

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: DT-X10M30URC2

FCC ID: BBQDT-X10M30URC2

REPORT NUMBER: 05I3440-1

ISSUE DATE: JUNE 16, 2005

Prepared for CASIO COMPUTER CO., LTD. 6-2, HON-MACHI L-CHOME, SHIBUYA-KU, TOKYO, JAPAN

Prepared by COMPLIANCE ENGINEERING SERVICES, INC. d.b.a. COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

LAB CODE:200065-0

Revision History

Rev.	Revisions	Revised By
А	Initial Issue	MH

Page 2 of 130

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	6
4.	1. MEASURING INSTRUMENT CALIBRATION	. 6
4.	2. MEASUREMENT UNCERTAINTY	. 6
5.	EQUIPMENT UNDER TEST	7
5.	1. DESCRIPTION OF EUT	. 7
5.	2. MAXIMUM OUTPUT POWER	. 7
5.	3. DESCRIPTION OF AVAILABLE ANTENNAS	. 7
5.	4. SOFTWARE AND FIRMWARE	. 7
5.	5. WORST-CASE CONFIGURATION AND MODE	. 8
5.	6. DESCRIPTION OF TEST SETUP	. 8
6.	TEST AND MEASUREMENT EQUIPMENT	10
7.	LIMITS AND RESULTS	11
7.	1. CHANNEL TESTS FOR THE WLAN MODULE	11
	7.1.1. 6 dB BANDWIDTH	
	 7.1.2. 99% BANDWIDTH 7.1.3. PEAK OUTPUT POWER 	
	7.1.4. MAXIMUM PERMISSIBLE EXPOSURE	
	7.1.5. AVERAGE POWER	
	7.1.6. PEAK POWER SPECTRAL DENSITY	
	7.1.7. CONDUCTED SPURIOUS EMISSIONS	32
7.	2. CHANNEL TESTS FOR THE BLUETOOTH MODULE	39
	7.2.1. 20 dB BANDWIDTH	
	7.2.2. HOPPING FREQUENCY SEPARATION	
	7.2.3. NUMBER OF HOPPING CHANNELS	
	7.2.4. AVERAGE TIME OF OCCUPANCY7.2.5. PEAK OUTPUT POWER	
	7.2.6. MAXIMUM PERMISSIBLE EXPOSURE	
	7.2.7. AVERAGE POWER	
	7.2.8. PEAK POWER SPECTRAL DENSITY	
	7.2.9. CONDUCTED SPURIOUS EMISSIONS	
7.	3. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE	74
7.	4. RADIATED EMISSIONS	
	7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	77

Page 3 of 130

8. SETU	JP PHOTOS	121
7.5. 1	POWERLINE CONDUCTED EMISSIONS	114
7.4.5.	WORST-CASE RADIATED EMISSIONS BELOW 1 GHz FOR BLUETOOTH	106
7.4.4.	WORST-CASE RADIATED EMISSIONS BELOW 1 GHz FOR WLAN	
7.4.3.	TRANSMITTER ABOVE 1 GHz FOR THE BLUETOOTH MODULE	
7.4.2.	TRANSMITTER ABOVE 1 GHz FOR THE WLAN MODULE	80

Page 4 of 130

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	CASIO COMPUTER CO., LTD. 6-2, HON-MACHI L-CHOME, SHIBUYA-KU, TOKYO, JAPAN			
EUT DESCRIPTION:	HANDHELD TERMINAL			
MODEL:	DT-X10M30URC2			
SERIAL NUMBER (TERMINAL):	79AAE 303200515BAAA1			
DATE TESTED:	MAY 31 - JUNE 12, 2005			
APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES Maukonquym

THANH NGUYEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 130

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 130

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is Handheld Terminal Device with two different models of cradles (DT-861 IO & DT-169 CHGE). The EUT with Cradle DT-861 IO have the worst condition and position for the preliminary tests. Therefore all the radiated emissions test data were performed on DT-X10M30URC2 with cradle DT-861 IO. AC conducted emissions were performed on EUT with both models of cradles.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

WLAN 2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power
(MHz)	(dBm)	(mW)
2412 - 2462	20.42	110.15

BLUETOOTH 2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power
(MHz)	(dBm)	(mW)
2402 - 2480	1.43	1.39

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes two different types of antennas for WLAN and BT, WLAN with a maximum gain of -0.23 dBi and BT with a maximum gain of -4.90 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software used during testing were WlanTestUtils_PPC2002 for WLAN and BTRadioTestV1 for BT.

The test utility software used during testing were TestSample.exe for WLAN and BTRadioTest.exe for BT.

Page 7 of 130

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz for WLAN and 2402 MHz for BT.

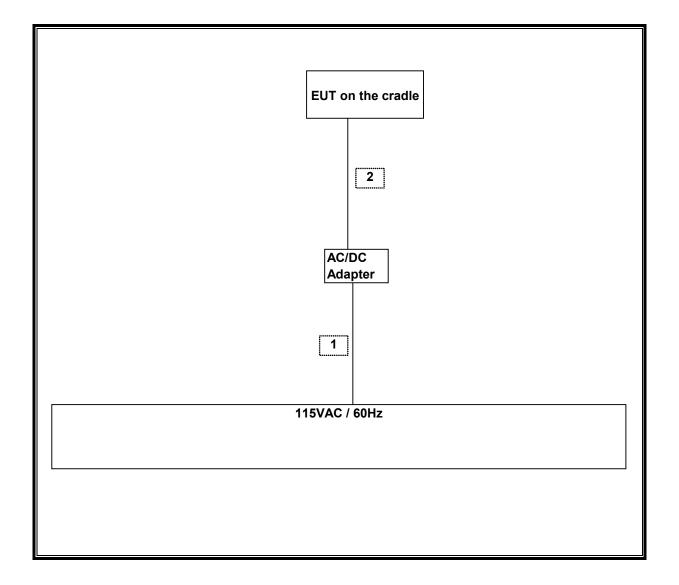
The worst-case data rate for this channel is determined to be 11 Mb/s for WLAN by investigation.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

EUT stand alone with Cradle only.

I/O CABLES


	I/O CABLE LIST						
Cab No.	e Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	1	US 115V	Un-shielded	2m	N/A	
2	DC	1	DC Plug	Un-shielded	1.5m	Ferrite Bead at EUT end	

TEST SETUP

EUT stand alone with Cradle only.

Page 8 of 130

SETUP DIAGRAM FOR TESTS

Page 9 of 130

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
EMI Test Receiver	R&S	ESHS 20	827129/006	10/22/2005		
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2005		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/21/2005		
Spectrum Analyzer	HP	E4446A	US42510266	8/25/2005		
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29310	9/12/2005		
Preamplifier, 1 ~ 26.5 GHz	HP	8449B	3008A00369	8/17/2005		
Peak Power Meter	Agilent	E4416A	GB41291160	2/9/2006		
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	3/29/2006		
RF Filter Section	HP	85420E	3705A00256	3/29/2006		
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	9/22/2005		
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A		
2.4 - 2.5 Reject Filter	Micro Tronics	BRM50702	3	N/A		
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924341	8/17/05		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	9/12/05		

Page 10 of 130

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE WLAN MODULE

7.1.1.6 dB BANDWIDTH

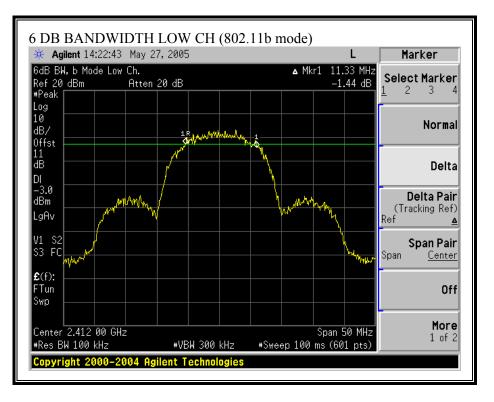
LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

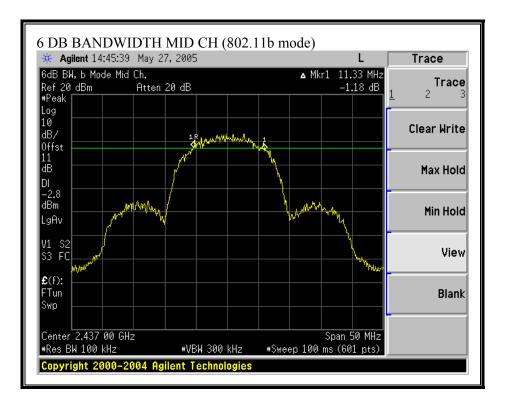
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS


No non-compliance noted:

802.11b Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	11333.333	500	10833
Middle	2437	11333.333	500	10833
High	2462	11333.333	500	10833

Page 11 of 130

6 DB BANDWIDTH (802.11b MODE)

Page 12 of 130

Page 13 of 130

Page 14 of 130

7.1.2. 99% BANDWIDTH

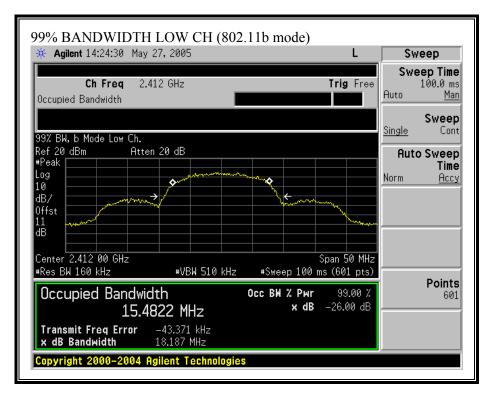
<u>LIMIT</u>

None; for reporting purposes only.

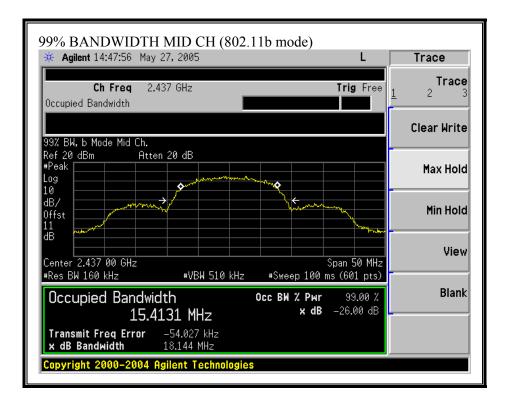
TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

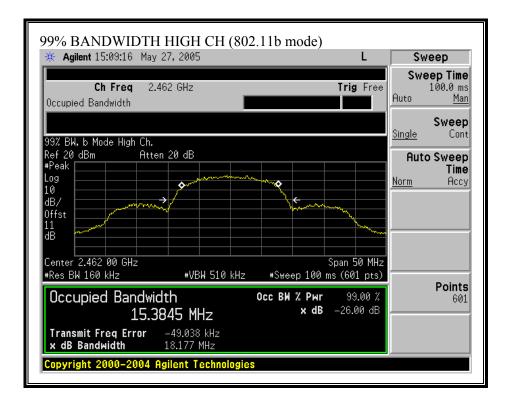
RESULTS


No non-compliance noted:

802.11b Mode					
Channel	Frequency	99% Bandwidth			
	(MHz)	(MHz)			
Low	2412	15.482			
Middle	2437	15.413			
High	2462	15.384			


802.11b Mode

Page 15 of 130


99% BANDWIDTH (802.11b MODE)

Page 16 of 130

Page 17 of 130

Page 18 of 130

7.1.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(4) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247 (b) (4) (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

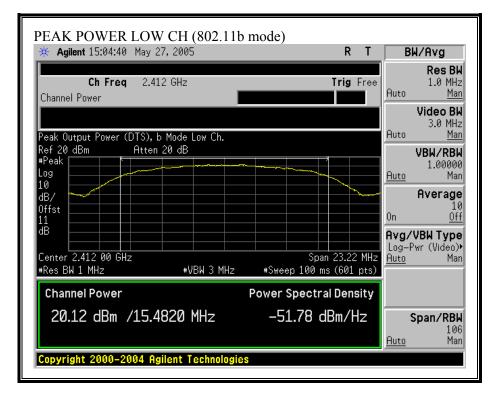
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

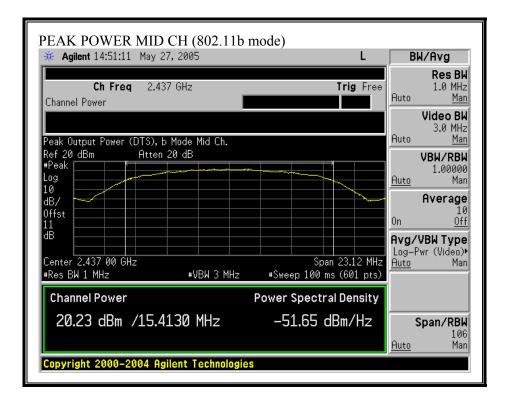
Page 19 of 130

RESULTS

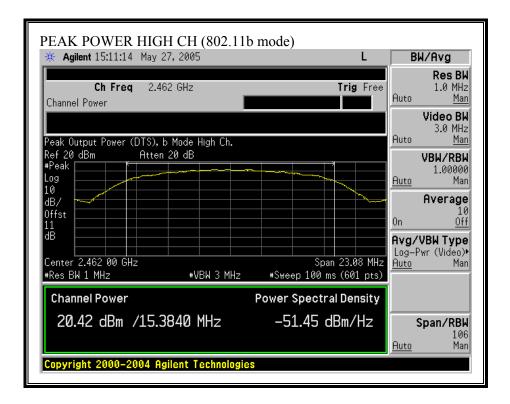
The maximum antenna gain is 0.63 dBi for other than fixed, point-to-point operations, therefore the limit is 30 dBm.


No non-compliance noted:

802.11b	Mode
---------	------


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	20.12	30	-9.88
Middle	2437	20.23	30	-9.77
High	2462	20.42	30	-9.58

Page 20 of 130


OUTPUT POWER (802.11b MODE)

Page 21 of 130

Page 22 of 130

Page 23 of 130

7.1.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is exposure also apply in situations when an individual is transient through a location where occupational/controlled is posed as a consequence of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 24 of 130

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

 $S = E^{2}/3770$

where

and

 $\Gamma = \Gamma_{1,2}^{2} + 1 + \Omega_{1,2}^{2} + \dots + 1 + \frac{1}{2} +$

E = Field Strength in Volts/meter P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 25 of 130

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	20.42	-0.23	2.88

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 26 of 130

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	14.14
Middle	2437	14.27
High	2462	14.20

Page 27 of 130

7.1.6. PEAK POWER SPECTRAL DENSITY

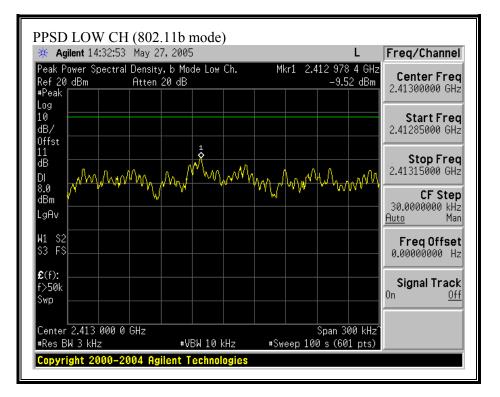
<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

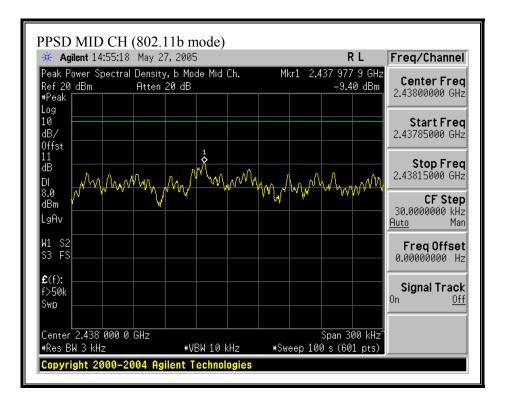
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

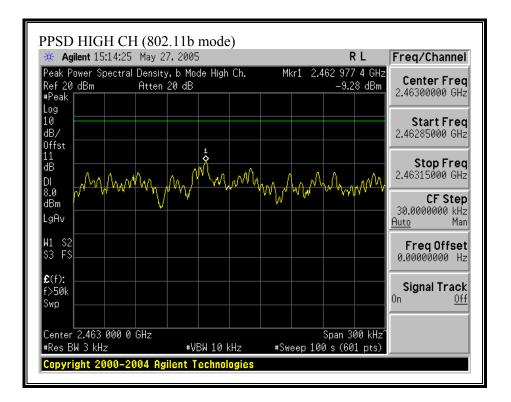
RESULTS


No non-compliance noted:

802.1	1b	Mode
-------	----	------


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-9.52	8	-17.52
Middle	2437	-9.40	8	-17.40
High	2462	-9.28	8	-17.28

Page 28 of 130


PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 29 of 130

Page 30 of 130

Page 31 of 130

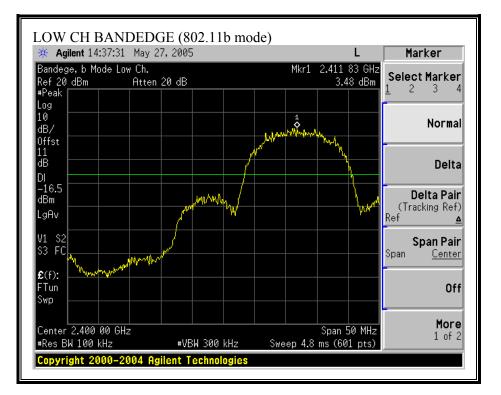
7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

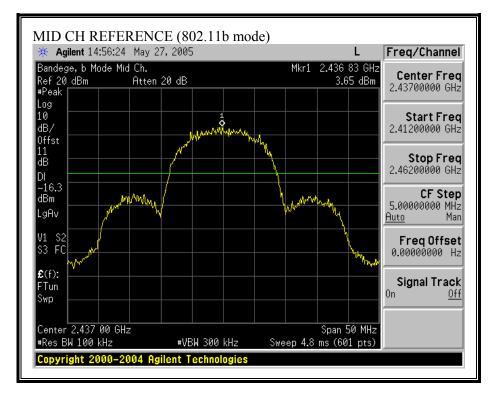

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

Page 32 of 130

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

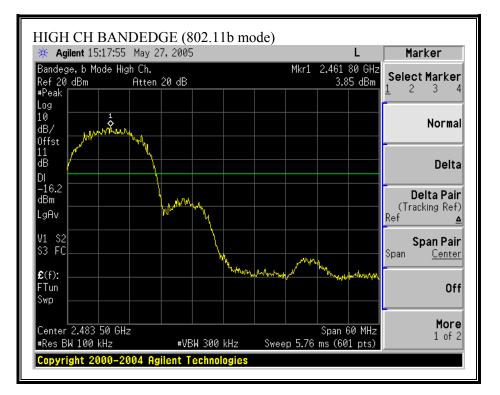


Page 33 of 130

LOW CH SPURIOU * Agilent 14:38:49 May 2		10 40)	L	Peak Search
Spurious, b Mode Low Ch. Ref 20 dBm Atten	20 dB		Mkr1 9.64 GHz -45.64 dBm	Next Peak
*Peak Marker Log 10 9.640000000 dB/ -45.64 dBm _	GHz			Next Pk Right
DI				Next Pk Left
dBm LgAv				Min Search
V1 S2 S3 FC		Manufilmany Makan daring Man	An work and the state	Pk-Pk Search
£(f): FTun Swp				Mkr → CF
Start 30 MHz #Res BW 100 kHz	#VBW 300 kH	s Iz Sweep 2.482	Gtop 26.00 GHz^ Stop 26.00 GHz^ State s (1001 pts)	More 1 of 2

Page 34 of 130

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)



Page 35 of 130

🔆 Agilent 14:57:31 May	/ 27, 2005		L	Peak Search
Spurious, b Mode Mid Ch. Ref 20 dBm Att	en 20 dB		Mkr1 9.74 GHz -46.57 dBm	Next Peak
*Peak Log 10 9.74000000 dB/ offst -46.57 dBm	Ø GHz			Next Pk Right
DI				Next Pk Left
-10.5 dBm LgAv				Min Search
V1 S2 S3 FC		ىر. بەنزرا ^{م ر} ەندەر ي ^{انو} دىزامىر	and a state of the	Pk-Pk Search
£(f):				Mkr → CF
Start 30 MHz #Res BW 100 kHz	#VBW 300	kHz Sweep 2	Stop 26.00 GHz^ .482 s (1001 pts)	More 1 of 2

Page 36 of 130

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

Page 37 of 130

🔆 Agilent 15:18:54 Ma	ay 27, 2005		L	Peak Search
Spurious, b Mode High C Ref 20 dBm At			Mkr1 9.85 GHz -48.97 dBm	
*Peak Marker Log 10 9.85000001 dB/ 0ffst -48.97 dBr				Next Pk Right
11 dB DI -16.2				Next Pk Left
-10.2 dBm LgAv				Min Search
V1 S2 S3 FC		Why with an and the second and	a land and a star	Pk-Pk Search
£(f): FTun Swp	~~~~~			Mkr → CF
Start 30 MHz #Res BW 100 kHz	#VBW 30	0 kHz Sweep	Stop 26.00 GHz 2.482 s (1001 pts)	More 1 of 2

Page 38 of 130

7.2. CHANNEL TESTS FOR THE BLUETOOTH MODULE

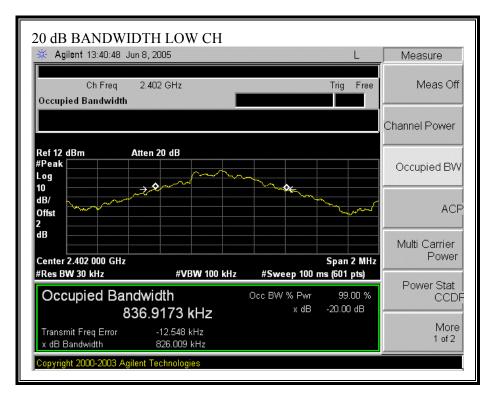
7.2.1. 20 dB BANDWIDTH

<u>LIMIT</u>

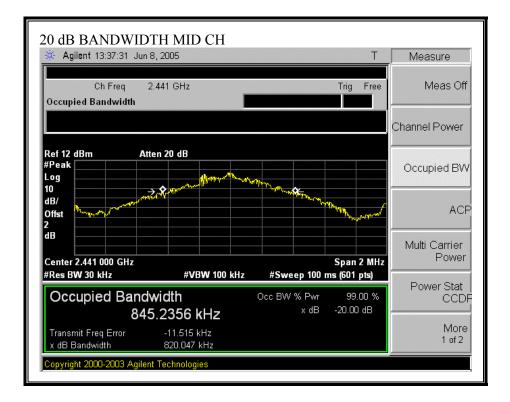
None; for reporting purposes only.

TEST PROCEDURE

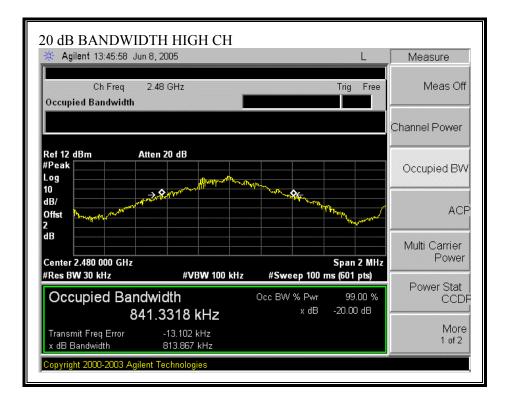
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	826.01
Middle	2441	845.24
High	2480	841.33

Page 39 of 130


20 dB BANDWIDTH

Page 40 of 130

Page 41 of 130

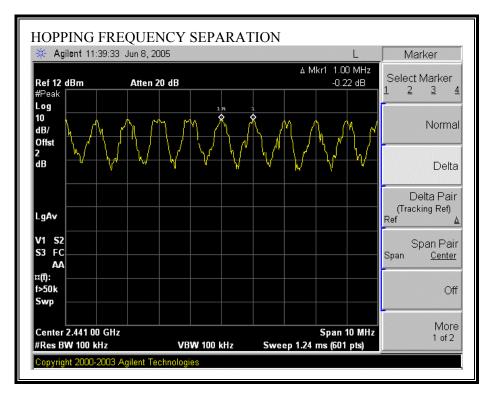
Page 42 of 130

7.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

Page 43 of 130

HOPPING FREQUENCY SEPARATION

Page 44 of 130

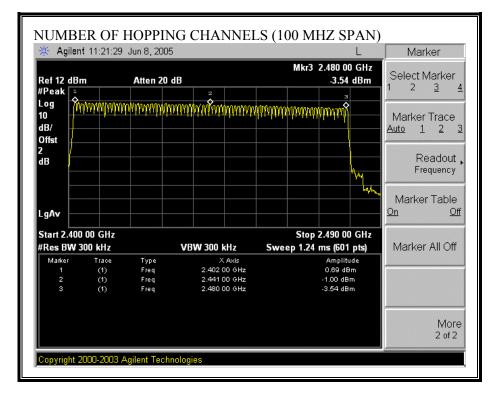
7.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

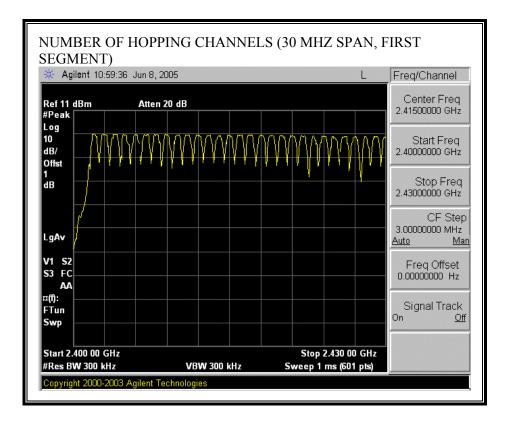
15.247 (a) (1) (iii) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

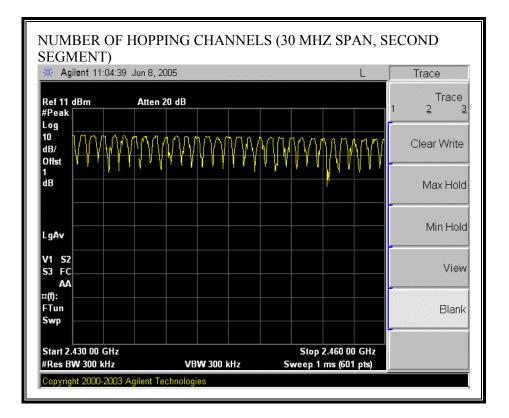
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.

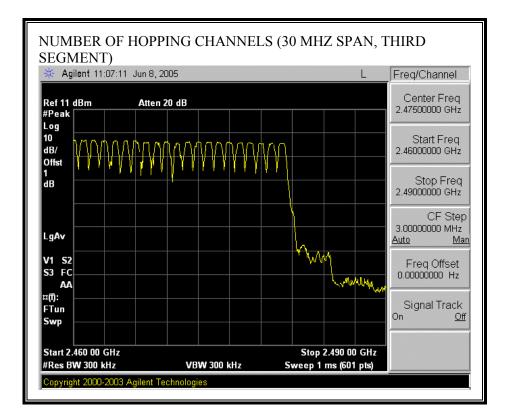

RESULTS

No non-compliance noted:


79 Channels observed.

Page 45 of 130


NUMBER OF HOPPING CHANNELS


Page 46 of 130

Page 47 of 130

Page 48 of 130

Page 49 of 130

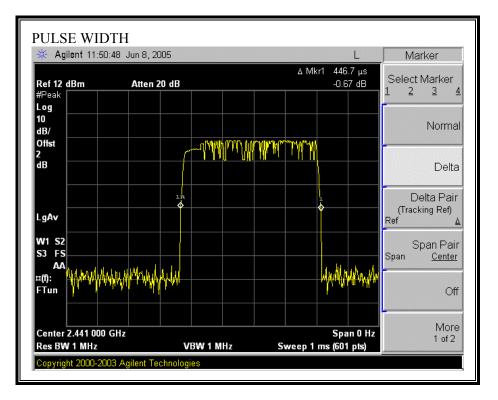
7.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 nonoverlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

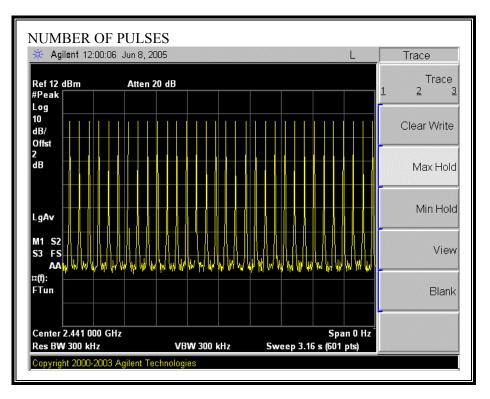
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

No non-compliance noted:


Page 50 of 130

PULSE WIDTH

Page 51 of 130

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 52 of 130

7.2.5. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

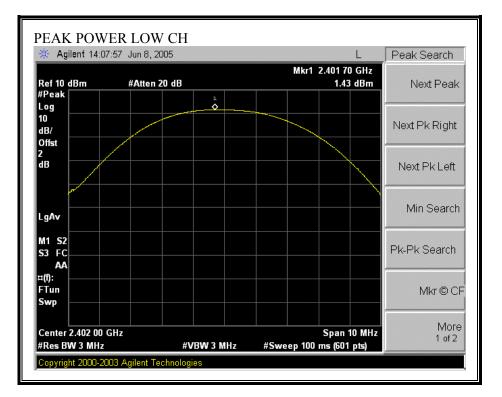
§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

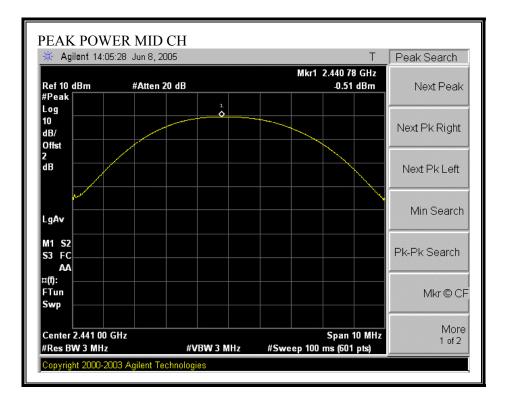
The maximum antenna gain is -4.9 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

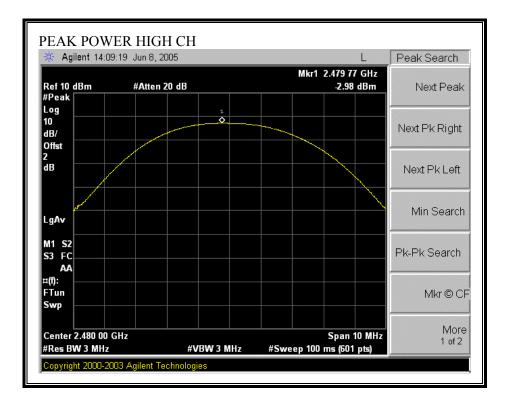
The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:


Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	1.43	30	-28.57
Middle	2441	-0.51	30	-30.51
High	2480	-2.98	30	-32.98

Page 53 of 130


OUTPUT POWER

Page 54 of 130

Page 55 of 130

Page 56 of 130

7.2.6. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is exposure also apply in situations when an individual is transient through a location where occupational/controlled is posed as a consequence of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 57 of 130

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 58 of 130

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
Bluetooth	1.0	1.43	-4.90	0.19

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 59 of 130

7.2.7. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss 1dB was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-4.68
Middle	2441	-6.21
High	2480	-8.80

Page 60 of 130

7.2.8. PEAK POWER SPECTRAL DENSITY

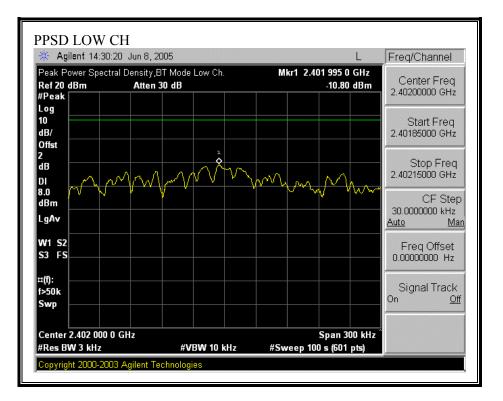
<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

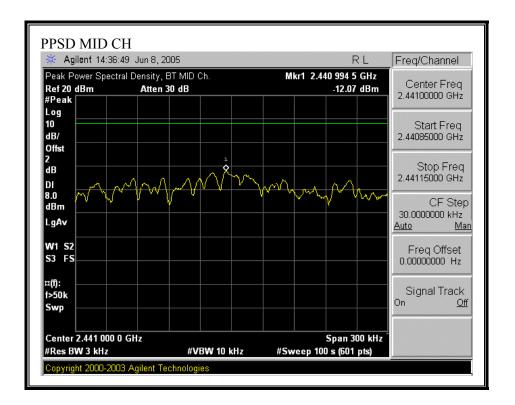
\$15.247 (f) The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

TEST PROCEDURE

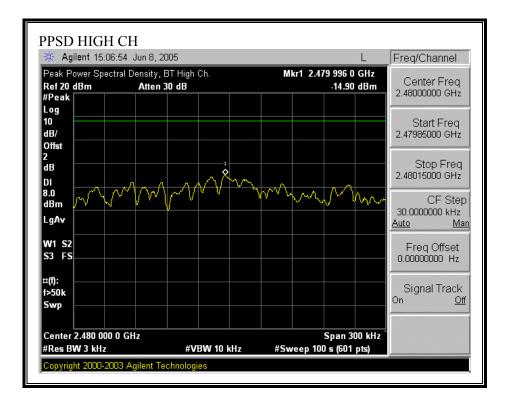
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.


RESULTS

No non-compliance noted:


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-10.80	8	-18.80
Middle	2441	-12.07	8	-20.07
High	2480	-14.90	8	-22.90

Page 61 of 130


PEAK POWER SPECTRAL DENSITY

Page 62 of 130

Page 63 of 130

Page 64 of 130

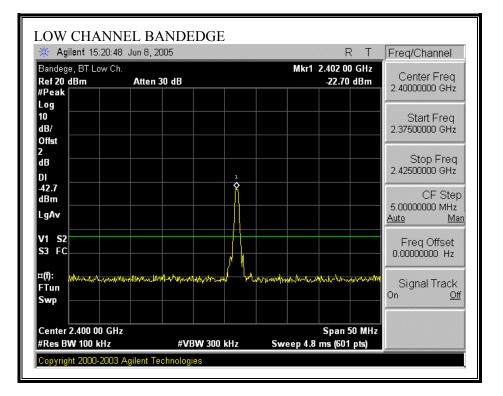
7.2.9. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

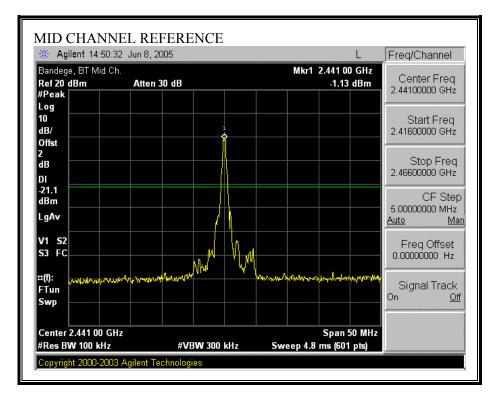

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

Page 65 of 130

SPURIOUS EMISSIONS, LOW CHANNEL

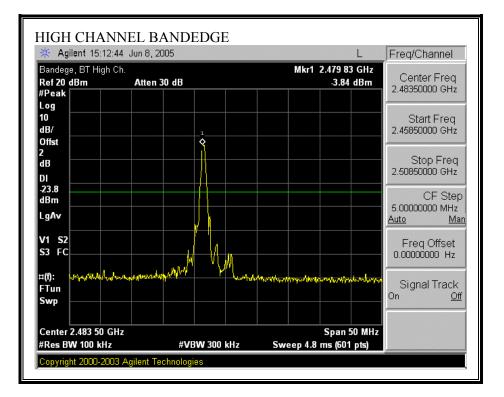


Page 66 of 130

🔆 Agiler	nf 15:22:11	Jun 8, 2005			L	Marker
Spurious, I Ref 20 dB #Peak	BT Low Ch. m	Atten 30 dB			6.99 GHz 3.00 dBm	Select Marker 1 2 3
Log 10 10 dB/ 0ffst 2						Marker Trace Auto 1 2
dB DI 42.7			ر الدر الدر الدر الدر الدر الدر الدر الد		, he down the second second second	Readout Frequency
dBm						Marker Table <u>On Of</u>
Start 30 M #Res BW		#1	/BW 300 kHz	Stop Sweep 2.482 s (1	26.00 GHz 001 pts)	Marker All Off
Marker 1	Trace (1)	Type Freq	X Axis 6.99 GHz	A	mplitude 00 dBm	
						More 2 of 2

Page 67 of 130

SPURIOUS EMISSIONS, MID CHANNEL

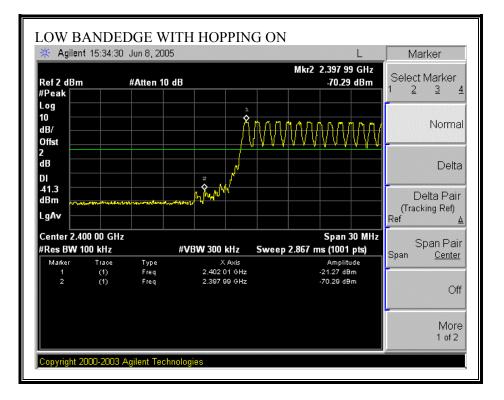


Page 68 of 130

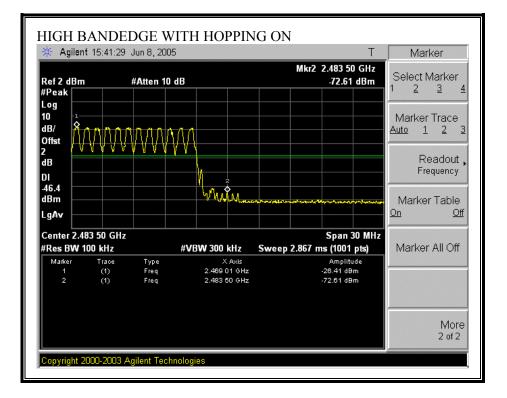
🔆 Agilent 14:52:	43 Jun 8, 2005	L	Marker
Spurious, BT Mid C Ref 20 dBm		Mkr1 7.02 GHz -53.33 dBm	Select Marker
#Peak Log			
10 dB/			Norma
Offst 2 dB DI			Delta
-21.1 dBm LgAv			Delta Pair (Tracking Ref)
V1 S2	<u>1</u>		Ref _∆ Span Pair Span Center
¤(f): المراجع ا FTun Swp	man har and the second	nin antropical philosoft and a standard and a stand	Off
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 26.00 GHz Sweep 2.482 s (1001 pts)	More 1 of 2

Page 69 of 130

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 70 of 130


🔆 Agilent 15:1	6:19 Jun 8, 2005			L	Marker
Spurious, BT Hig Ref 20 dBm #Peak	h Ch. Atten 30 d	IB	Mkr3 25.25 -52.29		Select Marker 1 2 <u>3 4</u>
Log 10 dB/ Offst					Marker Trace <u>Auto 1 2 3</u>
2 dB DI					Readout , Frequency
23.5 dBm		to the stand and the second	للمريحة المحمد والأحرى والمريح والمستقيمة الجمعونية المحمد والمحروب المحمد والمحمد والمحمد والمحمد والمحمد وال	n an	Marker Table
LgAv					<u>On Off</u>
Start 30 MHz		(1) (D) (1) 200 1 1 1	Stop 26.00		Marker All Off
#Res BW 100 kl		#VBW 300 kHz X Axis	Sweep 2.482 s (1001 p Amplitud		Marker All Oll
1 (1) Freq	840 MHz	-55.53 dBn	י ו	
2 (1) Freq	3.22 GHz	-57.12 dBn	1	
					More 2 of 2

Page 71 of 130

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 72 of 130

Page 73 of 130

7.3. **CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE**

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	strength (mW/cm2)			
(A) Lim	its for Occupational	I/Controlled Exposu	res			
0.3–3.0	614	1.63	*(100)	6		
3.0–30	1842/f	4.89/f	*(900/f ²)	6		
30-300	61.4	0.163	1.0	6		
300-1500			f/300	6		
1500–100,000			5	6		
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure			
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30		

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 74 of 130

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2} / 3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) = 100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product of each transmitter.

yields

 $d = 0.282 * \sqrt{((P1 * G1) + (P2 * G2) + ... + (Pn * Pn)) / S)}$ Equation (1) where d = distance in cmPx = Power of transmitter x in mWGx = Numeric gain of antenna x $S = \text{Power Density in mW/cm^2}$

Page 75 of 130

In the table below, Power and Gain are entered in units of dBm and dBi respectively, then these are converted to their linear forms prior to the summation function.

The conversions from the logarithmic form of power and gain are made using:

$P(mW) = 10 ^ (P(dBm) / 10)$ and	Equation (2)
G (numeric) = $10 \wedge (G (dBi) / 10)$	Equation (3)

Equations (1), (2) and (3) and the measured peak powers are used to calculate the MPE distance.

<u>LIMITS</u>

From \$1.1310 Table 1 (B), S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11		20.42	-0.23	
Bluetooth		1.43	-4.90	
Combined	1.0			2.89

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 76 of 130

7.4. RADIATED EMISSIONS

7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	*4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

*4.5 – 5.25 for LP0002 Standard.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 77 of 130

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 78 of 130

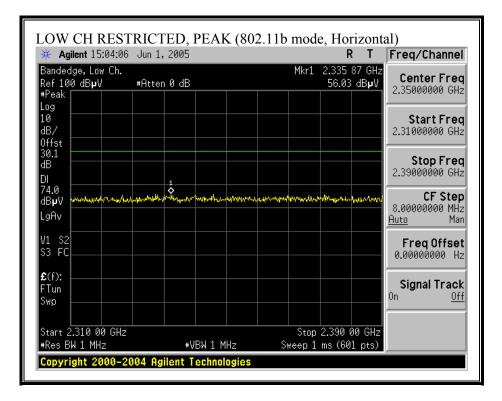
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

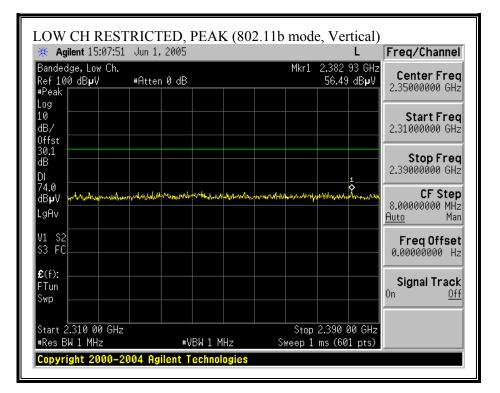

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 79 of 130

7.4.2. TRANSMITTER ABOVE 1 GHz FOR THE WLAN MODULE

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

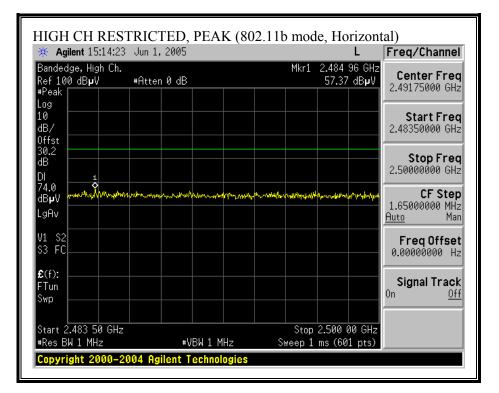


Page 80 of 130

🔆 Agilent 15:05:0	7 Jun 1, 2005			L	Freq/Channel
Bandedge, Low Ch. Ref 100 dB µ V #Peak			Mkr1	2.335 20 GHz 44.85 dB µ V	Contor From
Log 10 dB/ 0ffst					Start Freq 2.31000000 GHz
30.1 dB DI					Stop Freq 2.39000000 GHz
54.0 dB µ V LgAv					CF Step 8.00000000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.310 00 GH #Res BW 1 MHz		W 10 Hz		2.390 00 GHz 3 s (601 pts)	

Page 81 of 130

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)

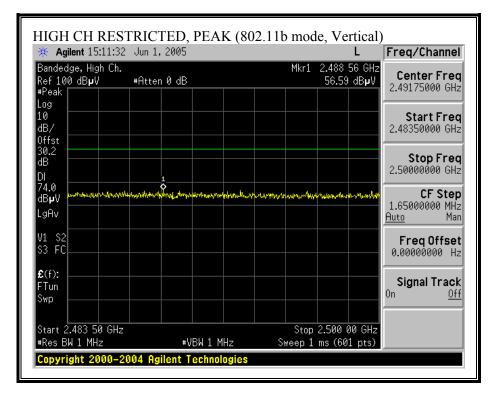


Page 82 of 130

🔆 Agilent 15:08:4	49 Jun 1, 2005			L	Freq/Channel
Bandedge, Low Ch Ref 100 dB µ V #Peak			Mkr1	2.344 00 GHz 45.50 dBµV	Center Freq 2.35000000 GHz
+reak Log 10 dB/ 0ffst					Start Freq 2.31000000 GHz
30.1 dB DI					Stop Freq 2.39000000 GHz
54.0 dBµV LgAv		1 X			CF Step 8.00000000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Start 2.310 00 GH #Res BW 1 MHz		/BW 10 Hz		2.390 00 GHź 8 s (601 pts)	

Page 83 of 130

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



Page 84 of 130

🔆 Agilent 15:15:02	. Jun 1, 2005			L	Freq/Channel
Bandedge, High Ch. Ref 100 dBµV #Peak	#Atten 0 dB		Mkr1	2.483 53 GHz 44.44 dBµV	Center Freq 2.49175000 GHz
Log 10 dB/ 0ffst					Start Freq 2.48350000 GHz
30.2 dB DI					Stop Freq 2.50000000 GHz
54.0 dBµV LgAv &					CF Step 1.6500000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.483 50 GHz #Res BW 1 MHz		∟ /BW 10 Hz		2.500 00 GHz 7 s (601 pts)	

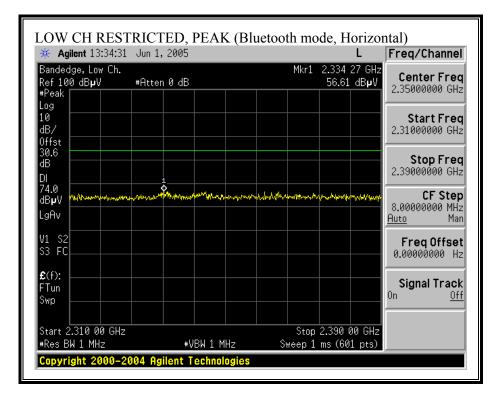
Page 85 of 130

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 86 of 130

🔆 Agilent 15:12:1			L	Freq/Channel
Bandedge, High Ch Ref 100 dB µ V #Peak		Mkr1	2.483 88 GHz 44.45 dBµV	Center Freq 2.49175000 GHz
Log 10 dB/ 0ffst				Start Freq 2.48350000 GHz
30.2 dB DI				Stop Freq 2.50000000 GHz
54.0 dBµV LgAv ♀				CF Step 1.65000000 MHz <u>Auto</u> Man
V1 S2 S3 FC				Freq Offset 0.00000000 Hz
£(f): FTun Swp				Signal Track On <u>Off</u>
Start 2.483 50 GH: #Res BW 1 MHz	3W 10 Hz		2.500 00 GHź 7 s (601 pts)	

Page 87 of 130

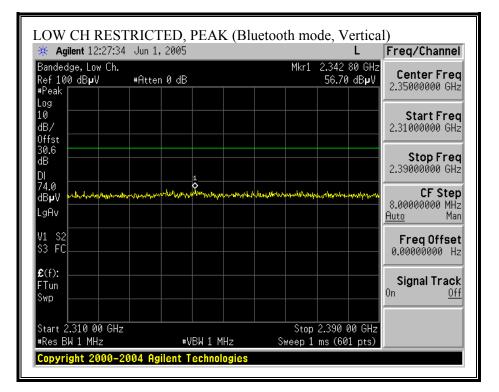

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

			cy Measure n Services,		n Hill	Open l	Field Site	1							
		iam Zhua	ng												
-	#:05134														
-		-	ter Co., Ltd	L											
	-	andheld	ferminal												
EUT MA															
	•	C 15.247													
Mode C	per:Tx	On, WLA	N												
	f	Мезяточ	nent Freque:	neuz		Amp	Preamp(Fain				Aug Lim	≜ 17973-79	Field Strengt	h Limit
	Dist		to Antenna	-			Distance		et to 3 me	ters				ld Strength L	
	Read	Analyzer				Avg			trength @					rs. Average L	
	AF	Antenna	-			Peak			k Field Str					rs. Peak Limi	
	CL	Cable Lo				HPF	High Pas								-
							··••								
f	Dist	Read Pl	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/n	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Low Ch	. 2412M	Hz													
4.824	3.0	51.9	49.5	33.6	3.2	-33.6	0.0	0.6	55.8	53.4	74.0	54.0	-18.2	- 0.6	V
4.824	3.0	50.6	49.0	33.6	3.2	-33.6	0.0	0.6	54.5	52.9	74.0	54.0	- 19.5	-1.1	Η
7.236	3.0	42.5	31.0	36.1	3.9	-33.3	0.0	0.6	49.8	38.4	74.0	54.0	-24.2	- 15.6	H
7.236	3.0	44.6	34.6	36.1	3.9	-33.3	0.0	0.6	52.0	41.9	74.0	54.0	-22.0	-12.1	V
9.648	3.0	45.0	41.2	38.1	4.5	-33.9	0.0	0.8	54.5	50.6	74.0	54.0	-19.5	-3.4	V
9.648	3.0	46.3	43.0	38.1	4.5	-33.9	0.0	0.8	55.7	52.5	74.0	54.0	- 18.3	- 1.6	H
	. 2437M		40.7			33.5				FA F	740	540	10.5	1.5	v
4.874 4.874	3.0 3.0	51.5 51.2	48.5 46.2	33.7 33.7	3.2 3.2	-33.5 -33.5	0.0 0.0	0.6 0.6	55.5 55.2	52.5 50.2	74.0 74.0	54.0 54.0	-18.5 -18.8	-1.5 -3.8	<u>v</u> H
4.874 7.311	3.0	43.7	40.2	36.2	3.9	-33.5	0.0	0.6	51.2	40.4	74.0	54.0 54.0	-10.0	-3.6 -13.6	H
7.311	3.0	45.1	35.2	36.2	3.9	-33.3	0.0	0.6	52.5	40.4	74.0	54.0	-21.5	-11.3	v
9.748	3.0	45.4	41.2	38.1	4.5	-34.0	0.0	0.8	54.9	50.7	74.0	54.0	-19.1	-3.3	v
9.748	3.0	46.4	42.8	38.1	4.5	-34.0	0.0	0.8	55.9	52.3	74.0	54.0	-18.1	-1.7	H
	h. 24621	WHz			1	•••••• • •••									
4.924	3.0	50.2	48.2	33.7	3.3	-33.5	0.0	0.6	54.3	52.3	74.0	54.0	- 19.7	-1.7	v
	3.0	52.5	48.4	33.7	3.3	-33.5	0.0	0.6	56.6	52.5	74.0	54.0	-17.4	-1.5	н
4.924	3.0	41.9	30.3	36.2	4.0	-33.3	0.0	0.6	49.4	37.8	74.0	54.0	-24.6	- 16.2	Н
		44.2	34.1	36.2	4.0	-33.3	0.0	0.6	51.8	41.7	74.0	54.0	-22.2	- 12.3	V
7.386 7.386	3.0														
4.924 7.386 7.386 9.848 9.848	3.0 3.0 3.0	47.2	43.0	38.2	4.5	-34.0	0.0	0.8 0.8	56.8 55.1	52.6 49.5	74.0	54.0	-17.2	- 1.4	V H

Page 88 of 130

7.4.3. TRANSMITTER ABOVE 1 GHz FOR THE BLUETOOTH MODULE

RESTRICTED BANDEDGE (BLUETOOTH MODE, LOW CHANNEL, HORIZONTAL)

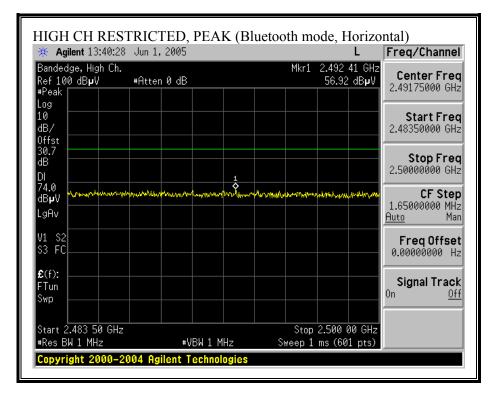


Page 89 of 130

🔆 Agilent 13:35:44	Jun 1, 2005			L	Freq/Channel
	#Atten 0 dB		Mkr1	2.344 00 GHz 46.19 dB µ V	
#Peak Log 10 dB/					Start Freq
ab/ Offst 30.6 dB					2.31000000 GHz
DI 54.0 dBµV					2.39000000 GHz
LgAv		1 •			8.00000000 MHz <u>Auto</u> Man
£(f):					Freq Offset 0.00000000 Hz
FTun Swp					Signal Track On <u>Off</u>
Start 2.310 00 GHz #Res BW 1 MHz		/BW 10 Hz		2.390 00 GHz 8 s (601 pts)	

Page 90 of 130

RESTRICTED BANDEDGE (BLUETOOTH MODE, LOW CHANNEL, VERTICAL)

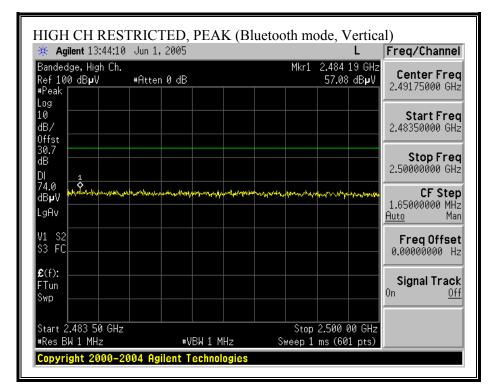


Page 91 of 130

🔆 Agilent 12:29:0	5 Jun 1, 2005			L	Freq/Channel
Bandedge, Low Ch. Ref 100 dBµV #Peak			Mkr1	2.344 00 GHz 44.96 dBµV	Center Freq 2.35000000 GHz
Log 10 dB/ 0ffst					Start Freq 2.31000000 GHz
30.6 dB DI 54.0					Stop Freq 2.39000000 GHz
dBµV		1 ¢			CF Step 8.00000000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.310 00 GH #Res BW 1 MHz		/BW 10 Hz		2.390 00 GHz^ 8 s (601 pts)	

Page 92 of 130

RESTRICTED BANDEDGE (BLUETOOTH MODE, HIGH CHANNEL, HORIZONTAL)



Page 93 of 130

🔆 Agilent 13:41:	36 Jun 1, 2005	5		L	Freq/Channel
Bandedge, High C Ref 100 dBµV #Peak		3	Mkr1	2.483 53 GHz 44.88 dBµV	Center Freq 2.49175000 GHz
Log 10 dB/ 0ffst					Start Freq 2.48350000 GHz
30.7 dB DI 54.0					Stop Freq 2.50000000 GHz
dBµV LgAv					CF Step 1.6500000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Start 2.483 50 GI #Res BW 1 MHz		 ≢VBW 10 Hz		2.500 00 GHz^ 7 s (601 pts)	

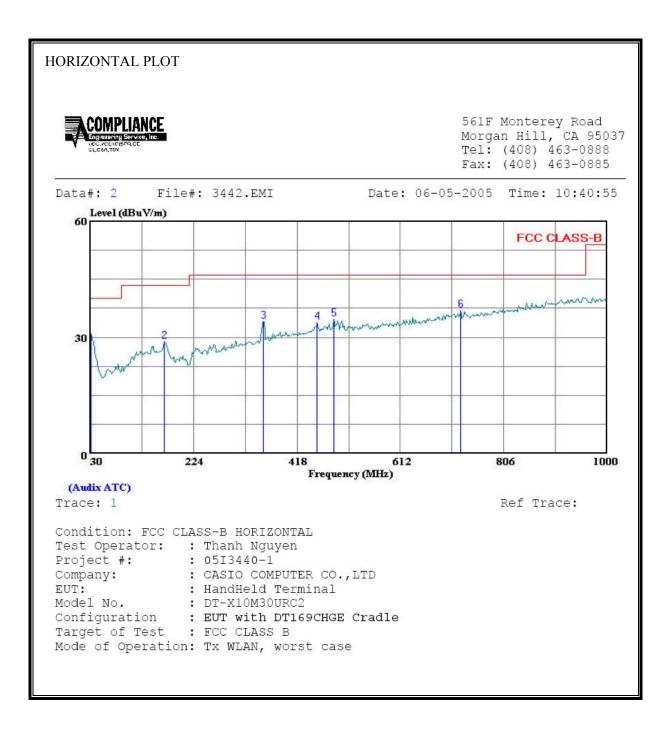
Page 94 of 130

RESTRICTED BANDEDGE (BLUETOOTH MODE, HIGH CHANNEL, VERTICAL)

Page 95 of 130

🔆 Agilent 13:44:54	Jun 1, 2005			L	Freq/Channel
Bandedge, High Ch. Ref 100 dB µ V #Peak	#Atten 0 dB		Mkr1	2.483 72 GHz 44.89 dBµV	Center Freq 2.49175000 GHz
Log 10 dB/ 0ffst					Start Freq 2.48350000 GHz
30.7 dB DI					Stop Freq 2.50000000 GHz
54.0 dBµV LgAv &					CF Step 1.6500000 MHz <u>Auto</u> Man
V1 S2 S3 FC					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.483 50 GHz #Res BW 1 MHz		 VBW 10 Hz		2.500 00 GHz^ 7 s (601 pts)	

Page 96 of 130

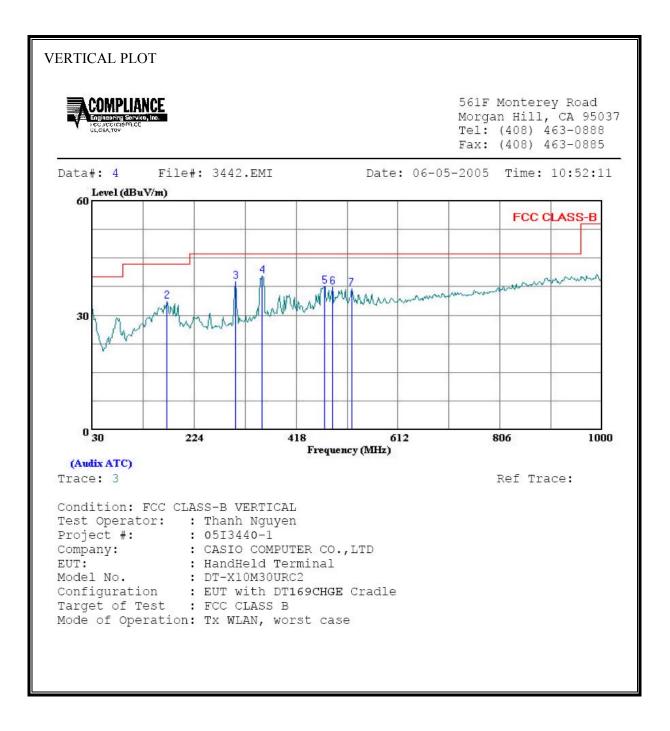

HARMONICS AND SPURIOUS EMISSIONS (BLUETOOTH MODE)

		-	cy Measure 1 Services,		n Hill	Open F	ield Site								
Fast Fas		am Zhuan	_												
	4:051344		45												
			er Co., Ltd												
EUT Des	crip.:Ha	indheld Te		-											
EUT MA															
Test Tar															
Mode O	per:Tx ()n, BLUE	гоотн												
	f	Measuren	nent Freque	ncy		Amp	Preamp (Avg Lim	Average	Field Streng	gth Limit
	Dist		to Antenna			D Corr	Distance							ld Strength	
	Read	Analyzer	-			Avg			trength @	/		÷	÷	rs. Average	
	AF	Antenna				Peak	Calculate			ength		Pk Mar	Margin v	rs. Peak Lir	nit
	CL	Cable Los	55			HPF	High Pas	s Filte:	r						
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/n	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Low Ch	2402M	Hz													
4.804	3.0	45.3	41.0	33.6	3.2	-33.6	0.0	0.6	49.1	44.9	74.0	54.0	-24.9	- 9.1	V
4.804	3.0	47.7	43.8	33.6	3.2	-33.6	0.0	0.6	51.6	47.6	74.0	54.0	-22.4	-6.4	H
7.206	3.0	40.0	29.0		3.9	-33.3	0.0	0.6	47.4	36.3	74.0	54.0	-26.6	-17.7	H
7.206	3.0	39.6 42.3	28.7 34.4	36.1 38.1	3.9 4.5	-33.3 -33.9	0.0 0.0	0.6 0.8	46.9 51.7	36.1 43.8	74.0 74.0	54.0 54.0	-27.1 -22.3	-17.9 -10.2	v
9.608	3.0	42.3 44.7	34.4 40.1	38.1	4.5	-33.9	0.0	U.8 0.8	54.1	43.8 49.5	74.0	54.0 54.0	-22.3	-10.2 -4.5	v Н
Low Ch	··· Å · · · · · · · · · · · · · · · · ·					-33.3		v. 0			1-150	~*NU	-13.3		11
4.882	3.0	40.3	28.4	33.7	3.2	-33.5	0.0	0.6	44.3	32.4	74.0	54.0	-29.7	-21.6	v
4.882	3.0	40.6	28.5	33.7	3.2	-33.5	0.0	0.6	44.6	32.5	74.0	54.0	-29.4	-21.5	H
7.323	3.0	40.5	28.7	36.2	3.9	-33.3	0.0	0.6	47.9	36.2	74.0	54.0	-26.1	- 17.8	Н
7.323	3.0	40.7	28.7	36.2	3.9	-33.3	0.0	0.6	48.2	36.2	74.0	54.0	-25.8	- 17.8	V
9.764	3.0	42.3	32.0	38.1	4.5	-34.0	0.0	0.8	51.8	41.5	74.0	54.0	-22.2	-12.5	<u>v</u>
	3.0	41.7	34.9	38.1	4.5	-34.0	0.0	0.8	51.3	44.4	74.0	54.0	-22.7	-9.6	Н
9.764	2480MD 3.0		25.0			22.5			47.0	40.0	740	F 4 0	07.0	140	TT
Low Ch		42.9 43.0	35.9 36.3	33.7 33.7	3.3	-33.5 -33.5	0.0 0.0	0.6 0.6	47.0 47.1	40.0 40.4	74.0 74.0	54.0 54.0	-27.0 -26.9	-14.0 -13.6	V
Low Ch 4.960	··•.		o	35.7	3.3 4.0	-33.5	0.0	0.6 0.6	47.1	40.4 36.2	74.0	54.0 54.0	-20.9	-13.0 -17.8	H H
Low Ch 4.960 4.960	3.0						0.0					¢		•••••••	
Low Ch 4.960 4.960 7.440	3.0 3.0	41.1	28.7 28.6	þ		-33.3	0.0	0.6	48.5	36.7	: 74.0			-17.8	v
Low Ch 4.960 4.960	3.0		28.7 28.6 29.3	36.2 38.2	4.0 4.5	-33.3 -34.0	0.0 0.0	0.6 0.8	48.5 50.4	36.2 38.9	74.0 74.0	54.0 54.0	-25.5 -23.6	-17.8 -15.1	v

Page 97 of 130

7.4.4. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz FOR WLAN

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

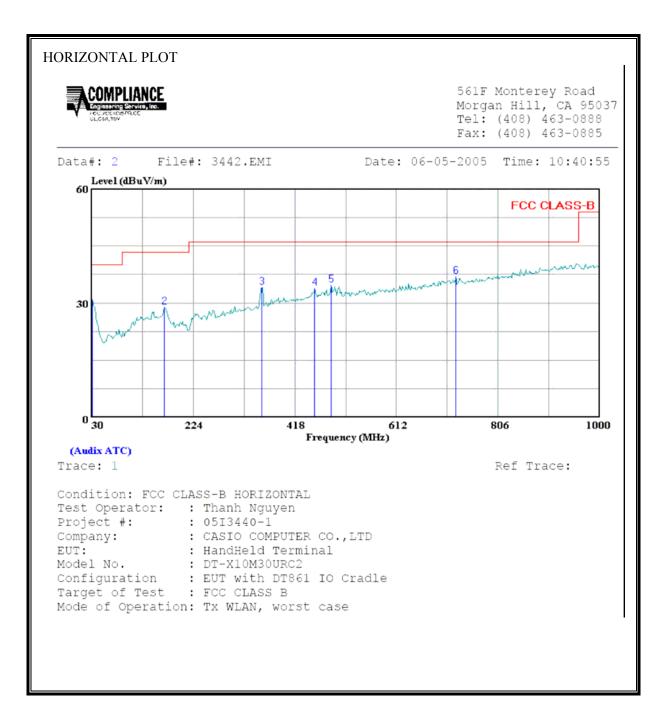


Page 98 of 130

HORIZO	ONTAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
-	MHZ	dBuV	dB	$\overline{d}BuV/m$	dBuV/m	dB	
1 2 3 4 5 6	169.680 354.950 455.830 487.840	15.42 16.96 14.54 14.62	13.40 17.00 19.33 20.00		43.50 46.00 46.00 46.00	-14.68 -12.03 -12.13 -11.38	Peak Peak Peak Peak

Page 99 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

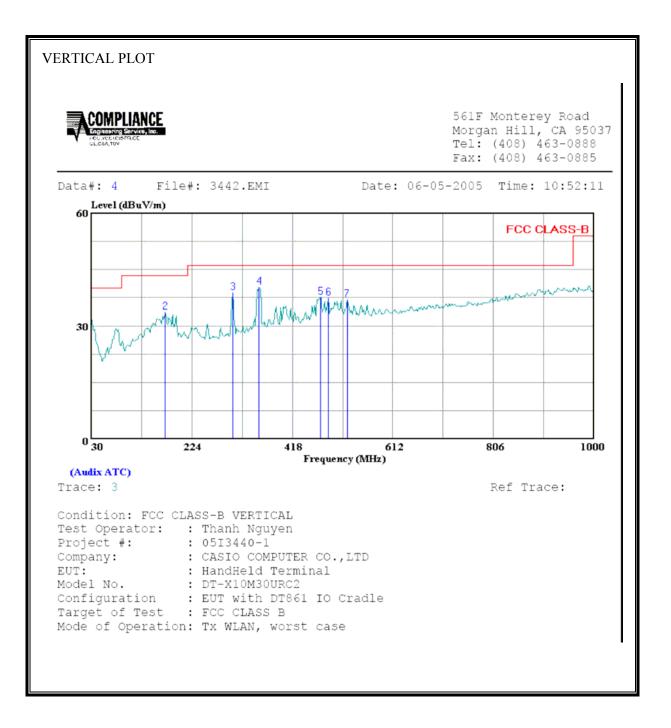


Page 100 of 130

VERTIC	CAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dB	$\overline{dBuV/m}$	$\overline{\text{dBuV/m}}$	dB	
1 2 3 4 5 6 7	303.540 353.980 472.320	23.06 23.42 17.84 17.41	20.45 13.31 15.75 16.97 19.69 20.00 20.62	33.56 38.81 40.39 37.54 37.41	43.50 46.00 46.00	-7.19 -5.61 -8.46 -8.59	Peak Peak Peak Peak Peak

Page 101 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

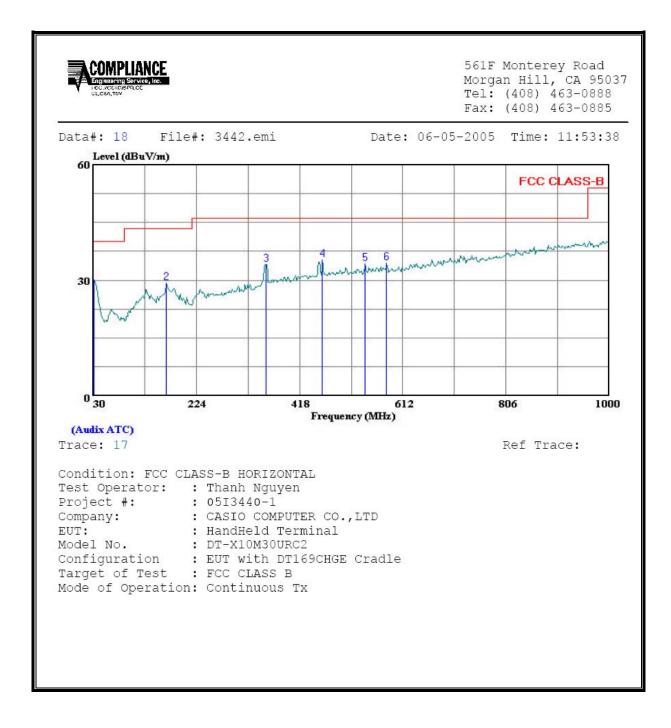


Page 102 of 130

HORIZ	ZONTAL DATA						
	Freq	Read Level	Factor	Level	Limit Line		Remark
	MHz	dBuV	dB	$\overline{d}BuV/m$	dBuV/m	dB	
1 2 4 5 6		15.42 16.96 14.54 14.62	17.00 19.33 20.00	28.82 33.97 33.87 34.62	43.50 46.00 46.00 46.00	-11.38	Peak Peak Peak Peak

Page 103 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

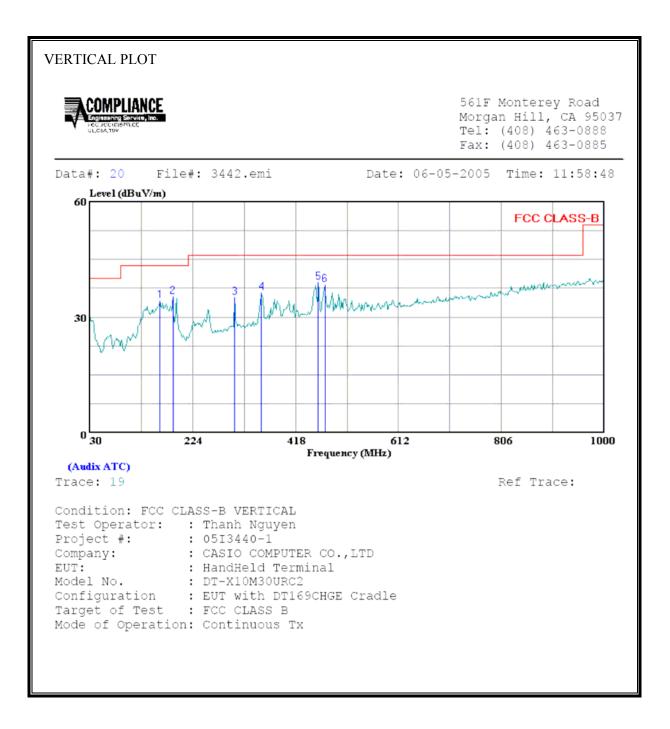

Page 104 of 130

VERTICA	AL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
_	MHz	dBuV	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1 2 3 4 5 6 7	172.590 303.540 353.980	20.25 23.06 23.42 17.84 17.41	15.75 16.97 19.69 20.00	33.56 38.81 40.39 37.54 37.41	43.50 46.00 46.00 46.00 46.00		Peak Peak Peak Peak Peak

Page 105 of 130

7.4.5. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz FOR BLUETOOTH

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

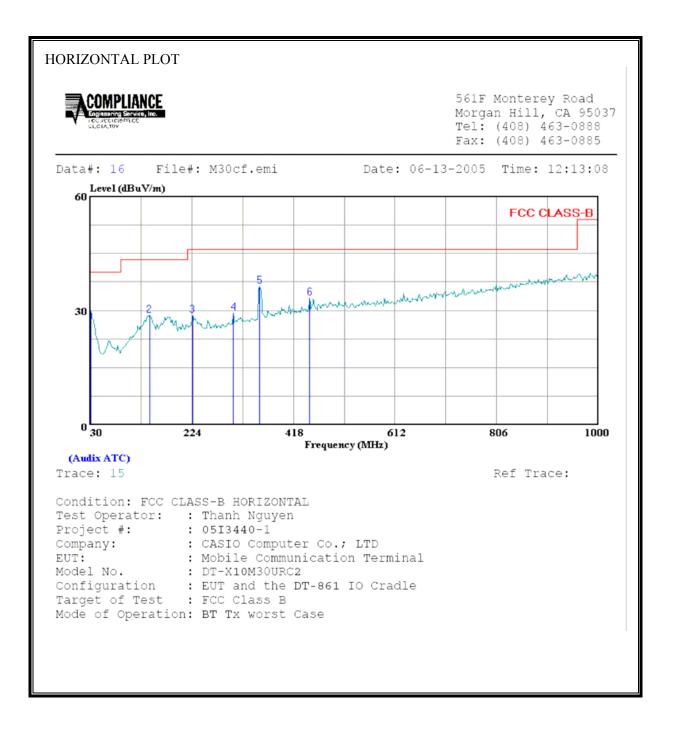


Page 106 of 130

HORIZO	ONTAL DATA	4						
		Read			Limit	Over	-	
	Freq	Level	Factor	Level	Line	Limit	Remark	
	MHz	dBuV	dB	$\overline{dBuV/m}$	$\overline{\mathrm{dBuV}/\mathrm{m}}$	dB		
1	30.970	9.61	20.45	30.06	40.00	-9.94	Peak	
2	167.740	15.80	13.51	29.31	43.50	-14.19	Peak	
3	354.950	17.09	17.00	34.10	46.00	-11.90	Peak	
4	460.680	15.80	19.44	35.24	46.00	-10.76	Peak	
5	541.190	13.43	20.78	34.21	46.00	-11.79	Peak	
6	581.930	13.19	21.31	34.50	46.00	-11.50	Peak	

Page 107 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

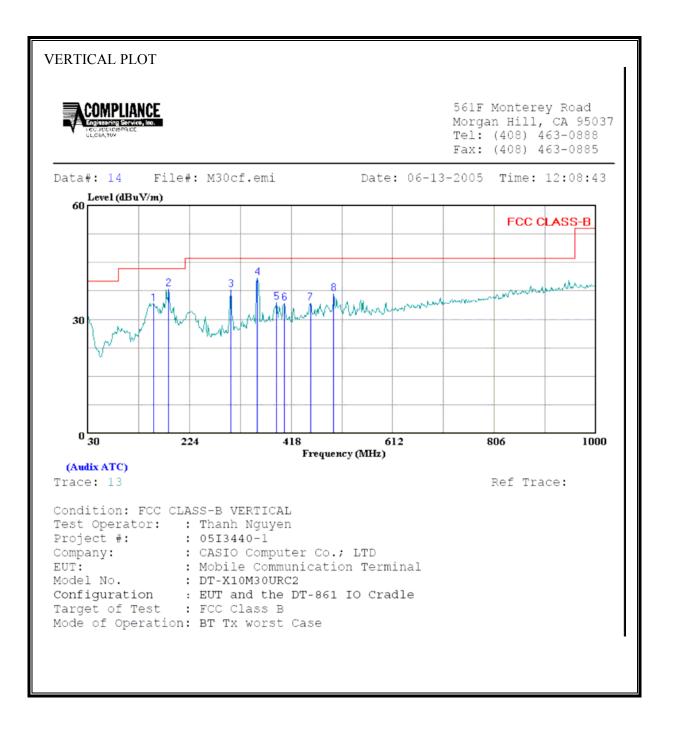


Page 108 of 130

VERT	TICAL DATA							
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	
	MHZ	dBuV	dB	$\overline{dBuV/m}$	$\overline{\text{dBuV}/\text{m}}$	dB		
1	162.890	20.52	13.68	34.20	43.50	-9.30	Peak	
2	187.140	22.34	12.87	35.21	43.50	-8.29	Peak	
3	303.540	19.31	15.75	35.06	46.00	-10.94	Peak	
4	353.980	19.33	16.97	36.30	46.00	-9.70	Peak	
5	460.680	19.50	19.44	38.94	46.00	-7.06	Peak	
6	473.290	18.63	19.71	38.34	46.00	-7.66	Peak	
6	473.290	18.63	19./1	38.34	46.00	-/.66	Реак	

Page 109 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 110 of 130

HORIZONTAL DATA									
	Freq		Read Level Factor		Limit Line	Over Limit	Remark		
-	MHz	dBuV	dB	$\overline{d} \overline{BuV/m}$	$\overline{\text{dBuV/m}}$	dB			
1 2 3 4 5 6	30.970 143.490 225.940 303.540 353.980 449.040	13.98 15.73 13.47 19.35	14.63 12.91 15.75 16.97	28.61 28.64 29.22 36.32	43.50 46.00 46.00 46.00	-14.90 -17.36 -16.78 -9.68	Peak Peak Peak Peak		

Page 111 of 130

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 112 of 130

VERTICAL DATA									
				Limit	Over				
	Freq Level Fac		Factor	ctor Level		Limit	Remark		
-	MHz	dBuV	dB	dBuV/m	dBuV/m	dB			
1	156.100	20 12	13.92	34.04	43 50	-9.46	Dook		
2	184.230				43.50				
3	303.540	21.98	15.75	37.73	46.00	-8.27	Peak		
4	353.980	23.89	16.97	40.86	46.00	-5.14	Peak		
5	390.840	16.59	17.83	34.42	46.00	-11.58	Peak		
6	405.390	16.01	18.18	34.19	46.00	-11.81	Peak		
7	454.860	14.90	19.30	34.20	46.00	-11.80	Peak		
8	499.480	16.62	20.22	36.84	46.00	-9.16	Peak		

Page 113 of 130

7.5. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 °	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

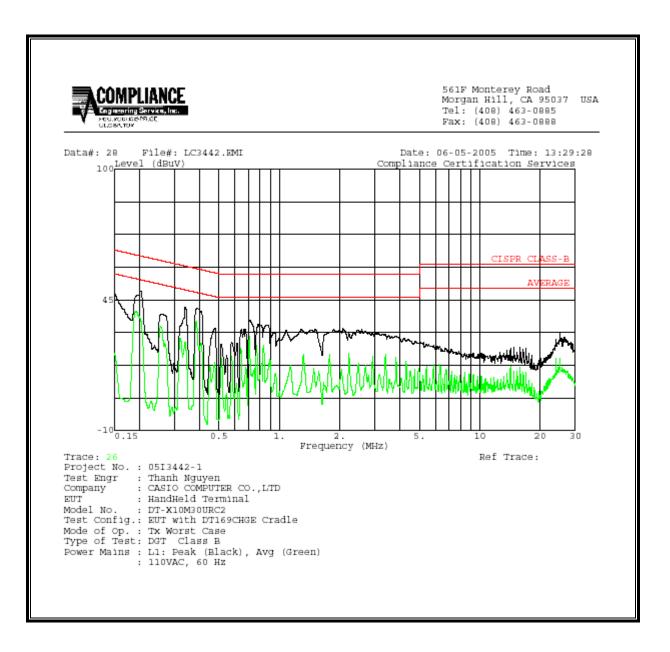
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

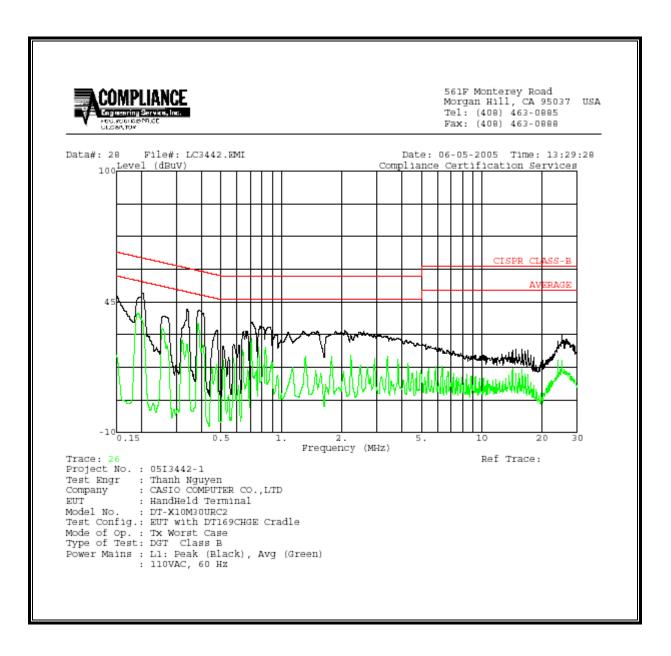
No non-compliance noted:

Page 114 of 130


12 WORST EMISSIONS

DT-169CHGE CRADLE

	CONDUCTED EMISSIONS DATA (110VAC 60Hz)									
Freq.	Reading			Closs	Limit	FCC_B	Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.20	48.64		40.28	0.00	63.49	53.49	-14.85	-13.21	L1	
0.39	41.27		36.02	0.00	58.00	48.00	-16.73	-11.98	L1	
0.71	36.04		30.22	0.00	56.00	46.00	-19.96	-15.78	L1	
1.29	32.58			0.00	56.00	46.00	-23.42	-13.42	L1	
2.08	32.94			0.00	56.00	46.00	-23.06	-13.06	L1	
25.05	31.02			0.00	60.00	50.00	-28.98	-18.98	L1	
0.15	48.54		24.63	0.00	66.00	56.00	-17.46	-31.37	L2	
0.39	42.22		36.75	0.00	58.13	48.13	-15.91	-11.38	L2	
0.71	35.94		29.15	0.00	56.00	46.00	-20.06	-16.85	L2	
1.29	34.74			0.00	56.00	46.00	-21.26	-11.26	L2	
2.08	33.38			0.00	56.00	46.00	-22.62	-12.62	L2	
26.00	30.02			0.00	60.00	50.00	-29.98	-19.98	L2	
12 Worst	Data									

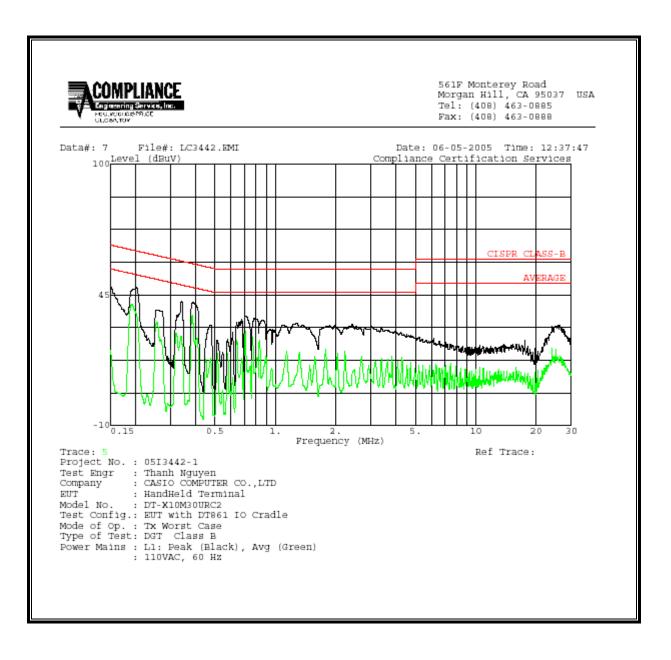

Page 115 of 130

LINE 1 RESULTS

Page 116 of 130

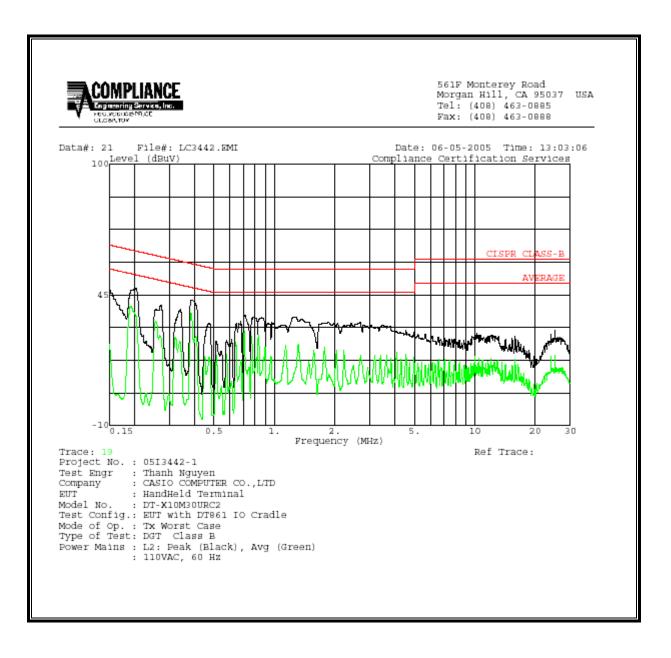
LINE 2 RESULTS

Page 117 of 130


12 WORST EMISSIONS

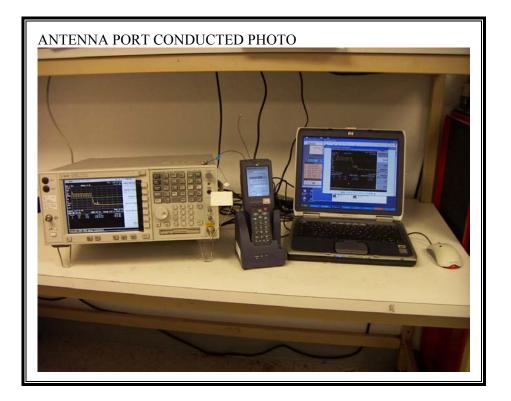
DT-861 IO CRADLE

	CONDUCTED EMISSIONS DATA (110VAC 60Hz)									
Freq.	Reading			Closs	Limit		Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.20	47.96		41.00	0.00	63.45	53.45	-15.49	-12.45	L1	
0.34	42.12		27.50	0.00	59.23	49.23	-17.11	-21.73	L1	
0.71	35.96		30.16	0.00	56.00	46.00	-20.04	-15.84	L1	
1.30	32.12			0.00	56.00	46.00	-23.88	-13.88	L1	
2.42	32.82			0.00	56.00	46.00	-23.18	-13.18	L1	
25.59	24.01			0.00	60.00	50.00	-35.99	-25.99	L1	
0.15	49.50		24.42	0.00	66.00	56.00	-16.50	-31.58	L2	
0.39	42.74		37.14	0.00	58.17	48.17	-15.43	-11.03	L2	
0.71	36.56		30.19	0.00	56.00	46.00	-19.44	-15.81	L2	
1.29	35.50			0.00	56.00	46.00	-20.50	-10.50	L2	
3.49	32.28			0.00	56.00	46.00	-23.72	-13.72	L2	
25.05	30.06			0.00	60.00	50.00	-29.94	-19.94	L2	
12 Worst	Data									

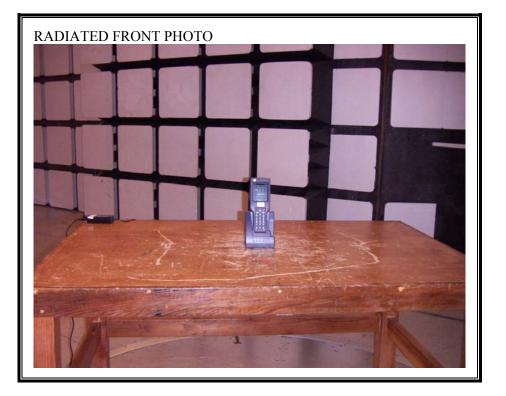

Page 118 of 130

LINE 1 RESULTS

Page 119 of 130


LINE 2 RESULTS

Page 120 of 130


8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 121 of 130

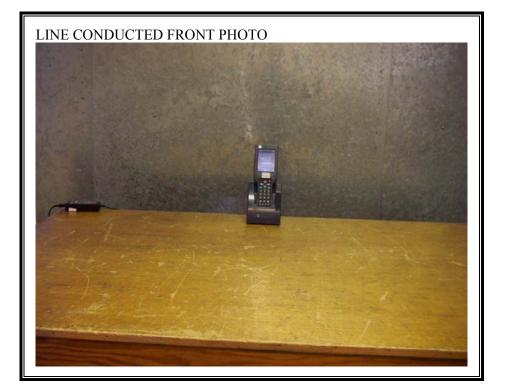
RADIATED RF MEASUREMENT SETUP IN CRADLE CONFIGURATION

Page 122 of 130

Page 123 of 130

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Page 124 of 130



Page 125 of 130

Page 126 of 130

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP WITH DT169 CRADLE

Page 127 of 130

Page 128 of 130

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP WITH DT861 CRADLE

Page 129 of 130

END OF REPORT

Page 130 of 130