
Model

Address

Total pages including Appendices

TÜV SÜD Certification and Testing (China) Co., Ltd. - Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

• 69

TÜV SÜD Certification and Testing (China) Co., Ltd. - Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. - Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. - Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

EMC_SZ_FR_11.00 RF Release 2014-03-20

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Table of Content

1	Report Version	4
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	General Information Notes Testing Laboratory Details of Applicant Application Details Test Item Applied Standard Test Summary	5 6 6 6
3 3.1 3.2 3.3 3.4 3.5	Equipment Specification General Description Technical Data Test frequency list EUT operation mode Environmental conditions	9 9 10 11
4 4.1	Technical Requirements and ResultsTransmitter Requirements of IEC61097-3	12 12 14 16 17
4.2	Transmitter Requirements of IEC61097-8.4.2.1Durability and resistance to environmental conditions4.2.2Protection of the antenna input circuit4.2.3Frequency bands and channels4.2.4Mode of reception.4.2.5Scanning receivers4.2.6Calling sensitivity.4.2.7Adjacent channel selectivity.4.2.8Co-channel rejection.4.2.9Intermodulation response4.2.10Interference rejection, spurious response and blocking immunity.4.2.11Dynamic range.4.2.12Conducted spurious emissions into the antenna	20 20 20 20 20 20 21 21 22 23 24 26 26
4.3	 4.2.13 Frequency stability IEC 61097-8 Environmental tests	28 28 29
4.4	 4.3.5 Confosion test. IEC 61097-8 VHF watchkeeping receiver	31 31 32 33 34 35 36
5	Statement of the measurement uncertainty	38
6 6.1	IEC 61097-8 EMC test according EN60945 Electromagnetic Compatibility (EMC) Radiated Disturbance 150kHz to 2GHz 6.1.1 Test Procedure 6.1.2 Test Setup 6.1.3 Test Results	39 39 40
6.2	Conducted Disturbance 0.10 MHz to 30MHz	42

6.2.2 Test Setup	
6.2.3 Test Results	
Immunity to Continuous Conducted Interference 0.15MHz to 80MHz	
6.3.1 Test Procedure	
6.3.2 Test Setup	44
6.3.3 Test Results	
Immunity to Radiated Electric Fields 80MHz to 2000MHz	45
6.4.1 Test Procedure	45
6.4.2 Test Setup	45
6.4.3 Test Results	45
Immunity to Electrical Fast Transient Bursts	
6.5.1 Test Procedure	
6.5.2 Test Setup	
6.5.3 Test Results	
Immunity to Surges	47
6.6.1 Test Procedure	47
6.6.2 Test Setup	47
6.6.3 Test Results	
Immunity to power supply short-term variation (all equipment categories except portable	
6.7.1 Test Procedure	
6.7.2 Test Setup	
6.7.3 Test Results	
Immunity to power supply failure (all equipment categories except portable)	50
6.8.1 Test Procedure	50
6.8.2 Test Setup	50
6.8.3 Test Results	50
Immunity to Electrostatic Discharge	
Equipment Used during the Test	52
Photographs of EUT	F7
	6.2.3 Test Results Immunity to Continuous Conducted Interference 0.15MHz to 80MHz. 6.3.1 Test Procedure. 6.3.2 Test Setup 6.3.3 Test Results Immunity to Radiated Electric Fields 80MHz to 2000MHz. 6.4.1 Test Procedure. 6.4.2 Test Setup 6.4.3 Test Results Immunity to Electrical Fast Transient Bursts. 6.5.1 6.5.1 Test Procedure. 6.5.2 Test Setup 6.5.3 Test Results Immunity to Surges. 6.6.1 6.6.1 Test Procedure. 6.6.2 Test Results Immunity to power supply short-term variation (all equipment categories except portable) 6.7.1 Test Procedure. 6.7.2 Test Setup 6.7.3 Test Results Immunity to power supply short-term variation (all equipment categories except portable) 6.7.2 Test Setup 6.7.3 Test Results Immunity to power supply failure (all equipment categories except portable) 6.8.1 Test Procedure. 6.8.2 Test Setup <t< td=""></t<>

1 <u>Report Version</u>

Revision	Release Date	History/Memo.
1.0	April 14, 2017	Initial Release

2 General Information

2.1 Notes

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Prepared by	2017-04-14	Alan Xiong	Alem X30ng
Project Engineer	Date	Name	Signature
Approved by	2017-04-14	John Zhi	Johnshi
Section Manager	Date	Name	Signature

Test Site 1:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Address: Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China, Phone: +86-755-8828 6998 Fax: +86-755-8828 5299

Test Site 2:

SHENZHEN HUATONGWEI INTERNATIONAL INSPECTIONAL CO., LTD. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: +86-755-26748019 Fax: +86-755-26748089

Remark: All test items were performed at site 2.

2.3 Details of Applicant

Client:	Cobra Electronics Corporation
Address:	6500 West Cortland Street Chicago, IL
Product Description:	MR HH600 GPS BT
Submitted Model No.:	MRHH600FLTGPSBT, MRHH600WFLTGPSBT
Brand Name:	Scobra marine

2.4 Application Details

Date of receipt of order:November 24, 2016Date of receipt of test item:November 24, 2016Date of test:November 24, 2016 – December 26, 2016

2.5 Test Item

Refer to table 1

EMC_SZ_FR_11.00 RF Release 2014-03-20

2.6 Applied Standard

IEC 61097-3:1996	Global maritime distress and safety system (GMDSS) Part 3: Digital selective calling (DSC) equipment Operational and performance requirements, methods of testing and required testing results
IEC 61097-8:1998	Global maritime distress and safety system (GMDSS) Part 8: Shipborne watch keeping receivers for the reception of digital selective calling (DSC) in the maritime MF, MF/HF and VHF bands –Operational and performance requirements, methods of testing and required test results

2.7 Test Summary

Technical requirements						
Transmitter Requirement						
Test item	Standards requirement	Result				
i est item	IEC 61097-3	Pass	N/A			
Frequency error	Sub-clause5.4.1	\square				
Calling Sensitivity	Sub-clause5.4.2	\square				
Nominal modulation rate	Sub-clause5.4.3	\square				
Residual modulation	Sub-clause5.4.4	\square				
Unwanted spectral components of the output signal of non-integrated equipment	Sub-clause5.4.5					
Test item	Standards requirement	Resi	ult			
	IEC 61097-3	Pass	Pass			
Durability and resistance to environmental conditions	Sub-clause5.1	\boxtimes				
Protection of the antenna input circuit	Sub-clause5.2					
Frequency bands and channels	Sub-clause5.3	\square				
Mode of reception	Sub-clause5.4	\square				
Scanning receivers	Sub-clause5.5	\square				
Calling sensitivity	Sub-clause5.6	\square				
Adjacent channel selectivity	Sub-clause5.7	\square				
Co-channel rejection	Sub-clause5.8	\square				
Intermodulation response .	Sub-clause5.9	\square				
Interference rejection, spurious response and blocking immunity	Sub-clause5.10					
Dynamic range	Sub-clause5.11					
Conducted spurious emissions into the antenna	Sub-clause5.12					
Frequency stability	Sub-clause5.13	\square				

Table 1. Summary of results

Environmental Test Requirement					
Test item	Standards requirement	Result			
Test nem	(IEC 61097-8)	Pass	N/A		
Vibration tests	Sub-clause 7.3				
Temperature tests	Sub-clause 7.4	\boxtimes			
Corrosion test	Sub-clause 7.5	\square			
	EMC Test Requirement	-			
Test item	Standards requirement EN60945 (IEC 61097-8)				
Conducted Emissions	Clause 9.2	\square			
Radiated Emissions Enclosure Port	Clause 9.3				
Immunity To Continuous Conducted Interference	Clause 10.3	\boxtimes			
Immunity To Radiated Electromagnetic Fields	Clause 10.4	\boxtimes			
Immunity To Electrical Fast Transient Bursts	Clause 10.5	\boxtimes			
Immunity To Surges (all equipment categories except portable)	Clause 10.6		\boxtimes		
Immunity to power supply short-term variation (all equipment categories except portable)	Clause 10.7		\boxtimes		
Immunity to power supply failure (all equipment categories except portable)	Clause 10.8				
Immunity To Electrostatic Discharge	Clause 10.9	\square			

3 Equipment Specification

3.1 General Description

The Equipment Under Test (EUT) is a VHF transceiver for the maritime mobile service with buletooth and GPS receive function.

3.2 Technical Data

Name of EUT:	MR HH600 GPS	BT			
Trade mark:	SCobra marine				
Model/Type reference:				RHH600WFLTGP	PSBT
	For Charging Cra	dle: C	M 110-032		
Power supply:	7.4Vdc 2000mAh	suppli	ed by recharge	eable battery	
Battery information:	Model: FT704159	Ρ			
Adapter information:	Model: ASSA55W	-1201	00		
	Input: 100-240Va.		60Hz, 0.45A		
	Output:12Vd.c.,1.0				
Car Charger:	Input: 12Vdc, 1.0A				
	Output:12Vdc.,1.0	A			
Hardware version:	V2.0				
Software version:	0.27				
Marine Radio					
Operation Frequency Range:	TX:156.050MHz to 157.425MHz				
Operation Frequency Range.	RX:156.050MHz to 162.000MHz				
Rated Output Power:	High Power:	5W (36.98dBm)	Low Power	1W (30.00dBm)
Modulation Type:	Analog Voice:		РМ		
	Digital Data(DSC):		FSK		
Channel Separation:	Analog Voice:		25kHz		
	Digital Data(DSC)	:	25kHz		
Emission Designator:	mission Designator: Analog Voice:		16K0G3E		
	Digital Data(DSC):		16K0G2B		
Maximum Transmitter Power:	Analog Voice:		5.77W		
	Digital Data(DSC)		5.42W		
Antenna Type:	External				

Remark 1: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Remark 2: As per Client Declaration, MRHH600FLTGPSBT and MRHH600WFLTGPSBT are identical, only the cosmetics have different color, so we use MRHH600FLTGPSBT as a representative to perform all testing.

3.3 Test frequency list

Modulation Type	Channel	Test Channel	Test Freque	ency (MHz)
	Separation	Test Channel	TX	RX
	Voice/PM 25kHz	CH _L (CH60)	156.025	160.625
Analog Voice/PM		CH _M (CH16)	156.800	156.800
		CH _H (CH88)	157.425	157.425

Modulation Type	Channel	Test Channel	Test Frequency (MHz)	
	Separation		TX	RX
Digital Data(DSC) / FSK	25kHz	CH _{M1} (CH70)	156.525	156.525

Note: The Product channel frequency table: International Marine VHF Channels and Frequencies:

Channel	TX Frequency (MHz)	RX Frequency (MHz)	Channel	TX Frequency (MHz)	RX Frequency (MHz)
1	156.05	160.65	60	156.025	160.625
2	156.1	160.7	61	156.075	160.675
3	156.15	160.75	62	156.125	160.725
4	156.2	160.8	63	156.175	160.775
5	156.25	160.85	64	156.225	160.825
6	156.3	156.3	65	156.275	160.875
7	156.35	160.95	66	156.325	160.925
8	156.4	156.4	67	156.375	156.375
9	156.45	156.45	68	156.425	156.425
10	156.5	156.5	69	156.475	156.475
11	156.55	156.55	71	156.575	156.575
12	156.6	156.6	72	156.625	156.625
13	156.65	156.65	73	156.675	156.675
14	156.7	156.7	74	156.725	156.725
15	156.75	156.75	75	156.775	156.775
16	156.8	156.8	76	156.825	156.825
17	156.85	156.85	77	156.875	156.875
18	156.9	161.5	78	156.925	161.525
19	156.95	161.55	79	156.975	161.575
20	157	161.6	80	157.025	161.625
21	157.05	161.65	81	157.075	161.675
22	157.1	161.7	82	157.125	161.725
23	157.15	161.75	83	157.175	161.775
24	157.2	161.8	84	157.225	161.825
25	157.25	161.85	85	157.275	161.875
26	157.3	161.9	86	157.325	161.925
27	157.35	161.95	87	157.375	157.375
28	157.4	162	88	157.425	157.425
70	156.525	156.525	-	-	-

3.4 EUT operation mode

Test mode Transmitting		Popoiving	Power level		Analog Voice/PM	
Test mode	Transmung	Receiving	High	Low	25kHz	
TX1	\checkmark		\checkmark			
TX2	\checkmark			\checkmark	\checkmark	
RX1		\checkmark			\checkmark	

Test mode	Transmitting	Receiving	States			Digital Data(DSC)/FSK
		0	B Y B+Y		25kHz	
TX3	\checkmark		\checkmark			\checkmark
TX4	\checkmark			\checkmark		\checkmark
TX5	\checkmark				\checkmark	
RX2		\checkmark				

 $\sqrt{}$: is operation mode.

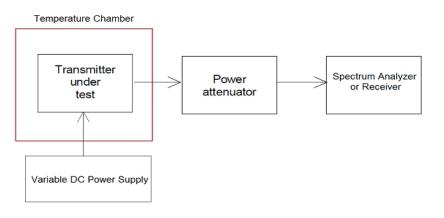
3.5 Environmental conditions

	Temperatur e	15 °C to 35 °C			
Normal	Relative humidity	20 % to 75 %.			
Condition		Mains voltage	Nominal mains voltage		
	Voltage	Lead-acid battery	1.1 * the nominal voltage of the battery		
	Vollage	⊠Other	the normal test voltage shall be that declared by the equipment provider		
Temperatur e		⊠ -20°C to +55 °C			
		Mains voltage	±10 %* the nominal mains voltage		
		Lead-acid battery	1,3 and 0,9 multiplied by the nominal voltage of the battery		
Extreme Condition	Voltage	⊠Leclanché or the lithium battery	Lower extreme voltage: 0.85*the nominal voltage upper extreme voltage: the terminal voltage of the battery (fresh primary battery or fully charged secondary battery) when loaded by the equipment at normal temperature in the receive condition with the squelch operated to mute the audio.		
		□Nickel-cadmium battery	Lower extreme voltage: 0.9*the nominal voltage upper extreme voltage: declared by the equipment provider		
		□Other	the normal test voltage shall be that declared by the equipment provider		

power supply	DC 7.4V	
Normal Condition	Vn=nominal Voltage	DC 7.40V
	Tn=normal Temperature	25°C
	V _L =lower Voltage	DC 6.29V
Extreme Condition	T _L =lower Temperature	-20°C
Extreme Condition	V _H =higher Voltage	DC 8.40V
	T _H =higher Temperature	55°C

4 Technical Requirements and Results

4.1 Transmitter Requirements of IEC61097-3


4.1.1 Frequency Error

The frequency error is the difference between the measured carrier frequency and its nominal value.

<u>Limit</u>

IEC 61097-3 Sub-clause 5.4.1.3 The frequency error shall be within \pm 10 Hz of 1.3 kHz and 2.1kHz respectively.

Test configuration

Test procedure

- 1. The test conditions.
- \boxtimes normal condition
 - ndition 🛛 Extreme conditions
- 2. Please refer to IEC 61097-3 Sub-clause 5.4.1.2 for the measurement method.

Test mode

Please reference to the section 3.4

Test results

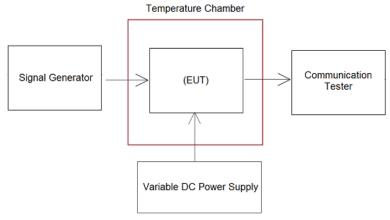
Passed Not Applicable Please refer to the below test data:

Operation	Test conditions		Frequency Error (kHz)			Limit	
Mode	Temperature (℃)	Voltage (V)	CH _L (KHz)	CH _M (KHz)	CH _H (KHz)	(kHz)	Result
	TX1	Vn	0.119	0.061	0.059		
		V _H	0.018	0.058	0.057		
TX1		VL	0.019	0.015	0.016	1.29 to 1.310	Pass
		V _H	0.017	0.014	0.018		
	Τ _Η	VL	0.018	0.017	0.016		

Page 12 of 69

Operation	Test conditions		Frequency Error (kHz)			Limit	
Mode	Temperature (℃)	Voltage (V)	CH∟(KHz)	CH _M (KHz)	CH _H (KHz)	(kHz)	Result
	TX2	Vn	0.115	0.053	0.054		
		V _H	0.110	0.051	0.052		
TX2		VL	0.106	0.049	0.050	1.29 to 1.310	Pass
		Vн	0.101	0.047	0.048		
	Τ _Η	VL	0.097	0.045	0.046		

4.1.2 Calling Sensitivity


The sensitivity of the receiver shall be such as to obtain an output character error rate of 10^{-2} or less for an input signal of +5 dBµV(e.m.f.) on MF and 0 dBµV (e.m.f.) on HF and VHF (A.804/C.3, A.806/C.3).

To determine the maximum usable sensitivity as the minimum level of the signal (e.m.f.) at the nominal frequency of the receiver which, when applied to the receiver input with a standard test signal, will produce a specified BER.

<u>Limit</u>

The sensitivity shall be less than or equal to 10dB S/N. For integrated equipment the sensitivity shall be less than 0 dB μ V EMF.

Test configuration

Test procedure

- 1. The test conditions.
- ⊠ normal condition ⊠ Extreme conditions
- 2. Please refer to IEC 61097-3 Sub-clause 5.4.2.2 for the measurement method.

Test mode

Please reference to the section 3.4

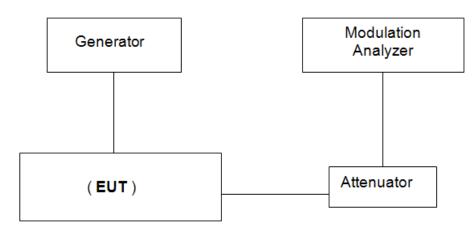
Test results

Please refer to the below test data:

Report Number: 68.950.17.020.01

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured (dBuV)	Limit (dB)	Result
			CH∟	-3.70		
	Tn	Vn	CH _M	-4.70	≤ 0	
			СН _н	-3.00		
			CH∟	-3.59		
	TL	Vн	CH _M	-4.56		Pass
			СН _н	-2.91		
		VL	CH∟	-3.63		
RX1			CH _M	-4.61		
			СН _н	-2.94	- 0	
			CH∟	-3.66	≤ 0	
		V _H	CH _M	-4.65		
	–		СН _н	-2.97		
	Τ _Η		CH∟	-3.64		
		V_{L}	CH _M	-4.32		
			СН _н	-3.24		

4.1.3 Nominal modulation rate


The modulation rate is the bit stream speed measured in bit/s.

<u>Limit</u>

IEC 61097-3 Sub-clause 5.4.3.3

The frequency shall be 600 Hz \pm 30 ppm corresponding to a modulation rate of 1 200 baud.

Test configuration

Test procedure

1. The test conditions.

 \boxtimes normal condition

Extreme conditions

2. Please refer to IEC 61097-3 Sub-clause 5.4.3.2 for the measurement method.

<u>Test mode</u>

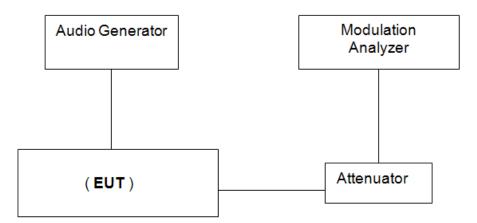
Please reference to the section 3.4

Test results

☑ Passed □ Not Applicable

Operation Mode	Test Channel	Modulation rate (Hz)	Limit	Result
TX5	CH _{M1}	454.320	600Hz ± 30 ppm	Pass

4.1.4 Residual modulation of the transmitter


The residual modulation of the transmitter is the ratio, in dB, of the demodulated RF signal in the absence of wanted modulation, to the demodulated RF signal produced when the normal test modulation is applied.

<u>Limit</u>

IEC 61097-3 Sub-clause 5.4.4

The residual modulation shall not exceed -36 dB(non-integrated equipment) and -26 dB(integrated equipment) on either 25 kHz or 12,5 kHz channels.

Test configuration

Test procedure

1. The test conditions.

 \boxtimes normal condition

Extreme conditions

2. Please refer to IEC 61097-3 Sub-clause 5.4.4.2 for the measurement method.

Test mode

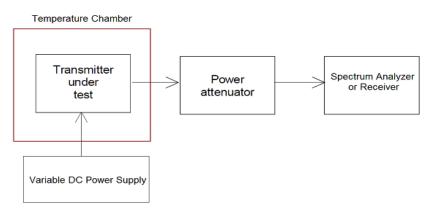
Please reference to the section 3.4

Test results

□ Passed □ Not Applicable

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
	CH∟	-43.12		
TX1	CH_M	-43.35	≪-36	Pass
	CHн	-43.61		

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
	CH∟	-43.75		
TX2	CH_M	-43.41	≤-36	Pass
	СН _н	-43.59		


4.1.5 Unwanted spectral components of the output signal of non-integrated equipment

Unwanted spectral components are emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Unwanted spectral components include harmonic spectral components and intermodulation products.

Limit

IEC 61097-3 Sub-clause 5.4.5.3 figure 2

Test configuration

Test procedure

- 1. The test conditions.
- \boxtimes normal condition
 - Extreme conditions
- 2. Please refer to IEC 61097-3 Sub-clause 5.4.5.2 for the measurement method.

Test mode:

Please reference to the section 3.4

Test results

Passed

Not Applicable

Please refer to the below test data:

Unwanted	Spurious emission level(dB)	Limit
Frequency		
(KHz)		
0.5	-0.51	
1.5	-0.50	
2.9	-0.53	
3.0	-16.70	
4.0	-26.32	
4.1	-27.23	
5.0	-45.33	0.5kHz to2.9kHz: 0dB 2.9kHz to 4.1kHz:-9dB to -25dB
6.0	-46.34	4.1kHz to 6.9kHz:-25dB to -47dB
6.9	-48.13	6.9kHz to 11.3kHz:-47dB to -60dB
7.0	-52.1	0.98112 10 11.381124708 10 -0008
8.0	-54.34	
9.0	-56.43	
10.0	-57.32]
11.0	-59.12]
11.3	61.32	

4.2 Transmitter Requirements of IEC61097-8

4.2.1 Durability and resistance to environmental conditions

Test results:

Complies

Remark: Manufacturer declared the equipment is capable of continuous operation under the conditions of various sea states, vibration, humidity and of temperature likely to be experienced in ships (A.694/5).

4.2.2 Protection of the antenna input circuit

The receiver shall not suffer damage when an unmodulated radiofrequency signal at an input level of 30 V r.m.s. at any frequency in the range 100 kHz to 27,5 MHz is applied to its antenna input terminal for a period of 15 min.

Test results:

Complies

4.2.3 Frequency bands and channels

The equipment can be designed as a single-frequency receiver, as a multiple-frequency receiver or as a scanning receiver in one or more of the frequency bands:

MF: 1 605 kHz to 4 000 kHz; HF: 4 MHz to 27,5 MHz; VHF: 156 MHz to 174 MHz. <u>Test results:</u> Complies VHF 156MHz to 174 MHz.

4.2.4 Mode of reception

Equipment for reception of MF and HF DSC transmissions shall provide for classes of emission F1B or J2B (A.804/C.1.3, A.806/C.1.3).

Equipment for reception of VHF DSC transmissions shall provide for class of emission G2B (see RR appendix 19) (A. 803/3.4).

Test results:

Complies

4.2.5 Scanning receivers

The scanning receiver shall be provided with means for stop and start of the scanning under the control of an external DSC equipment. Such control may be provided by either:

- a stop/start signal in accordance with recommendation ITU-T V.11. The stop signal shall be logic 0 and the start signal shall be logic 1; or

- by direct frequency commands in accordance with IEC 61162-1, or both.

The selected receiver frequency shall be clearly identifiable

Test results:

Complies

4.2.6 Calling sensitivity

The sensitivity of the receiver shall be such as to obtain an output character error rate of 10–2 or less for an input signal of +5 dB μ V (e.m.f.) on MF and 0 dB μ V (e.m.f.) on HF and VHF (A.804/C.3, A.806/C.3).

Test results:

Complies

Remark: the result same with IEC61097-3 sub-clause 5.4.2

4.2.7 Adjacent channel selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by the nominal channel spacing.

The adjacent channel selectivity shall be 40 dB for MF/HF and 70 dB for VHF.

Test results:

Complies VHF 156MHz to 174 MHz.

Please refer to the below test data:

			RX1			
Test C Temperature (℃)	ondition Voltage (V)	Test Channel	Measurement Position	SG B – SG A (dB)	Limit (dB)	Result
		011	Lower adjacent	77.10		
		CH∟	Upper adjacent	76.35		
Ta		СНм	Lower adjacent	77.15	≥70	Pass
Tn Vn	Спм	Upper adjacent	76.61	≥70	Pass	
		Lower adjacent	77.04			
	СН _н	Upper adjacent	76.40			
		CH∟	Lower adjacent	75.56	- ≥60	Pass
			Upper adjacent	74.82		
	N/		Lower adjacent	75.61		
	V _H	CH _M	Upper adjacent	75.08		
-			Lower adjacent	75.50		
TL		СН _Н	Upper adjacent	74.87		
		СЦ	Lower adjacent	74.79		
VL	V	CH∟	Upper adjacent	74.06		Deec
	VL	СНм	Lower adjacent	74.84	≥60	Pass
		Upper adjacent	74.31			

EMC_SZ_FR_11.00 RF Release 2014-03-20 TUV SUD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 21 of 69

			Lower adjacent	74.73		
		СН _н	Upper adjacent	74.11		
			Lower adjacent	76.33		
		CH∟	Upper adjacent	75.58		
		СНм	Lower adjacent	76.38	>60	Pass
	V _H		Upper adjacent	75.84	≥60	Pass
		СН _Н	Lower adjacent	76.27		
т.			Upper adjacent	75.63		
Тн		CH.	Lower adjacent	75.68		
		CH∟	Upper adjacent	74.94		
	M		Lower adjacent	75.72	≥60	Pass
	VL	CH _M	Upper adjacent	75.19	200	Pass
		СНн	Lower adjacent	75.62		
			Upper adjacent	74.99		

4.2.8Co-channel rejection

The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

The co-channel rejection ratio shall be between -10 dB and 0 dB.

Test results:

Complies VHF 156MHz to 174 MHz

Please refer to the below test data:

RX1								
Test Channel	Measurement Offset SG B – SG A (kHz) (dB)		Limit (dB)	Result				
	-3	-8.20						
CH∟	0	-8.31	-10~0	Pass				
	3	-8.15						
	-3	-8.23						
СН _м	0	-8.52	-10~0	Pass				
	3	-8.22						
	-3	-7.59						
СН _н	0	-8.42	-10~0	Pass				
	3	-7.96						

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 22 of 69

4.2.9 Intermodulation response

The intermodulation response is a measure of the capability of a receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

The intermodulation response for MF and HF equipment shall be such as to obtain a specified BER at a level of +70 dB μ V for each of the two unwanted input signals. The intermodulation response ratio for VHF equipment shall be 65 dB (M.489/1.3.4).

Test results:

Complies VHF

Please refer to the below test data:

	RX1									
Test	Measurement Offset (kHz)		SG B/C – SG A							
Channel	SG B	SG C	(dB)	(dB)	Result					
CH∟	-50	-100	72.24	>68	Pass					
	50	100	72.30	≥68						
СН	-50	-100	73.07	>6 9	D					
CH _M	50	100	268 72.80	200	Pass					
СН _н	-50	-100	72.77	≥68	Pass					

4.2.10 Interference rejection, spurious response and blocking immunity

The interference rejection for MF and HF equipment shall be such as to obtain a specified BER at a level of the unwanted input signal of $+60 \text{ dB}\mu\text{V}$.

The spurious response immunity for VHF equipment shall be 70 dB (M.489/1.3.3).

The blocking level shall be not less than +90 dBµV for MF/HF equipment and +93 dBµV for VHF equipment.

Test results:

Complies

Please refer to the below test data For Interference rejection

		RX1			
Test Channel	Relationship	Spurious Frequency (MHz)	Frequency (dB)		Result
	f _{RF1} -f _{LO} /2	149.95	85.03		
CH∟	f _{RF1} -2*f _{LO}	117.85	84.30	≥70	Deee
	f _{LO}	21.4	84.49	270	Pass
	2*f _{I1} -f _{LO}	257.1	84.89		
	f _{RF2} -f _{LO} /2	146.1	84.70		Pass
СНм	f_{RF2} -2* f_{LO}	114	85.15	≥70	
Спм	f _{LO}	21.4	84.96	270	
	$2^{f_{I2}-f_{LO}}$	249.4	85.13		
	f _{RF3} -f _{LO} /2	146.725	85.47		
	f _{RF3} -2*f _{LO}	114.625	84.91	>70	Deee
CH _H	f _{LO}	21.4	85.06	≥70	Pass
	$2^{*}f_{I3}$ - f_{LO}	250.65	85.15		

1) f_{RF1} =160.65MHz, f_{RF2} =156.8MHz, f_{RF3} =157.425MHz, f_{LO} =21.4MHz, f_{I1} =160.65MHz-

21.4MHz=139.25MHz, f₁₂=156.8MHz-21.4MHz=135.4MHz f₁₃=157.425MHz-21.4MHz=136.025MHz
2) An increment sweep was made between 100 kHz - 2000 MHz with no other significant responses detected.

For Blocking immunity

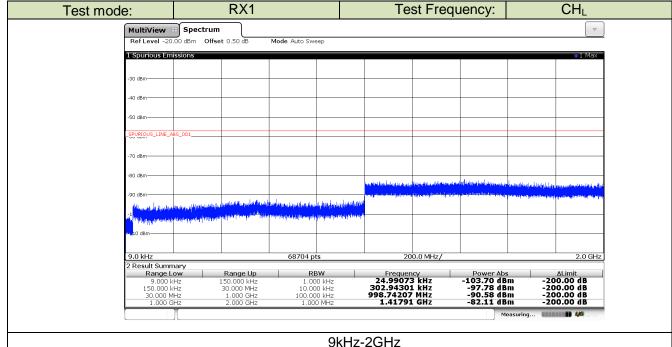
		RX1		
Test Channel	Measurement Offset (MHz)	SG B (dBµV)	Limit (dBµV)	Result
	-10	98.04		
	-5	95.60		
	-2	95.41		
CH∟	-1	93.24	≥90	Pass
	1	93.45	290	Fd55
	2	94.75		
	5	95.48		
	10	98.31		
	-10	98.16		
	-5	95.72		
	-2	95.53		
СНм	-1	93.35	>00	Pass
Спм	1	93.57	≥90	F d 55
	2	94.86		
	5	95.60		
	10	98.43		
	-10	98.36		
	-5	95.91		
	-2	95.72		
СН _н	-1	93.54	≥90	Pass
	1	93.75	230	1 000
	2	95.05		
	5	95.79		
	10	98.63		

4.2.11 Dynamic range

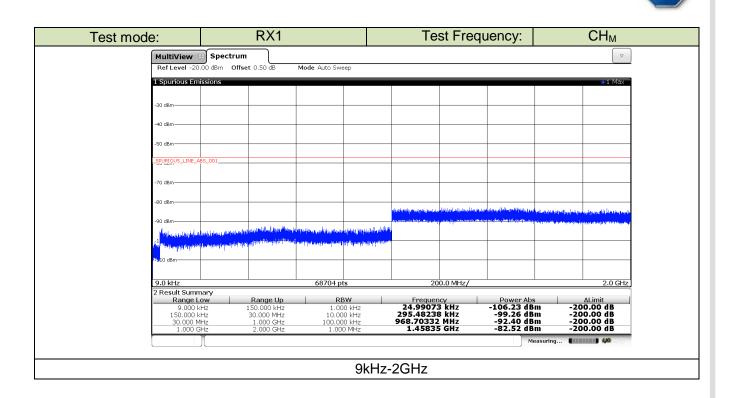
The dynamic range shall be 80 dB for MF/HF equipment and 100 dB for VHF equipment.

Test results:

Complies


4.2.12 Conducted spurious emissions into the antenna

Conducted spurious emissions into the antenna shall not exceed 2 nW (M.489/1.3.5).


Test results:

Complies

Please refer to the below test data

Report Number: 68.950.17.020.01

Test mode:	RX1		Test Fred	luency:	CHн
MultiView	🗄 Spectrum				
RefLevel -2	0.00 dBm Offset 0.50 dB	Mode Auto Sweep			
1 Spurious Er	nissions				●1 Max
-30 dBm					
-40 dBm					
-50 dBm					
_SPURIOUS_LINE_	ABS_001				
-70 dBm					
-> 0 dbm					
-80 dBm				a de la flattan añ édicines (se con el con esco	
			in the first productive sector and the sector sector is the sector of the sector is th	and the second	na di Anazari, Kana da Laga da ana ang kana pina
-90 dBm	and the second state of the billing of the	فستطع ومعرفان والمراجع			
-1.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00 - 2.00		handmark som all at som an landar at som at han at stalle blidd			
-110 dBm					
9.0 kHz		68704 pts	200.0 MHz/		2.0 GHz
2 Result Sum Range		RBW	Frequency	Power Abs	ΔLimit
9.000 150.000	kHz 150.000 kHz	1.000 kHz 10.000 kHz	Frequency 24.99073 kHz 302.94301 kHz	-103.70 dBm -97.78 dBm	-200.00 dB -200.00 dB
30.000	MHz 1.000 GHz	100.000 kHz	998.74207 MHz	-90.58 dBm	-200.00 dB
1.000	GHz 2.000 GHz	1.000 MHz	1.41791 GHz	-82.11 dBm	-200.00 dB
				Measuring	g 🗰 🗰 🛤 🦇 👘 🖓
		0LH.	z-2GHz		

4.2.13 Frequency stability

For MF/HF equipment, the receiver frequency shall at all times remain within 10 Hz of the required frequency following the warming-up period (A.804/C.2, A.806/C.2). <u>Test results:</u> Not applicable

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 27 of 69

4.3 IEC 61097-8 Environmental tests

4.3.1 Vibration Tests

These tests determine the ability of equipment to withstand vibration without resulting in mechanical weakness or degradation in performance. They simulate the effect of vibration induced in a ship's hull by its propeller and machinery. This is generally at frequencies of up to 13 Hz and predominantly vertical. The tests at higher frequencies simulate the effect of slamming which occurs in irregular stormy seas and is predominantly horizontal. The tests do not simulate the effect of regular seas giving the translational components of surging, swaying and heaving, and the corresponding rotational components of rolling, pitching and yawing which generally produce accelerations too small to be of consequence to electronic equipment.

Test Method:

The EUT, complete with any shock and vibration absorbers with which it is provided, shall be clamped to the vibration table by its normal means of support and in its normal attitude. The EUT may be resiliently suspended to compensate for weight not capable of being withstood by the vibration table. Provision may be made to reduce or nullify any adverse effect on EUT performance which could be caused by the presence of an electromagnetic field due to the vibration unit.

The equipment shall be subjected to sinusoidal vertical vibration at all frequencies between:

- 2 Hz to 5 Hz and up to 13,2 Hz with an excursion of ± 1 mm ± 10 % (7 m/s² maximumacceleration at 13,2 Hz);

above 13,2 Hz and up to 100 Hz with a constant maximum acceleration of 7 m/s².
 The frequency sweep rate shall be slow enough to allow the detection of resonances in any part of the EUT.

A resonance search shall be carried out throughout the test. If any resonance of the EUT has $Q \ge 5$ measured relative to the base of the vibration table, the EUT shall be subjected to a vibration endurance test at each resonant frequency at the vibration level specified in the test with a duration of 2 h. If no resonance with $Q \ge 5$ occurs, the endurance test shall be carried out at one single observed frequency. If no resonance occurred, the endurance test shall be carried out at a frequency of 30 Hz.

Performance check(s) (see 7.2) shall be carried out at least once during each endurance test period, and once before the end of each endurance test period.

The procedure shall be repeated with vibration in each of two mutually perpendicular directions in the horizontal plane.

After conducting the vibration tests, the equipment shall be inspected for any mechanical deterioration.

Test results:

Meet clause 7.2 performance requirement, no visible harmful deterioration.

4.3.2 Temperature tests

The immunity against the effects of temperature is the ability of the equipment to maintain the specified mechanical and electrical performance after the following tests have been carried out.

The maximum rate of raising or reducing the temperature of the chamber in which the equipment is tested shall be 1 °C/min.

Test Method:

For Dry heat functional test:

The EUT shall be placed in a chamber at normal room temperature and relative humidity. The EUT and, if appropriate, any climatic control devices with which it is provided shall then be switched on. The temperature shall then be raised to and maintained at +55 °C ± 3 °C. At the end of a soak period of 10 h to 16 h at +55 °C ± 3 °C, the EUT shall be subjected to the performance check of 8.2 or 9.1 as applicable.

The temperature of the chamber shall be maintained at +55 °C \pm 3 °C during the whole test period. At the end of the test, the EUT shall be returned to normal environmental conditions or to those required at the start of the next test.

For Damp heat:

The EUT shall be placed in a chamber at normal room temperature and relative humidity. The temperature shall then be raised to +40 °C \pm 2 °C, and the relative humidity raised to 93 % \pm 3 % over a period of 3 h \pm 0,5 h. These conditions shall be maintained for a period of 10 h to 16 h. Any climatic control devices provided in the EUT may be switched on at the conclusion of this period.

The EUT shall be switched on 30 min later, or after such period as agreed by the manufacturer, and shall be kept operational for at least 2 h during which period the EUT shall be subjected to the performance check.

The temperature and relative humidity of the chamber shall be maintained as specified during the whole test period.

At the end of the test period and with the EUT still in the chamber, the chamber shall be brought to room temperature in not less than 1 h.

At the end of the test the EUT shall be returned to normal environmental conditions, or to those required at the start of the next test.

For Low temperature

The EUT shall be placed in a chamber at normal room temperature and relative humidity. The temperature shall then be reduced to and maintained at -15 °C ± 3 °C, for a period of 10 h to 16 h. Any climatic control devices provided in the EUT may be switched on at the conclusion of this period.

The EUT shall be switched on 30 min later, or after such a period as agreed by the manufacturer, and shall be kept operational for at least 2 h, during which period the EUT shall be subjected to the performance check of 8.2 or 9.1 as applicable.

The temperature of the chamber shall be maintained at -15 °C \pm 3 °C during the whole test period.

At the end of the test the EUT shall be returned to normal environmental conditions, or to those required at the start of the next test.

Test results:

Meet clause 8.2 BER less than 10⁻²

4.3.3 Corrosion test

This test shall be waived where the manufacturer is able to produce evidence that the components, materials and finishes employed in the equipment satisfy the requirements of this subclause.

Test Method:

The EUT shall be placed in a chamber and sprayed with a salt solution for 2 h at normal temperature. The salt solution shall be prepared by dissolving 5 ± 1 parts by weight of sodium chloride (NaCl) in 95 parts by weight of distilled or de-mineralized water.

At the end of the spraying period the EUT shall be placed in a chamber, which shall be maintained at a temperature of 40 °C \pm 2 °C and a relative humidity between 90 % and 95 % for a period of seven days.

The EUT shall be subjected to a test comprising four spraying periods, each of 2 h duration, with a storage period of seven days after each.

At the conclusion of the test the EUT shall be inspected with the naked eye without magnification. The EUT shall then be subjected to the performance check.

Test results:

No undue deterioration. Meet clause 7.2 performance requirement, no visible harmful deterioration.

4.4 IEC 61097-8 VHF watchkeeping receiver

4.4.1 Calling sensitivity

To determine the maximum usable sensitivity which is the minimum level of the signal (e.m.f.) at the nominal frequency of the receiver which, when applied to the receiver input with a standard test signal, will produce a specified BER.

Test Method:

The arrangements for applying the test signals shall be in accordance with cluase 6.5. Standard test signal No. 2 shall be applied at an input level of 0 dB μ V under normal test conditions and +6 dB μ V under extreme test conditions.

The measurement shall be carried out under normal test conditions (see 6.3) and under extreme test conditions (6.4.1 and 6.4.2 applied simultaneously).

Measurements under extreme conditions may be carried out during environmental tests (see 7.4.1 and 7.4.3).

The measurement shall be repeated at the nominal carrier frequency ±1,5 kHz under normal test conditions.

Limit:

The BER shall be equal to or less than 10⁻².

Test results:

Operation	Test Condition		Test	Measured	Limit	
Operation Mode	Temperature (°C)Voltage (V)Frequency (MHz)		(error ratio)	(error ratio)	Result	
	25	7.4	156 525	0.0071	≤10 ⁻²	Pass
	25	7.4	7.4 156.525		210	F 855
		7.4	7.4 156.525	0.0072	≤10 ⁻²	Pass
	-10	7.4	100.020	0.0075	210	1 255
RX	-10	C 20	6.29 156.525	0.0085	≤10 ⁻²	Pass
		0.29	150.525	0.0083	210	F 855
		7.4	156.525	0.0078	≤10 ⁻²	Pass
	55	7.4	150.525	0.0082	210	F 855
	55	0.00	156.525	0.0084	≤10 ⁻²	Page
		6.29	100.525	0.0084	≥10-	Pass

4.4.2 Adjacent channel selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by 25 kHz.

Test Method:

The arrangements for applying the test signals shall be in accordance with clause 6.5. The wanted signal shall be standard test signal No. 2 at an input level of +3 dB μ V.

The unwanted signal shall be modulated by 400 Hz with a deviation of ± 3 kHz. The unwanted signal shall be tuned to the centre frequency of the upper adjacent channels. The level of the unwanted signal shall be ± 73 dBµV.

The BER at the output of the receiver shall be determined as described in 6.8.

The measurement shall be repeated with the unwanted signal tuned to the centre frequency of the lower adjacent channel.

<u>Limit</u>

The bit error ratio shall be equal to or less than 10⁻²

Test results:

Complies

Please refer to the below test data:

Frequency Error:

Operation	Test conditions		Frequency Error(kHz)			Limit	
Operation Mode	Temperature($^{\circ}$ C)	Voltage (V)	CH∟ (KHz)	CH _M (KHz)	CH _H (KHz)	(kHz)	Result
TX1	Tn	Vn	0.026	0.021	0.017	±1.5	Pass

Test conditio	ons	Freq	uency Error	(kHz)	Lineit		
Operation Mode	Temperature($^{\circ}$ C)	Voltage (V)	CH∟ (KHz)	CH _M (KHz)	CH _H (KHz)	Limit (kHz)	Result
TX2	Tn	Vn	0.021	0.017	0.019	±1.5	Pass

Carrier power:

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH _L 37.49	37.49		
TX1	Tn	Vn	CH _M	37.42	34.77~37.78	Pass
			СН _Н	37.43		

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
			CH∟	29.93		
TX2	Tn	Vn	CH_M	29.86	20~30	Pass
			CHн	29.83		

Maximum usable sensitivity:

Operation Mode	Temperature (℃)	Voltage (V)	Test Channel	Measured (dBuV)	Limit (dB)	Result
			CH∟	-3.15		
RX1	Tn	Vn	CH _M	-2.97	≤+6.0	Pass
			CH _H	-3.07		

4.4.3 Co-channel rejection

The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

Test Method:

The arrangements for applying the test signals shall be in accordance with clause 6.5.

The unwanted signal shall be modulated by 400 Hz with a deviation of ± 3 kHz. The input level of the unwanted signal shall be -7 dBµV.

Both input signals shall be at the nominal frequency of the receiver and the measurement shall be repeated for displacements of the unwanted signal of up to ± 3 kHz.

The BER at the output of the receiver shall be determined as described in 6.8.

<u>Limit</u>

The bit error ratio shall be equal to or less than 10⁻²

Test results:

Complies

Please refer to the below test data:

Operation Mode	Test Frequency (MHz)	Measurement Offset (kHz)	Measured (error ratio)	Limit (error ratio)	Result
RX 156.525	-3	0.0048		Pass	
	0	0.0051	≤10 ⁻²		
		3	0.0063		

4.4.4 Intermodulation response

The intermodulation response is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

Test Method:

The arrangements for applying the test signals shall be in accordance with 6.5.

The wanted signal represented by signal generator A shall be at the nominal frequency of the receiver and shall be standard test signal No. 2 at an input level of +3 dB μ V.

The two unwanted signals shall be applied, both at the same level of +68 dB μ V.

The first unwanted signal from signal generator B shall be unmodulated and adjusted to a frequency 50 kHz above (or below) the nominal frequency of the receiver.

The second unwanted signal from signal generator C shall be modulated by 400 Hz with a deviation of ± 3 kHz and adjusted to a frequency 100 kHz above (or below) the nominal frequency of the receiver.

The BER at the output of the receiver shall be determined as described in 6.8.

<u>Limit</u>

The bit error ratio shall be equal to or less than 10⁻²

Test results:

Complies Please refer to the below test data:

Operation Mode	Test Frequency (MHz)	Measurem (kF		Measured	Limit (error ratio)	Result
		SG B	SG C	(error ratio)		
RX	156.525	-50	-100	0.0072	≤10 ⁻²	Pass
		50	100	0.0064	210	

4.4.5 Spurious response and blocking immunity

To determine the ability to receive a wanted modulated signal without exceeding a specified BER due to the presence of an unwanted unmodulated signal at frequencies outside the passband of the receiver.

Test Method:

The arrangements for applying the test signals shall be in accordance with 6.5. The wanted signal shall be standard test signal No. 2 at an input level of +3 dB μ V.

For the spurious response test the unwanted signal shall be unmodulated and at an input level of +73 dB μ V. The frequency shall be varied over the range 9 kHz to 2 GHz except for the channel of the wanted signal and its adjacent channels.

For the blocking immunity test the unwanted signal shall be unmodulated and at an input level of +93 dB μ V. The frequency shall be varied between -10 MHz and -1 MHz and also between +1 MHz and +10 MHz relative to the nominal frequency of the wanted signal.

<u>Limit</u>

The bit error ratio shall be equal to or less than 10⁻²

Test results:

Complies

Please refer to the below test data:

Operation Mode	Test Frequency (MHz)	Relationship	Spurious Frequency (MHz)	Measured (error ratio)	Limit (error ratio)	Result
RX		f _{RF1} -f _{LO} /2	145.825	0.0065		
	156 505	f _{RF1} -2*f _{LO}	113.725	0.0059	≤10 ⁻²	Deee
	156.525	f _{LO}	21.4	0.0044	≤10-	Pass
		2*f _{I1} -f _{LO}	248.85	0.0062		

Operation Mode	Test Frequency (MHz)	Measurement Offset (MHz)	Measured (error ratio)	Limit (error ratio)	Result
	-10	0.0074			
		-5	0.0069]	
RX 156.525	-2	0.0063	≤10 ⁻²	Pass	
	156 525	-1			
	150.525	1			
		2	0.0066		
		5	0.0075		
		10	0.0079		

EMC_SZ_FR_11.00 RF Release 2014-03-20

4.4.6 Dynamic range

The dynamic range of the equipment is the range from the minimum to the maximum level of a radio frequency input signal at which the bit error ratio in the output of the decoder does not exceed a specified value.

Test Method:

The arrangements for applying the test signals shall be in accordance with 6.5. Standard test signal No. 2 shall be applied at an input level of +100 dB μ V. The BER at the output shall be determined as described in 6.8.

<u>Limit</u>

The bit error ratio shall be equal to or less than 10⁻²

Test results:

Complies

Please refer to the below test data:

Operation Mode	Test Frequency (MHz)	Measured (error ratio)	Limit (error ratio)	Result
RX	156.525	0.0069	≤10 ⁻²	Pass

4.4.7 Conducted spurious emissions into the antenna

To determine internally generated signals conducted to the antenna terminal and which may be radiated.

Test Method:

The receiver antenna terminal shall be connected to a 50 Ω artificial antenna and the spurious emissions shall be measured using a selective measuring instrument. The r.m.s. value of any component of the spurious emission shall then be evaluated.

The measurement shall be made over the frequency range from 9 kHz to 2 GHz.

- The bandwidth of the selective measuring instrument shall be:
- 200 kHz in the frequency range from 9 kHz to 150 kHz;
- 9 kHz to 10 kHz in the frequency range from 150 kHz to 30 MHz;
- 100 kHz to 120 kHz in the frequency range from 30 MHz to 1 GHz; and
- 1 MHz above 1 GHz.

The detector shall be a peak detector.

<u>Limit</u>

The power of any discrete frequency component shall not exceed 2 nW.

Test results:

Complies

Please refer to the below test data:

de:		R	<1			Test Fi	requenc	y:		CH_M	1
M	ultiView 🗄	Spectrum									
)0 dBm Offse		Mode Auto Sw	eep						
	purious Emis										
15	purious emis	sions									U Max
-30	dBm										
40	dBm										
-40	ubili										
-50	dBm										
_SPU	JRIOUS_LINE_AB	5_001									
00	dom										
-70	dBm										
-80	dBm					المحمد والعراجة والعار ومعالم	and the state of the				
							^{nan ta} nan yang sebuah dalam sebuah				
-90	dBm		and many others	التابر مراجعاتهم	a di seri su di suato da dala da seri						ALC: NOT THE OWNER OF
	N. Andrewickie Armitelet	an fan ster fan	مىمى بىلى يەر	dentrial de contra contra contra	n an agus processor an ann aitheathlai						
11 P	and a start of the second s	In the other states of the									
-111	0 dBm										
9.0) kHz			68704 p	ts	20	0.0 MHz/				2.0 GHz
	esult Summ	arv					/				
	Range Lo		Range Up		3W	Frequen	cy	Power Al			.imit
	9.000 kH		150.000 kHz		00 kHz	24.99073		-103.42 d	Bm	-200.	00 dB
	150.000 kH		30.000 MHz	10.00		302.94301 552.28321		-99.21 d -90.60 d		-200. -200.	
	30.000 MH 1.000 GH		1.000 GHz 2.000 GHz	100.00	0 MHz	1.50275		-81.51 d		-200.	
L	1.000 GF	14	2.000 002	1.00		1.302/3	9112				
	[]	1							Measuring		1,00

Operation	Test conditions		Frequency Error (kHz)	Limit	Deput	
Mode Temperature (℃)		Temperature (°C) Voltage(V)		(Hz)	Result	
	Tn	Vn	1300.084			
	т	Tн	1300.068			
TX4		IL IL	VL	1300.066	1300±10	Pass
		Tн	1300.075			
	Тн	VL	1300.079			

5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
RF frequency	25 Hz	(1)
Maximum frequency deviation:	2.6 %	(1)
within 300 Hz to 6 kHz of modulation frequency	2.0 /8	(1)
Maximum frequency deviation:	2.20 dB	(1)
within 6 kHz to 25 kHz of modulation frequency	2.20 0D	(1)
Deviation limitation	3.5 %	(1)
Adjacent channel power	1.20 dB	(1)
Conducted spurious emission of transmitter	0.57 dB	(1)
Amplitude characteristics of receiver limiter	1.20 dB	(1)
Sensitivity at 20 dB SINAD	2.60 dB	(1)
Conducted emission of receiver	1.60 dB	(1)
Two-signal measurement	2.80 dB	(1)
Three-signal measurement	2.20 dB	(1)
Radiated emission of transmitter	2.20 dB	(1)
Radiated emission of receiver	2.20 dB	(1)
Transmitter transient time	6.8 %	(1)
Transmitter transient frequency	75 Hz	(1)
Receiver desensitization (duplex operation)	0.25 dB	(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

6 IEC 61097-8 EMC test according EN60945 Electromagnetic Compatibility (EMC)

6.1 Radiated Disturbance 150kHz to 2GHz

6.1.1 Test Procedure

The quasi-peak measuring receivers specified in CISPR 16-1 shall be used. The receiver bandwidth in the frequency ranges 150 kHz to 30 MHz shall be 9 kHz and in the frequency ranges 30 MHz to 2 GHz shall be 120 kHz.

For frequencies from 150 kHz to 30 MHz measurements shall be made of the magnetic H field. The measuring antenna shall be an electrically screened loop antenna of dimension so that the antenna can be completely enclosed by a square having sides of 60 cm in length, or an appropriate ferrite rod as described in CISPR 16-1.

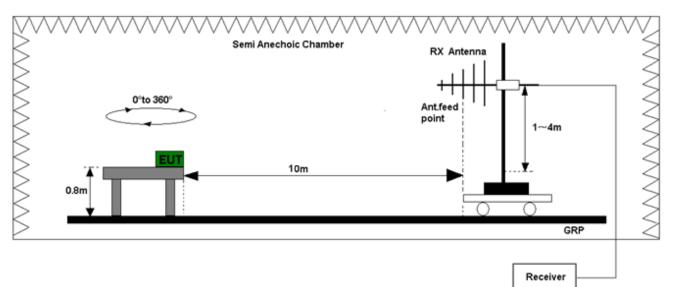
The correction factor for the antenna shall include the factor +51,5 dB to convert the magnetic field strength to equivalent electric field strength.

For frequencies above 30 MHz measurements shall be made of the electric E field. The measuring antenna shall be a balanced dipole of resonant length, or alternate shortened dipole or higher gain antenna as described in CISPR 16-1. The dimension of the measuring antenna in the direction of the EUT shall not exceed 20 % of its distance from the EUT. At frequencies above 80 MHz it shall be possible to vary the height of the centre of the measuring antenna above the ground over a range of 1 m to 4 m.

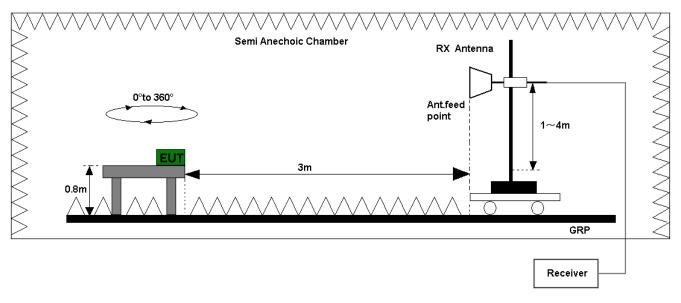
The test site shall be compliant with CISPR 16-1, using a metal ground plane and of dimensions to allow a measurement distance of 3 m.

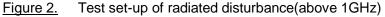
The EUT shall be fully assembled, complete with its associated interconnecting cables and mounted in its normal plane of operation.

When the EUT consists of more than one unit, the interconnecting cables (other than antenna feeders) between the main unit and all other units shall be the maximum length as specified by the manufacturer or 20 m whichever is shorter. Available input and output ports shall be connected to the maximum length of cable as specified by the manufacturer or 20 m whichever is shorter, and terminated to simulate the impedance of the ancillary equipment to which they are normally connected.


The excess length of these cables shall be bundled at the approximate centre of the cable with bundles 30 cm to 40 cm in length running in the horizontal plane from the port to which they are connected. If it is impractical to do so because of cable bulk or stiffness, the disposition of the excess cable shall be as close as possible to that required, and shall be precisely described in the test report.

The test antenna shall be placed at a distance of 3 m from the EUT. The centre of the antenna shall be at least 1,5 m above the ground plane. The E-field antenna only shall be adjusted in height and rotated to give horizontal and vertical polarization, one being parallel to the ground, in order to determine the maximum emission level. Finally the antenna shall either be moved around the EUT, again in order to determine the maximum emission level, or alternatively, the EUT may be placed on a plane orthogonal to the test antenna at its mid-point and rotated to achieve the same effect.


b) In addition, for the frequency band 156 MHz to 165 MHz, the measurement shall be repeated with a receiver bandwidth of 9 kHz, all other conditions of a) hereinbefore remaining unchanged.


c) Alternatively, for the frequency band 156 MHz to165 MHz, a peak receiver or a frequency analyzer may be used, in accordance with the agreement between the manufacturer and the test house.

6.1.3 Test Results

Frequency	Result	Limit	Margin	Polar
(MHz)	(dBm)	(dBm)	(dB)	H/V
0.358	35.06	52.0	16.94	Н
0.797	29.63	51.7	22.07	Н
5.351	31.52	48.9	17.38	Н
21.384	32.05	39.2	7.15	Н
27.400	29.73	35.6	5.87	Н
29.769	30.88	34.1	3.22	Н
0.281	34.92	55.5	20.58	V
0.480	30.29	51.9	21.61	V

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 40 of 69

0.742	31.92	51.7	19.78	V
6.649	33.03	48.2	15.17	V
23.514	30.82	37.9	7.08	V
28.924	31.76	34.7	2.94	V
69.224375	43.12	54.00	10.88	Н
134.335625	42.80	54.00	11.20	Н
155.918125	28.76	54.00	25.24	Н
164.345000	27.66	30.00	2.34	Н
36.183750	50.60	54.00	3.40	V
69.891250	44.94	54.00	9.06	V
140.519375	39.76	54.00	14.24	V
1030.750000	50.07	54.00	3.93	Н
1107.562500	48.80	54.00	5.20	Н
1451.937500	48.36	54.00	5.64	Н
1097.625000	48.93	54.00	5.07	V
1446.000000	49.08	54.00	4.92	V

Performed Item	Item	Required	Actual
Radiated Emission	Ambient temperature	15°C~35°C	25°C
	Relative humidity	25%~75%	55%
Emission	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

6.2 Conducted Disturbance 0.10 MHz to 30MHz

6.2.1 Test Procedure

The emission shall be measured by means of the quasi-peak measuring receivers specified in CISPR 16-1. An artificial mains V-network (figure 3) in accordance with CISPR 16-1 shall be used to provide a defined impedance at high frequencies across the terminals of the EUT, and to isolate the test circuit from unwanted radio frequency signals on the supply mains. The measuring bandwidth in the frequency range 10 kHz to 150 kHz shall be 200 Hz, and in the frequency range 150 kHz to 30 MHz shall be 9 kHz.

The power input cables between the a.c. and the d.c. power ports of the EUT and the artificial mains network shall be screened and not exceed 0,8 m in length. If the EUT consists of more than one unit with individual a.c. and/or d.c. power ports, power ports of identical nominal supply voltage may be connected in parallel to the artificial mains supply network.

Measurements shall be made with all measuring equipment and the EUT mounted on, and bonded to, an earth plane. Where provision of an earth plane is not practicable, equivalent arrangements shall be made using the metallic frame or mass of the EUT as the earth reference.

6.2.2 Test Setup

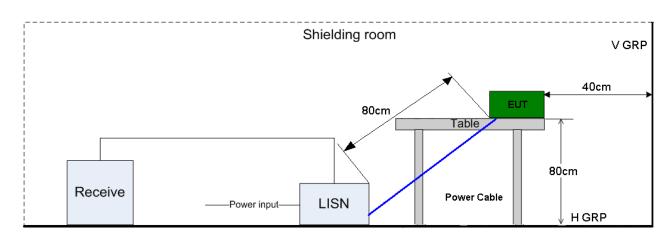


Figure 3. Test set-up of conducted disturbance for power port

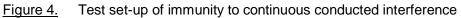
6.2.3 Test Results

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.076343		46.36			N	9.9
0.076343	46.15		61.47	15.32	N	9.9
0.611662		45.86			N	10.0
0.611662	45.77		50.00	4.23	N	10.0
0.689813		46.16			N	9.9
0.689813	46.05		50.00	3.95	N	9.9
0.725277		49.16			N	9.9
0.725277	49.06		50.00	0.94	N	9.9
0.762503		47.76			N	9.9
0.762503	47.84		50.00	2.16	N	9.9
14.302679		33.70			N	9.7
14.302679	39.17		50.00	10.83	N	9.7

EMC_SZ_FR_11.00 RF Release 2014-03-20

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.076343		48.23			L	9.9
0.076343	48.12		61.47	13.35	L	9.9
0.536893		42.60			L	10.1
0.536893	42.53		50.00	7.47	L	10.1
0.611662		45.40			L	10.0
0.611662	45.30		50.00	4.70	L	10.0
0.689813		44.54			L	10.0
0.689813	44.43		50.00	5.57	L	10.0
0.762503		48.53			L	9.9
0.762503	48.60		50.00	1.40	L	9.9
0.801627		47.67			L	9.9
0.801627	48.02		50.00	1.98	L	9.9
14.445661		34.10			L	10.0
14.445661	39.67		50.00	10.33	L	10.0

Performed Item	ltem	Required	Actual
Conducted Emission	Ambient temperature	15°C~35°C	25°C
	Relative humidity	25%~75%	55%
	Atmospheric pressure	86 kPa \sim 106kPa	989kPa


6.3 Immunity to Continuous Conducted Interference 0.15MHz to 80MHz

6.3.1 Test Procedure

The EUT was configured as described in section 5 for this test. The applied level was Amplitude Modulated by a 1 kHz sinusoidal signal to a modulation depth of 80%. The set-up and test methods were according to IEC 61000-4-6.

6.3.2 Test Setup

6.3.3 Test Results

	Test Results of Continuous Conducted Interference					
Ports	Measuring condition	Inject method	Description	Conclusion		
AC Power Port	Frequency range: 0.15 MHz to 80 MHz Induced voltage :3 V (rms)	CDN M2	No fail detected	Pass		
DC Power Port	Frequency range: 0.15 MHz to 80 MHz Induced voltage :3 V (rms)	CDN M2	No fail detected	Pass		
Signal port	Frequency range: 0.15 MHz to 80 MHz Induced voltage :3 V (rms)	Clamp	N/A	N/A		

Performed Item	Item	Required	Actual
Immunity to	Ambient temperature	15°C∼35°C	25°C
Continuous	Relative humidity	25%~75%	55%
Conducted Interference	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

6.4 Immunity to Radiated Electric Fields 80MHz to 2000MHz

6.4.1 Test Procedure

The EUT was configured as described in section 5 for this test. The set-up and test methods were according to EN/IEC 61000-4-3. All sides of the EUT (front, rear, left and right) were tested by antenna with vertical and horizontal polarization.

6.4.2 Test Setup

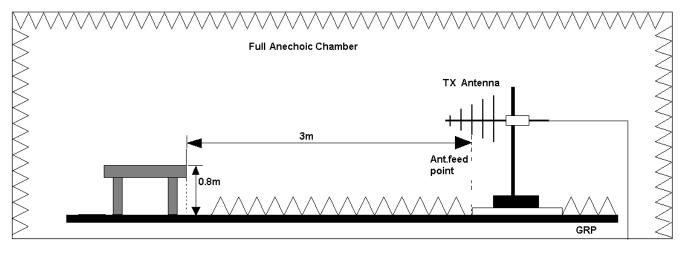
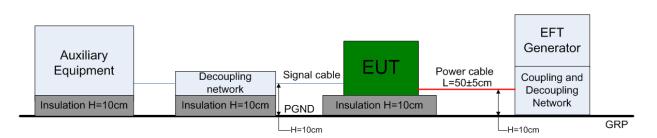


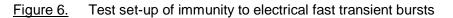
Figure 5. Test set-up of Immunity to Radiated Electric Fields

6.4.3 Test Results

	Test Results of Radiated Electric Fields			
Test side of EUT	Front, Rear, Left, Right			
Criterion	Performance criterion A			
Frequency range & Test Level	80MHz –1000MHz test level: 10 V/m(Unmodulated, rms) 1000MHz –2200MHz test level: 10 V/m(Unmodulated, rms)			
Modulation	80% AM, 0.4kHz			
Conclusion	Pass			

Performed Item	Item	Required	Actual
Immunity to	Ambient temperature	15°C~35°C	25°C
Radiated	Relative humidity	25%~75%	55%
Electric Fields	Atmospheric pressure	86 kPa \sim 106kPa	989kPa




6.5 Immunity to Electrical Fast Transient Bursts

6.5.1 Test Procedure

The EUT was configured as described in section 5 for this test. A series of Fast Transient Bursts meeting the specification were applied for a period of 120 seconds. The Transient Bursts were applied for both Positive and Negative Burst Trains to Power Port. The set-up and test methods were according to IEC 61000-4-4.

6.5.2 Test Setup

6.5.3 Test Results

Т	est Results of Electrical Fast Transie	ent Bursts	
Ports	Measuring condition Couple mode	Description	Conclusion
AC Power Port	Level:±2.0kV, Tr/Th: 5/50ns, 5kHz Interval: 120 seconds	No fail detected	Pass
Telecommunication Port	Level:±1.0kV, Tr/Th: 5/50ns, 100kHz Interval: 120 seconds	N/A	N/A

Remark: This test is not applicable to EUT intended for operation from battery power sources

Test environment condition:

Performed Item	Item	Required	Actual
Immunity to	Ambient temperature	15°C∼35°C	25°C
Electrical Fast	Relative humidity	25%~75%	55%
Transient Bursts	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

EMC_SZ_FR_11.00 RF Release 2014-03-20

6.6 Immunity to Surges

6.6.1 Test Procedure

The EUT was configured as described in section 5 for this test. A series of High Energy Surges were applied to Power Port. The set-up and test methods were according to IEC 61000-4-5.

6.6.2 Test Setup

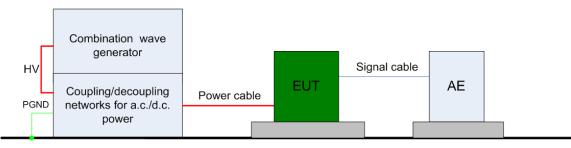


Figure 7. Test set-up of immunity to surge

6.6.3 Test Results

	Test Results of Surges				
Ports	Measuring condition	Description	Conclusion		
AC Power Port	Line to Line: L-N Level:±1.0kV, Tr/Th:1.2/50µs Interval: 60 seconds Phase: Sync	No fail detected	Pass		
Signal Port	Level:±1.0kV, Tr/Th:1.2/50µs Interval: 60 seconds	N/A	N/A		

Remark: This test is not applicable to EUT intended for operation from battery power sources

Performed Item	ltem	Required	Actual
	Ambient temperature	15°C∼35°C	25°C
Immunity to Surges	Relative humidity	25%~75%	55%
Ourges	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

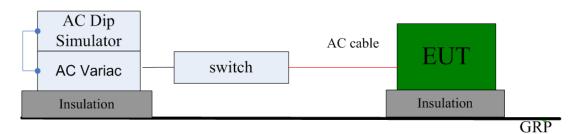
6.7 Immunity to power supply short-term variation (all equipment categories except portable

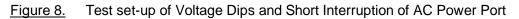
6.7.1 Test Procedure

This test is not applicable to d.c. powered equipment.

Power supply variations shall be applied using a programmable power supply.

The EUT shall be submitted to the following power supply variations relative to nominal value


1/min for 10 min (figure 10):


a) voltage: nominal + (20 ± 1) %, duration 1,5 s \pm 0,2 s, frequency: nominal + $(10 \pm 0,5)$ %, duration 5 s

± 0,5 s, superimposed;

b) voltage: nominal – (20 ± 1) %, duration 1,5 s ± 0,2 s, frequency: nominal – $(10 \pm 0,5)$ %, duration 5 s ± 0,5 s, superimposed. Voltage and frequency variation rise and decay times are 0,2 s ± 0,1 s (from 10 % to 90 %). Further information is given in IEC 61000-4-11.

6.7.2 Test Setup

6.7.3 Test Results

In the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena shall apply.

In the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator; no unintentional responses shall occur at the end of the test.

	Test Results of Voltage	Dips and Short I	nterruption	
Ports	Measuring condition	Performance Criterion	Description	Conclusion
	voltage: nominal + ($20 \pm$ 1) %, duration 1,5 s ± 0,2 s, frequency: nominal + ($10 \pm$ 0,5) %, duration 5 s ± 0,5 s, superimposed;	С	No fail detected	N/A
Power Port	voltage: nominal $-(20 \pm 1)$ %, duration 1,5 s \pm 0,2 s, frequency: nominal $-(10 \pm 0,5)$ %, duration 5 s \pm 0,5 s, superimposed.	С	No fail detected	N/A

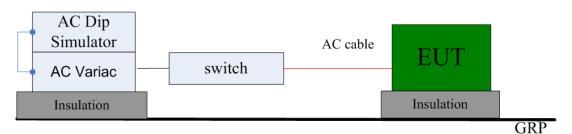
Remark: This test is not applicable to EUT intended for operation from battery power sources

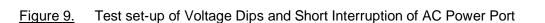
EMC_SZ_FR_11.00 RF Release 2014-03-20

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 48 of 69

Performed Item	Item	Required	Actual
Immunity to	Ambient temperature	15°C∼35°C	25°C
Voltage Dips	Relative humidity	25%~75%	55%
and Short Interruption	Atmospheric pressure	86 kPa \sim 106kPa	989kPa


6.8.1 Test Procedure


This test is not applicable to EUT intended for operation from battery power sources or fitted with or connected to back-up batteries.

The EUT shall be subjected to three breaks in power supply of duration 60 s each.

Further information is in IEC 61000-4-11.

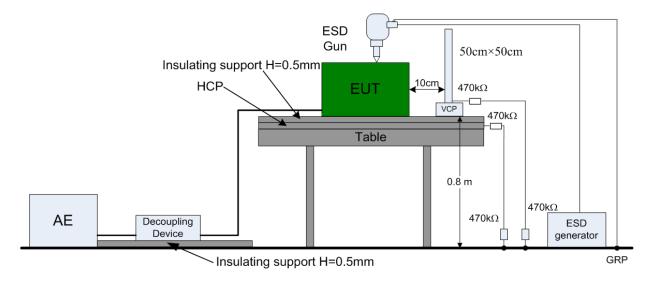
6.8.2 Test Setup

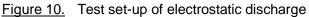
6.8.3 Test Results

In the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena shall apply.

In the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator; no unintentional responses shall occur at the end of the test.

Test Results of Voltage Dips and Short Interruption				
Ports	Measuring condition	Performance Criterion	Description	Conclusion
Power Port	3 breaks in power supply of duration 60 s each	С	No fail detected	N/A


Remark: This test is not applicable to EUT intended for operation from battery power sources


Performed Item	ltem	Required	Actual
Immunity to	Ambient temperature	15°C∼35°C	25°C
Voltage Dips	Relative humidity	25%~75%	55%
and Short Interruption	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

6.9 Immunity to Electrostatic Discharge

6.9.1 Test Set up

6.9.2 Test Results

Details of the points tested were presented in below:

Test Results						
	Specification Level					
Test Points	±6kV Contact Discharges		±8kV Air Discharges		Conclusion	
	Positive	Negative	Positive	Negative		
	Indirect Contact					
Indirect Contact, HCP(left, right, front, rear)	\checkmark	\checkmark	N/A	N/A	Pass	
Indirect Contact, VCP(left, right, front, rear)	\checkmark	\checkmark	N/A	N/A	Pass	
	Direct Cont	tact/ Air Cor	ntact			
Slot	N/A	N/A	~	~	Pass	
Surface	N/A	N/A	~	~	Pass	
Screen	N/A	N/A	~	~	Pass	
Button	N/A	N/A	~	~	Pass	
Antenna	N/A	N/A	~	~	Pass	

Performed Item	Item	Required	Actual
Immunity to	Ambient temperature	15°C~35°C	25°C
Electrostatic	Relative humidity	30%~60%	55%
Discharge	Atmospheric pressure	86 kPa \sim 106kPa	989kPa

Frequency Deviation

6.10 Equipment Used during the Test

ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	RF COMMUNICATION	HP	8920A	3813A10206	11/13/2016
I	TEST SET		0920A	3013A10200	11/13/2010
	·			•	•
Unwa	anted emissions in the spuriou	us domain			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	11/13/2016
2	EMI TEST SOFTWARE	Audix	E3	N/A	N/A
	RF COMMUNICATION				
3	TEST SET	HP	8920A	3813A10206	11/13/2016
4	High-Pass Filter	Anritsu	MP526D	6220878392	11/13/2016
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	11/13/2016
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	11/13/2016
7	HORN ANTENNA	ShwarzBeck	9120D	1011	11/13/2016
8	HORN ANTENNA	ShwarzBeck	9120D	1012	11/13/2016
9	TURNTABLE	MATURO	TT2.0		N/A
10	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
11	SPECTRUM ANALYZER	Agilent	E4407B	MY44210775	11/13/2016
11	O LOTROWANALIZER	Aglient		1011-1-1210/73	11/13/2010
Ero~	IODOV Error & Corrige source /	Conducted)			
	uency Error & Carrier power (,	Model Nic	Contal Ma	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Receiver	Rohde&Schwarz	ESIB26	100009	11/13/2010
2	Climate Chamber	ESPEC	EL-10KA	05107008	11/13/201
3	RF COMMUNICATION	HP	8920A	3813A10206	11/13/201
0	TEST SET		0020/1	0010/110200	11,10,201
Adjac	ent Channel Power				
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Receiver	Rohde&Schwarz	ESI26	100009	11/13/2016
<u>_</u>	RF COMMUNICATION		00004	0040440000	44/40/004/
2	TEST SET	HP	8920A	3813A10206	11/13/2016
				•	
Maxir	num Usable Sensitivity				
	num Usable Sensitivity	Manufacturer	Model No	Serial No	Last Cal
tem	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
ltem 1	Test Equipment Climate Chamber	ESPEC	EL-10KA	05107008	11/13/2016
tem	Test Equipment Climate Chamber RF COMMUNICATION				11/13/2016
tem 1	Test Equipment Climate Chamber	ESPEC	EL-10KA	05107008	11/13/2016
tem 1 2	Test Equipment Climate Chamber RF COMMUNICATION TEST SET	ESPEC	EL-10KA	05107008	11/13/2016
tem 1 2 Adjac	Test Equipment Climate Chamber RF COMMUNICATION TEST SET	ESPEC HP	EL-10KA 8920A	05107008 3813A10206	11/13/2016 11/13/2016
tem 1 2 Adjac tem	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment	ESPEC HP Manufacturer	EL-10KA 8920A Model No.	05107008 3813A10206 Serial No.	11/13/2016 11/13/2016 Last Cal.
tem 1 2 Adjac tem 1	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator	ESPEC HP Manufacturer Rohde&Schwarz	EL-10KA 8920A Model No. SMT03	05107008 3813A10206 Serial No. 100059	11/13/2016 11/13/2016 Last Cal. 11/13/2016
Item 1 2 Adjac Item	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber	ESPEC HP Manufacturer	EL-10KA 8920A Model No.	05107008 3813A10206 Serial No.	11/13/2016 11/13/2016 Last Cal. 11/13/2016
tem 1 2 Adjac tem 1 2	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION	ESPEC HP Manufacturer Rohde&Schwarz ESPEC	EL-10KA 8920A Model No. SMT03 EL-10KA	05107008 3813A10206 Serial No. 100059 05107008	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016
tem 1 2 Adjac tem 1	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber	ESPEC HP Manufacturer Rohde&Schwarz	EL-10KA 8920A Model No. SMT03	05107008 3813A10206 Serial No. 100059	11/13/2016 11/13/2016
tem 1 2 Adjac tem 1 2	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION	ESPEC HP Manufacturer Rohde&Schwarz ESPEC	EL-10KA 8920A Model No. SMT03 EL-10KA	05107008 3813A10206 Serial No. 100059 05107008	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016
tem 1 2 Adjac tem 1 2 3	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A	05107008 3813A10206 Serial No. 100059 05107008 3813A10206	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016
tem 1 2 Adjac tem 1 2 3 Co-ch	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A	05107008 3813A10206 Serial No. 100059 05107008 3813A10206	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016
tem 1 2 Adjac tem 1 2 3 Co-ch or De	Test Equipment Climate Chamber RF COMMUNICATION TEST SET Cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET Channel rejection & Spurious R sensitization	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP esponse Rejection & I	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A nter Modulation R	05107008 3813A10206 Serial No. 100059 05107008 3813A10206 esponse Rejection	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016
tem 1 2 Adjac tem 1 2 3 Co-ch or De tem	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET nannel rejection & Spurious R sensitization Test Equipment	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP esponse Rejection & I Manufacturer	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A nter Modulation R Model No.	05107008 3813A10206 Serial No. 100059 05107008 3813A10206 esponse Rejection Serial No.	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016 11/13/2016 A Blocking Last Cal.
Adjac Adjac Item 1 2 3 Co-ch or De Item 1	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET nannel rejection & Spurious R sensitization Test Equipment Signal Generator	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP esponse Rejection & I Manufacturer Rohde&Schwarz	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A nter Modulation R Model No. SMT03	05107008 3813A10206 Serial No. 100059 05107008 3813A10206 esponse Rejection Serial No. 100059	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016 & Blocking Last Cal. 11/13/2016
Adjac Adjac Item 1 2 3 Co-ch or De Item 1 2	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET nannel rejection & Spurious R sensitization Test Equipment Signal Generator Signal Generator	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP esponse Rejection & I Manufacturer Rohde&Schwarz IFR	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A nter Modulation R Model No.	05107008 3813A10206 Serial No. 100059 05107008 3813A10206 esponse Rejection Serial No.	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016 11/13/2016 & Blocking Last Cal.
tem 1 2 Adjac tem 1 2 3 Co-ch or De tem 1	Test Equipment Climate Chamber RF COMMUNICATION TEST SET cent Channel Selectivity Test Equipment Signal Generator Climate Chamber RF COMMUNICATION TEST SET nannel rejection & Spurious R sensitization Test Equipment Signal Generator	ESPEC HP Manufacturer Rohde&Schwarz ESPEC HP esponse Rejection & I Manufacturer Rohde&Schwarz	EL-10KA 8920A Model No. SMT03 EL-10KA 8920A nter Modulation R Model No. SMT03	05107008 3813A10206 Serial No. 100059 05107008 3813A10206 esponse Rejection Serial No. 100059	11/13/2016 11/13/2016 Last Cal. 11/13/2016 11/13/2016 11/13/2016 & Blocking Last Cal. 11/13/2016

Transient Frequency Behavior						
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.		
Signal Generator	Rohde&Schwarz	SMT03	100059	11/13/2016		

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

				_
Storage Oscilloscope	Tektronix	TDS3054B	B033027	11/13/2016
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	11/13/2016

Radiated Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Ultar-Broadband Antenna	Rohde&Schwarz	HL562	100015	11/13/2016			
2	EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	11/13/2016			
3	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	N/A			
4	Turetable	ETS	2088	2149	N/A			
5	Antenna Mast	ETS	2075	2346	N/A			
6	EMI Test Software	Rohde&Schwarz	ESK1	N/A	N/A			
7	Horn Antenna	Rohde&Schwarz	HF906	100039	11/13/2016			
8	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	11/13/2016			
9	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	11/13/2016			
10	HORNANTENNA	ShwarzBeck	9120D	1011	11/13/2016			
11	TURNTABLE	MATURO	TT2.0		N/A			
12	ANTENNA MAST	MATURO	TAM-4.0-P		N/A			
13	EMI Test Software	Audix	E3	N/A	N/A			

Electr	Electrostatic Discharge						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	ESD Simulator	EM TEST	DITOC0103Z	0301-04	11/13/2016		
2	ESD Simulator	EM TEST	P30	N/A	11/13/2016		
3	ESD Simulator	EM TEST	ESD 30N	P1251107888	11/13/2016		

Cond	Conducted Susceptibility Test							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Signal Generator	IFR	2023A	202304/060	11/13/2016			
2	Amplifier	AR	75A250	302205	11/13/2016			
3	Dual Directional Coupler	AR	DC2600	302389	11/13/2016			
4	6db Attenuator	EMTEST	ATT6/75	0010230A	11/13/2016			
5	EM Clamp	LÜTHI	EM101	335625	11/13/2016			
6	CDN	EMTEST	CDN M3	0802-03	11/13/2016			
7	Audio Analyzer	Rohde&Schwarz	UPL	SB3439	11/13/2016			

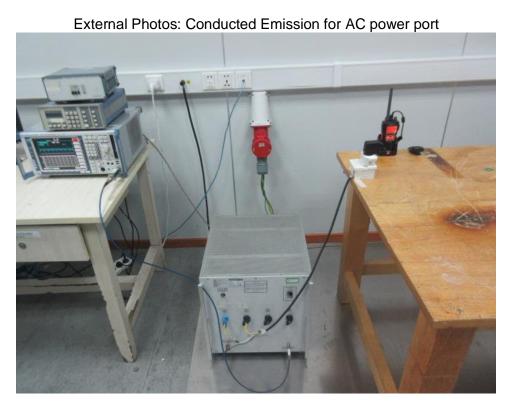
RF EI	RF Electromagnetic Field								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	Signal Generator	IFR	2032	203002/100	11/13/2016				
2	AMPLIFIER	AR	150W1000	301584	11/13/2016				
3	DUAL DIRECTIONAL COUPLER	AR	DC6080	301508	11/13/2016				
4	POWER HEAD	AR	PH2000	301193	11/13/2016				
5	POWER METER	AR	PM2002	302799	11/13/2016				
6	TRANSMITTING AERIAL	AR	AT1080	28570	11/13/2016				
7	POWER AMPLIFIER	AR	25S1G4A	0325511	11/13/2016				
8	DUAL DIRECTIONAL COUPLER	AR	DC7144A	0325100	11/13/2016				
9	TRANSMITTING AERIAL	AR	AT4002A	0324848	11/13/2016				
10	Audio Analyzer	Rohde&Schwarz	UPL	SB3439	11/13/2016				

Voltag	Voltage Fluctuation and Flicker & Harmonic Current					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 SUD

1	Purified Power Source	CALIFORNIA INSTRUMENTS	HFS500	54513	11/13/2016
2	Harmonic And Flicker Analyzer	EM TEST	DPA503S1	0500-10	11/13/2016

Electr	Electrical Fast Transient/Burst Test							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Ultra Compact Simulator	EM TEST	UCS500M6	0500-19	11/13/2016			
2	Coupling Clamp	EM TEST	HFK	1501-14	11/13/2016			

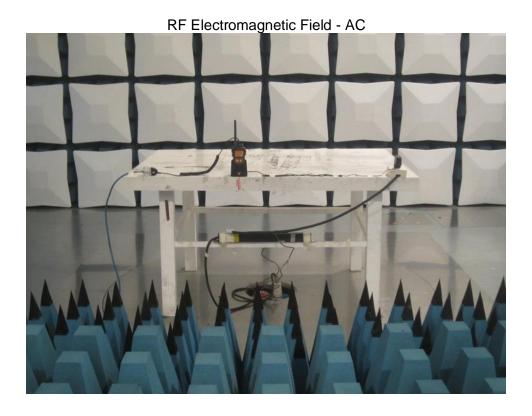

Cond	Conducted Disturbance								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	EMI Test Receiver	Rohde&Schwarz	ESCI	100106	11/13/2016				
2	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	11/13/2016				
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	11/13/2016				
4	Artificial Mains	Rohde&Schwarz	ESH3-Z6	100210	11/13/2016				
5	Artificial Mains	Rohde&Schwarz	ESH3-Z6	100211	11/13/2016				
6	EMI Test Software	Rohde&Schwarz	ESK1	N/A	11/13/2016				

Voltag	Voltage Dips and Interruptions							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Ultra Compact Simulator	EM TEST	UCS500M6	0500-19	11/13/2016			
2	Motor Driven Voltage Transformer	EM TEST	MV2616	0301-11	11/13/2016			

Trans	Transients and surges in the vehicular environment							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Power supply	EM TEST	VDS200N100	V1242114003	11/13/2016			
2	Test Control System	EM TEST	AUTOWAVE	V1242114005	11/13/2016			
3	Pulse Generator	EM TEST	UC S200N100	V1242114002	11/13/2016			
4	Impedance module	EM TEST	LD200N	V1242114001	11/13/2016			

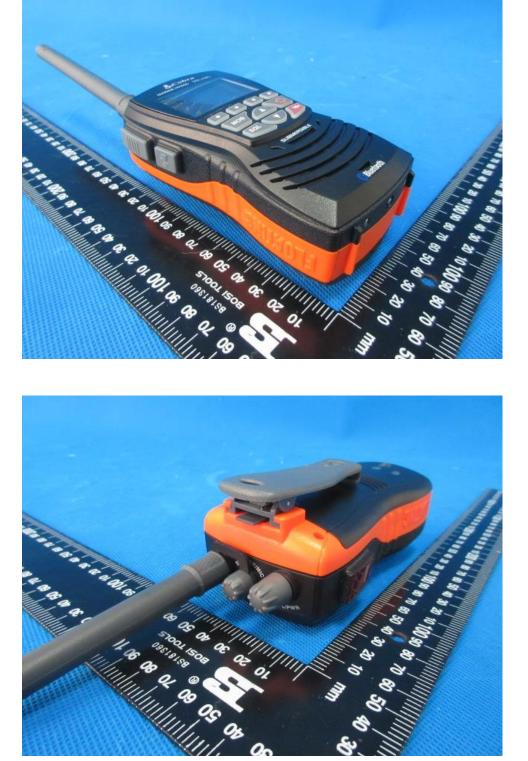
The Cal. Interval was one year.

7 Photographs of Test Setup


RF- Common Mode - AC

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 55 of 69

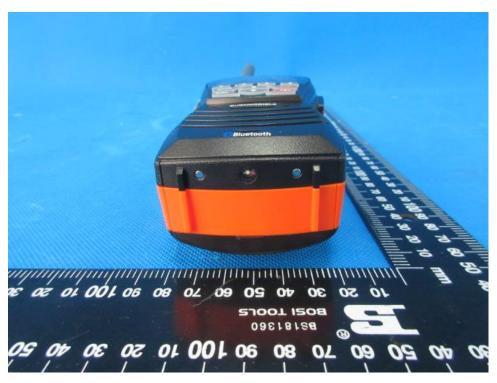


TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 56 of 69

8 Photographs of EUT

External Photos:



EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 57 of 69

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 58 of 69

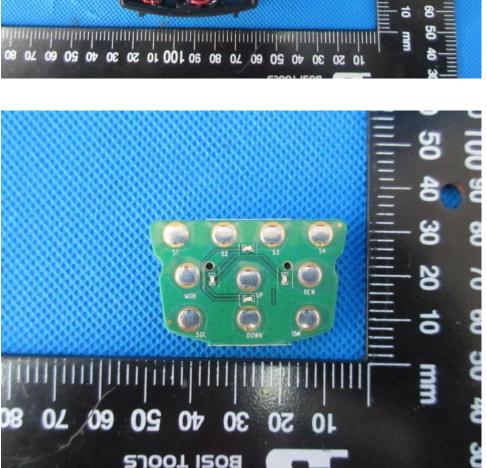
EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 59 of 69

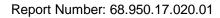
Internal Photos:

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 60 of 69

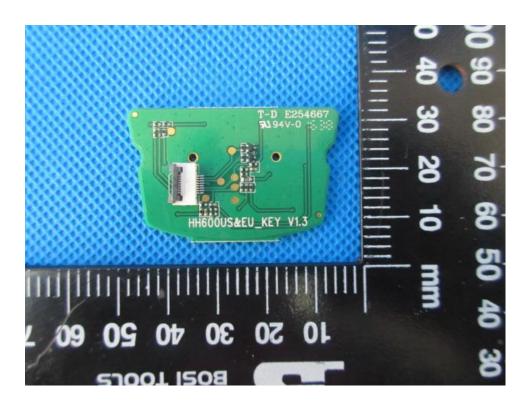


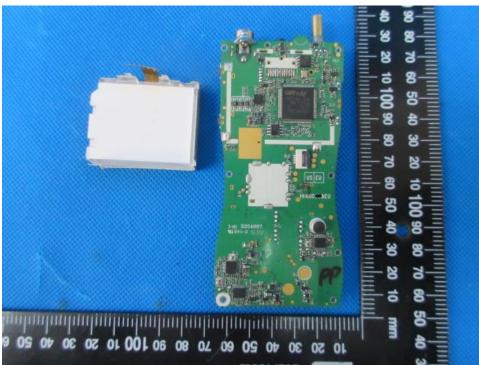
EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

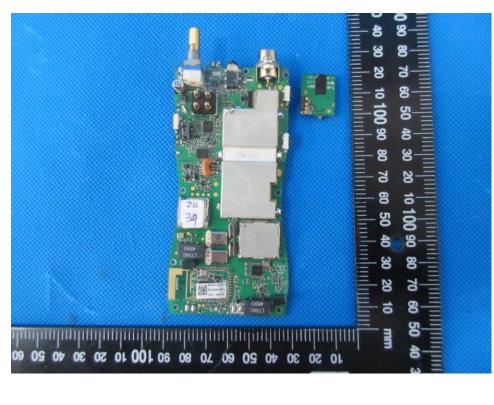

Page 61 of 69

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 62 of 69

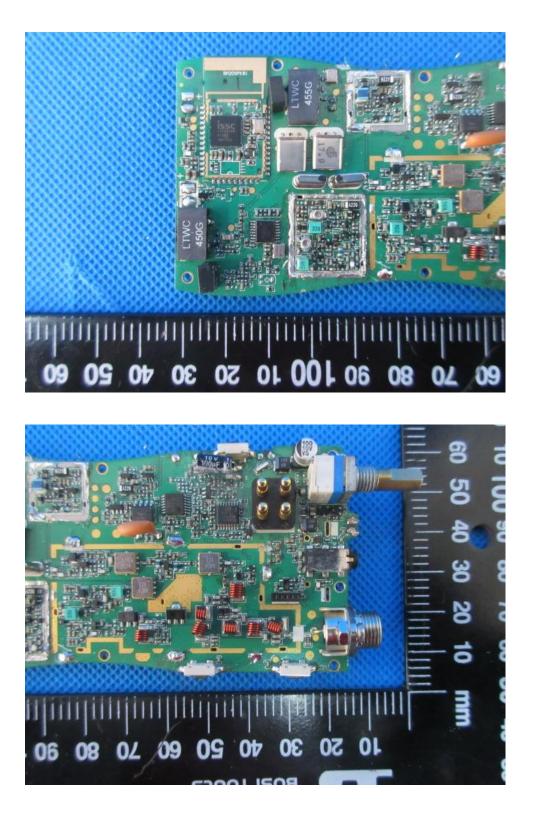




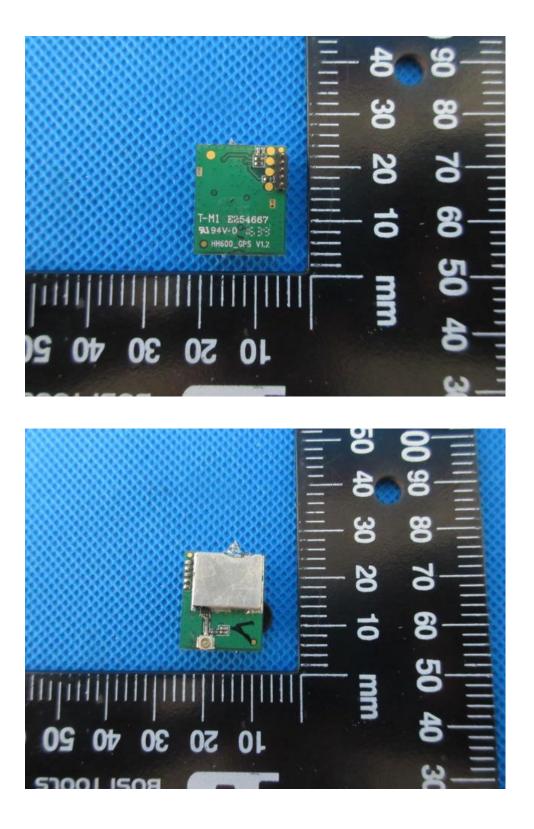


EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 63 of 69

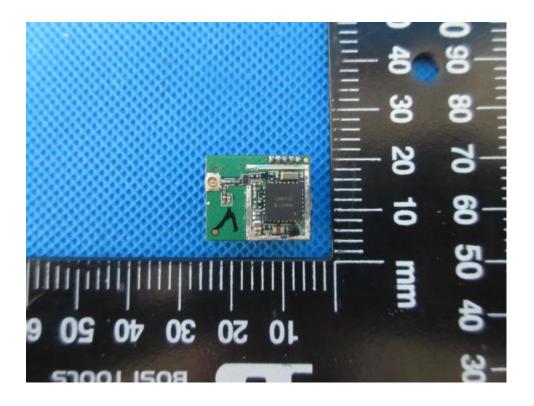


EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 64 of 69



EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 65 of 69



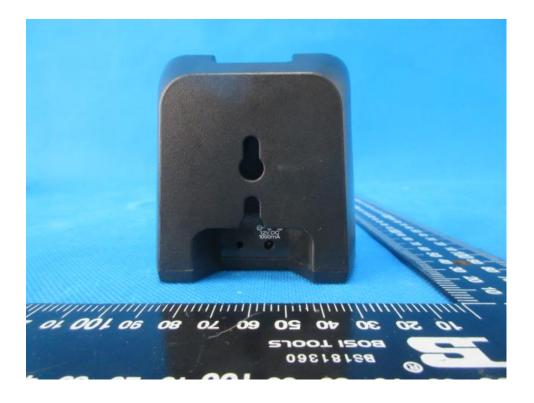
EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 66 of 69

Adapter View:

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 67 of 69


Charger View:

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 68 of 69

Speaker View:

THE END

EMC_SZ_FR_11.00 RF Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 69 of 69