Technical Description of the Circuit:

This product can be divided into two separate function module

- (i) RF module
- (ii) RCC module

(i)RF module

This module can divide into two part, RF and Baseband, the RF circuit is a single conversion, super-heterodyne architecture receiver IC. The incoming RF signal received by the antenna is fed to the RF input terminal of the IC RX3310A, then the RF signal is then amplified by the LNA in the IC RX3310A. The amplified signal will fed to the mixer input, the LO for the mixer is generated by the external LC tank circuit, in the above circuit, the LO is 432.12MHz, the IF (FRF-FLO) is then demodulated by the demodulator in the IC RX3310A and the IC RX 3310A provide the raw data.

The data is then fed to the baseband MCU TM8706 for decoding and the MCU TM8706 will display the decoded temperature at the LCD.

(ii)RCC module

This module can also divide into RF and Baseband, the RF circuit is a AM demodulator which receive 60kHz WWVB time signal and demodulate the signal into useful time data.

The data is then fed to the baseband MCU S1C60N16 for decode, the decoded time will be display on the LCD.

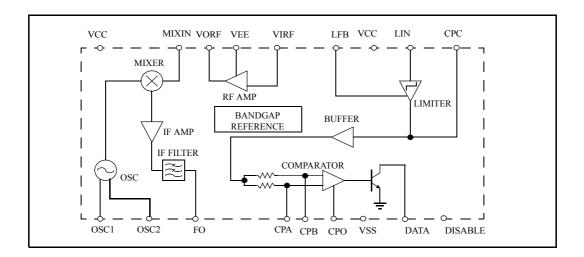
HIMARK

RX3310A UHF ASK Receiver

HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior notice. HiMARK Technology, Inc. assumes no responsibility for the use of any circuits shown in this datasheet.

Description

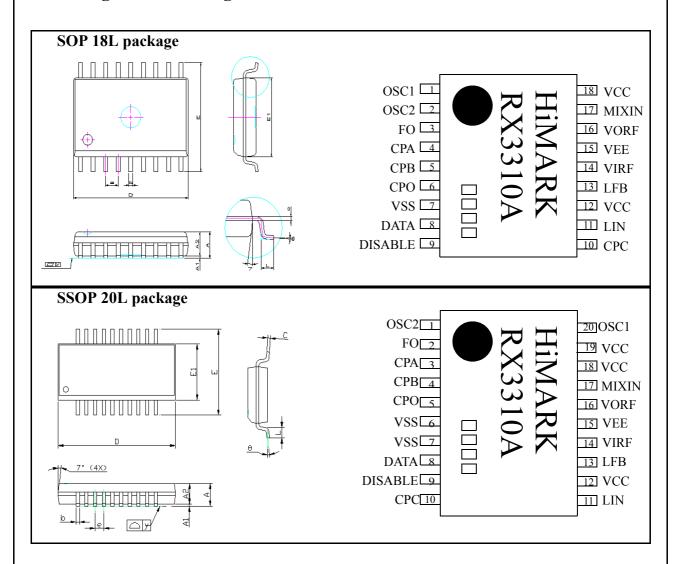
The RX3310A is a fully integrated, amplitude-shift-keying (ASK) modulation, single chip receiver. It is designed to operate in a variety of low power radio applications. All popular radio frequencies from 250 MHz to 450 MHz may be supported by simply choosing the appropriate external components. Particular emphasis has been placed on low current consumption.


Features

- ◆ Wide frequency range: 250 MHz to 450 MHz
- ♦ High sensitivity
- ◆ Low power consumption
- ◆ Automotive temperature range
- ◆ High integration level requiring few and inexpensive external components
- ◆ SOP 18L package or SSOP 20L (150 mil) package

Applications

- ◆ Remote control systems
- ◆ Car alarm and other security systems
- ◆ Baby finder, wireless doorbell, wireless toys


Block Diagram

Page 1 June 2003

Package and Pin Assignment: SOP 18L or SSOP 20L

Sym (dimensions in a bols			SOP 18L (dimensions in inch)			SSOP 20L (dimensions in mm)			SSOP 20L (dimensions in inch)			
DOIS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A			2.640			0.104	1.35	1.60	1.75	0.053	0.064	0.069
A1	0.100			0.004			0.1		0.25	0.004		0.010
A2	2.190	2.290	2.390	0.086	0.090	0.094		1.45			0.057	
b	0.360	0.410	0.460	0.014	0.016	0.018	0.20	0.25	0.30	0.008	0.010	0.012
С	0.242	0.250	0.258	0.007	0.010	0.013	0.19		0.25	0.007		0.010
D	11.46	11.56	11.66	0.451	0.455	0.459	8.55		8.75	0.337		0.344

Page 2 June 2003

Sym	((((((((((((((((((((SOP 18L (dimensions in inch)		SSOP 20L (dimensions in mm)			SSOP 20L (dimensions in inch)				
bols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Е	10.04	10.34	10.64	0.395	0.407	0.419	5.80		6.20	0.228		0.244
E1	7.390	7.490	7.590	0.291	0.295	0.299	3.80		4.00	0.150		0.157
e	1.220	1.270	1.320	0.048	0.050	0.052		0.64			0.025	
L	0.640	0.840	1.040	0.025	0.033	0.041	0.40		1.27	0.016		0.050
θ	0°		8°	0°		8°	0°		8°	0°		8°
у			0.050			0.002			0.10			0.004

RX3310A Chip Window

VCC	MIXIN VO	DRF VE	U U		LFB	VCC	LIN CPC
OSC1	<u>1</u>	RX3	<u>331</u>	<u>0A</u>		DIS.	ABLE
OSC2	FO	СРА	СРВ	СРО	vss	DATA	k.

Page 3 June 2003

Pin Descriptions

Number (18L SOP)	Number (20L SSOP)	Name	I/O	Description
1	20	OSC1	Ю	Oscillator tank connection
2	1	OSC2	Ю	Oscillator tank connection
3	2	FO	О	IF filter output
4	3	СРА	I	Comparator input A
5	4	СРВ	I	Comparator input B
6	5	СРО	I	Comparator offset adjustment
7	6,7	VSS	GND	Ground
8	8	DATA	О	Data output
9	9	DISABLE	I	Disable input. See Electrical Characteristics (cont.) on page 6
10	10	CPC	I	Comparator input C
11	11	LIN	I	Limiter input
12	12	VCC	POWER	Positive supply voltage
13	13	LFB	IO	Limiter feedback B
14	14	VIRF	I	RF amplifier input (requires external ac decoupling capacitor)
15	15	VEE	GND	Ground for RF amplifier
16	16	VORF	О	RF amplifier output
17	17	MIXIN	I	Mixer input (requires external ac decoupling capacitor)
18	18,19	VCC	POWER	Positive supply voltage

Absolute Maximum Ratings

$$V_{SS} = 0 V$$

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	$V_{SS} - 0.3 \text{ to } V_{SS} + 6.0$	V
Operating temperature range	T_{OPR}	-60 to 85	°C
Storage temperature range	T_{STG}	-60 to 125	°C
Soldering temperature range	T_{SLD}	255	°C
Soldering time range	$t_{\rm SLD}$	10	S

Recommended Operating Conditions

$$V_{SS} = 0 V$$

Parameter	Symbol		Unit			
Farameter	Symbol	min.	typ.	max.	Oilit	
Supply voltage range	V _{CC}	2.0	3.0	6.0	V	
Operating temperature	T_A	-40	25	85	°C	

Page 5 June 2003

Receiver Characteristics

 $(V_{CC} = 2.0 \text{ to } 6.0 \text{ V}, \text{LO-RF}=1.8\text{MHz}, \text{All tests at } T_A = 25 \, ^{\circ}\text{C} \text{ unless otherwise noted})$

Parameter	Symbol	Condition		Unit			
1 drameter	Symbol	Condition	min.	typ.	max.	Cilit	
Sensitivity	P _{sens}	$V_{CC} = 3.0 \text{ V}, T_A = 27 \text{ °C},$ AM 99%, sine wave (ASK square wave)	-100 (-104)	-98 (-102)		dBm	
Maximum input power	P _{in,max}			-35	-30	dBm	
Receiver turn-on time	t _{ON}				5	ms	

Electrical Characteristics

 $(V_{CC} = 3.0 \text{ V}, V_{SS} = 0 \text{ V}, \text{All tests at } T_A = 25 \text{ °C unless otherwise noted})$

Parameter	Symbol	Condition		Unit			
1 drameter	Symbol	Condition	min.	typ.	max.	Oint	
Supply current	I_{CC}			3	4.5	mA	
Standby current	$I_{CC,sb}$	DISABLE = high		25	45	μΑ	
Disable pin input logic high ^a	V_{DIH}		2.0	2.4		V	
Disable pin input logic low ^a	$V_{ m DIL}$				0.8	V	
Data output logic high	V _{OH}		V _{pp} ^b 0.3 V			V	
Data output logic low	V _{OL}				0.3	V	

a. Note: If the Disable pad is connected to an off-chip signal (open), then the pad is internally grounded.

Electrical Characteristics (cont.)

 $(V_{CC} = 5.0 \text{ V}, V_{SS} = 0 \text{ V}, \text{ All tests at } T_A = 25^{\circ}\text{C} \text{ unless otherwise noted})$

Parameter	Symbol	Condition		Unit		
i arameter	Symbol	Condition	min.	typ.	max.	Oint
Supply current	I_{CC}			4.5	5.0	mA
Standby current	$I_{CC,sb}$	DISABLE = high		35	50	μΑ
Disable pin input logic high ^a	V_{DIH}		2.0	2.4		V
Disable pin input logic low ^a	$V_{ m DIL}$				0.8	V
Data output logic high	V _{OH}		V _{PP} ^b 0.3 V			V
Data output logic low	V _{OL}				0.3	V

a. Note: If the Disable pad is connected to an off-chip signal (open), then the pad is internally grounded. b. Note: V_{PP} is the pull-up voltage for open collector data output. It may be as high as 13 V.

b. Note: V_{pp} is the pull-up voltage for open collector data output. It may be as high as 13 V.

Functional Description

RF amplifier

The RF amplifier uses a common emitter configuration with a separate emitter connection (VEE). The input signal (VIRF) should be ac-coupled externally. The output of the amplifier is open collector so that the gain may be set with an external tuned load.

Mixer

The mixer is doubly-balanced configuration and has an ac-coupled input.

Oscillator

A balanced oscillator configuration is used with an L-C tank externally connected across the OSC1 and OSC2 pins. The frequency of the oscillator is determined by the external capacitor, C1, and inductor, L1 (please refer to application circuit schematic).

IF amplifier

The IF amplifier is a differential input, single-ended output emitter-coupled pair. It is used to provide additional gain in order to reduce the influence of the noise of the succeeding limiter amplifier on the total receiver noise figure.

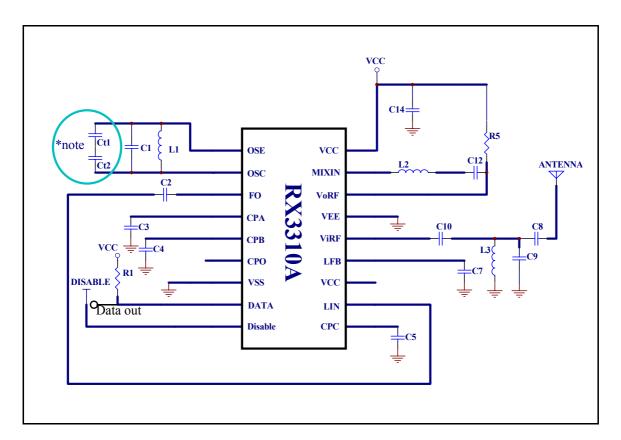
IF filter

To minimize external component costs, an active IF filter is fully integrated.

Limiter

The limiting amplifier consists of several dc-coupled amplifier stages and outputs an RSSI signal.

Comparator


Following the limiting amplifier, the RSSI signal is passed through an additional buffer stage and is then fed to the comparator's positive and negative terminals, which possess different R-C filter time constants. A larger off-chip capacitor is used at the negative comparator input and hence, its terminal voltage represents the average value of the RSSI signal. A smaller off-chip capacitor is used at the positive comparator input and this allows the positive input to follow the RSSI signal instantaneously. When the received RSSI signal exceeds its average value (when an ASK on signal is received), the comparator output is switched on.

Band gap reference

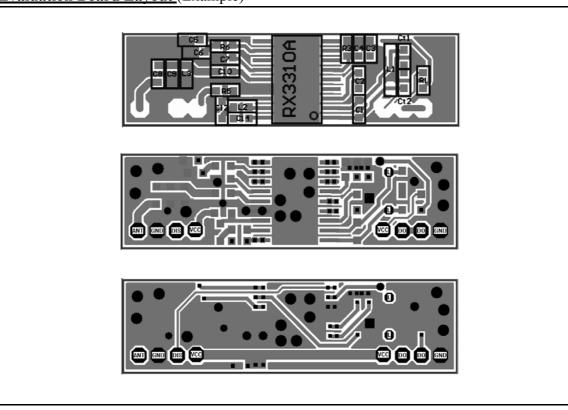
A band gap reference provides precise biasing of the entire chip over temperature.

Application Circuit

^{*} note:Ct1,Ct2 are added for the temperature compensation. Not necessary.

Page 8 June 2003

External Components


Component		Frequency 1	Band (MHz)		Unit	Tolerance	Remark
Component	303	315	418	434	Unit	Tolerance	Remark
C1	6.8	6.8	6.8	5.6	pF	+/-0.5pF	TC=NPO
C2	68	68	68	68	pF	+/-5%	TC=NPO
C3	470	470	470	470	pF	+/-10%	TC=X7R
C4	1	1	1	1	μF	+/-10%	TC=Y5V
C5	470	470	470	470	pF	+/-10%	TC=X7R
C7	10	10	10	10	nF	+/-10%	TC=X7R
C8	2.2	1.8	1.8	1.5	pF	+/-0.25pF	TC=NPO
С9	1.8	1.5	1.2	1.2	pF	+/-0.25pF	TC=NPO
C10	22	18	22	10	pF	+/-5%	TC=NPO
C12	82	82	82	82	pF	+/-5%	TC=NPO
C14	1	1	1	1	μF	+/-10%	TC=Y5V
Ct1	3	3	3	3	pF		GRM4DUJ030C50
Ct2	8.2	8.2	8.2	8.2	pF		TC=NPO
R1	100	100	100	100	ΚΩ	+/-5%	TC=+/-200 ppm
R5	1	1	1	1	ΚΩ	+/-5%	TC=+/-200 ppm
L1	2.5	2.5	1.5	1.5	T		tunable
L2	100	100	100	82	nН		
L3	33	33	18	18	nН		

note: All components are SMD 0805 type.

Page 9 June 2003

Evaluation Board Layout (Example)

- 1. From top to bottom: Component side of printed-circuit board, top side, bottom side.
 2. Copy this page by the factor of 50%, the real size printed-circuit board is available.(Real-size:11.8mm*43.5mm)
 3. Suggested board material: FR4, thickness: 0.8mm

Page 10 June 2003