

| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |  |
|-------------------------|-----------------|----------|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-2   | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

# **RF EXPOSURE EVALUATION**

### **SPECIFIC ABSORPTION RATE**

### **SAR TEST REPORT**

**FOR** 

### **COBRA ELECTRONICS CORPORATION**

### PORTABLE FM UHF FRS/GMRS PTT RADIO TRANSCEIVER

MODEL(S): LI6000, LI6050

FCC ID: BBOLI6000

IC: 906B-LI6000

**Test Report Serial Number** 121505BBO-T709-S95U

Test Report Issue No. S709-011106-R0

#### **Test Lab**

**Celltech Compliance Testing & Engineering Lab** (Celltech Labs Inc.) 1955 Moss Court Kelowna, BC Canada **V1Y 9L3** 

**Test Report Prepared By:** 

Cheri Franziadakia Cheri Frangiadakis **Test Report Writer** 

Celltech Labs Inc.

Jonathan Hughes

**General Manager** Celltech Labs Inc.

**Test Report Approved By:** 

| Applicant:                                                                                                                                   | Cob  | ra Electronic | s Corporation  | FCC ID:                   | BBOLI6000 | IC ID:                  | 906B-LI6000 | Cobra                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----------------|---------------------------|-----------|-------------------------|-------------|------------------------|
| Model(s):                                                                                                                                    | LI60 | 00, LI6050    | Portable FRS/0 | MRS PTT Radio Transceiver |           | 462.5500 - 467.7125 MHz |             | BLECTROMES COMPORATION |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |      |               |                |                           |           | Page 1 of 40            |             |                        |



| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|-----------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2   | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

# DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

#### **Test Lab**

#### **CELLTECH LABS INC.**

Testing and Engineering Services 1955 Moss Court

Kelowna, B.C. Canada V1Y 9L3 Phone: 250-448-7047

Fax: 250-448-7046 e-mail: info@celltechla

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

#### **Applicant Information**

#### **COBRA ELECTRONICS CORPORATION**

6500 West Cortland Street Chicago, IL 60707 United States

FCC IDENTIFIER: BBOLI6000
IC IDENTIFER: 906B-LI6000
Model(s): LI6000, LI6050

SAR Test Requirement(s): FCC 47 CFR §2.1093; Health Canada Safety Code 6 SAR Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01)

Industry Canada RSS-102 Issue 2

Device Description: Portable UHF FRS/GMRS PTT Radio Transceiver

Modulation Type: FM (UHF)

Transmit Frequency Range(s): 462.5500 - 462.7250 MHz (GMRS Channels 15-22)

462.5625 - 462.7125 MHz (FRS/GMRS Channels 1-7)

467.5625 - 467.7125 MHz (FRS Channels 8-14)

Max. RF Output Power Tested: 0.372 Watts (25.71 dBm) ERP (462.6375 MHz) GMRS Channel 4

Antenna Type(s) Tested: External Fixed Stubby
Battery Type(s) Tested: Lithium-ion 7.4 V, 950 mAh

Body-Worn Accessories Tested: Plastic Belt-Clip (6 mm thickness)
Audio Accessories Tested: Generic Earbud with Lapel-Microphone

Max. SAR Level(s) Evaluated: Face-Held: 0.243 W/kg (1g) - 50% duty cycle Body-Worn: 0.554 W/kg (1g) - 50% duty cycle

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Tested By:

Sean Johnston

Compliance Technologist

Celltech Labs Inc.

Reviewed By:

Spencer Watson

Senior Compliance Technologist

Spencer Watson

Celltech Labs Inc.



| Applicant:       | Cob     | ra Electronic            | s Corporation                                                                                               | FCC ID:                    | BBOLI6000 | IC ID:                  | 906B-LI6000 | Cobra                   |
|------------------|---------|--------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-------------------------|-------------|-------------------------|
| Model(s):        | LI60    | 0, LI6050 Portable FRS/0 |                                                                                                             | GMRS PTT Radio Transceiver |           | 462.5500 - 467.7125 MHz |             | ELECTRONICS COMPORATION |
| 2006 Celltech La | bs Inc. | This document            | ment is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                            |           |                         |             | Page 2 of 40            |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |  |  |
|-------------------------|---------------|----------|--------------------|--------------------|--|--|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |  |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |  |

| TABLE OF CONTENTS                                 |    |  |  |  |  |
|---------------------------------------------------|----|--|--|--|--|
| 1.0 INTRODUCTION                                  | 4  |  |  |  |  |
| 2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)        | 4  |  |  |  |  |
| 3.0 SAR MEASUREMENT SYSTEM                        | 5  |  |  |  |  |
| 4.0 MEASUREMENT SUMMARY                           | 6  |  |  |  |  |
| 5.0 DETAILS OF SAR EVALUATION                     | 7  |  |  |  |  |
| 6.0 EVALUATION PROCEDURES                         | 7  |  |  |  |  |
| 7.0 SYSTEM PERFORMANCE CHECK                      | 8  |  |  |  |  |
| 8.0 SIMULATED EQUIVALENT TISSUES                  | 9  |  |  |  |  |
| 9.0 SAR SAFETY LIMITS                             | 9  |  |  |  |  |
| 10.0 ROBOT SYSTEM SPECIFICATIONS                  | 10 |  |  |  |  |
| 11.0 PROBE SPECIFICATION (ET3DV6)                 | 11 |  |  |  |  |
| 12.0 SIDE PLANAR PHANTOM                          | 11 |  |  |  |  |
| 13.0 VALIDATION PLANAR PHANTOM                    | 11 |  |  |  |  |
| 14.0 DEVICE HOLDER                                | 11 |  |  |  |  |
| 15.0 TEST EQUIPMENT LIST                          | 12 |  |  |  |  |
| 16.0 MEASUREMENT UNCERTAINTIES                    | 13 |  |  |  |  |
| MEASUREMENT UNCERTAINTIES (CONT.)                 | 14 |  |  |  |  |
| 17.0 REFERENCES                                   | 15 |  |  |  |  |
| APPENDIX A - SAR MEASUREMENT DATA                 | 16 |  |  |  |  |
| APPENDIX B - SYSTEM PERFORMANCE CHECK DATA        | 22 |  |  |  |  |
| APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS | 27 |  |  |  |  |
| APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS     | 31 |  |  |  |  |
| APPENDIX E - SYSTEM VALIDATION                    | 39 |  |  |  |  |
| APPENDIX F - PROBE CALIBRATION                    | 40 |  |  |  |  |
|                                                   |    |  |  |  |  |

| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:                                 | BBOLI6000                 | IC ID:           | Cobr                    |           |  |
|------------------|----------|---------------|-------------------------|-----------------------------------------|---------------------------|------------------|-------------------------|-----------|--|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | Portable FRS/GMRS PTT Radio Transceiver |                           |                  | 462.5500 - 467.7125 MHz |           |  |
| 2006 Celltech La | ıbs Inc. | This document | t is not to be reproduc | ed in whole or in p                     | part without the prior wr | itten permission | of Celltech Labs Inc.   | Page 3 of |  |



| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|-----------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2   | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 1.0 INTRODUCTION

This measurement report demonstrates compliance of the Cobra Electronics Corporation Model(s): L16000, L16050 Portable UHF FRS/GMRS PTT Radio Transceiver FCC ID: BBOL16000 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]), were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

### 2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

|                              |                                               | FC                         | C Ru    | ıle Part 4 | 7 CFR §2.109          | 93                  |                |  |
|------------------------------|-----------------------------------------------|----------------------------|---------|------------|-----------------------|---------------------|----------------|--|
| SAR Test Requirement(s)      |                                               |                            |         |            | Safety Code (         |                     |                |  |
|                              |                                               |                            |         |            |                       |                     | 14)            |  |
| SAR Test Procedure(s)        | FCC OET Bulletin 65, Supplement C (01-01)     |                            |         |            |                       |                     |                |  |
|                              |                                               | Indi                       | ustry ( | Canada I   | RSS-102 Issu          | e 2                 |                |  |
| Device Description           | P                                             | ortable FM l               | JHF F   | RS/GMF     | RS PTT Radio          | Tran                | sceiver        |  |
| RF Exposure Category         | General Population / Uncontrolled Environment |                            |         |            |                       | nent                |                |  |
| FCC IDENTIFIER               | BBOLI6000                                     |                            |         |            |                       |                     |                |  |
| IC IDENTIFIER                | 906B-LI6000                                   |                            |         |            |                       |                     |                |  |
| Model(s)                     | LI6000                                        |                            |         | LI6050     |                       |                     |                |  |
| Test Sample Serial No.       | 0025783                                       |                            |         |            | Ide                   | Identical Prototype |                |  |
| Modulation Type              |                                               |                            |         | FM (L      | JHF)                  |                     |                |  |
|                              | 462.550                                       | 0 - 462.7250               | ) MHz   | Z          | GMRS Channels 15-22   |                     |                |  |
| Transmit Frequency Range(s)  | 462.562                                       | 5 - 462.712                | 5 MHz   | <u>z</u>   | FRS/GMRS Channels 1-7 |                     |                |  |
|                              | 467.562                                       | 5 - 467.712                | 5 MHz   | Z          | FR                    | S Cha               | annels 8-14    |  |
| Max. RF Output Power Tested  | 0.372 Watts                                   | 25.71 dB                   | m       | ERP        | 462.6375 N            | ЛHz                 | GMRS Channel 4 |  |
| Antenna Type(s) Tested       |                                               |                            | Ext     | ternal Fix | ed Stubby             |                     |                |  |
| Battery Type(s) Tested       | Lithium-                                      | ion                        |         | 7.4        | V                     |                     | 950 mAh        |  |
| Body-Worn Accessories Tested | Pla                                           | stic Belt-Cli <sub>l</sub> | 0       |            |                       | 3 mm                | thickness      |  |
| Audio Accessories Tested     |                                               | Gener                      | ic Ear  | rbud with  | Lapel-Microp          | hone                |                |  |

| Applicant:       | Cob      | ra Electronic | s Corporation                           | FCC ID:             | BBOLI6000                 | IC ID:           | 906B-LI6000           | Cobi     |
|------------------|----------|---------------|-----------------------------------------|---------------------|---------------------------|------------------|-----------------------|----------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/GMRS PTT Radio Transceiver |                     | 462.5500                  | BLECTROMES COMPO |                       |          |
| 2006 Celltech La | ibs Inc. | This document | t is not to be reproduce                | ed in whole or in p | part without the prior wr | itten permission | of Celltech Labs Inc. | Page 4 o |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.



DASY4 SAR Measurement System with Plexiglas validation phantom



DASY4 SAR Measurement System with Plexiglas side planar phantom

| Applicant:       | Cob                                                                                                                                          | ra Electronic | s Corporation | FCC ID:     | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------|------------------|----------|----------------|-------------------------|
| Model(s):        | LI6000, LI6050 Portable FRS/6                                                                                                                |               |               | SMRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPONATION |
| 2006 Celltech La | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |               |               |             |                  |          | Page 5 of 40   |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 4.0 MEASUREMENT SUMMARY

|         |                               |     |       |             |            |         | SAR        | EVAL                                     | LUATIO                     | N RE                | SULTS                        | 3                   |               |                 |                        |             |                         |
|---------|-------------------------------|-----|-------|-------------|------------|---------|------------|------------------------------------------|----------------------------|---------------------|------------------------------|---------------------|---------------|-----------------|------------------------|-------------|-------------------------|
| Test    | Test                          |     | req.  | Chan.       | Test       | Battery | ry Antenna |                                          | Accessorie<br>Tested       | Di                  | paration<br>stance<br>Planar | ERP<br>Start        |               | ed SAR<br>V/kg) | SAR<br>Drift<br>During | with (      | d SAR<br>droop<br>V/kg) |
| Type    | Date                          | (IV | /IHz) |             | Mode       | Type    | Pos        | sition                                   | Body-Worn                  | Ph                  | antom                        | Power<br>(Watts)    | Power Duty Cy |                 | Test                   |             | Cycle                   |
|         |                               |     |       |             |            |         |            |                                          | Audio                      |                     | (cm)                         | (11440)             | 100%          | 50%             | (dB)                   | 100%        | 50%                     |
| Face    | Dec 22                        | 462 | .6375 | 4           | CW         | Li-ion  | Fi         | xed                                      |                            |                     | 2.5                          | 0.372               | 0.486         | 0.243           | 0.0370                 |             |                         |
| Body    | Dec 21                        | 462 | 6375  | 4           | CW         | Li-ion  | Fi         | xed -                                    | Belt-Clip<br>Ear-Mic       |                     | 0.6                          | 0.372               | 0.797         | 0.399           | -1.43                  | 1.11        | 0.554                   |
|         |                               |     | C95.1 |             |            |         |            |                                          | ODY: 1.6 W<br>d over 1 gra |                     |                              | Unc                 | ontrolled     |                 | al Peak<br>re / Gene   | ral Populat | ion                     |
| Tes     | st Date(s)                    |     |       | Decemb      | er 22, 200 | )5      |            | Decem                                    | ber 21, 200                | 5                   | Mea                          | Measured Fluid Type |               |                 |                        | Body        | Unit                    |
|         |                               |     |       | 450 M       | Hz Brain   |         |            | 450                                      | MHz Body                   |                     | Atm                          | ospheric F          | Pressure      | 10              | 0.8                    | 102.0       | kPa                     |
| Dielect | tric Consta<br>ε <sub>r</sub> | ant | IEEE  | Target      | Meas.      | Dev.    | IEEE       | Target                                   | Meas.                      | Dev.                | R                            | elative Hu          | midity        | 3               | 30                     | 30          | %                       |
|         | <b>-</b>                      |     | 43.5  | <u>+</u> 5% | 42.7       | -1.8%   | 56.7       | <b>56.7</b> <u>+</u> <b>5%</b> 56.7 0.0% |                            | Ambient Temperature |                              | 24                  | 4.1           | 23.6            | °C                     |             |                         |
|         |                               |     |       | 450 M       | Hz Brain   |         |            | 450 MHz Body                             |                            | Flo                 | uid Tempe                    | rature              | 22            | 2.0             | 22.8                   | °C          |                         |
|         | nductivity<br>(mho/m)         |     | IEEE  | Target      | Meas.      | Dev.    | IEEE       | Target                                   | Meas. Dev.                 |                     |                              | Fluid De            | oth           | >               | 15                     | >15         | cm                      |
|         | (,                            |     | 0.87  | <u>+</u> 5% | 0.85       | -2.3%   | 0.94       | <u>+</u> 5%                              | 0.95                       | +1.1%               |                              | ρ ( <b>Kg</b> /m    | 3)            | 10              | 000                    | 1000        | )                       |

#### Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. The transmission band of the DUT is less than 10 MHz; therefore mid channel data only is reported (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power droop measured by the DASY4 system for the duration of the SAR evaluation was added to the measured SAR level to report a scaled SAR result as shown in the above test data table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 5. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).
- 6. The SAR evaluations were performed within 24 hours of the system performance check.

| (    | Celltech<br>Tesing and Engineering Services Lad |              | Electroni     | cs       |                 |           | t Start Date:<br>st End Date: |                                          |                                |                 |       |                        |            |
|------|-------------------------------------------------|--------------|---------------|----------|-----------------|-----------|-------------------------------|------------------------------------------|--------------------------------|-----------------|-------|------------------------|------------|
|      | Со                                              |              | Polarity      | Distance | Carrier Channel | Frequency | Corrected<br>Field Strength   | Substituted SA<br>Level<br>(Uncorrected) | Power<br>Applied to<br>Antenna | Antenna<br>Gain |       | lated ERP<br>ier Level |            |
| EUT# | Orientation                                     | Power Source | Accessory     |          | m               | 0         | MHz                           | dBuV/m                                   | dBm                            | dBm             | dBd   | dBm                    | milliWatts |
| 1    | Long Edge Up                                    | Li-lon       | none          | Η        | 3               | 15        | 462.5500                      | 129.57                                   | 109.10                         | 25.77           | -0.19 | 25.39                  | 345.91     |
| 1    | Long Edge Up                                    | Li-lon       | none          | ٧        | 3               | 15        | 462.5500                      | 120.27                                   | 99.80                          | 17.72           | -0.19 | 17.34                  | 54.20      |
| 1    | Long Edge Up                                    | Li-lon       | none          | Н        | 3               | 4         | 462.6375                      | 129.68                                   | 109.20                         | 25.90           | -0.19 | 25.71                  | 372.34     |
| 1    | Long Edge Up                                    | Li-lon       | none          | ٧        | 3               | 4         | 462.6375                      | 120.58                                   | 100.10                         | 18.12           | -0.19 | 17.74                  | 59.41      |
| 1    | Long Edge Up                                    | Li-lon       | none          | Н        | 3               | 22        | 462.7250                      | 129.68                                   | 109.20                         | 25.85           | -0.19 | 25.47                  | 352.22     |
| 1    | Long Edge Up                                    | Li-lon       | none          | ٧        | 3               | 22        | 462.7250                      | 120.38                                   | 99.90                          | 17.85           | -0.19 | 17.47                  | 55.82      |
|      | Comment:<br>Measurement n<br>Bold indicates     |              | eter distance | , with   | the El          | JT pla    | ced 1 meter                   | above the g                              | round plane                    | -               |       |                        |            |

| Applicant:       | Cob      | ra Electronic | s Corporation                                                                                                      | FCC ID:     | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |  |
|------------------|----------|---------------|--------------------------------------------------------------------------------------------------------------------|-------------|------------------|----------|----------------|-------------------------|--|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0                                                                                                     | SMRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | ELECTRONICS COMPORATION |  |
| 2006 Celltech La | ibs Inc. | This document | is document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |                  |          |                |                         |  |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 5.0 DETAILS OF SAR EVALUATION

The Cobra Electronics Corporation Model(s): Ll6000, Ll6050 Portable FM UHF FRS/GMRS PTT Radio Transceiver FCC ID: BBOLl6000 was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm separation distance was maintained between the front of the DUT and the outer surface of the planar phantom.
- 2. The DUT was tested in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached plastic belt-clip accessory was touching the planar phantom and provided a 0.6 cm separation distance from the back of the DUT to the outer surface of the planar phantom. The DUT was evaluated for body-worn SAR with a generic ear-bud lapel-microphone audio accessory connected to the audio port.
- 3. The RF conducted output power of the DUT could not be measured due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted power level preset by the manufacturer.
- 4. The DUT was evaluated for SAR at the maximum ERP level measured prior to the SAR evaluation (see ERP data table on page 6) at Celltech Labs' 3-meter Open Area Test Site using the signal substitution method in accordance with ANSI/TIA-603-C-2004 (see reference [6]).
- 5. The power drift of the DUT during the SAR evaluations was measured by the DASY4 system.
- 6. A SAR-versus-Time power drift evaluation was performed in the test configuration that reported the maximum-scaled SAR level. See Appendix A (SAR Test Plots) for SAR-versus-Time power drift evaluation plot.
- 7. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 8. The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 9. The SAR evaluations were performed using a Plexiglas planar phantom.
- 10. The SAR evaluations were performed within 24 hours of the system performance check.

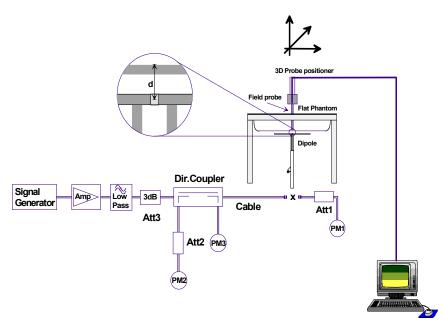
### **6.0 EVALUATION PROCEDURES**

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
  - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
  - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
  - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

| Applicant:       | Cob      | ra Electronic | s Corporation                                                                                                   | FCC ID:     | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |  |
|------------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------|-------------|------------------|----------|----------------|-------------------------|--|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0                                                                                                  | GMRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | ELECTRONICS COMPORATION |  |
| 2006 Celltech La | ibs Inc. | This document | locument is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |                  |          |                |                         |  |



| Test Report Serial No.: | 121505BBO-T7 | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|--------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21- | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure  | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |


### 7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a Plexiglas planar phantom and 450MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of  $\pm 10\%$  (see Appendix B for system performance check test plots).

|          | SYSTEM PERFORMANCE CHECK EVALUATION |                |       |       |                |                                    |       |                        |       |       |         |               |               |               |        |                 |
|----------|-------------------------------------|----------------|-------|-------|----------------|------------------------------------|-------|------------------------|-------|-------|---------|---------------|---------------|---------------|--------|-----------------|
| Test     | Test 450MHz SAR 1g (W/kg)           |                |       |       |                | Dielectric Constant ε <sub>r</sub> |       | Conductivity σ (mho/m) |       |       | ρ       | Amb.          | Fluid         | Fluid         | Humid. | Barom.          |
| Date     | Equiv.<br>Tissue                    | IEEE<br>Target | Meas. | Dev.  | IEEE<br>Target | Meas.                              | Dev.  | IEEE<br>Target         | Meas. | Dev.  | (Kg/m³) | Temp.<br>(°C) | Temp.<br>(°C) | Depth<br>(cm) | (%)    | Press.<br>(kPa) |
| 12/21/05 | Brain                               | 1.23 ±10%      | 1.31  | +6.5% | 43.5 ±5%       | 42.6                               | -2.1% | 0.87 ±5%               | 0.85  | -2.3% | 1000    | 22.4          | 22.1          | ≥ 15          | 30     | 102.1           |
| 12/22/05 | Brain                               | 1.23 ±10%      | 1.31  | +6.5% | 43.5 ±5%       | 42.7                               | -1.8% | 0.87 ±5%               | 0.85  | -2.3% | 1000    | 23.5          | 21.9          | ≥ 15          | 30     | 100.8           |

#### Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.







450 MHz Dipole Setup

| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:      | BBOLI6000        | IC ID: 906B-LI6000 |                | Cobra                   |  |
|------------------|----------|---------------|-------------------------|--------------|------------------|--------------------|----------------|-------------------------|--|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | SMRS PTT Ra  | idio Transceiver | 462.5500           | - 467.7125 MHz | BLECTRONICS COMPONATION |  |
| 2006 Celltech La | abs Inc. | This documen  | t is not to be reproduc | Page 8 of 40 |                  |                    |                |                         |  |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 8.0 SIMULATED EQUIVALENT TISSUES

The 450MHz brain and body simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures, and measured for dielectric parameters (permittivity and conductivity).

|             | SIMULATED TISSUE MIXTURES     |                |  |  |  |  |  |  |  |
|-------------|-------------------------------|----------------|--|--|--|--|--|--|--|
| INGREDIENT  | 450 MHz Brain                 | 450 MHz Body   |  |  |  |  |  |  |  |
| INOREDIENT  | System Check & DUT Evaluation | DUT Evaluation |  |  |  |  |  |  |  |
| Water       | 38.56 %                       | 52.00 %        |  |  |  |  |  |  |  |
| Sugar       | 56.32 %                       | 45.65 %        |  |  |  |  |  |  |  |
| Salt        | 3.95 %                        | 1.75 %         |  |  |  |  |  |  |  |
| HEC         | 0.98 %                        | 0.50 %         |  |  |  |  |  |  |  |
| Bactericide | 0.19 %                        | 0.10 %         |  |  |  |  |  |  |  |

### 9.0 SAR SAFETY LIMITS

|                                                                 | SAR (                                                          | (W/kg)                                                 |
|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| EXPOSURE LIMITS                                                 | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |
| Spatial Average (averaged over the whole body)                  | 0.08                                                           | 0.4                                                    |
| Spatial Peak<br>(averaged over any 1g of tissue)                | 1.60                                                           | 8.0                                                    |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10g) | 4.0                                                            | 20.0                                                   |

#### Notes:

- Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

| Applicant:       | Cob                           | ra Electronic                                                                                                        | s Corporation | FCC ID:     | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------------|----------|----------------|-------------------------|
| Model(s):        | LI6000, LI6050 Portable FRS/0 |                                                                                                                      |               | SMRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | ibs Inc.                      | This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |               |             |                  |          | Page 9 of 40   |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure          | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 10.0 ROBOT SYSTEM SPECIFICATIONS

**Specifications** 

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

**Repeatability:** 0.02 mm **No. of axis:** 6

**Data Acquisition Electronic (DAE) System** 

**Cell Controller** 

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

**Data Converter** 

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

**Software:** DASY4 software

**Connecting Lines:** Optical downlink for data and status info.

Optical uplink for commands and clock

**DASY4 Measurement Server** 

Function: Real-time data evaluation for field measurements and surface detection

**Hardware:** PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM **Connections:** COM1, COM2, DAE, Robot, Ethernet, Service Interface

**E-Field Probe** 

Model: ET3DV6 Serial No.: 1387

**Construction:** Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

**Linearity:**  $\pm 0.2 \text{ dB} (30 \text{ MHz to 3 GHz})$ 

Phantom(s)

**Evaluation Phantom** 

**Type:** Side Planar Phantom

Shell Material: Plexiglas

Bottom Thickness: 2.0 mm ± 0.1 mm

Outer Dimensions: 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)

Validation Phantom (≤ 450MHz)

Type: Planar Phantom Shell Material: Plexiglas

**Bottom Thickness:**  $6.2 \text{ mm} \pm 0.1 \text{ mm}$ 

**Outer Dimensions:** 86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)

| Applicant:       | Cob      | obra Electronics Corporation |                          | FCC ID:                   | BBOLI6000                  | IC ID:                  | 906B-LI6000           | Cobra                   |
|------------------|----------|------------------------------|--------------------------|---------------------------|----------------------------|-------------------------|-----------------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                   | Portable FRS/0           | MRS PTT Radio Transceiver |                            | 462.5500 - 467.7125 MHz |                       | BLECTHONICS COMPONATION |
| 2006 Celltech La | ibs Inc. | This document                | t is not to be reproduce | ed in whole or in p       | part without the prior wri | tten permission         | of Celltech Labs Inc. | Page 10 of 40           |



| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|-----------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2   | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity:  $\pm$  0.2 dB

(30 MHz to 3 GHz)

Directivity:  $\pm$  0.2 dB in brain tissue (rotation around probe axis)

 $\pm$  0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5  $\mu$ W/g to > 100 mW/g; Linearity:  $\pm$  0.2 dB

Surface Detection:  $\pm$  0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone



ET3DV6 E-Field Probe

### 12.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.



Plexiglas Side Planar Phantom

### 13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for SAR validations at 450MHz and below. The validation planar phantom is mounted in the table of the DASY4 compact system.



**Validation Planar Phantom** 

#### 14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.



**Device Holder** 

| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:       | BBOLI6000       | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|-------------------------|---------------|-----------------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | SMRS PTT Ra   | dio Transceiver | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This document | t is not to be reproduc | Page 11 of 40 |                 |          |                |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **15.0 TEST EQUIPMENT LIST**

|      | TEST EQUIPMENT                           | ASSET NO. | SERIAL NO. |         | TE      | CALIBRATION |
|------|------------------------------------------|-----------|------------|---------|---------|-------------|
| USED | DESCRIPTION                              | ASSET NO. | SERIAL NO. | CALIB   | RATED   | DUE DATE    |
| х    | Schmid & Partner DASY4 System            | -         | -          |         | -       | -           |
| Х    | -DASY4 Measurement Server                | 00158     | 1078       | N       | /A      | N/A         |
| Х    | -Robot                                   | 00046     | 599396-01  | N       | /A      | N/A         |
| х    | -DAE4                                    | 00019     | 353        | 15Jւ    | un05    | 15Jun06     |
|      | -DAE3                                    | 00018     | 370        | 25Ja    | an05    | 25Jan06     |
| Х    | -ET3DV6 E-Field Probe                    | 00016     | 1387       | 18M     | ar05    | 18Mar06     |
|      | -ET3DV6 E-Field Probe                    | 00017     | 1590       | 20M     | ay05    | 20May06     |
|      | -EX3DV4 E-Field Probe                    | 00125     | 3547       | 21Ja    | an05    | 21Jan06     |
|      | -300MHz Validation Dipole                | 00023     | 135        | 250     | ct05    | 25Oct06     |
| Х    | -450MHz Validation Dipole                | 00024     | 136        | 250     | ct05    | 25Oct06     |
|      | 025MH- Validation Dinala                 | 00000     | 444        | Brain   | 30Mar05 | 30Mar06     |
|      | -835MHz Validation Dipole                | 00022     | 411        | Body    | 12Apr05 | 12Apr06     |
|      | 000MH - Validation Dinala                | 00000     | 054        | Brain   | 10Jun05 | 10Jun06     |
|      | -900MHz Validation Dipole                | 00020     | 054        | Body    | 10Jun05 | 10Jun06     |
|      | 4000MH= Velideties Bissle                | 00004     | 0.47       | Brain   | 14Jun05 | 14Jun06     |
|      | -1800MHz Validation Dipole               | 00021     | 247        | Body    | 14Jun05 | 14Jun06     |
|      | 4000MH= Velideties Bissle                | 00000     | 454        | Brain   | 17Jun05 | 17Jun06     |
|      | -1900MHz Validation Dipole               | 00032     | 151        | Body    | 22Apr05 | 22Apr06     |
|      | 0.450MH= Velideties Bisele               | 00005     | 450        | Brain   | 20Sep05 | 20Sep06     |
|      | -2450MHz Validation Dipole               | 00025     | 150        | Body    | 22Apr05 | 22Apr06     |
|      | FOOOMULE Velidation Discola              | 00400     | 4004       | Brain   | 11Jan05 | 11Jan06     |
|      | -5000MHz Validation Dipole               | 00126     | 1031       | Body    | 11Jan05 | 11Jan06     |
|      | -SAM Phantom V4.0C                       | 00154     | 1033       | N       | /A      | N/A         |
|      | -Barski Planar Phantom                   | 00155     | 03-01      | N       | /A      | N/A         |
| Х    | -Plexiglas Side Planar Phantom           | 00156     | 161        | N       | /A      | N/A         |
| Х    | -Plexiglas Validation Planar Phantom     | 00157     | 137        | N       | /A      | N/A         |
|      | HP 85070C Dielectric Probe Kit           | 00033     | N/A        | N       | /A      | N/A         |
| Х    | ALS-PR-DIEL Dielectric Probe Kit         | 00160     | 260-00953  | N       | /A      | N/A         |
| х    | Gigatronics 8652A Power Meter            | 00110     | 1835801    | 16A     | pr05    | 16Apr06     |
|      | Gigatronics 8652A Power Meter            | 80000     | 1835267    | 29A     | pr05    | 29Apr06     |
| х    | Gigatronics 80701A Power Sensor          | 00012     | 1834350    | 125     | ep05    | 12Sep06     |
|      | Gigatronics 80701A Power Sensor          | 00014     | 1833699    | 07Sep05 |         | 07Sep06     |
| х    | Gigatronics 80701A Power Sensor          | 00109     | 1834366    | 16A     | pr05    | 16Apr06     |
| х    | HP 8753ET Network Analyzer               | 00134     | US39170292 | 04M     | ay05    | 04May06     |
| х    | HP 8648D Signal Generator                | 00005     | 3847A00611 |         | pr05    | 29Apr06     |
| х    | Rohde & Schwarz SMR40 Signal Generator   | 00006     | 100104     | 12Apr05 |         | 12Apr06     |
| х    | Amplifier Research 5S1G4 Power Amplifier | 00106     | 26235      |         | /A      | N/A         |
|      | l '                                      |           | l          |         |         | l           |

| Applicant:       | Cob                                                                                                                                          | ra Electronic | s Corporation | FCC ID:     | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------|------------------|----------|----------------|-------------------------|
| Model(s):        | LI6000, LI6050 Portable FRS/0                                                                                                                |               |               | SMRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |               |               |             |                  |          | Page 12 of 40  |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **16.0 MEASUREMENT UNCERTAINTIES**

| UN                              | CERTAINT                   | Y BUDGET FOR                | R DEVICE EVAL | .UATION  |                                 |                                    |
|---------------------------------|----------------------------|-----------------------------|---------------|----------|---------------------------------|------------------------------------|
| Error Description               | Uncertainty<br>Value<br>±% | Probability<br>Distribution | Divisor       | ci<br>1g | Uncertainty<br>Value<br>±% (1g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System              |                            |                             |               |          |                                 |                                    |
| Probe calibration               | 4.0                        | Normal                      | 1             | 1        | 4.0                             | ∞                                  |
| Axial isotropy of the probe     | 4.7                        | Rectangular                 | 1.732050808   | 0.7      | 1.9                             | $\infty$                           |
| Spherical isotropy of the probe | 9.6                        | Rectangular                 | 1.732050808   | 0.7      | 3.9                             | ∞                                  |
| Spatial resolution              | 0                          | Rectangular                 | 1.732050808   | 1        | 0.0                             | ∞                                  |
| Boundary effects                | 1                          | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Probe linearity                 | 4.7                        | Rectangular                 | 1.732050808   | 1        | 2.7                             | ∞                                  |
| Detection limit                 | 1                          | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Readout electronics             | 0.3                        | Normal                      | 1             | 1        | 0.3                             | ∞                                  |
| Response time                   | 0.8                        | Rectangular                 | 1.732050808   | 1        | 0.5                             | ∞                                  |
| Integration time                | 2.6                        | Rectangular                 | 1.732050808   | 1        | 1.5                             | ∞                                  |
| RF ambient conditions           | 3                          | Rectangular                 | 1.732050808   | 1        | 1.7                             | ∞                                  |
| Mech. constraints of robot      | 0.4                        | Rectangular                 | 1.732050808   | 1        | 0.2                             | $\infty$                           |
| Probe positioning               | 2.9                        | Rectangular                 | 1.732050808   | 1        | 1.7                             | ∞                                  |
| Extrapolation & integration     | 1                          | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Test Sample Related             |                            |                             |               |          |                                 |                                    |
| Device positioning              | 2.9                        | Normal                      | 1             | 1        | 2.9                             | 12                                 |
| Device holder uncertainty       | 3.6                        | Normal                      | 1             | 1        | 3.6                             | 8                                  |
| Power drift                     | 5                          | Rectangular                 | 1.732050808   | 1        | 2.9                             | 8                                  |
| Phantom and Setup               |                            |                             |               |          |                                 |                                    |
| Phantom uncertainty             | 4                          | Rectangular                 | 1.732050808   | 1        | 2.3                             | 8                                  |
| Liquid conductivity (target)    | 5                          | Rectangular                 | 1.732050808   | 0.64     | 1.8                             | ∞                                  |
| Liquid conductivity (measured)  | 2.5                        | Normal                      | 1             | 0.64     | 1.6                             | ∞                                  |
| Liquid permittivity (target)    | 5                          | Rectangular                 | 1.732050808   | 0.6      | 1.7                             | ∞                                  |
| Liquid permittivity (measured)  | 2.5                        | Normal                      | 1             | 0.6      | 1.5                             | ∞                                  |
| Combined Standard Uncertaint    | v                          |                             |               |          | 9.88                            |                                    |
| Expanded Uncertainty (k=2)      |                            |                             |               |          | 19.77                           |                                    |

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:       | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|-------------------------|---------------|------------------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | GMRS PTT Ra   | idio Transceiver | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This documen  | t is not to be reproduc | Page 13 of 40 |                  |          |                |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

## **MEASUREMENT UNCERTAINTIES (Cont.)**

| UN                              | ICERTAINTY           | BUDGET FOR                  | R SYSTEM VALI | DATION   |                                 |                                    |
|---------------------------------|----------------------|-----------------------------|---------------|----------|---------------------------------|------------------------------------|
| Error Description               | Uncertainty Value ±% | Probability<br>Distribution | Divisor       | ci<br>1g | Uncertainty<br>Value<br>±% (1g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System              |                      |                             |               |          |                                 |                                    |
| Probe calibration               | 4.0                  | Normal                      | 1             | 1        | 4.0                             | ∞                                  |
| Axial isotropy of the probe     | 4.7                  | Rectangular                 | 1.732050808   | 1        | 2.7                             | ∞                                  |
| Spherical isotropy of the probe | 0                    | Rectangular                 | 1.732050808   | 1        | 0.0                             | ∞                                  |
| Spatial resolution              | 0                    | Rectangular                 | 1.732050808   | 1        | 0.0                             | ∞                                  |
| Boundary effects                | 1                    | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Probe linearity                 | 4.7                  | Rectangular                 | 1.732050808   | 1        | 2.7                             | ∞                                  |
| Detection limit                 | 1                    | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Readout electronics             | 0.3                  | Normal                      | 1             | 1        | 0.3                             | ∞                                  |
| Response time                   | 0                    | Rectangular                 | 1.732050808   | 1        | 0.0                             | ∞                                  |
| Integration time                | 0                    | Rectangular                 | 1.732050808   | 1        | 0.0                             | ∞                                  |
| RF ambient conditions           | 3                    | Rectangular                 | 1.732050808   | 1        | 1.7                             | ∞                                  |
| Mech. constraints of robot      | 0.4                  | Rectangular                 | 1.732050808   | 1        | 0.2                             | ∞                                  |
| Probe positioning               | 2.9                  | Rectangular                 | 1.732050808   | 1        | 1.7                             | ∞                                  |
| Extrapolation & integration     | 1                    | Rectangular                 | 1.732050808   | 1        | 0.6                             | ∞                                  |
| Test Sample Related             |                      |                             |               |          |                                 |                                    |
| Dipole Positioning              | 2                    | Normal                      | 1.732050808   | 1        | 1.2                             | $\infty$                           |
| Power & Power Drift             | 4.7                  | Normal                      | 1.732050808   | 1        | 2.7                             | ∞                                  |
| Phantom and Setup               |                      |                             |               |          |                                 |                                    |
| Phantom uncertainty             | 4                    | Rectangular                 | 1.732050808   | 1        | 2.3                             | ∞                                  |
| Liquid conductivity (target)    | 5                    | Rectangular                 | 1.732050808   | 0.64     | 1.8                             | ∞                                  |
| Liquid conductivity (measured)  | 2.5                  | Normal                      | 1             | 0.64     | 1.6                             | ∞                                  |
| Liquid permittivity (target)    | 5                    | Rectangular                 | 1.732050808   | 0.6      | 1.7                             | ∞                                  |
| Liquid permittivity (measured)  | 2.5                  | Normal                      | 1             | 0.6      | 1.5                             | ∞                                  |
| Combined Standard Uncertainty   | ,                    |                             |               |          | 7.93                            |                                    |
| Expanded Uncertainty (k=2)      |                      |                             |               |          | 15.87                           |                                    |

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | Portable FRS/GMRS PTT Radio Transceiver                                                             |           |        | - 467.7125 MHz | BLECTHONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This documen  | t is not to be reproduc | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                |                         |



| Test Report Serial No.: | 121505BBO-T7 | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|--------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21- | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure  | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### 17.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/TIA-603-C, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards": December 2004.

| Applicant:       | Cob      | ra Electronic | s Corporation                                                                                               | FCC ID:                                 | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0                                                                                              | Portable FRS/GMRS PTT Radio Transceiver |           |        | - 467.7125 MHz | BLECTHONICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This document | ment is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                         |           |        |                | Page 15 of 40           |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |  |
|-------------------------|---------------|----------|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

### **APPENDIX A - SAR MEASUREMENT DATA**

| Applicant:       | Cob      | ra Electronic | s Corporation          | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0         | Portable FRS/GMRS PTT Radio Transceiver                                                             |           |        | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This documen  | is not to be reproduce | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure          | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

Date Tested: 12/22/2005

#### Face-Held SAR - GMRS Mode - Channel 4 - 462.6375 MHz

DUT: Cobra Model: LI6000; Type: Portable UHF FRS/GMRS PTT Radio Transceiver; Serial: 0025783

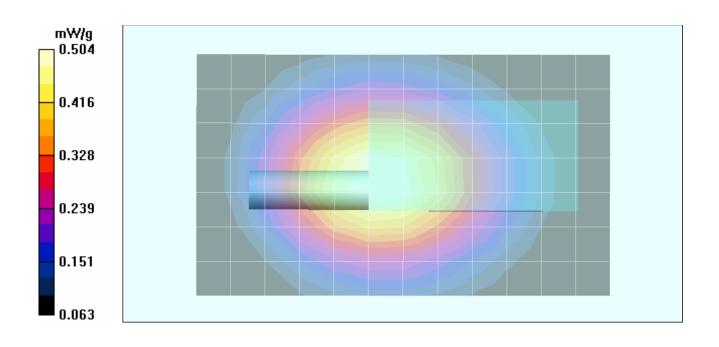
Ambient Temp: 24.1 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 100.8 kPa; Humidity: 30%

Communication System: FM UHF 7.4 V 950 mAh Li-ion Battery Pack RF Output Power: 0.372 Watts (ERP)

Frequency: 462.6375 MHz; Channel 4; Duty Cycle: 1:1 Medium: HSL450 ( $\sigma$  = 0.85 mho/m;  $\varepsilon_r$  = 42.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

### Face-Held SAR - 2.5 cm Separation Distance from Front of DUT to Planar Phantom/Area Scan (8x13x1):

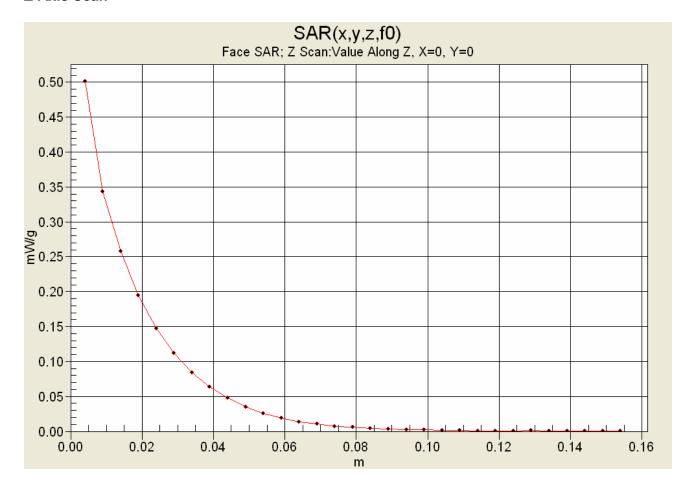

Measurement grid: dx=15mm, dy=15mm

#### Face-Held SAR - 2.5 cm Separation Distance from Front of DUT to Planar Phantom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 23.4 V/m; Power Drift = 0.0370 dB

Peak SAR (extrapolated) = 0.763 W/kg

SAR(1 g) = 0.486 mW/g; SAR(10 g) = 0.340 mW/g




| Applicant:       | Cob                                                                                                                                     | ra Electronic | s Corporation  | FCC ID:                                 | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60                                                                                                                                    | 00, LI6050    | Portable FRS/0 | Portable FRS/GMRS PTT Radio Transceiver |           |        | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |               |                |                                         |           |        | Page 17 of 40  |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure          | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **Z-Axis Scan**



| Applicant:       | Cob      | ra Electronic | s Corporation           | FCC ID:                                                                                               | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|-------------------------|-------------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0          | Portable FRS/GMRS PTT Radio Transceiver                                                               |           |        | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This documen  | t is not to be reproduc | s not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                |                         |



| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |  |  |
|-------------------------|-----------------|----------|--------------------|--------------------|--|--|
| Date(s) of Evaluation:  | December 21-    | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |  |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |  |

Date Tested: 12/21/2005

### Body-Worn SAR - GMRS Mode - Channel 4 - 462.6375 MHz

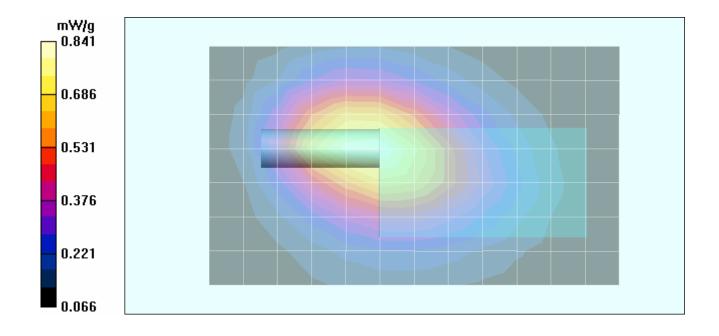
DUT: Cobra Model: LI6000; Type: Portable UHF FRS/GMRS PTT Radio Transceiver; Serial: 0025783

Body-Worn Accessory: Plastic Belt-Clip; Audio Accessory: Generic Earbud with Lapel-Microphone

Ambient Temp: 23.6 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM UHF 7.4 V 950 mAh Li-ion Battery Pack RF Output Power: 0.372 Watts (ERP) Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium: M450 ( $\sigma$  = 0.95 mho/m;  $\varepsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

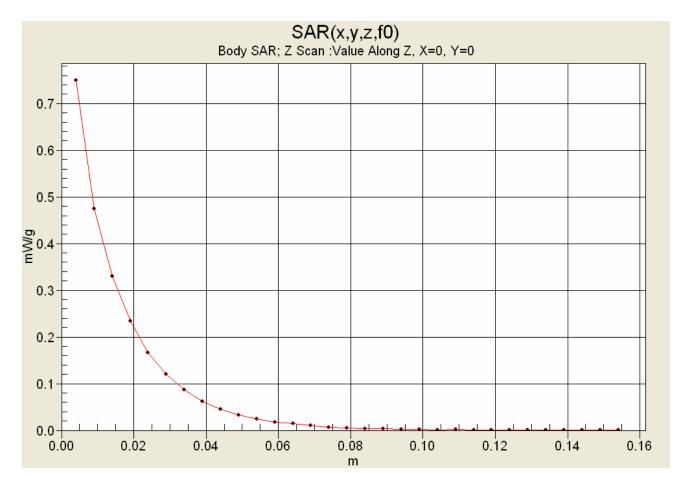

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Body-Worn SAR - 0.6 cm Belt-Clip Separation Distance from Back of DUT to Planar Phantom/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 0.6 cm Belt-Clip Separation Distance from Back of DUT to Planar Phantom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 28.1 V/m; Power Drift = -1.43 dB Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.797 mW/g; SAR(10 g) = 0.528 mW/g



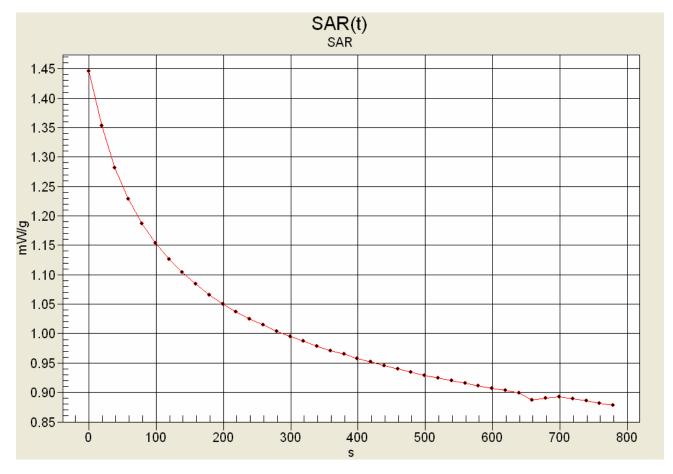

| Applicant:       | Cob                                                                                                                                         | ra Electronic | s Corporation                           | FCC ID: | BBOLI6000 | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|---------|-----------|----------|----------------|-------------------------|
| Model(s):        | LI60                                                                                                                                        | 00, LI6050    | Portable FRS/GMRS PTT Radio Transceiver |         |           | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | 006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |               |                                         |         |           |          |                | Page 19 of 40           |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR      |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **Z-Axis Scan**




| Applicant:       | Cob      | bra Electronics Corporation |                         | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/0          | Portable FRS/GMRS PTT Radio Transceiver                                                             |           |        | - 467.7125 MHz | BLECTRONICS COMPONATION |
| 2006 Celltech La | abs Inc. | This documen                | t is not to be reproduc | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR      |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **SAR-versus-Time Power Drift Evaluation**

Body-Worn Configuration with belt-clip and ear-mic Lithium-ion Battery Pack 7.4V, 950mAh GMRS Channel 4 - 462.6375 MHz



Max SAR: 1.44339 mW/g Low SAR: 0.87612 mW/g (-2.1682 dB) SAR after 340s: 0.975801 mW/g (-1.7002 dB)

(340s = Zoom Scan Duration) (780s = Area Scan Duration)

| Applicant:       | Cob      | bra Electronics Corporation |                                         | FCC ID:                                                                                             | BBOLI6000 | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|-----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/GMRS PTT Radio Transceiver |                                                                                                     |           | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPONATION |
| 2006 Celltech La | abs Inc. | This document               | t is not to be reproduc                 | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |          |                |                         |



| Test Report Serial No.: | 121505BBO-T7    | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|-----------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2   | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **APPENDIX B - SYSTEM PERFORMANCE CHECK DATA**

| Applicant:       | Cob      | bra Electronics Corporation |                                         | FCC ID:                                                                                             | BBOLI6000 | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|-----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/GMRS PTT Radio Transceiver |                                                                                                     |           | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This documen                | t is not to be reproduc                 | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |          |                |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR      |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

Date Tested: 12/21/2005

### System Performance Check (Brain) - 450 MHz Dipole

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136; Calibrated: 10/25/2005

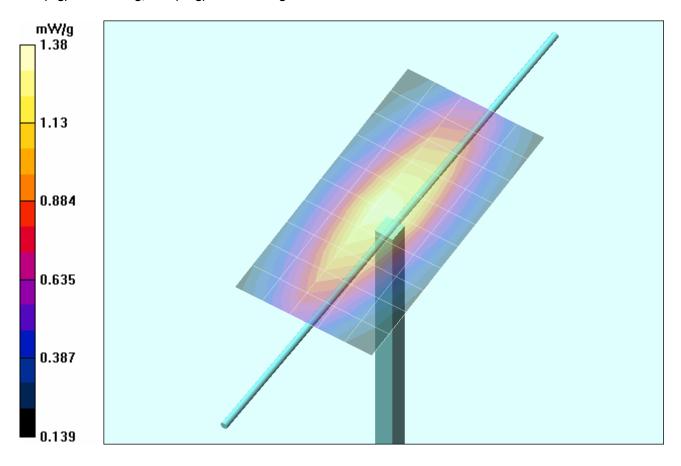
Ambient Temp: 22.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.1 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 ( $\sigma$  = 0.85 mho/m;  $\varepsilon_r$  = 42.6;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

### 450 MHz Dipole - System Performance Check/Area Scan (6x11x1):

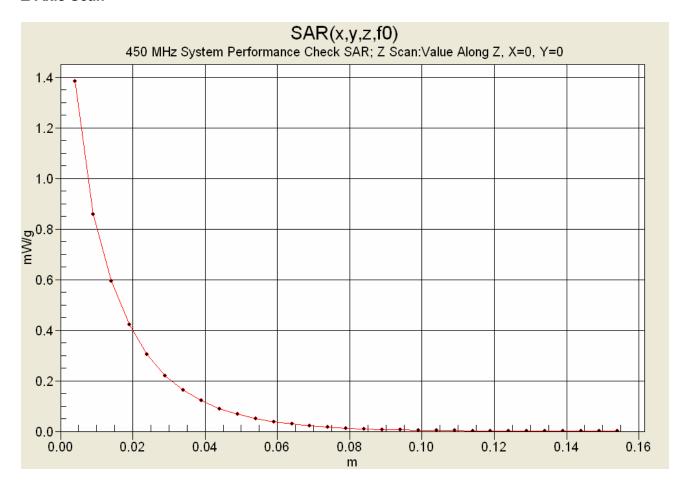

Measurement grid: dx=15mm, dy=15mm

### 450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 40.4 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.847 mW/g




| Applicant:       | Cob      | obra Electronics Corporation |                                                                                                       | FCC ID:    | BBOLI6000        | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|------------------------------|-------------------------------------------------------------------------------------------------------|------------|------------------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                   | Portable FRS/0                                                                                        | MRS PTT Ra | idio Transceiver | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This document                | s not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |            |                  |          |                | Page 23 of 40           |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR      |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **Z-Axis Scan**



| Applicant:       | Cob      | bra Electronics Corporation |                                         | FCC ID:                                                                                             | BBOLI6000 | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|-----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/GMRS PTT Radio Transceiver |                                                                                                     |           | 462.5500 | - 467.7125 MHz | BLECTHOMICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This documen                | t is not to be reproduc                 | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |          |                |                         |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure SAR      |          | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

Date Tested: 12/22/2005

### System Performance Check (Brain) - 450 MHz Dipole

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136; Calibrated: 10/25/2005

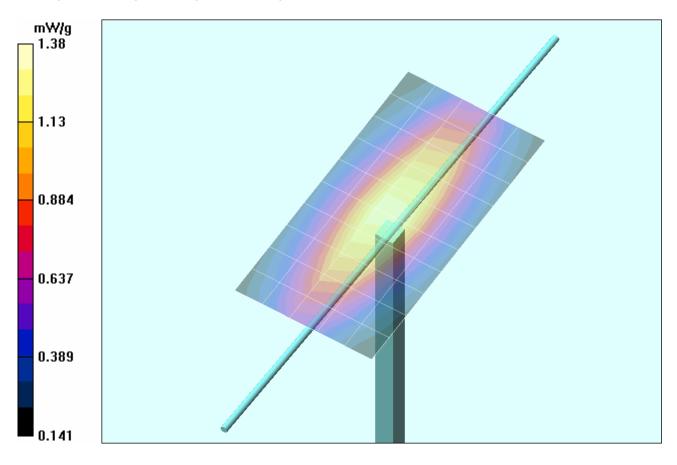
Ambient Temp: 23.5 °C; Fluid Temp: 21.9 °C; Barometric Pressure: 100.8 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 ( $\sigma$  = 0.85 mho/m;  $\epsilon_r$  = 42.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

### 450 MHz Dipole - System Performance Check/Area Scan (6x11x1):

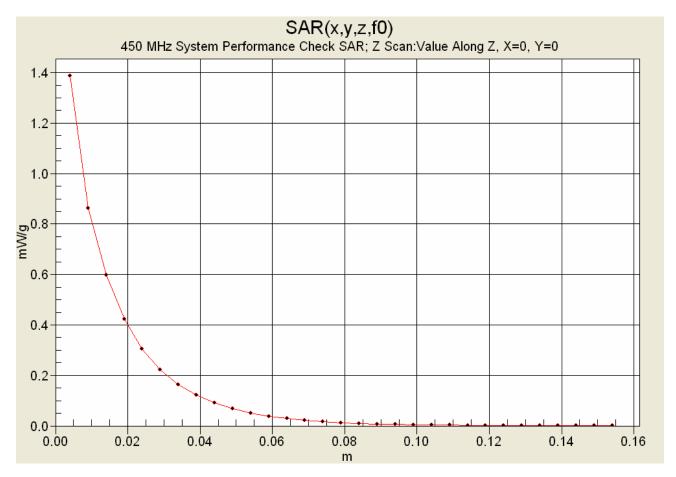

Measurement grid: dx=15mm, dy=15mm

### 450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 41.0 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.849 mW/g




| Applicant:       | Cob      | Cobra Electronics Corporation |                                                                                                       | FCC ID: | BBOLI6000 | IC ID:   | 906B-LI6000    | Cobra                   |
|------------------|----------|-------------------------------|-------------------------------------------------------------------------------------------------------|---------|-----------|----------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                    | Portable FRS/GMRS PTT Radio Transceiver                                                               |         |           | 462.5500 | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | ibs Inc. | This document                 | s not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |         |           |          |                | Page 25 of 40           |



| Test Report Serial No.: | 121505BBO-T709-S95U |          | Report Issue Date: | January 11, 2006   |  |
|-------------------------|---------------------|----------|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-        | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure         | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

### **Z-Axis Scan**



| Applicant:       | Cob      | bra Electronics Corporation |                         | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                  |
|------------------|----------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/0          | rtable FRS/GMRS PTT Radio Transceiver                                                               |           |        | - 467.7125 MHz | BLECTROMES COMPORATION |
| 2006 Celltech La | abs Inc. | This documen                | t is not to be reproduc | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                | Page 26 of 40          |



| Test Report Serial No.: | 121505BBO-T709-S95U |          | Report Issue Date: | January 11, 2006   |  |
|-------------------------|---------------------|----------|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-2       | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure         | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

### **APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS**

| Applicant:       | Cob      | ra Electronic | s Corporation                                                                                              | FCC ID:                                 | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|---------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050    | Portable FRS/0                                                                                             | Portable FRS/GMRS PTT Radio Transceiver |           |        | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This document | ent is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                         |           |        | Page 27 of 40  |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

## 450 MHz System Performance Check (Brain)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 21/Dec/2005

Frequency(GHz)

FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test\_e Epsilon of UIM
Test\_s Sigma of UIM

| ****** | *********                                                                                                                                        | ******* | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq   | FCC_eH                                                                                                                                           | IFCC_sl | -HTest_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test_s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.3500 | 44.70                                                                                                                                            | 0.87    | 45.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3600 | 44.58                                                                                                                                            | 0.87    | 45.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3700 | 44.46                                                                                                                                            | 0.87    | 44.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3800 | 44.34                                                                                                                                            | 0.87    | 44.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3900 | 44.22                                                                                                                                            | 0.87    | 44.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4000 | 44.10                                                                                                                                            | 0.87    | 44.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4100 | 43.98                                                                                                                                            | 0.87    | 44.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4200 | 43.86                                                                                                                                            | 0.87    | 43.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4300 | 43.74                                                                                                                                            | 0.87    | 43.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4400 | 43.62                                                                                                                                            | 0.87    | 43.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4500 | 43.50                                                                                                                                            | 0.87    | 42.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4600 | 43.45                                                                                                                                            | 0.87    | 42.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4700 | 43.40                                                                                                                                            | 0.87    | 42.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4800 | 43.34                                                                                                                                            | 0.87    | 42.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.4900 | 43.29                                                                                                                                            | 0.87    | 42.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5000 | 43.24                                                                                                                                            | 0.87    | 42.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5100 | 43.19                                                                                                                                            | 0.87    | 41.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5200 | 43.14                                                                                                                                            | 0.88    | 41.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5300 | 43.08                                                                                                                                            | 0.88    | 41.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5400 | 43.03                                                                                                                                            | 0.88    | 41.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5500 | 42.98                                                                                                                                            | 0.88    | 40.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | Freq 0.3500 0.3600 0.3700 0.3800 0.3900 0.4000 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400 | Freq    | Freq         FCC_eHFCC_sl           0.3500         44.70         0.87           0.3600         44.58         0.87           0.3700         44.46         0.87           0.3800         44.34         0.87           0.3900         44.22         0.87           0.4000         44.10         0.87           0.4100         43.98         0.87           0.4200         43.86         0.87           0.4300         43.74         0.87           0.4500         43.50         0.87           0.4500         43.45         0.87           0.4700         43.40         0.87           0.4800         43.34         0.87           0.5000         43.29         0.87           0.5100         43.19         0.87           0.5200         43.14         0.88           0.5300         43.08         0.88           0.5400         43.03         0.88 | 0.3500         44.70         0.87         45.29           0.3600         44.58         0.87         45.11           0.3700         44.46         0.87         44.87           0.3800         44.34         0.87         44.22           0.3900         44.22         0.87         44.27           0.4000         44.10         0.87         44.12           0.4100         43.98         0.87         44.08           0.4200         43.86         0.87         43.28           0.4300         43.74         0.87         43.38           0.4400         43.62         0.87         42.22           0.4500         43.45         0.87         42.79           0.4700         43.40         0.87         42.34           0.4800         43.34         0.87         42.27           0.4900         43.29         0.87         42.00           0.5000         43.19         0.87         41.88           0.5200         43.14         0.88         41.59           0.5300         43.08         0.88         41.11           0.5400         43.03         0.88         41.08 |

| Applicant:       | Cob      | bra Electronics Corporation |                         | FCC ID:                                                                          | BBOLI6000 | IC ID:                  | 906B-LI6000 | Cobra         |
|------------------|----------|-----------------------------|-------------------------|----------------------------------------------------------------------------------|-----------|-------------------------|-------------|---------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/0          | GMRS PTT Radio Transceiver 462.5500 - 467.7125 MHz                               |           | ELECTRONICS COMPORATION |             |               |
| 2006 Celltech La | abs Inc. | This document               | t is not to be reproduc | d in whole or in part without the prior written permission of Celltech Labs Inc. |           |                         |             | Page 28 of 40 |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

# 450 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 21/Dec/2005
Frequency(GHz)

FCC\_eHFCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon FCC\_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC\_eB FCC Limits for Body Epsilon FCC\_sB FCC Limits for Body Sigma

Test\_e Epsilon of UIM
Test\_s Sigma of UIM

| ********** | ****** | ****** | ******   | ****** |
|------------|--------|--------|----------|--------|
| Freq       | FCC_eB | FCC_sE | 3 Test_e | Test_s |
| 0.3500     | 57.70  | 0.93   | 58.34    | 0.86   |
| 0.3600     | 57.60  | 0.93   | 58.20    | 0.87   |
| 0.3700     | 57.50  | 0.93   | 57.95    | 0.88   |
| 0.3800     | 57.40  | 0.93   | 57.76    | 0.89   |
| 0.3900     | 57.30  | 0.93   | 57.54    | 0.90   |
| 0.4000     | 57.20  | 0.93   | 57.25    | 0.90   |
| 0.4100     | 57.10  | 0.93   | 57.31    | 0.91   |
| 0.4200     | 57.00  | 0.94   | 56.95    | 0.92   |
| 0.4300     | 56.90  | 0.94   | 56.96    | 0.94   |
| 0.4400     | 56.80  | 0.94   | 56.86    | 0.94   |
| 0.4500     | 56.70  | 0.94   | 56.67    | 0.95   |
| 0.4600     | 56.66  | 0.94   | 56.45    | 0.96   |
| 0.4700     | 56.62  | 0.94   | 56.15    | 0.96   |
| 0.4800     | 56.58  | 0.94   | 56.27    | 0.97   |
| 0.4900     | 56.54  | 0.94   | 56.05    | 0.98   |
| 0.5000     | 56.51  | 0.94   | 55.89    | 0.98   |
| 0.5100     | 56.47  | 0.94   | 55.90    | 0.99   |
| 0.5200     | 56.43  | 0.95   | 55.68    | 1.01   |
| 0.5300     | 56.39  | 0.95   | 55.53    | 1.02   |
| 0.5400     | 56.35  | 0.95   | 55.33    | 1.02   |
| 0.5500     | 56.31  | 0.95   | 55.35    | 1.03   |

| Applicant:       | Cob      | bra Electronics Corporation |                         | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/0          | FRS/GMRS PTT Radio Transceiver                                                                      |           |        | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This document               | t is not to be reproduc | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                | Page 29 of 40           |



| Test Report Serial No.: | 121505BBO-T709-S95U |          | Report Issue Date: | January 11, 2006   |  |
|-------------------------|---------------------|----------|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-2       | 22, 2005 | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure         | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

# 450 MHz System Performance Check & DUT Evaluation (Brain)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Thu 22/Dec/2005
Frequency(GHz)

FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

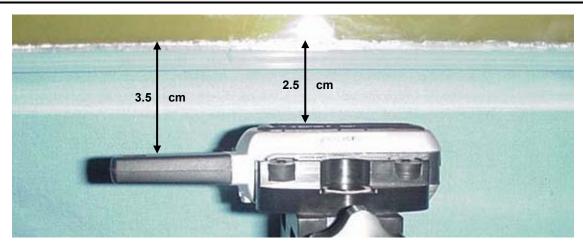
Test\_e Epsilon of UIM
Test\_s Sigma of UIM

| *** | ****** | ****** | ******* | ****** | *****  |
|-----|--------|--------|---------|--------|--------|
| Fre | eq     | _      | IFCC_sh | _      | Test_s |
| 0   | .3500  | 44.70  | 0.87    | 45.12  | 0.76   |
| 0   | .3600  | 44.58  | 0.87    | 44.88  | 0.77   |
| 0   | .3700  | 44.46  | 0.87    | 44.55  | 0.78   |
| 0   | .3800  | 44.34  | 0.87    | 44.27  | 0.79   |
| 0   | .3900  | 44.22  | 0.87    | 44.03  | 0.80   |
| 0   | .4000  | 44.10  | 0.87    | 43.70  | 0.80   |
| 0   | .4100  | 43.98  | 0.87    | 43.43  | 0.81   |
| 0   | .4200  | 43.86  | 0.87    | 43.13  | 0.82   |
| 0   | .4300  | 43.74  | 0.87    | 43.21  | 0.83   |
| 0   | .4400  | 43.62  | 0.87    | 42.77  | 0.84   |
| 0.  | .4500  | 43.50  | 0.87    | 42.72  | 0.85   |
| 0   | .4600  | 43.45  | 0.87    | 42.45  | 0.86   |
| 0   | .4700  | 43.40  | 0.87    | 41.94  | 0.86   |
| 0   | .4800  | 43.34  | 0.87    | 41.80  | 0.87   |
| 0   | .4900  | 43.29  | 0.87    | 41.79  | 0.88   |
| 0   | .5000  | 43.24  | 0.87    | 41.57  | 0.89   |
| 0   | .5100  | 43.19  | 0.87    | 41.52  | 0.90   |
| 0   | .5200  | 43.14  | 0.88    | 41.32  | 0.91   |
| 0   | .5300  | 43.08  | 0.88    | 41.07  | 0.92   |
| 0   | .5400  | 43.03  | 0.88    | 40.93  | 0.92   |
| 0   | .5500  | 42.98  | 0.88    | 40.73  | 0.93   |
|     |        |        |         |        |        |

| Applicant:                                                   | Cob                           | ra Electronic | s Corporation       | FCC ID:                    | BBOLI6000       | IC ID:                | 906B-LI6000             | Cobra |
|--------------------------------------------------------------|-------------------------------|---------------|---------------------|----------------------------|-----------------|-----------------------|-------------------------|-------|
| Model(s):                                                    | LI6000, LI6050 Portable FRS/0 |               | MRS PTT Ra          | idio Transceiver           | 462.5500        | - 467.7125 MHz        | BLECTHONICS COMPORATION |       |
| 2006 Celltech Labs Inc. This document is not to be reproduce |                               |               | ed in whole or in p | part without the prior wri | tten permission | of Celltech Labs Inc. | Page 30 of 40           |       |



| Test Report Serial No.: | 121505BBO-T7 | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|--------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21- | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure  | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |


### **APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS**

| Applicant:                                                   | Cob                           | ra Electronic | s Corporation       | FCC ID:                   | BBOLI6000       | IC ID:                | 906B-LI6000    | Cobra                   |
|--------------------------------------------------------------|-------------------------------|---------------|---------------------|---------------------------|-----------------|-----------------------|----------------|-------------------------|
| Model(s):                                                    | LI6000, LI6050 Portable FRS/0 |               |                     | GMRS PTT Ra               | dio Transceiver | 462.5500              | - 467.7125 MHz | BLECTHONICS COMPORATION |
| 2006 Celltech Labs Inc. This document is not to be reproduce |                               |               | ed in whole or in p | part without the prior wr | tten permission | of Celltech Labs Inc. | Page 31 of 40  |                         |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

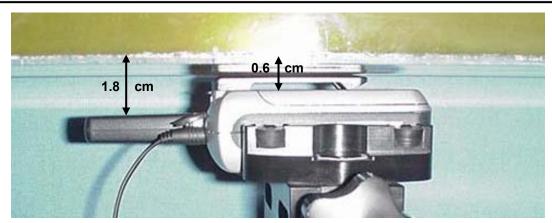
# FACE-HELD SAR TEST SETUP PHOTOGRAPHS 2.5 cm Separation Distance from Front of DUT to Planar Phantom





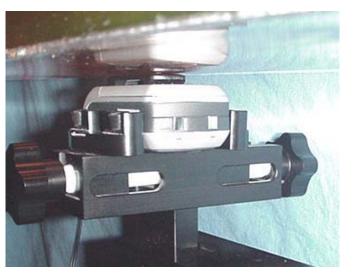





| Applicant:                                                   | Cobra Electronics Corporation          |  |                     | FCC ID:                   | BBOLI6000        | IC ID:                | 906B-LI6000    | Cobra                   |
|--------------------------------------------------------------|----------------------------------------|--|---------------------|---------------------------|------------------|-----------------------|----------------|-------------------------|
| Model(s):                                                    | odel(s): LI6000, LI6050 Portable FRS/G |  |                     | GMRS PTT Ra               | dio Transceiver  | 462.5500              | - 467.7125 MHz | BLECTHONICS COMPORATION |
| 2006 Celltech Labs Inc. This document is not to be reproduce |                                        |  | ed in whole or in p | part without the prior wr | itten permission | of Celltech Labs Inc. | Page 32 of 40  |                         |




| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |


### **BODY-WORN SAR TEST SETUP PHOTOGRAPHS**

0.6 cm Belt-Clip Separation Distance from Back of DUT to Planar Phantom With Generic Earbud and Lapel-Microphone Audio Accessory









| Applicant:       | Applicant: Cobra Electronic                                                                                                                   |  |  | FCC ID:                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|-------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI6000, LI6050 Portable FRS/0                                                                                                                 |  |  | SMRS PTT Radio Transceiver 462.5500 |           |        | - 467.7125 MHz | ELECTRONICS COMPORATION |
| 2006 Celltech La | 2006 Celltech Labs Inc.  This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |  |  |                                     |           |        | Page 33 of 40  |                         |



| Test Report Serial No.: | 121505BBO-T7 | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|--------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21- | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure  | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **SAR TEST SETUP PHOTOGRAPHS**



Face-Held SAR Test Setup Configuration



**Body-Worn SAR Test Setup Configuration** 

| Applicant:                                                   | Cob                           | ra Electronic | s Corporation | FCC ID:             | BBOLI6000                  | IC ID:          | 906B-LI6000           | Cobra                   |
|--------------------------------------------------------------|-------------------------------|---------------|---------------|---------------------|----------------------------|-----------------|-----------------------|-------------------------|
| Model(s):                                                    | LI6000, LI6050 Portable FRS/0 |               |               | SMRS PTT Ra         | idio Transceiver           | 462.5500        | - 467.7125 MHz        | BLECTRONICS COMPONATION |
| 2006 Celltech Labs Inc. This document is not to be reproduce |                               |               |               | ed in whole or in p | part without the prior wri | tten permission | of Celltech Labs Inc. | Page 34 of 40           |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **DUT PHOTOGRAPHS**







**Back of DUT** 



**Back of DUT with Plastic Belt-Clip** 



Top end of DUT



Bottom end of DUT

| Applicant:                                                                                                                                   | Cob  | ra Electronic | s Corporation  | FCC ID:     | BBOLI6000       | IC ID:        | 906B-LI6000    | Cobra                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----------------|-------------|-----------------|---------------|----------------|------------------------|
| Model(s):                                                                                                                                    | LI60 | 00, LI6050    | Portable FRS/0 | GMRS PTT Ra | dio Transceiver | 462.5500      | - 467.7125 MHz | BLECTHOMES COMPORATION |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |      |               |                |             |                 | Page 35 of 40 |                |                        |



| Test Report Serial No.: | 121505BBO-T7  | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|---------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-2 | 22, 2005 | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure   | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

### **DUT PHOTOGRAPHS**



Left Side of DUT with Plastic Belt-Clip



Right Side of DUT with Plastic Belt-Clip



Plastic Belt-Clip Accessory (6 mm thickness)

| Applicant:       | Cobra Electronics Corporation |              |                                                                                                        | FCC ID: | BBOLI6000 | IC ID:                  | 906B-LI6000 | Cobra                   |
|------------------|-------------------------------|--------------|--------------------------------------------------------------------------------------------------------|---------|-----------|-------------------------|-------------|-------------------------|
| Model(s):        | LI6000, LI6050                |              | Portable FRS/GMRS PTT Radio Transceiver                                                                |         |           | 462.5500 - 467.7125 MHz |             | ELECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc.                      | This documen | is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |         |           |                         |             | Page 36 of 40           |



| Test Report Serial No.: | 121505BBO-T7         | '09-S95U | Report Issue Date: | January 11, 2006   |
|-------------------------|----------------------|----------|--------------------|--------------------|
| Date(s) of Evaluation:  | December 21-22, 2005 |          | Report Issue No.:  | S709-011106-R0     |
| Description of Test(s): | RF Exposure          | SAR      | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |

# **DUT PHOTOGRAPHS**



**DUT with Generic Earbud & Lapel-Microphone Audio Accessory** 

| Applicant:       | Cob      | obra Electronics Corporation |                         | FCC ID:                                                                                             | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                   | Portable FRS/0          | Portable FRS/GMRS PTT Radio Transceiver                                                             |           |        | - 467.7125 MHz | BLECTRONICS COMPORATION |
| 2006 Celltech La | abs Inc. | This documen                 | t is not to be reproduc | not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |        |                |                         |



| Test Report Serial No.: | 121505BBO-T709-S95U  |     | Report Issue Date: | January 11, 2006   |  |
|-------------------------|----------------------|-----|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-22, 2005 |     | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure          | SAR | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

# **DUT PHOTOGRAPHS**



**DUT Battery Compartment** 



**DUT with Lithium-ion Battery Pack** 

| Applicant:       | Cob      | Cobra Electronics Corporation |                                                                                                                | FCC ID:                                 | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                   |
|------------------|----------|-------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|--------|----------------|-------------------------|
| Model(s):        | LI60     | 00, LI6050                    | Portable FRS/0                                                                                                 | Portable FRS/GMRS PTT Radio Transceiver |           |        | - 467.7125 MHz | BLECTRONICS COMPONATION |
| 2006 Celltech La | abs Inc. | This documen                  | ocument is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                         |           |        |                | Page 38 of 40           |



| Test Report Serial No.: | 121505BBO-T709-S95U  |     | Report Issue Date: | January 11, 2006   |  |
|-------------------------|----------------------|-----|--------------------|--------------------|--|
| Date(s) of Evaluation:  | December 21-22, 2005 |     | Report Issue No.:  | S709-011106-R0     |  |
| Description of Test(s): | RF Exposure          | SAR | FCC 47 CFR §2.1093 | IC RSS-102 Issue 2 |  |

# **APPENDIX E - SYSTEM VALIDATION**

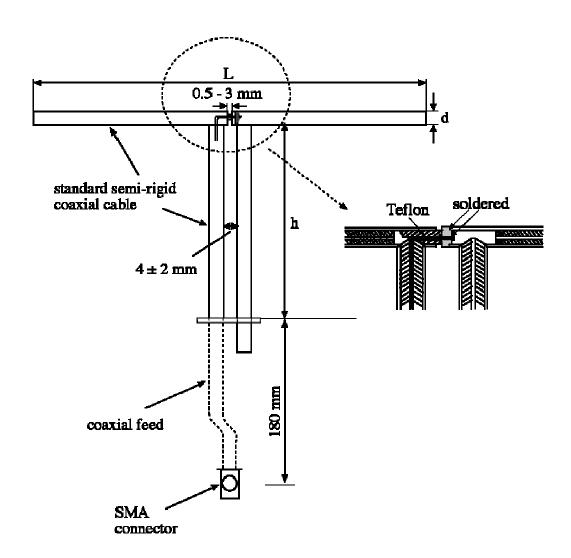
| Applicant:       | Cob      | bra Electronics Corporation |                                                                                                          | FCC ID:                                 | BBOLI6000 | IC ID: | 906B-LI6000    | Cobra                  |
|------------------|----------|-----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|--------|----------------|------------------------|
| Model(s):        | LI60     | 00, LI6050                  | Portable FRS/0                                                                                           | Portable FRS/GMRS PTT Radio Transceiver |           |        | - 467.7125 MHz | BLECTROMES COMPORATION |
| 2006 Celltech La | abs Inc. | This documen                | t is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                         |           |        |                | Page 39 of 40          |



# **450 MHz SYSTEM VALIDATION DIPOLE**

| Type:                                              | 450 MHz Validation Dipole                           |
|----------------------------------------------------|-----------------------------------------------------|
| Asset Number:                                      | 00024                                               |
| Serial Number:                                     | 136                                                 |
| Place of Calibration:                              | Celltech Labs Inc.                                  |
| Date of Calibration:                               | October 25, 2005                                    |
| Celltech Labs Inc. hereby certifies that this devi | ice has been calibrated on the date indicated above |
| Calibrated by:                                     | Suon Johns                                          |
| Approved by:                                       | Spencer Watson                                      |

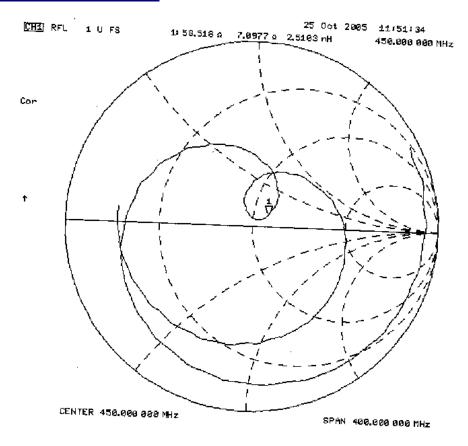


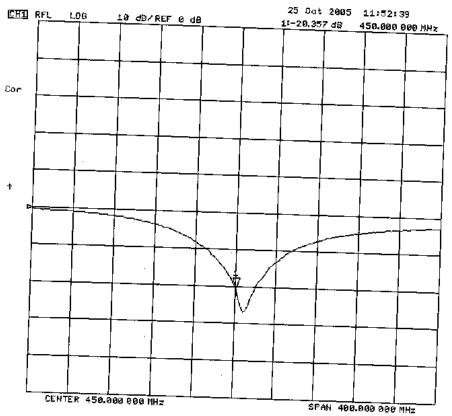

#### 1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450MHz Re{Z} =  $58.518\Omega$ 

 $Im{Z} = 7.0977\Omega$ 


Return Loss at 450MHz -20.357dB




2005 Celltech Labs Inc. Page 2 of 13



# 2. Validation Dipole VSWR Data





2005 Celltech Labs Inc. Page 3 of 13



# 3. Validation Dipole Dimensions

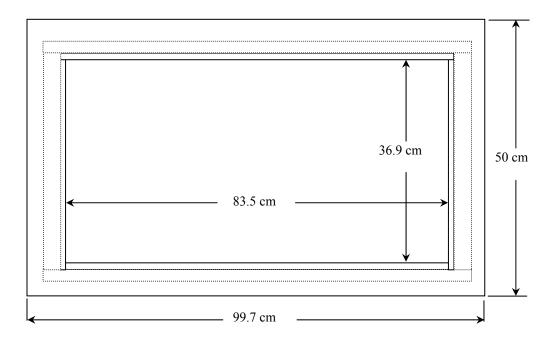
| Frequency (MHz) | L (mm) | h (mm) | d (mm) |
|-----------------|--------|--------|--------|
| 300             | 420.0  | 250.0  | 6.2    |
| 450             | 288.0  | 167.0  | 6.2    |
| 835             | 161.0  | 89.8   | 3.6    |
| 900             | 149.0  | 83.3   | 3.6    |
| 1450            | 89.1   | 51.7   | 3.6    |
| 1800            | 72.0   | 41.7   | 3.6    |
| 1900            | 68.0   | 39.5   | 3.6    |
| 2000            | 64.5   | 37.5   | 3.6    |
| 2450            | 51.8   | 30.6   | 3.6    |
| 3000            | 41.5   | 25.0   | 3.6    |

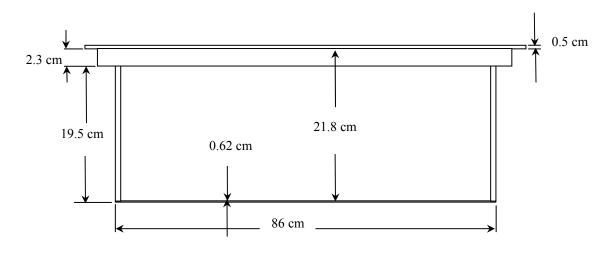
# 4. Validation Phantom

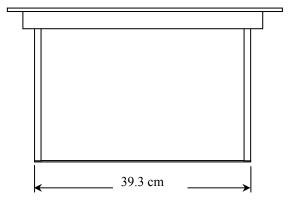
The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:

 Length:
 83.5 cm

 Width:
 36.9 cm


 Height:
 21.8 cm


The bottom section of the validation phantom is constructed of  $6.2 \pm 0.1$ mm Plexiglas.


2005 Celltech Labs Inc. Page 4 of 13



# 5. Dimensions of Plexiglas Planar Phantom

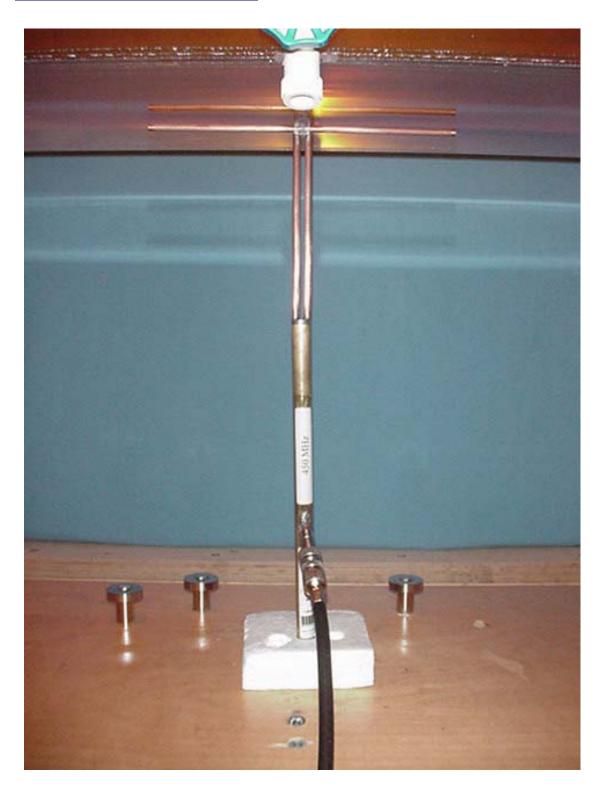






2005 Celltech Labs Inc. Page 5 of 13




# 6. 450 MHz System Validation Setup



2005 Celltech Labs Inc. Page 6 of 13



# 7. 450 MHz Validation Dipole Setup



2005 Celltech Labs Inc. Page 7 of 13



# **8. Measurement Conditions**

The planar phantom was filled with 450 MHz brain tissue simulant with the following parameters:

Relative Permittivity: 43.2

Conductivity: 0.84 mho/m Fluid Temperature: 22.5  $^{\circ}$ C Fluid Depth:  $\geq$  15.0 cm

#### **Environmental Conditions:**

Ambient Temperature: 23.5 °C Humidity: 34 % Barometric Pressure: 101.4 kPa

The 450 MHz brain tissue simulant consists of the following ingredients:


| Ingredient                                       | Percentage by weight                          |
|--------------------------------------------------|-----------------------------------------------|
| Water                                            | 38.56%                                        |
| Sugar                                            | 56.32%                                        |
| Salt                                             | 3.95%                                         |
| HEC                                              | 0.98%                                         |
| Dowicil 75                                       | 0.19%                                         |
| 450 MHz Target Dielectric<br>Parameters at 22 °C | $\epsilon_{\rm r}$ = 43.5 $\sigma$ = 0.87 S/m |

2005 Celltech Labs Inc. Page 8 of 13



### 9. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.



First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

2005 Celltech Labs Inc. Page 9 of 13



# 10. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

| Validation<br>Measurement | SAR @ 0.25W<br>Input averaged<br>over 1g | SAR @ 1W<br>Input averaged<br>over 1g | SAR @ 0.25W<br>Input averaged<br>over 10g | SAR @ 1W<br>Input averaged<br>over 10g | Peak SAR @ 0.25W Input |
|---------------------------|------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
| Test 1                    | 1.24                                     | 4.96                                  | 0.800                                     | 3.200                                  | 1.31                   |
| Test 2                    | 1.24                                     | 4.96                                  | 0.798                                     | 3.192                                  | 1.31                   |
| Test 3                    | 1.24                                     | 4.96                                  | 0.798                                     | 3.192                                  | 1.31                   |
| Test 4                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 5                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 6                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 7                    | 1.24                                     | 4.96                                  | 0.801                                     | 3.204                                  | 1.31                   |
| Test 8                    | 1.24                                     | 4.96                                  | 0.802                                     | 3.208                                  | 1.31                   |
| Test 9                    | 1.25                                     | 5.00                                  | 0.807                                     | 3.228                                  | 1.31                   |
| Test 10                   | 1.25                                     | 5.00                                  | 0.806                                     | 3.224                                  | 1.31                   |
| Average Value             | 1.24                                     | 4.97                                  | 0.801                                     | 3.204                                  | 1.31                   |

The results have been normalized to 1W (forward power) into the dipole.

| @ 1 W<br>averaç | et SAR<br>att Input<br>ged over<br>n (W/kg) | Measured SAR<br>@ 1 Watt Input<br>averaged over<br>1 gram (W/kg) | Deviation<br>from<br>Target<br>(%) | Target SAR<br>@ 1 Watt Input<br>averaged over<br>10 grams (W/kg) |         | Measured SAR<br>@ 1 Watt Input<br>averaged over<br>10 grams (W/kg) | Deviation<br>from<br>Target<br>(%) |
|-----------------|---------------------------------------------|------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|---------|--------------------------------------------------------------------|------------------------------------|
| 4.90            | +/- 10%                                     | 4.97                                                             | +1.4%                              | 3.30                                                             | +/- 10% | 3.204                                                              | -2.9%                              |

2005 Celltech Labs Inc. Page 10 of 13



#### 450 MHz System Validation (Brain) - October 25, 2005

DUT: Dipole 450 MHz; Model: D450V2; Serial: 136; Calibrated: 10/25/2005

Ambient Temp: 23.5 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.4 kPa; Humidity: 34%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 ( $\sigma$  = 0.84 mho/m;  $\epsilon_r$  = 43.2;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

450 MHz System Validation/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.27 mW/g

450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.3 V/m; Power Drift = -0.025 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.800 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.1 V/m; Power Drift = 0.004 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.798 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.014 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.798 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.040 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.014 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.1 V/m; Power Drift = 0.016 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

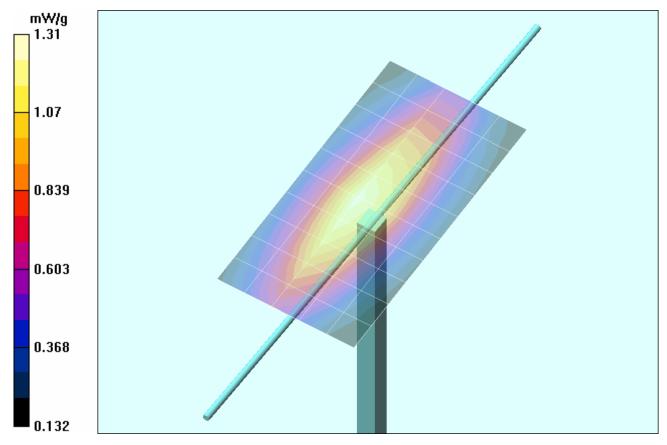
Reference Value = 39.1 V/m; Power Drift = 0.008 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

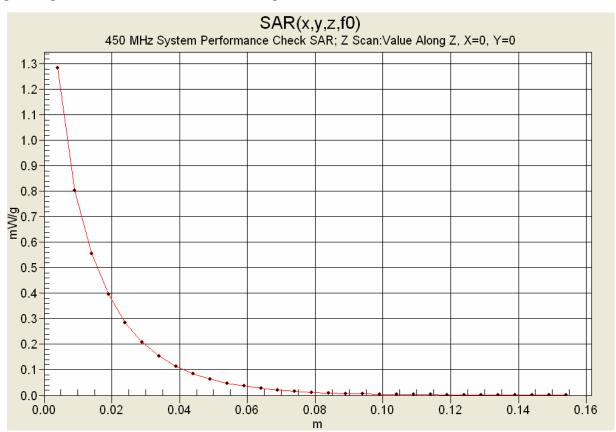
Reference Value = 39.6 V/m; Power Drift = -0.031 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.2 V/m; Power Drift = 0.016 dB SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.31 mW/g


450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.2 V/m; Power Drift = -0.010 dB SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.806 mW/g


Maximum value of SAR (measured) = 1.31 mW/g

2005 Celltech Labs Inc. Page 11 of 13





1 g average of 10 measurements: 1.24 mW/g 10 g average of 10 measurements: 0.801 mW/g



2005 Celltech Labs Inc. Page 12 of 13



### 11. Measured Fluid Dielectric Parameters

# System Validation (Brain) - 450 MHz Dipole

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Tue 25/Oct/2005 12:07:39

Frequency(GHz) Freq

FCC\_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test\_e Epsilon of UIM Sigma of UIM

Test\_s Sign \*\*\*\*\*\*\*\*\*\*\*

| Freq   | FCC el- | IFCC sH | Test e | Test s |
|--------|---------|---------|--------|--------|
| 0.3500 | 44.70   | 0.87    | 46.08  | 0.7567 |
| 0.3600 | 44.58   | 0.87    | 45.12  | 0.7628 |
| 0.3700 | 44.46   | 0.87    | 45.10  | 0.7809 |
| 0.3800 | 44.34   | 0.87    | 45.43  | 0.7839 |
| 0.3900 | 44.22   | 0.87    | 43.97  | 0.7737 |
| 0.4000 | 44.10   | 0.87    | 43.78  | 0.7898 |
| 0.4100 | 43.98   | 0.87    | 43.52  | 0.8094 |
| 0.4200 | 43.86   | 0.87    | 43.40  | 0.8252 |
| 0.4300 | 43.74   | 0.87    | 43.32  | 0.8299 |
| 0.4400 | 43.62   | 0.87    | 43.32  | 0.8412 |
| 0.4500 | 43.50   | 0.87    | 43.20  | 0.8371 |
| 0.4600 | 43.45   | 0.87    | 42.91  | 0.8381 |
| 0.4700 | 43.40   | 0.87    | 42.76  | 0.8474 |
| 0.4800 | 43.34   | 0.87    | 42.33  | 0.8578 |
| 0.4900 | 43.29   | 0.87    | 42.63  | 0.8839 |
| 0.5000 | 43.24   | 0.87    | 42.19  | 0.8784 |
| 0.5100 | 43.19   | 0.87    | 41.77  | 0.8958 |
| 0.5200 | 43.14   | 0.88    | 41.64  | 0.8896 |
| 0.5300 | 43.08   | 0.88    | 41.13  | 0.9037 |
| 0.5400 | 43.03   | 0.88    | 40.85  | 0.9328 |
| 0.5500 | 42.98   | 0.88    | 40.94  | 0.9272 |

2005 Celltech Labs Inc. Page 13 of 13