

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: DT-X7M10U

FCC ID: BBQDTX7M10U

IC: 2388F-DTX7M10U

REPORT NUMBER: 07J11143-2C

ISSUE DATE: SEPTEMBER 13, 2007

Prepared for

CASIO COMPUTER CO., LTD. 6-2 HON-MACHI 1-CHOME SHIBUYA-KU, TOKYO 151-8543, JAPAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	9-11-07	Initial Issue	Hsin Fu Shih
В	9-12-07	Delete Model Difference, revise antenna model name, Revise AC Adapter model name	Hsin Fu Shih
С	9-13-07	Corrected some typos	Hsin Fu Shih

Page 2 of 136

TABLE OF CONTENTS

1.	1. ATTESTATION OF TEST RES	ULTS5	5
2.	2. TEST METHODOLOGY		5
3.	3. FACILITIES AND ACCREDIT	ATION	5
4.	4. CALIBRATION AND UNCERT	AINTY	5
4	4.1. MEASURING INSTRUMENT	CALIBRATION	5
4	4.2. MEASUREMENT UNCERTA	INTY	5
5.	5. EQUIPMENT UNDER TEST	7	7
5	5.1. DESCRIPTION OF EUT		7
5	5.2. TEST CONFIGURATION		3
5	5.3. MODE(S) OF OPERATION		3
5	5.4. MAXIMUM OUTPUT POWE	R9	2
5	5.5. DESCRIPTION OF AVAILAB	LE ANTENNAS	2
5	5.6. SOFTWARE AND FIRMWAR	E9	2
5	5.7. WORST-CASE CONFIGURA	TION AND MODE9)
5	5.8 DESCRIPTION OF TEST SET	ГUР 10	า
			'
6.	6. TEST AND MEASUREMENT E	QUIPMENT	5
6. 7.	6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT	5
6. 7. 7	 TEST AND MEASUREMENT E LIMITS AND RESULTS 7.1. BASIC DATA RATE GFSK M 	QUIPMENT	, 5 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS <i>7.1. BASIC DATA RATE GFSK M</i> <i>7.1.1.</i> 20 dB AND 99% BAND 	QUIPMENT 16 17 17 ODULATION 17 WIDTH 17	, 5 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT 16	7 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS <i>7.1.</i> BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24	5 7 7 7 1
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS <i>7.1.</i> BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 7.1.5. PEAK OUTPUT POWE 	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26	57771151157771115111511151111111111111
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS 7.1. BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 7.1.5. PEAK OUTPUT POWE 7.1.6. MAXIMUM PERMISSI 	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29	
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS 7. <i>BASIC DATA RATE GFSK M</i> 7. <i>1.</i> 20 dB AND 99% BAND 7. <i>1.</i> 20 dB AND <i>1.</i> 20 dB AND <li< th=""><th>QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 US EMISSIONS 34</th><th>577711531</th></li<>	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 US EMISSIONS 34	577711531
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS 7.1. BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 7.1.5. PEAK OUTPUT POWE 7.1.6. MAXIMUM PERMISSI 7.1.7. AVERAGE POWER 7.1.8. CONDUCTED SPURIO 	QUIPMENT16ODULATION17ODULATION17WIDTH17Y SEPARATION20G CHANNELS21CCUPANCY24R26BLE EXPOSURE293334US EMISSIONS34	57770115310
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT 16 <i>ODULATION</i> 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 34 SK MODULATION 39 WIDTH 39	
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS 7.1. BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 7.1.5. PEAK OUTPUT POWE 7.1.6. MAXIMUM PERMISSI 7.1.7. AVERAGE POWER 7.1.8. CONDUCTED SPURIO 7.2. ENHANCED DATA RATE 8P 7.2.1. 20 dB AND 99% BAND 7.2.2. HOPPING FREQUENC 7.2.3. NUMBER OF HOPPING 	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 33 US EMISSIONS 34 SK MODULATION 39 WIDTH 39 Y SEPARATION 42 G CHANNELS 44	5 7 7 7 7 7 7 7 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT 16 0DULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29	7 7 7 7 7 7 7 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS 7.1. BASIC DATA RATE GFSK M 7.1.1. 20 dB AND 99% BAND 7.1.2. HOPPING FREQUENC 7.1.3. NUMBER OF HOPPING 7.1.4. AVERAGE TIME OF O 7.1.5. PEAK OUTPUT POWE 7.1.6. MAXIMUM PERMISSI 7.1.7. AVERAGE POWER 7.1.8. CONDUCTED SPURIO 7.2. ENHANCED DATA RATE 8P 7.2.1. 20 dB AND 99% BAND 7.2.2. HOPPING FREQUENC 7.2.3. NUMBER OF HOPPING 7.2.4. AVERAGE TIME OF O 7.2.5. PEAK OUTPUT POWE 7.2.6 MAXIMUM PERMISSI 	QUIPMENT 16 17 17 ODULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 34 SK MODULATION 39 Y SEPARATION 42 G CHANNELS 34 SK MODULATION 39 Y SEPARATION 42 G CHANNELS 44 CCUPANCY 47 R 49 BLE EXPOSURE 52	5 7 7 7 7 7 7 7 7 7 7
6. 7. 7	 6. TEST AND MEASUREMENT E 7. LIMITS AND RESULTS	QUIPMENT 16 17 17 ODULATION 17 WIDTH 17 Y SEPARATION 20 G CHANNELS 21 CCUPANCY 24 R 26 BLE EXPOSURE 29 33 34 SK MODULATION 39 WIDTH 39 Y SEPARATION 42 G CHANNELS 34 SK MODULATION 39 Y SEPARATION 42 G CHANNELS 44 CCUPANCY 47 R 49 BLE EXPOSURE 52 SCUPANCY 47 SCUPANCY 47 SCUPANCY 52 SCUPANCY 52	5 7 7 7 7 7 7 7 7 7 7

7.3. RA	DIATED TEST RESULTS	
7.3.1.	LIMITS AND PROCEDURE	
7.3.2.	TRANSMITTER ABOVE 1 GHz FOR BASIC DATA RATE GFSK MODUL	ATION 63
7.3.3.	TRANSMITTER ABOVE 1 GHz FOR ENHANCED DATA RATE 8PSK	
MODUI	LATION	69
7.3.4.	RECEIVER ABOVE 1 GHz	75
7.3.5.	WORST-CASE BELOW 1 GHz	77
7.4. AC	POWER LINE CONDUCTED EMISSIONS	
8. SETUP	PHOTOS	

Page 4 of 136

1. ATTESTATION OF TEST RESULTS

RSS-210 Issue 7 Annex 8 and RSS-GEN Issue 2

COMPANY NAME:	CASIO COMP 6-2 HON-MAC SHIBUYA-KU	UTER CO., LTD. PHI 1-CHOME , TOKYO 151-8543, JAPAN			
EUT DESCRIPTION:	HANDHELD 7	HANDHELD TERMINAL			
MODEL:	IODEL: DT-X7M10U				
SERIAL NUMBER:	DU-33	DU-33			
DATE TESTED:	JULY 27 - 31, A	ND SEPTEMBER 10, 2007			
	APPLICA	BLE STANDARDS			
STANDA	RD	TEST RESULTS			
FCC Part 15 Subpart C		NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

HSIN FU SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

NO NON-COMPLIANCE NOTED

YOBI ZHOU EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 136

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 136

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Handheld Terminal device and manufactured by Casio Computer Co., Ltd.

ACCESSORIES

The Handheld Terminal uses the following accessories during the tests:

Subassembly Description	Manufacturer	Part Number	Model Number
DRY-CELL BATTERY CASE	N/A	N/A	HA-F22BC
USB CRADLE	CASIO	PY-551AA	HA-F60 IO
ETHERNET CRADLE	CASIO	PY-551AA	HA-F62 IO
Cradle AC Adapter (for USB & Ethernet cradles)	CASIO	CS-22	AD-S42120B
CRADLE-TYPE BATTERY CHARGER	CASIO	PY-556AA	HA-F30CHG
Cradle AC Adapter	CASIO	2	AD-S15050B
CRADLE-TYPE DUAL BATTERY CHARGER	CASIO	PY-559	HA-F36DCHG
Cradle AC Adapter	CASIO	CS-8	AD-S60160B

Page 7 of 136

5.2. TEST CONFIGURATION

EUT was connected to the host with a minimum configuration.

The following configuration was investigated during testing:

Test Configuration	Description
1	EUT (Handheld Terminal) with Dry-cell Battery Case
2 EUT (Handheld Terminal) with USB Cradle	
3	EUT (Handheld Terminal) with Ethernet Cradle
4	EUT (Handheld Terminal) with Cradle-type Battery Charger
5	EUT (Handheld Terminal) with Cradle-type Dual Battery Charger

5.3. MODE(S) OF OPERATION

Test Mode	Description
1	Dry-cell Battery Case
2	LAN (Ethernet Cradle)
3	USB Host (Used either USB or Ethernet Cradle)
4	USB Client (Used either USB or Ethernet Cradle)
5	Cradle-type Battery Charger
6	Cradle-type Dual Battery Charger x 3 (6 Handheld Terminals)

Page 8 of 136

5.4. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power (dBm)Output Pow (mW)	
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	10.68	11.69
2402 - 2480	Enhanced 8PSK	11.18	13.12

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

_Di-pole antenna, model number AH083F245001, with maximum gain of 2.3dBi.

5.6. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was LMWin, Ver 6.16. The test utility software used during testing was BTRadioTest, Ver. 1.00.

5.7. WORST-CASE CONFIGURATION AND MODE

EUT with the following items:

- 1. Dry-cell Battery Case
- 2. USB Cradle
- 3. Ethernet Cradle
- 4. Cradle-type Battery Charger
- 5. Cradle-type Dual Battery Charger

There are five configurations for Radiated Emission, four configurations for AC Power Line Conducted Emission and the worst-case configuration is the EUT with Ethernet Cradle (Please see setup diagrams & photos).

The worst-case channel is determined as the channel with the highest output power.

Page 9 of 136

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT & PERIPHERALS

PERIPHERAL SUPPORT EQUIPMENT LIST			
Description	Manufacturer	Model	Serial Number
Cradle AC Adapter 1	CASIO	AD-S15050B	2
Cradle AC Adapter 2	CASIO	AD-S45150B	CS-8
Cradle AC Adapter 3	CASIO	AD-S60160B	CS-22
Dual Battery AC Adapter	SINO	SA165A-1540U-3	N/A
Laptop AC Adapter	NEC	ADP-50UH-A	6406983DD
USB Dongle	Buffalo	RUF2-E256-B	NA
USB Cradle	CASIO	HA-F60 IO	PY-550
Battery Charger Cradle	CASIO	HA-F30CHG	PY-556
Ethernet Cradle	CASIO	HA-F62IO	PY-554
Dual Battery Charger Cradle	CASIO	HA-F36DCHG	N/A
Laptop	NEC	PC-VY12FBEX	D04-0052003

I/O CABLES

	I/O CABLE LIST					
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks
		Ports				
1	AC	2	US 115V	Un-shielded	1.5m	Config 2, 3, 4, 5
2	DC	2	DC	Un-shielded	1.5m	Config 2, 3, 4, 5
3	USB	1	USB	Shielded	1.5m	Config 2
4	Ethernet	1	RJ45	Un-shielded	2.5m	Config 2, 3

TEST SETUP

There are five different configurations for EUT during the tests (see setup diagrams & photos). Test software exercised the radio card.

Page 10 of 136

SETUP DIAGRAM FOR TESTS

CONFIG 1: EUT WITH DRY CELL BATTERY

EUT
DRY-CELL BATTERY CASE

Page 11 of 136

CONFIG 2: EUT WITH USB CRADLE

Page 12 of 136

CONFIG 3: EUT WITH ETHERNET CRADLE (WORST-CASE)

Page 13 of 136

CONFIG 4: EUT WITH CRADLE-TYPE BATTERY CHARGER

Page 14 of 136

CONFIG 5: EUT WITH DUAL BATTERY CHARGERS

Page 15 of 136

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY43360112	5/3/2008	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/2008	
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00931	8/1/2008	
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007	
EMI Test Receiver	R & S	ESHS 20	827129/006	1/27/2008	
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/2007	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	9/15/2007	
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	9/15/2007	
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A0022704	8/13/2007	
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	1/23/2008	
4.0 GHz Highpass Filter	Micro-Tronics	HPM13351	4	CNR	
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/2008	

Page 16 of 136

7. LIMITS AND RESULTS

7.1. BASIC DATA RATE GFSK MODULATION

7.1.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	833.733	842.3908
Middle	2441	840.391	843.5129
High	2480	842.545	844.0066

Page 17 of 136

20 dB AND 99% BANDWIDTH

Page 18 of 136

20 dB AND 99% BANDWIDTH

Page 19 of 136

7.1.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

HOPPING FREQUENCY SEPARATION

Page 20 of 136

7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

No non-compliance noted:

79 Channels observed.

Page 21 of 136

NUMBER OF HOPPING CHANNELS

NUMBER OF HOPPING CHANNELS

7.1.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

No non-compliance noted:

Pulse Width	Number of Pulses in 3-16	Average Time of Occupancy	Limit	Margin
(msec)	seconds	(sec)	(sec)	(sec)
0.393	32	0.126	0.4	0.274

Page 24 of 136

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

7.1.5. PEAK OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

No non-compliance noted:

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	10.18	30	-19.82
Middle	2441	10.68	30	-19.32
High	2480	10.60	30	-19.40

Page 26 of 136

OUTPUT POWER

OUTPUT POWER

Page 28 of 136

7.1.6. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Ex	posure	
0.3–1.34 1.34–30	614 824 <i>i</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
 * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 29 of 136

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000-150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- A power density of 10 W/m² is equivalent to 1 mW/cm².
 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 30 of 136

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

Page 31 of 136

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$

From IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 10 \text{ W/m}^2$

RESULTS

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
Bluetooth	2.4 GHz	20.0	10.68	2.30	0.00	0.04

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 32 of 136

7.1.7. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10 dB (including 10 dB pad and .8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	9.93
Middle	2441	10.37
High	2480	10.26

Page 33 of 136

7.1.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (c)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

No non-compliance noted:

Page 34 of 136

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

Page 36 of 136
SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 38 of 136

7.2. ENHANCED DATA RATE 8PSK MODULATION

7.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1263	1194.6
Middle	2441	1263	1196.5
High	2480	1265	1169.3

Page 39 of 136

20 dB AND 99% BANDWIDTH

Page 40 of 136

20 dB AND 99% BANDWIDTH

Page 41 of 136

7.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

Page 42 of 136

HOPPING FREQUENCY SEPARATION

Page 43 of 136

7.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

No non-compliance noted:

79 Channels observed.

Page 44 of 136

NUMBER OF HOPPING CHANNELS

Page 45 of 136

NUMBER OF HOPPING CHANNELS

Page 46 of 136

7.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

No non-compliance noted:

	Number of	Average Time		
Pulse Width	Pulses in 3.16	of Occupancy	Limit	Margin
(msec)	seconds	(sec)	(sec)	(sec)
2.893	11	0.318	0.4	0.082

Page 47 of 136

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 48 of 136

7.2.5. PEAK OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

No non-compliance noted:

Channel	Frequency	Peak Power	Limit	Margin
	(MITZ)	(ubiii)	(ubiii)	(UD)
Low	2402	10.91	30	-19.09
Middle	2441	11.18	30	-18.82
High	2480	10.78	30	-19.22

Page 49 of 136

OUTPUT POWER

Page 50 of 136

OUTPUT POWER

Page 51 of 136

7.2.6. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in \$1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
 * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 52 of 136

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000-150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- A power density of 10 W/m² is equivalent to 1 mW/cm².
 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 53 of 136

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

Page 54 of 136

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$

From IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 10 \text{ W/m}^2$

RESULTS

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
Bluetooth	2.4 GHz	20.0	11.18	2.30	0.00	0.04

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 55 of 136

7.2.7. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10 dB (including 10 dB pad and .8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	10.22
Middle	2441	10.29
High	2480	9.90

Page 56 of 136

7.2.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (c)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

No non-compliance noted:

Page 57 of 136

SPURIOUS EMISSIONS, LOW CHANNEL

Page 58 of 136

SPURIOUS EMISSIONS, MID CHANNEL

Page 59 of 136

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 60 of 136

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 61 of 136

7.3. RADIATED TEST RESULTS

7.3.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 62 of 136

7.3.2. TRANSMITTER ABOVE 1 GHz FOR BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 63 of 136

Agilent 05:38:	54 Jul 27, 2007	L	Freq/Channel
Project: 07J11143 Ref 100 dB µ∨ #Peak	#Atten 0 dB	Mkr1 2.386 00 GH 53.16 dBμ\	Center Freq 2.35000000 GHz
og O B/			Start Freq 2.31000000 GHz
B			Stop Freq 2.39000000 GHz
4.0 Βμ√ gAv			CF Step 8.0000000 MHz <u>Auto Mar</u>
1 S2 3 FC			Freq Offset 0.00000000 Hz
(f): Tun wp			Signal Track On <u>Off</u>
itart 2.310 00 GH	z #VRW 10 H	Stop 2.390 00 GH	z

Page 64 of 136

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 65 of 136

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 66 of 136

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

н	orn 1-	18GHz	Pre-ar	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18	GHz		Limit
T73; \$	S/N: 671	7 @3m	▼ T144 N	Aiteq 30	08A009)31 🖵				•				•	FCC 15.209
	2 foot	cable	3	foot c	able		121	foot c	able		HPF	Re	ject Filte	er <u>Peal</u> RB	<u>k Measurements</u> W=VBW=1MHz
			•			•	B-5m C	nambe	er 🗾		r_4.0GHZ	•		RBW=	1MHz; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
ow Ch (2 804	402MHz	41.7	321	22.2	71	-36.5	0.0	0.6	46.2	36.6	74	54	-27.8	-17.4	v
206	3.0	37.9	25.9	34.9	8.6	-36.2	0.0	0.6	45.8	33.8	74	54 54	-28.2	-20.2	v
.804 .206	3.0 3.0	44.1	39.0 24.7	33.3 34.0	7.1 8.6	-36.5 -36.2	0.0 n n	0.6 0.6	48.6	43.5	74 74	54 54	-25.4 -28.6	-10.5 -21.4	<u>Н</u> н
													0		
/lid Ch.(2 882	441 MHz) 3 0	46.4	37.0	33.4	72	-36 5	nn	በና	510	42.6	74	54	-23.0	-11.4	v
323	3.0	42.4	30.2	35.0	8.7	-36.2	0.0	0.0	50.5	38.3	74	54 54	-23.5	-15.7	v
.882	3.0	46.8	40.6	33.4	7.2	-36.5	0.0	0.6	51.5	45.3	74	54	-22.5	-8.7	H
323	3.0	41.5	29.4	35.0	8.7	-36.2	U.U	U.6	49.6	37.5	74	54	-24.4	-16.5	Н
li Ch.(24	80MHz)			•											
960	3.0	45.7	41.4	33.4	7.2	-36.5	0.0	0.6 0.4	50.5	46.2	74	54	-23.5	-7.8	<u>v</u>
.440 960	3.0	41./	31.5	35.1 33.4	8./ 7.2	-30.2	0.0	0.0	49.9	39.7 43.2	74 74	54 54	-24.1	-14.3	<u>ү</u> Н
.440	3.0	41.1	31.7	35.1	8.7	-36.2	0.0	0.6	49.3	<u> </u>	74	54	-24.7	-14.1	H
		No other	emissions were	detector	ahove a	vstem vo	ise floor								
	l	10 ULUT	CHIPPIONS MELC	ac iet ieu	anove s	, stem noi	99 HOUL		I		L	L	L		
	f	Measuremer	nt Frequency			Amp	Preamp (Gain				Avg Lim	Average]	Field Strengt	h Limit
	Dist	Distance to .	Antenna			D Corr	Distance	Corre	ct to 3 mete	rs		Pk Lim	Peak Fiel	d Strength L	imit
	Read	Analyzer Re	ading			Avg	Average	Field S	Strength @	3 m		Avg Mar	Margin vs	. Average L	imit
	AF	Antenna Fac	tor			Peak	Calculate	d Peal	c Field Stre	ngth		Pk Mar	Margin vs	. Peak Limit	
	CL	Cable Loss				HPF	High Pas	s Filter							

Page 68 of 136

7.3.3. TRANSMITTER ABOVE 1 GHz FOR ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 69 of 136

Page 70 of 136

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

'onfigu 1ode: <u>`est Eq</u>	ration: F	UT with C1 Tx Mode 8PSI	adle / AC Ac K Low / Mid / H	laptor i Channe	ls										
н	orn 1-	18GHz	Pre-ar	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18(GHz		Limit
T60; \$	S/N: 223	8 @3m	▼ T145 A	Agilent 3	3008A0	05(<u> </u>				•	FCC 15.209
hirrey	2 foot	cable	3	foot	able		12	foot c	able		HPF	Re	ject Filte	er Peak	<u>Measurements</u> W=VBW=1MHz
•				•	B-5m C	hambo	er 🗸	HP	F_4.0GHz	•		• Avera RBW=	<u>ge Measurements</u> 1MHz ; VBW=10Hz		
f GH7	Dist	Read Pk dBnV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/re	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
ow Ch (2	402MHz)		ωuv	umunu		ш <u>-</u>			and and a second	an a	an a	abu v/m		wD	(1/11)
804 206	3.0 3.0	38.0	28.0 22.2	33.0 35.4	7.1 8.6	-34.8 -34.7	0.0	0.6 0.6	43.9 42.1	33.9 32.1	74 74	54 54	-30.1 -31.9	-20.1 -21.9	v
304	3.0	38.4	28.4	33.0	7.1	-34.8	0.0	0.6	44.2	34.2	74	54	-29.8	-19.8	H
206	3.0	31.8	21.8	35.4	8.6	-34.7	0.0	0.6	41.7	31.7	74	54	-32.3	-22.3	<u>H</u>
lid Ch.(2 882	441 MHz)	40.4	20.4	221	7.2	24.0	0.0	04	46.6	26.4	74	54	27.4	17.4	v
.082 323	3.0 3.0	40.0 36.7	26.7	35.1 35.5	7.2 8.7	-34.9 -34.7	0.0 0.0	0.0 0.0	40.0	36.8	74 74	54 54	-27.A -27.2	-1/.4 -17.2	<u>v</u> V
.882	3.0	41.1	31.1	33.1	7.2	-34.9	0.0	0.6	47.0	37.0	74	54	-27.0	-17.0	H
-243	210	5.56	438	333	0./	-34./	0.0	0.0	439	259	/4	74	-20.1	-16.1	H
ii Ch.(24 960	80MHz)	40.0	20.0	221	7.2	24.0	0.0	n.<	461	261	74	54	27.0	170	v
.440	3.0	36.0	26.0	35.0 35.6	8.7	-34.9	0.0	0.0 0.0	40.1	36.3	74 74	54 54	-27.7	-1/9 -17.7	<u>v</u>
960	3.0	39.1	29.1	33.1	7.2	-34.9	0.0	0.6	45.2	35.2	74	54	-28.8	-18.8	H
.440	3.0	35,4	25.4	35.6	8.7	-34.6	0.0	0.6	45.7	35.7	74	54	-28.3	-18.3	H
		No other	emissions were	detected	above s	ystem no	ise floor		İ			l			
	f Dist Read AF CL	Measuremer Distance to J Analyzer Re Antenna Fac Cable Loss	nt Frequency Antenna ading tor			Amp D Corr Avg Peak HPF	Preamp (Distance Average Calculate High Pas	Gain Corre Field S d Peal s Filter	ct to 3 mete Strength @ c Field Stre	ers 3 m ngth		Avg Lim Pk Lim Avg Mar Pk Mar	Average I Peak Fiel Margin vs Margin vs	Field Strengt d Strength L Average L Peak Limit	h Limit imit imit

Page 74 of 136

7.3.4. RECEIVER ABOVE 1 GHz

RESULTS FOR BASIC DATA RATE – GFSK MODULATION

No non-compliance noted:

·	High	Frequency	Measuren Sumina E	nent	5 C1										
ompiiai	ace Ce	runcation	Services, r.	remont	Sm CI	amber									
ompany.	r:		Casio Comp	uter Co.;	Ltd.										
roject #)ate:			7/27/2007												
est Eng	ineer:		Mengistu Me	ekuria											
onfigura	ation:		EUT With Et	hernet Cr	adle										
lode:			Rx Mode												
est Equ	upmen	<u>t:</u>													
Ho	orn 1-	18GHz	Pre-a	mplife	1-26	GHz	Pre-am	plifer	26-40GH	z	н	orn > 180	GHz		Limit
T73; S/	T73; S/N: 6717 @3m 🚽 T145 Agilent 3008A005(-				•	RX RSS 210
HiFremenory Cables															
nirrequ	Hi Frequency Cables						40		a la La					Bool	k Measurements
2	2 foot cable 3 foot cable				12 foot cable HPF				Re	ject Filte	r <u>rea</u> RB	W=VBW=1MHz			
						_	B-5m C	hamb	er 🖕	í m		,		Avera	age Measurements
														RBW=	=1MHz ; VBW=10H
f	Dist	Read Pk	Read Avg	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)		dBuV 27.4	dB/m	dB	dB 26.2	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB 22.9	dB 25.7	(V/H)
400	3.0	44.4	33.3	28.3	5.1	-35.1	0.0	0.0	40.2	31.6	74	54 54	-31.3	-22.4	v
000	3.0	46.9	38.0	23.8	3.2	-36.2	0.0	0.0	37.7	28.9	74	54	-36.3	-25.1	Н
400	3.0	47.3	40.4	28.3	5.1	-35.1	0.0	0.0	45.6	38.6	74	54	-28.4	-15.4	Н
		l	ļ			ļ									
.v. 4.12.7															
	<u> </u>	24	ιE			A	D	a :				ф	а. т	7.11.C	d Thub
f Measurement Frequency Amp				зу		Amp D Corr	Distance	Gam Corre	ct to 3 mete	ers		Avg Lim Pk Lim	Peak Field	neia Strength I	imit
	Dist Distance to Antenna D Cor					Avg	Average	Field S	Strength @.	3 m		Avg Mar	Margin vs	. Average L	imit
	Read	Read Analyzer Reading Avg				Peak	Calculate	d Peal	k Field Stre	ngth		Pk Mar	Margin vs	. Peak Limi	t
	Read AF	Antenna F	CL Cable Loss HPF				. Calculated Peak Field Strength PK Mar Margin vs. Peak Limit High Pass Filter								
	Read AF CL	Antenna F Cable Los	5			HPF	High Pas	s Filter							

Page 75 of 136

RESULTS FOR ENHANCED DATA RATE – 8PSK MODULATION

No non-compliance noted:

Complia	High nce Ce	Frequency	Measurer Services B	nent 'remout	5m Ch	amhar										
Joinpila	nce Ce	runcation	services, r	remon	Sin Ci	lamoer										
Company	y:		Casio Comp	outer Co.;	Ltd.											
roject #)ate:	÷.		7/31/2007													
est Eng	gineer:		Tom Chen													
onfigu	ation:		EUT With Et	hernet Cr	adle											
Iode:			8 PSK RX M	lode Mid	СН											
est Equ	upmer	ıt:														
Ц	arn 1	1000-	Dra a	molife	1 26	CH-	Pre am	nlifer	26.40CH	-		Ш.	orn > 19	CH-		Limit
	5111-1-	100112	110-0	unpine	1-20	0112	TTC-am	piner	20-4001	1				0112		
T60; S	/N: 223	8 @3m	▼ T145	Agilent	3008A0	05(•					-	RX RSS 210
- Hi Frequ	uency Ca	bles					-								_	
	2 foot	cable		3 foot d	able		121	foot c	able			HPE	D	eiect Eilte	Pea	<u>k Measurements</u>
	21000	oublo												ejectrinte	" RB	W=VBW=1MHz
			-			•	B-5m C	hambo	er 🗸				-		 Avera DDW 	nge Measurements
I							1		_	1	1				KDW-	-IMAZ; VEW-IUA
f	Dist	Read Pk	Read Avg	. AF	CL	Amp	D Corr	Fltr	Peak	A	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dB	uV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
.000	3.D	44.7	32.8	25.4	3.2	-36.2	0.0	0.0 0.0	37.2	2	53	74	54	-36.8	-28.7	v
.400	3.0	43.8	28./ 33.4	28.0	3.2	-35.1	0.0	0.0 0.0	36.3	2	59	74 74	54 54	-30.0	-20.8	т Н
400	3.0	41.4	35.3	28.6	5.1	-35.1	0.0	0.0	39.9	3	3.8	74	54	-34.1	-20.2	Н
					1		1			1						
		.L														
ev 4127		I														
ev. 4.12.7		J														
lev. 4.12.7	f	Measurem	ant Frequen	~~~		Amn	Dreamn (Join					Ang Tim	Aueroge	Field Strengt	th T insit
lev. 4.12.7	f	Measureme	ent Frequen Antenna	су		Amp D Corr	Preamp (Distance	Gain Corre	ct to 3 mete	ers			Avg Lim Pk Lim	Average I Peak Field	Field Streng d Strength I	th Limit .imit
Rev. 4.12.7	f Dist Read	Measureme Distance to Analyzer R	ent Frequen Antenna eading	су		Amp D Corr Avg	Preamp (Distance Average	Gain Corre Field S	ct to 3 mete Strength @	ers 3 m			Avg Lim Pk Lim Avg Mar	Average I Peak Fiel Margin vs	Field Streng d Strength I . Average I	th Limit .imit .imit
lev. 4.12.7	f Dist Read AF	Measureme Distance to Analyzer R Antenna Fa	ent Frequen Antenna eading actor	су		Amp D Corr Avg Peak	Preamp (Distance Average Calculate	Gain Corre Field S d Peal	ct to 3 mete Strength @ c Field Stre	ers 3 m ength			Avg Lim Pk Lim Avg Mar Pk Mar	Average I Peak Fiel Margin vs Margin vs	Field Streng d Strength I : Average I : Peak Limi	th Limit imit imit t
Rev. 4.12.7	f Dist Read	Measureme Distance to Analyzer R	ent Frequen Antenna eading	су		Amp D Corr Avg	Preamp (Distance Average	Gain Corre Field S	ct to 3 mete Strength @.	ers 3 m			Avg Lim Pk Lim Avg Mar	Average I Peak Fiel Margin vs	Field Streng d Strength I . Average I	th Limit .imit .imit

Page 76 of 136

7.3.5. WORST-CASE BELOW 1 GHz

CONFIG 1: EUT WITH DRY CELL BATTERY

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 77 of 136

HORIZ	CONTAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1 2 4 5 6 7 8 9	30.970 240.490 337.490 431.580 528.580 625.580 721.610 817.640 866.140	30.53 43.42 44.53 44.84 44.94 42.45 39.90 38.75 36.50	-5.76 -14.48 -11.33 -9.06 -6.80 -4.92 -3.20 -1.96 -1.37	24.77 28.94 33.20 35.78 38.14 37.53 36.70 36.79 35.13	40.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	-15.23 -17.06 -12.80 -10.22 -7.86 -8.47 -9.30 -9.21 -10.87	Peak Peak Peak Peak Peak Peak Peak Peak

Page 78 of 136

Page 79 of 136

VERT	ICAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4	30.000 431.580 528.580 720.640	30.71 37.58 39.63	-5.76 -9.06 -6.80	24.95 28.52 32.83 33.45	40.00 46.00 46.00 46.00	-15.05 -17.48 -13.17	Peak Peak Peak Peak
5	817.640	34.02	-1.96	32.06	46.00	-13.94	Peak

Page 80 of 136

CONFIG 2: EUT WITH USB CRADLE

HOST

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 81 of 136

HOR	IZONTAL DATA						
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	31.16	-5.76	25.40	40.00	-14.60	Peak
2	126.030	44.43	-12.99	31.44	43.50	-12.06	Peak
3	138.640	43.21	-13.21	29.99	43.50	-13.51	Peak
4	324.880	47.45	-11.61	35.84	46.00	-10.16	Peak
5	431.580	46.16	-9.06	37.10	46.00	-8.90	Peak
6	473.290	43.12	-7.96	35.16	46.00	-10.84	Peak
7	963.140	42.36	-0.71	41.65	54.00	-12.35	Peak
8	963.140	41.51	-0.71	40.80	54.00	-13.20	QP

Page 82 of 136

Page 83 of 136

VER	TICAL DATA						
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	43.87	-5.76	38.11	40.00	-1.89	Peak
2	30.000	39.08	-5.76	33.32	40.00	-6.68	QP
3	36.790	47.19	-10.16	37.03	40.00	-2.97	Peak
4	36.790	45.77	-10.16	35.61	40.00	-4.39	QP
5	48.430	52.93	-17.85	35.08	40.00	-4.92	QP
6	48.430	52.98	-17.85	35.13	40.00	-4.87	Peak
7	53.280	53.07	-19.19	33.88	40.00	-6.12	Peak
8	92.080	52.84	-18.97	33.87	43.50	-9.63	Peak
9	138.640	46.62	-13.21	33.40	43.50	-10.10	Peak

Page 84 of 136

CLIENT

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 85 of 136

HORIZ	ZONTAL DATA						
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	201.690	40.16	-13.60	26.56	43.50	-16.94	Peak
2	242.430	54.08	-14.43	39.65	46.00	-6.35	Peak
3	252.130	53.91	-14.11	39.80	46.00	-6.20	Peak
4	324.880	47.24	-11.61	35.63	46.00	-10.37	Peak
5	337.490	47.34	-11.33	36.01	46.00	-9.99	Peak
6	938.890	43.38	-0.87	42.51	46.00	-3.49	Peak
7	938.890	34.43	-0.87	33.56	46.00	-12.44	QP

Page 86 of 136

Page 87 of 136

VERT	TICAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	31.16	-5.76	25.40	40.00	-14.60	Peak
2	126.030	44.43	-12.99	31.44	43.50	-12.06	Peak
3	138.640	43.21	-13.21	29.99	43.50	-13.51	Peak
4	324.880	47.45	-11.61	35.84	46.00	-10.16	Peak
5	431.580	46.16	-9.06	37.10	46.00	-8.90	Peak
6	473.290	43.12	-7.96	35.16	46.00	-10.84	Peak
7	963.140	42.36	-0.71	41.65	54.00	-12.35	Peak
8	963.140	41.51	-0.71	40.80	54.00	-13.20	QP

Page 88 of 136

CONFIG 3: EUT WITH ETHERNET CRADLE

<u>HOST</u>

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 89 of 136

HORIZONTAL DATA						
Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 48.430 2 266.680 3 300.630 4 516.940 5 732.280 6 961.200	45.01 51.60 50.51 46.03 42.11 39.12	-17.85 -13.55 -12.26 -7.06 -2.99 -0.68	27.16 38.05 38.25 38.96 39.12 38.44	40.00 46.00 46.00 46.00 54.00	-12.84 -7.95 -7.75 -7.04 -6.88 -15.56	Peak Peak Peak Peak Peak

Page 90 of 136

Page 91 of 136

VERTICAI	L DATA	D 1			- · · ·		
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 4 2 4 3 27 4 28 5 28 6 30 7 37 8 37 9 47	48.430 48.430 76.380 88.990 00.630 13.240 13.240 75.230	55.60 53.74 53.09 50.47 52.65 52.16 53.26 55.27 47.93	-17.85 -17.85 -13.15 -12.63 -12.26 -11.91 -11.91 -7.90	37.75 35.89 39.94 37.84 40.02 39.90 41.35 43.36 40.03	40.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	-2.25 -4.11 -6.06 -8.16 -5.98 -6.10 -4.65 -2.64 -5.97	Peak QP Peak Peak QP Peak QP

Page 92 of 136

CLIENT

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 93 of 136

HORIZ	ONTAL DATA Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5 6 7	198.780 324.880 487.840 516.940 546.040 674.080 703.180	40.92 46.16 45.80 47.48 43.30 40.47 39.79	-13.63 -11.61 -7.60 -7.06 -6.44 -3.94 -3.40	27.29 34.55 38.20 40.41 36.86 36.53 36.39	43.50 46.00 46.00 46.00 46.00 46.00 46.00	-16.21 -11.45 -7.80 -5.59 -9.14 -9.47 -9.61	Peak Peak Peak Peak Peak Peak

Page 94 of 136

Page 95 of 136

VERTICAL DATA							
	_	Read	— .		Limit	Over	
	Fred	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	48.430	55.65	-17.85	37.80	40.00	-2.20	Peak
2	48.430	54.73 51 70	-17.85	36.88	40.00	-3.12	QP Deak
4	324.880	51.52	-11.61	39.91	46.00	-6.09	Peak
5	516.940	47.06	-7.06	39.99	46.00	-6.01	Peak
6	528.580	44.19	-6.80	37.39	46.00	-8.61	Peak
7	938.890	38.66	-0.87	37.79	46.00	-8.21	Peak

Page 96 of 136

CONFIG 4: EUT WITH CRADLE-TYPE BATTERY CHARGER

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 97 of 136

HORIZONTAL DATA Read Limit Over								
	Freq	Level	Factor	Level	Line	Limit	Remark	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	30.000	31.72	-5.76	25.96	40.00	-14.04	Peak	
2	124.090	39.85	-13.05	26.80	43.50	-16.70	Peak	
3	135.730	39.52	-13.17	26.35	43.50	-17.15	Peak	
4	240.490	43.88	-14.48	29.40	46.00	-16.60	Peak	
5	337.490	41.78	-11.33	30.45	46.00	-15.55	Peak	
6	529.550	37.14	-6.78	30.36	46.00	-15.64	Peak	
7	817.640	34.89	-1.96	32.93	46.00	-13.07	Peak	

Page 98 of 136

Page 99 of 136

VERTICAL DATA							
		Read		T	Limit	Over	Damasla
	Freq	TeAst	Factor	TeAst	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	34.43	-5.76	28.67	40.00	-11.33	Peak
2	124.090	40.59	-13.05	27.54	43.50	-15.96	Peak
3	135.730	40.05	-13.17	26.88	43.50	-16.62	Peak
4	337.490	45./3	-11.33	34.40	46.00	-11.60	Peak
5	431.580 520 500	45.27	-9.06	30.21 20.00	46.00	-9.79	Peak
0	526.560	40.70	-0.00	39.90	40.00	-0.02	rean

Page 100 of 136