84	±1.9%	±1.6%
Combined Std. Uncertainty	$\pm 4.4\%$	±4.2%
Expanded STD Uncertainty ($\kappa = 2$)	$\pm 8.8\%$	±8.3%

Table of uncertainties are listed for ISO/IEC 17025.